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Efficient, high-fidelity single-photon switch based on waveguide-coupled cavities
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Department of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, United Kingdom
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We demonstrate theoretically that waveguide-coupled cavities with embedded two-level emitters can act as

a highly efficient, high-fidelity single-photon switch. The photon switch is an optical router triggered by a

classical signal—the propagation direction of single input photons in the waveguide is controlled by changing

the emitter-cavity coupling parameters in situ, for example, using applied fields. The switch reflects photons in

the weak emitter-cavity coupling regime and transmits photons in the strong coupling regime. By calculating

transmission and reflection spectra using the input-output formalism of quantum optics and the transfer matrix

approach, we obtain the fidelity and efficiency of the switch with a single-photon input in both regimes. We

find that a single waveguide-coupled cavity can route input photon wave packets with near-unity efficiency and

fidelity if the wave packet width is smaller than the cavity mode linewidth. We also find that using multiple

waveguide-coupled cavities increases the switching bandwidth, allowing wider wave packets to be routed with

high efficiency and fidelity. For example, an array of three waveguide-coupled cavities can reflect an input

Gaussian wave packet with a full width at half-maximum of 1 nm (corresponding to a few-picosecond pulse) with

an efficiency Er = 96.4% and a fidelity Fr = 97.7%, or transmit the wave packet with an efficiency Et = 99.7%

and a fidelity Ft = 99.8%. Such efficient, high-fidelity single-photon routing is essential for scalable photonic

quantum technologies.

DOI: 10.1103/PhysRevA.110.042615

I. INTRODUCTION

Creating large-scale, distributed quantum networks for

technologies such as computing, communication, sensing, and

metrology requires precise control over single photons [1–4].

A fundamental building block of photonic quantum tech-

nologies is therefore a device that can deterministically and

faithfully route a single photon within a network, i.e., a

single-photon switch with high efficiency and fidelity. Photon

routing based on linear optics alone is probabilistic [5–7], and

there have been many proposals of single-photon switches

that utilize light-matter interactions for deterministic oper-

ation. Previous theoretical studies of such photon routers

involve emitter-waveguide systems [8–10], single resonators

with [11–13] and without [14–16] coupled emitters, and more

complex cavity-based structures [17–19], including arrays

of many coupled cavities [20–22]. Experimental platforms

proposed for photon switching include superconducting cir-

cuits with transmon qubits [23–26], semiconductors with

embedded quantum dots [27–29], atomic ensembles [30–32],

and single emitters such as nitrogen-vacancy centers [33] or

atoms [34–36] coupled to a microresonator.
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Coupled-cavity arrays (CCAs) are a particularly promising

platform, as they exhibit quantum many-body phenomena

that can be exploited in various photonic quantum technolo-

gies [37,38]. This includes entanglement generation [39–42],

cluster state preparation [43], and many-body phase transi-

tions [44]. In many proposed CCAs, photon propagation is

mediated by evanescent field coupling, which requires the

electromagnetic fields of neighboring cavities to overlap spa-

tially, spectrally, and in k-space [45]. Spatial overlap between

cavity modes places significant constraints on the geometry of

a CCA, most notably that the cavity separations must be on the

wavelength scale [46]. This makes it challenging to address

and manipulate the properties of each cavity individually, and

FIG. 1. N single-mode cavities coupled to a single-mode waveg-

uide, with each cavity containing a two-level emitter. Photon

propagation is indicated by red wavy arrows, and coupling is repre-

sented by blue arrows. Cavity j couples to its emitter with coupling

rate g j , and to the right- and left-moving waveguide modes with

coupling rates VR, j and VL, j , respectively. The separation between

two neighboring cavities (i, j) is di, j . The input and output modes

are aR,in, aL,in and aR,out, aL,out, respectively.
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hence to precisely control the propagation of photons and

overcome fabrication disorder [47–49].

In this paper we propose a single-photon switch with high

efficiency and fidelity based on an array of single-mode cavi-

ties coupled to a common single-mode waveguide, with each

cavity containing a two-level quantum emitter (Fig. 1). The

switch is an optical router triggered by a classical signal—

the control of the propagation direction of a single input

photon in the waveguide is realized by controlling the emitter-

cavity coupling within each cavity. The waveguide allows

for larger cavity separations compared to conventional CCAs

with evanescent cavity-cavity coupling, while retaining strong

intercavity interactions [50]. This makes individual cavity

addressability more practical, enabling more precise control

over photon propagation. For example, the cavity mode fre-

quencies and the transition frequencies of the emitters can be

tuned independently at each cavity site, e.g., via optical [51] or

electrical [52] Stark tuning, or through strain tuning [53,54].

This tuning enables the emitter-cavity coupling to be con-

trolled within each cavity, as required for the switch operation.

Furthermore, the cavity-waveguide separations provide an

additional degree of freedom that allows for independent

control over intercavity coupling rates between any pair of

cavities (e.g., by adjusting the separations electromechani-

cally [55,56]). The enhanced control in this system overcomes

a major challenge in fabricating CCA-based single-photon

routers with evanescent nearest-neighbor coupling, where

identical cavities are required for good photon transmission

but overcoming disorder is exceedingly difficult.

II. THEORY

A schematic of the system is shown in Fig. 1. N

single-mode cavities are coupled to a common single-mode

waveguide. Cavity j has resonance frequency ωc, j and con-

tains a two-level quantum emitter with transition frequency

ωe, j and emitter-cavity coupling rate g j . The cavity couples

to the right- and left-moving waveguide modes with coupling

rates VR, j and VL, j , respectively. The separation between two

neighboring cavities (i, j) is di, j . We can write the Hamilto-

nian for cavity j as

H j = He + Hc + Hwg + He-c + Hc-wg, (1)

where (h̄ = 1)

He = 1
2
ωe, jσz, j (2)

is the free Hamiltonian for the two-level emitter in cavity j

(with Pauli operator σz, j = |e j〉〈e j | − |g j〉〈g j |, where |g j〉 is

the ground state and |e j〉 is the excited state of the emitter),

Hc = ωc, jc
†
j c j (3)

is the free Hamiltonian for the cavity (with mode operators c j ,

c
†
j ), and

Hwg =
∫ ∞

0

ω(k)a†
R(k)aR(k) dk +

∫ 0

−∞
ω(k)a†

L(k)aL(k) dk

(4)

is the free waveguide Hamiltonian, with aR(k), a
†
R(k),

aL(k), a
†
L(k) being the k-space operators for the right- and

left-moving waveguide modes, and ω(k) is the dispersion

relation. In addition,

He-c = g jσ
+
j c j + g∗

jσ
−
j c

†
j (5)

is the Jaynes-Cummings emitter-cavity interaction [57,58]

(where σ+
j = |e j〉〈g j | and σ−

j = |g j〉〈e j | are the raising and

lowering operators for emitter j), and

Hc-wg =
∫ ∞

0

⎡

⎣

√

VR, j

2π
a

†
R(k)c j +

√

V ∗
R, j

2π
aR(k)c†

j

⎤

⎦dk

+
∫ 0

−∞

⎡

⎣

√

VL, j

2π
a

†
L(k)c j +

√

V ∗
L, j

2π
aL(k)c†

j

⎤

⎦dk (6)

is the cavity-waveguide interaction, assumed to be indepen-

dent of the photon wave number k in the waveguide (Markov

approximation [59]). There is no direct cavity-cavity interac-

tion term (unlike in the Bose-Hubbard model, which is used

to describe conventional CCAs [37]) because we consider

sufficiently large separations di, j where evanescent coupling

between the cavities is exponentially suppressed.

The input and output modes of the waveguide are denoted

by aR,in, aL,in and aR,out, aL,out, respectively (see Fig. 1), and

obey the linear transfer relation
(

aR,out

aL,in

)

= Ttot

(

aR,in

aL,out

)

, (7)

where Ttot is the total transfer matrix for the N-cavity system,

which relates the input and output modes aL,in, aR,out on the

right side of cavity N to the input and output modes aR,in,

aL,out on the left side of cavity 1. Since the system in Fig. 1

is an alternating sequence of waveguide-coupled cavities and

regions of length di, j where photons propagate freely in the

waveguide, the total transfer matrix can be decomposed into

a product of transfer matrices Tj for the cavities and T
(i, j)

wg for

the waveguide segments of length di, j separating the cavities:

Ttot = TN · · · T2 T (1,2)
wg T1. (8)

In Appendix A we transform the single-cavity Hamiltonian

H j in Eq. (1) from k-space to frequency space using the

linear dispersion approximation. We then use the resulting

Hamiltonian and the input-output formalism [59] to derive the

cavity transfer matrices Tj , by assuming a weak coherent input

field in the waveguide (see Appendix B). Here we use the

weak-excitation approximation to neglect multiphoton con-

tributions in the coherent input [60], allowing us to consider

single-photon scattering. This leads to the result

Tj =
1

β j + α
(−)
j

(

β j − α
(+)
j ζ j

ζ ∗
j β j + α

(+)
j

)

, (9)

where α
(±)
j = i

2
(|VR, j | ± |VL, j |), β j = �c, j − |g j |2/�e, j ,

and ζ j = −i(VR, jV
∗

L, j )
1
2 . Here �c, j = ω − ωc, j and

�e, j = ω − ωe, j are frequency detunings, where ω is the input

photon frequency. Photon loss from the cavities and emitters

into the environment can be included in this result using the

substitutions �c, j → �c, j + iκ j/2 and �e, j → �e, j + iγ j/2,

where κ j and γ j are the loss rates of cavity j and emitter j,

respectively (see Appendix C).

042615-2
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The waveguide transfer matrices T
(i, j)

wg describe phase

shifts that the photons acquire when they propagate freely over

the distances di, j in the waveguide, so they have the simple

form

T (i, j)
wg =

(

e−iωdi, j/vg 0

0 eiωdi, j/vg

)

, (10)

where vg is the photon group velocity (this is also derived in

Appendix B).

Since the cavity transfer matrices Tj and the waveguide

transfer matrices T
(i, j)

wg are 2 × 2 matrices, after computing

the product in Eq. (8) for some chosen number of cavities

N , the total transfer matrix will also be a 2 × 2 matrix,

with some matrix elements Mnm that depend on the system

parameters:

Ttot =
(

M11 M12

M21 M22

)

. (11)

Substituting this matrix into the transfer relation in Eq. (7)

allows the output modes aR,out, aL,out to be expressed in terms

of the input modes aR,in, aL,in:

aR,out =
(

M11 −
M12M21

M22

)

aR,in +
M12

M22

aL,in, (12a)

aL,out = −
M21

M22

aR,in +
1

M22

aL,in. (12b)

For right-moving input photons, the coefficient of aR,in in the

expression for aR,out is the N-cavity transmission coefficient

tN (this is the probability amplitude for the output photons

also moving to the right), and the coefficient of aR,in in the

expression for aL,out is the N-cavity reflection coefficient rN

(this is the probability amplitude for the output photons being

scattered to the left):

tN = M11 −
M12M21

M22

and rN = −
M21

M22

. (13)

These equations allow transmission and reflection spectra to

be calculated for any number of waveguide-coupled cavities,

once the elements Mnm of the total transfer matrix Ttot are

computed using Eq. (8).

III. RESULTS

A. Transmission spectra for different N

In Fig. 2 we show the transmission |tN |2 as a function

of the input photon frequency for (a) N = 1, (b) N = 3, (c)

N = 5, and (d) N = 10 identical, equally spaced cavities (in

Appendix D, we derive analytical results for tN and rN for

any number N of identical, equally spaced cavities). Here all

the cavities are in the weak emitter-cavity coupling regime

(g j ≪ κ j, γ j), so the effect of the emitters is negligible. For

a single waveguide-coupled cavity [Fig. 2(a)], a transmis-

sion dip occurs at the cavity resonance frequency [61,62].

When the number of cavities is increased [Figs. 2(b)–2(d)],

the dip at the cavity resonance frequency ωc, j is broadened

compared to the N = 1 case. This transmission dip broaden-

ing is consistent with previous observations in systems with

multiple emitters or resonators coupled to a common waveg-

uide [63–66]. Furthermore, for N > 1 we see fringes that

FIG. 2. Transmission |tN |2 as a function of the input photon

frequency for (a) N = 1, (b) N = 3, (c) N = 5, and (d) N = 10

identical, equally spaced waveguide-coupled cavities in the weak

emitter-cavity coupling regime (g j ≪ κ j, γ j for all j).

arise from interference in the waveguide, caused by reflections

between the cavities. This interference leads to a periodic

sequence of transmission dips on either side of the central

dip, with a free spectral range �FSR = 1/2TP = vg/2di, j [50],

where TP = di, j/vg is the photon propagation time between

neighboring cavities. We note that our system enables the

free spectral range to be controlled postfabrication, for ex-

ample, by decoupling every other cavity from the waveguide

to increase the nearest-neighbor separations di, j by a factor

of two, which would reduce �FSR by a factor of two. The

interference in a waveguide-based CCA can also give rise to

photon antibunching in the output of the waveguide [67].

B. Photon switch operation

We now discuss the basic working principle of our photon

switch proposal. As shown in Fig. 2, when the cavities are

in the weak coupling regime (g j ≪ κ j, γ j), there is a dip

in transmission centered at the cavity resonance frequencies,

where input photons can be reflected. When we transition

to the strong emitter-cavity coupling regime (g j ≫ κ j, γ j),

the coherent interaction between the emitters and the cavities

induces vacuum Rabi splitting of the cavity modes [68], which

opens a transmission window that allows photons to propagate

through the waveguide. We show this for a single waveguide-

coupled cavity in Fig. 3. In the strong coupling regime

[Fig. 3(b)], the transmission dip splits into two dips with a

frequency separation of 2g1. Due to this splitting, the trans-

mission at the cavity resonance frequency ωc,1 switches from

being zero to approximately one when we switch from weak

coupling to strong coupling [61,62]. This means that we can

deterministically switch between reflection and transmission

by controlling the emitter-cavity coupling rate g1. Experimen-

tally, this can be achieved by controlling the emitter-cavity

detuning, for example, using applied fields [51,52].

Figure 3 illustrates how a single waveguide-coupled cavity

can be used as a photon switch for input photons in the

waveguide. In the weak coupling regime [Fig. 3(a)], perfect

reflection occurs only at the cavity resonance frequency, al-

lowing only narrow wave packets centered at this frequency

042615-3
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FIG. 3. Transmission |t1|2 as a function of the input photon

frequency for a single waveguide-coupled cavity. Panels (a) and

(b) correspond to the weak (g1 ≪ κ1, γ1) and strong (g1 ≫ κ1, γ1)

emitter-cavity coupling regimes, respectively.

to be routed effectively. However, we can increase the switch-

ing bandwidth using the behavior observed in Fig. 2, where

increasing the number of cavities was shown to increase the

width of the transmission dip in the weak coupling regime. In

Fig. 4 we show the operation of the switch for N = 10 iden-

tical, equally spaced cavities, for comparison with the N = 1

case from Fig. 3. Figure 4(a) corresponds to the weak coupling

regime (g j ≪ κ j, γ j for all j ∈ {1, . . . , 10})—this is the same

as Fig. 2(d) but with only the central transmission dip shown.

When all the emitter-cavity pairs are in the strong coupling

regime [Fig. 4(b), g j ≫ κ j, γ j for all j], we observe Rabi

splitting as in the N = 1 case, which results in two dips with a

frequency separation of 2g j and a region of high transmission

between them. Importantly, we can now switch between near-

unity reflection and near-unity transmission over a range of

frequencies centered at the cavity resonance frequency ωc, j ,

as opposed to switching only at one frequency. Using multiple

waveguide-coupled cavities therefore increases the switching

bandwidth, allowing photon wave packets with a wider fre-

quency distribution to be routed in the desired direction in the

waveguide.

The possibility of using larger cavity separations in our sys-

tem allows us to overcome fabrication disorder with greater

ease compared to CCA proposals with evanescent nearest-

neighbor coupling. Nevertheless, it may not be possible to

make all cavities and emitters identical in a given imple-

mentation (e.g., due to a limited tuning range). Hence, in

Appendix E we analyze how the ideal ten-cavity spectra in

Fig. 4 are affected by disorder. We find that the spectra are

FIG. 4. Transmission |t10|2 as a function of the input photon fre-

quency for ten identical, equally spaced waveguide-coupled cavities.

Panels (a) and (b) correspond to the weak (g j ≪ κ j, γ j) and strong

(g j ≫ κ j, γ j) emitter-cavity coupling regimes, respectively.

highly robust against variations in the quality (Q) factors of

the cavities, even when there is a 25% standard deviation

in the Q factors. The switching is also robust against sub-

wavelength disorder in the cavity separations di, j , but the

performance can degrade significantly with wavelength-scale

disorder due to the interferometric nature of the switch. In

addition, the transmission spectra cope well with disorder in

the cavity resonance frequencies ωc, j and emitter transition

frequencies ωe, j , provided that the frequency distributions do

not exceed the switching bandwidth. Furthermore, we find

that, if the strong coupling regime cannot be reached in one of

the cavities in the array (e.g., due to poor emitter positioning

within the cavity), then such a cavity should be detuned away

from the switching region to recover the desired transmission

behavior (effectively reducing the number of cavities in the

switch by one). This is a general mitigation strategy we can

employ in our system—if there are cavities where strong

coupling cannot be achieved due to fabrication imperfections,

then such cavities should be detuned away from the switching

bandwidth (or decoupled from the waveguide) for the opera-

tion of the switch to work as intended (for examples of cavity

tuning mechanisms, see [54–56,69–71]). We note that this

would not be possible in a conventional CCA with evanescent

nearest-neighbor coupling, where detuning one cavity away

from the rest would inhibit photon transmission through the

array (in our system, photon transport does not rely on all

the cavities being in resonance). When we decouple a cavity

from the waveguide, we introduce some disorder in the cavity

separations, but we find that this does not have a negative im-

pact on the transmission window. The impact would be more

significant in the weak coupling regime (where the switching

window depends more strongly on the cavity number), and

hence in this regime it would be more favorable to have all the

cavities coupled to the waveguide and tuned to the center of

the switching bandwidth.

C. Switch efficiencies and fidelities

From Figs. 3 and 4, we see that the switch operates in

reflection mode (“r”) in the weak emitter-cavity coupling

regime and in transmission mode (“t”) in the strong coupling

regime. We quantify the performance of our proposed switch

by calculating the efficiency Eν and fidelity Fν in both regimes

using

Eν =
∣

∣

∣

∣

∫ ∞

−∞
|νN (ω)|2| f (ω)|2dω

∣

∣

∣

∣

2

, (14a)

Fν =
∣

∣

∣

∣

∫ ∞

−∞
νN (ω)| f (ω)|2dω

∣

∣

∣

∣

2

, (14b)

where ν ∈ {r, t}, and we consider a Gaussian input photon

wave packet f (ω) (see Appendix F for the wave packet and

the derivations of the efficiency and fidelity expressions). The

efficiency is the probability that the wave packet will leave

in the desired direction in the waveguide, while the fidelity

quantifies the similarity of the input and output wave packets.

For an ideal switch, Eν = 1 (input wave packets always leave

in the correct direction—deterministic operation) and Fν = 1

(the wave packet shape is preserved—faithful operation) in

both reflection and transmission mode.
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FIG. 5. Examples of switching different wave packets. The wave

packets correspond to the red shaded regions (rescaled to have unit

height), and the blue curves show transmission as a function of the

input photon wavelength. In (a) and (b), we consider a switch with

a single waveguide-coupled cavity (N = 1), and the input Gaussian

wave packet has a central wavelength of 1550 nm and a full width

at half-maximum σλ = 0.01 nm. In (c) and (d), we consider a switch

with three cavities (N = 3), and the input wave packet has a central

wavelength of 1550 nm and a full width at half-maximum σλ = 1 nm.

Figure 5 shows examples of switching different wave pack-

ets. The parameters we use for the efficiency and fidelity

calculations correspond to photon wavelengths in the telecom

C-band, which are relevant for quantum networks with appli-

cations in quantum communications (we note, however, that

the parameters can be rescaled, and the results generalized

to other photon wavelengths). In particular, the cavity mode

wavelengths are λc, j = 1550 nm (ωc, j = 2πc/λc, j , where c

is the vacuum speed of light), and Qc, j = 500 are the Q

factors of the cavities when coupled to the waveguide, giving

the cavity-waveguide coupling rates VR, j = VL, j = ωc, j/2Qc, j

(here the factor of 1/2 arises because we consider equal cou-

pling to the right- and left-moving waveguide modes). The

cavity loss rates into nonguided modes are κ j = ωc, j/Qu, j ,

where Qu, j = 5 × 104 are the intrinsic Q factors of the cavities

when not coupled to the waveguide (κ j/2π ≈ 4 GHz), and

γ j/2π = 1 GHz are the emitter loss rates (typical for semi-

conductor quantum dot systems [72]).

In Figs. 5(a) and 5(b), we use a single waveguide-coupled

cavity to switch an input Gaussian wave packet centered at

1550 nm (i.e., at the center of the switching region), with

a full width at half-maximum (FWHM) σλ = 0.01 nm. This

wave packet is representative of photon emission from a

quantum dot [73]. Figure 5(a) corresponds to the weak cou-

pling regime, where g1/2π = 100 MHz (g1 ≪ κ1, γ1), and

the wave packet is reflected with an efficiency Er = 96.1%

and a fidelity Fr = 98.0%. In Fig. 5(b) we increase the

emitter-cavity coupling rate to g1/2π = 100 GHz, with

the emitter being on resonance with the cavity (i.e.,

λe,1 = λc,1 = 1550 nm). This results in a transition to the

strong coupling regime (g1 ≫ κ1, γ1), leading to a Rabi split-

ting of 2g1/2π = 200 GHz (≈ 1.6 nm, or about 800 µeV).

This splitting allows the wave packet to be transmitted

through the waveguide with an efficiency Et = 96.2% and

a fidelity Ft = 98.1%. We note that Et and Ft approach

100% when the emitter-cavity coupling strength g1 is in-

creased, but we use a coupling strength that is of the order

of what has been achieved to date with quantum dots in

semiconductor nanocavities [74]. We also note that the same

efficiencies and fidelities can be attained in transmission with

g1/2π = 50 GHz and Qc,1 = 2000, i.e., by increasing the

coupled-cavity Q by a factor of four, we can achieve the same

switching performance with half the emitter-cavity coupling

rate. In practice, we can modulate the coupled-Q factor in situ

by adjusting the cavity-waveguide separation [56].

In the situation considered in Figs. 5(a) and 5(b), the width

of the wave packet is significantly smaller than the cavity

mode linewidth [compare the wave packet width with the

width of the transmission dip in Fig. 5(a)]. Hence, a single

waveguide-coupled cavity can route the wave packet with

near-unity efficiency and fidelity, without the need for intro-

ducing more cavities to increase the width of the transmission

dip. In Figs. 5(c) and 5(d), we consider switching a Gaussian

wave packet centered at 1550 nm (again at the center of the

switching region), with a FWHM σλ = 1 nm (this wave packet

corresponds to a few-picosecond pulse). Since this wave

packet has a much larger spectral width than the wave packet

considered in Figs. 5(a) and 5(b), comparable to the cavity

mode linewidth, we need to increase the switching bandwidth

to maintain high routing efficiencies and fidelities. This can

be achieved by coupling more cavities to the waveguide to

increase the width of the reflection window in the weak cou-

pling regime (see Fig. 2), and by using larger emitter-cavity

coupling rates g j to increase the width of the transmission

window in the strong coupling regime. Hence, in Figs. 5(c)

and 5(d), we use an array of three waveguide-coupled cavities

to route the wider wave packet. Here the nearest-neighbor

cavity separations are d1,2 = d2,3 = 4.65 µm (comparable to

previous experiments involving waveguide-coupled nanocav-

ities [50]), and the photon group velocity in the waveguide is

vg = 0.3c (corresponding to the group index ng = c/vg ≈ 3).

Figure 5(c) corresponds to the weak coupling regime, where

g j/2π = 100 MHz for all j ∈ {1, 2, 3}. Comparing this with

Fig. 5(a), we see the broadening of the transmission dip due

to using a larger number of cavities, resulting in a reflection

efficiency Er = 96.4% and a reflection fidelity Fr = 97.7%

for the wider wave packet (if only one cavity with the same

parameters was used to reflect this wave packet, we would

obtain Er = 84.7% and Fr = 86.4%). Figure 5(d) corresponds

to the strong coupling regime, where g j/2π = 500 GHz for

all j, and all the emitters are on resonance with the cav-

ities (λe, j = λc, j = 1550 nm). With these parameters, we

obtain a transmission efficiency Et = 96.4% and a transmis-

sion fidelity Ft = 97.4%. As in the single-cavity case, we can

increase the coupled-Q factors Qc, j (e.g., by increasing the

cavity-waveguide separations) to achieve similar transmission

efficiencies and fidelities with lower coupling rates. For ex-

ample, with g j/2π = 250 GHz and Qc, j = 2000, we obtain

Et = 95.5% and Ft = 96.6%. In general, the switching band-

width needs to be increased compared to the N = 1 case if the

wave packet width is comparable to or greater than the cavity

mode linewidth, so it is necessary to use multiple cavities

and larger emitter-cavity coupling rates to maintain near-unity

efficiencies and fidelities. The coupling rates used here for the
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FIG. 6. Switch efficiencies and fidelities for N = 3 identical,

equally spaced cavities [as shown schematically in the inset in

(b)]. The input Gaussian wave packet has a FWHM σλ = 1 nm,

as in Figs. 5(c) and 5(d). (a) Reflection efficiency Er and re-

flection fidelity Fr calculated for cavity separations in the range

d1,2 = d2,3 = 1–100 µm, with 0.01 µm increments (blue points).

This data corresponds to the weak emitter-cavity coupling regime

(g j/2π = 100 MHz), where the switch is in reflection mode.

(b) Transmission efficiency Et and transmission fidelity Ft in the

strong coupling regime (g j/2π = 500 GHz), where the switch is

operating in transmission mode. The same set of cavity separations

is used to calculate the efficiencies and fidelities as in (a). (c) Fr

shown against Ft , using the same data as in (a) and (b). The color

gradient represents the corresponding values of Er . In (a)–(c), the

red cross indicates the results for d1,2 = d2,3 = 4.65 µm, which is the

configuration considered in Figs. 5(c) and 5(d).

strong coupling regime correspond to Rabi splittings of sev-

eral meV and have been exceeded experimentally in systems

such as quantum dots in plasmonic nanogap cavities [75] and

excitons in cavities constructed from organic molecules [76].

Similar coupling rates to the values used here can also be

reached by placing a two-level emitter inside a semiconductor

nanogap cavity [77], where loss rates are less significant than

in plasmonic systems.

When multiple cavities are used, the performance of the

switch depends greatly on the choice of the cavity sepa-

rations di, j due to its interferometric nature. In Fig. 6 we

show efficiencies and fidelities for different choices of di, j

in the three-cavity switch considered in Figs. 5(c) and 5(d).

In Figs. 6(a) and 6(b), each blue point corresponds to a

particular nearest-neighbor separation, which we vary in

the range di, j = 1–100 µm in steps of 0.01 µm, keeping

d1,2 and d2,3 equal [as shown schematically in the inset in

Fig. 6(b)]. The red cross indicates the situation considered

in Figs. 5(c) and 5(d), where d1,2 = d2,3 = 4.65 µm. This is

one of the best configurations for the three-cavity switch, but

we see that there are separations where the efficiencies and

fidelities are significantly reduced, and can be smaller than

FIG. 7. Transmission efficiency Et and fidelity Ft as a function

of the emitter-cavity coupling rates g j for a three-cavity switch. In

(a) and (c) the coupled-Q factors are Qc, j = 500, while in (b) and

(d) we use Qc, j = 2000. The dashed curves correspond to an input

wave packet that has a FWHM of 0.01 nm [as in Figs. 5(a) and 5(b)].

The solid curves correspond to an input wave packet that has a

FWHM of 1 nm [as in Figs. 5(c) and 5(d)].

for a single waveguide-coupled cavity. This is because the

interference in the waveguide can distort the transmission

spectrum, including the switching bandwidth. This empha-

sizes the importance of choosing the appropriate cavity

separations to obtain the optimal performance. In Fig. 6(c) we

show the fidelities Fr and Ft using the data from Figs. 6(a)

and 6(b), where the color gradient indicates the associated re-

flection efficiencies Er [here we do not show the transmission

efficiencies Et as they are approximately equal for all separa-

tions; see Fig. 6(b)]. The red cross again corresponds to the

case where d1,2 = d2,3 = 4.65 µm. We see that high fidelities

in transmission and reflection can be achieved simultaneously

in multiple configurations, not just the case indicated by the

red cross [top-right corner in Fig. 6(c)]. These high-fidelity

points also correspond to high efficiencies, meaning that the

switch is highly efficient and it preserves the input wave

packet with near-unity fidelity in both reflection mode and

transmission mode.

In transmission mode, the larger the emitter-cavity cou-

pling rates g j , the wider the switching bandwidth, allowing

wider wave packets to be transmitted through the waveg-

uide with high efficiency and fidelity. In Fig. 7 we show the

transmission efficiency Et and fidelity Ft as a function of the

emitter-cavity coupling rates g j for the three-cavity switch

with nearest-neighbor separations d1,2 = d2,3 = 4.65 µm. The

dashed curves correspond to an input photon wave packet that

has a FWHM σλ = 0.01 nm [same wave packet as in Figs. 5(a)

and 5(b)], while the solid curves correspond to the wider wave

packet from Figs. 5(c) and 5(d), where the FWHM is 1 nm. As

expected, optimal efficiencies and fidelities can be achieved

with lower coupling rates for the narrower wave packet, since

a narrower transmission bandwidth (smaller Rabi splitting)

is required. We also compare the case where the coupled-

Q factors are Qc, j = 500 [Figs. 7(a) and 7(c)] to the case

where Qc, j = 2000 [Figs. 7(b) and 7(d)], showing that higher

Q factors allow higher transmission efficiencies and fidelities
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FIG. 8. (a) Reflection efficiency Er , (b) reflection fidelity Fr ,

(c) transmission efficiency Et , and (d) transmission fidelity Ft

as a function of the number of cavities N . The input Gaussian

wave packet has a FWHM of 1 nm. Panels (a) and (b) cor-

respond to a switch in reflection mode (weak coupling regime,

g j/2π = 100 MHz), and panels (c) and (d) correspond to a switch

in transmission mode (strong coupling regime, g j/2π = 500 GHz),

where Qc, j = 500 for the blue bars and Qc, j = 2000 for the red bars.

to be achieved with lower coupling rates for both wave pack-

ets.

In reflection mode, the switching bandwidth depends on

the number N of waveguide-coupled cavities used in the

switch (as shown in Fig. 2). For wave packets wider than

the cavity mode linewidth, it is beneficial to use multiple

cavities, as this increases the reflection bandwidth in the weak

coupling regime compared to the single-cavity case. In Fig. 8

we show how the switch efficiencies and fidelities are affected

when we change the number of cavities. In particular, we vary

N from 1 to 5, and we choose the cavity separations to be

di, j = 4.65 µm in all cases, as we found this to be one of the

best configurations for the three-cavity switch (see Fig. 6).

We also consider the input wave packet with a FWHM of

1 nm, as in the previous results for the three-cavity switch

in Figs. 5–7. Figures 8(a) and 8(b) correspond to the weak

coupling regime (g j/2π = 100 MHz for all j), where we see a

noticeable improvement in the reflection efficiency Er and the

reflection fidelity Fr when we increase the number of cavities

from N = 1 to N = 3. Beyond N = 3, the improvement in Er

and Fr is very small, as increasing the width of the reflec-

tion window further does not provide a significant benefit for

routing this particular wave packet. Figures 8(c) and 8(d) cor-

respond to the strong coupling regime (g j/2π = 500 GHz),

where Qc, j = 500 for the blue bars and Qc, j = 2000 for the

red bars. We see that the transmission efficiency Et and the

transmission fidelity Ft decrease slightly when the number

of cavities is increased, which is likely caused by the dis-

tortion of the transmission bandwidth due to interference

[e.g., compare Fig. 3(b) with Fig. 4(b)]. This reduction in

performance in transmission mode can be compensated by

increasing the coupled-cavity Q factors, as shown by the red

bars (alternatively, larger emitter-cavity coupling rates can be

used). In particular, we highlight that increasing the Q factors

from Qc, j = 500 to Qc, j = 2000 increases the transmission

efficiency and fidelity of the switch with N = 3 cavities from

Et = 96.4%, Ft = 97.4% to Et = 99.7%, Ft = 99.8% (a sim-

ilar increase could be achieved by keeping the Q factors

at Qc, j = 500 and instead increasing the coupling rates to

g j/2π = 1 THz). We note that a higher Q corresponds to a

narrower cavity linewidth, and hence a narrower reflection

bandwidth. Therefore, it is more favorable to use lower Q

factors for reflection mode and to increase the Q factors when

switching to transmission mode via in situ control rather than

using high Q factors in both regimes.

D. Switching speed

We now briefly consider how the width of the input

photon wave packet affects the repetition rate of our pro-

posed switch, as well as other mechanisms that can affect

the switching speed. The spectral width of the wave packet

will determine its time duration, and we require this dura-

tion to exceed the total round-trip time within the switch in

order to observe the interference for N > 1. Consider the

three-cavity switch with nearest-neighbor cavity separations

d1,2 = d2,3 = 4.65 µm, and an input Gaussian wave packet

with a FWHM of 1 nm. The width σλ = 1 nm corresponds

to a time duration of approximately 8 ps for a pulse centered

at 1550 nm, while the photon round-trip time in the three-

cavity switch is T = L/vg = 18.6 µm/0.3c ≈ 0.2 ps, where

L = 4.65 µm × 4 = 18.6 µm is the total round-trip distance.

When the time duration of the wave packet exceeds the

round-trip time (as is the case here), it is the wave packet

duration that limits the repetition rate of the switch. The time it

takes to tune the emitter-cavity interactions between the weak

and strong coupling regimes also determines how quickly

the switch can be operated. The fastest tuning mechanisms

include using an electric field to Stark shift the emitters on

and off resonance with the cavities (this can enable switching

at a rate of 150 MHz [78]), as well as optical shifting induced

by a laser pump, which can enable switching on picosecond

timescales [79–81]. If the cavity Q factors are to be modulated

in order to improve the performance of the switch (instead

of using larger emitter-cavity coupling rates), the speed with

which the Q factors can be controlled also needs to be

considered.

IV. CONCLUSION

In conclusion, we have demonstrated theoretically that

waveguide-coupled cavities with embedded quantum emit-

ters can act as a highly efficient, high-fidelity single-photon

switch. The switch reflects photons in the weak emitter-cavity

coupling regime and transmits photons in the strong cou-

pling regime due to Rabi splitting. We find that a single

waveguide-coupled cavity can reflect an input wave packet

with a FWHM of 0.01 nm (e.g., a photon emitted from a quan-

tum dot single-photon source) with an efficiency Er = 96.1%

and a fidelity Fr = 98.0%, or transmit the wave packet with

an efficiency Et = 96.2% and a fidelity Ft = 98.1%. These

values are achievable with parameters based on quantum

dots in semiconductor nanostructures, for example, a quan-

tum dot embedded in a photonic crystal nanocavity. When

the spectral width of the input wave packet is comparable

to or greater than the cavity mode linewidth, the switching
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bandwidth needs to be increased to maintain high switch-

ing efficiencies and fidelities. This can be achieved by using

multiple waveguide-coupled cavities to increase the reflection

bandwidth in the weak coupling regime, and using larger

emitter-cavity coupling rates to increase the transmission

bandwidth in the strong coupling regime. For example, we

find that an array of three waveguide-coupled cavities can

reflect a wave packet with a FWHM of 1 nm (corresponding

to a few-picosecond pulse) with an efficiency Er = 96.4% and

a fidelity Fr = 97.7%, and it can transmit the wave packet

with an efficiency Et = 99.7% and a fidelity Ft = 99.8%. The

switching between weak and strong coupling can be realized

by controlling the emitter-cavity detuning within each cav-

ity. Since the waveguide mediates intercavity coupling, the

cavity separations can be significantly larger than the photon

wavelength, allowing for independent control of emitter and

cavity properties at each cavity site (e.g., with applied electric

or optical fields). Our work shows that waveguide-coupled

cavities with embedded emitters are a promising platform for

the realization of high-performance single-photon switches

that preserve the input photon state with high fidelity, which is

an essential requirement for photonic quantum technologies.
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APPENDIX A: HAMILTONIAN TRANSFORMATION

In this Appendix, we transform the single-cavity Hamil-

tonian H j in Eq. (1) from k-space to frequency space using

the linear dispersion approximation, which is the first step in

deriving the cavity transfer matrices Tj using the input-output

formalism. This Hamiltonian corresponds to the subsystem

shown in Fig. 9 (i.e., a single waveguide-coupled cavity from

the full N-cavity system shown in Fig. 1). Within the linear

dispersion approximation, we expand the waveguide disper-

sion relation ω(k) as a Taylor series around the wave numbers

±k0 corresponding to some frequency ω0 = ω(k0) = ω(−k0),

and we keep terms that are at most linear in k. We therefore

have

ω(k) ≈
{

ω0 − vg(k + k0), k ≈ −k0,

ω0 + vg(k − k0), k ≈ k0,
(A1)

where vg = dω
dk

|k0
is the photon group velocity in the waveg-

uide. This linearization is illustrated graphically in Fig. 10.

For the Hamiltonian H j , this approximation implies that

ω(k) ≈ ω0 − vg(k + k0) in the integrals over negative k, and

ω(k) ≈ ω0 + vg(k − k0) in the integrals over positive k, which

in general is valid if only photons with wave numbers close

to ±k0 are considered. However, since the linearization point

ω0 can be chosen freely and in our work we consider

wave packets with a FWHM much smaller than the central

frequency/wavelength, this is a well-justified approximation.

With the above approximation for ω(k), the single-cavity

FIG. 9. Diagram of a single waveguide-coupled cavity with the

Hamiltonian H j given in Eq. (1). The index j labels the cavity.

Hamiltonian H j is given by

H j =
1

2
ωe, jσz, j + ωc, jc

†
j c j

+
∫ ∞

0

[ω0 + vg(k − k0)]a†
R(k)aR(k)dk

+
∫ 0

−∞
[ω0 − vg(k + k0)]a†

L(k)aL(k)dk + g jσ
+
j c j

+ g
∗
jσ

−
j c

†
j +

∫ ∞

0

⎡

⎣

√

VR, j

2π
a

†
R(k)c j +

√

V ∗
R, j

2π
aR(k)c†

j

⎤

⎦dk

+
∫ 0

−∞

⎡

⎣

√

VL, j

2π
a

†
L(k)c j +

√

V ∗
L, j

2π
aL(k)c†

j

⎤

⎦dk. (A2)

The Hamiltonian H j commutes with

N j =
1

2
σz, j + c

†
j c j +

∫ ∞

0

a
†
R(k)aR(k) dk

+
∫ 0

−∞
a

†
L(k)aL(k) dk, (A3)

the total excitation number operator for cavity j (i.e.,

[H j, N j] = 0). This means that the total excitation number is a

conserved quantity, which we can see because in H j every cre-

ation operator is paired with an annihilation operator, meaning

that no physical process described by H j can change the total

FIG. 10. Graphical illustration of the linear dispersion approx-

imation. The waveguide dispersion relation ω(k) (black curve) is

approximated as being linear (red lines) near the wave numbers

k = ±k0 corresponding to some frequency ω0.
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number of excitations. We can therefore shift the energy spec-

trum using the transformation H j → H j − ω0N j , as this is a

constant energy shift that does not affect the dynamics of the

system. After using the transformation, we absorb remaining

factors of ω0 into the definitions of the emitter and cavity

frequencies (i.e., ωe, j − ω0 → ωe, j , and ωc, j − ω0 → ωc, j).

Next, we extend the integration limits in H j such that all

the lower limits are k = −∞ and all the upper limits are

k = ∞. This is well justified within the regime of validity

of the linear dispersion approximation, where only photon

wave numbers close to k0 (for k > 0) and −k0 (for k < 0)

are considered. After extending the integration limits, the sub-

stitution k′ = k − k0 can be used in the integrals containing

aR(k), and k′ = k + k0 can be used in the integrals containing

aL(k). The new integration variable k′ can then be relabeled

with k, leading to

H j =
1

2
ωe, jσz, j + ωc, jc

†
j c j +

∫ ∞

−∞
vgk a

†
R(k + k0)aR(k + k0) dk −

∫ ∞

−∞
vgk a

†
L(k − k0)aL(k − k0) dk + g jσ

+
j c j + g

∗
jσ

−
j c

†
j

+
∫ ∞

−∞

⎡

⎣

√

VR, j

2π
a

†
R(k + k0)c j +

√

V ∗
R, j

2π
aR(k + k0)c†

j

⎤

⎦dk +
∫ ∞

−∞

⎡

⎣

√

VL, j

2π
a

†
L(k − k0)c j +

√

V ∗
L, j

2π
aL(k − k0)c†

j

⎤

⎦dk. (A4)

We complete the transformation from k-space to frequency space by defining the frequency variable ω = vgk for in-

tegrals containing aR(k + k0) and ω = −vgk for integrals containing aL(k − k0), as well as the frequency-space operators

aR(ω) = aR(k + k0)/
√

vg and aL(ω) = aL(k − k0)/
√

vg. We also absorb remaining factors of the group velocity into the

cavity-waveguide coupling rates, i.e., VR, j/vg → VR, j and VL, j/vg → VL, j . The final frequency-space Hamiltonian is given as

H j =
1

2
ωe, jσz, j + ωc, jc

†
j c j +

∫ ∞

−∞
ω[a†

R(ω)aR(ω) + a
†
L(ω)aL(ω)]dω + g jσ

+
j c j + g

∗
jσ

−
j c

†
j

+
∫ ∞

−∞

⎡

⎣

√

VR, j

2π
a

†
R(ω)c j +

√

V ∗
R, j

2π
aR(ω)c†

j +

√

VL, j

2π
a

†
L(ω)c j +

√

V ∗
L, j

2π
aL(ω)c†

j

⎤

⎦dω. (A5)

APPENDIX B: TRANSFER MATRIX DERIVATIONS

1. Single-cavity transfer matrices

Here we outline the derivation of the cavity transfer ma-

trices Tj [Eq. (9)], which involves using the frequency-space

Hamiltonian H j in Eq. (A5) to derive the input-output rela-

tions for the single-cavity system in Fig. 9. First, we derive

the Heisenberg equations that describe the evolution of the

waveguide operators aR(ω, t ) and aL(ω, t ) in time t :

d

dt
aμ(ω, t ) = i

[

H j, aμ(ω, t )
]

= −iωaμ(ω, t ) − i

√

Vμ, j

2π
c j (t ),

(B1)

where μ ∈ {L, R}, and we used the bosonic commutation

relations [aμ(ω, t ), a†
μ(ω′, t )] = δ(ω − ω′), with all other

equal-time commutators involving the waveguide operators

being zero. These commutators follow from the k-space

commutators [aμ(k, t ), a†
μ(k′, t )] = δ(k − k′), and the defi-

nitions of the frequency-space waveguide operators from

Appendix A. We now multiply both sides of Eq. (B1) by eiωt

and rearrange to obtain

d

dt
[aμ(ω, t )eiωt ] = −i

√

Vμ, j

2π
c j (t )eiωt . (B2)

Relabeling t with t ′ and subsequently integrating from an

“input time” t0 to some time t leads to

aμ(ω, t )eiωt − aμ(ω, t0)eiωt0 = −i

√

Vμ, j

2π

∫ t

t0

c j (t
′)eiωt ′

dt ′.

(B3)

Multiplying each term by e−iωt and then integrating over all ω

gives
∫ ∞

−∞
aμ(ω, t ) dω −

∫ ∞

−∞
aμ(ω, t0)e−iω(t−t0 ) dω

= −2π i

√

Vμ, j

2π

∫ t

t0

dt ′c j (t
′)

[∫ ∞

−∞

dω

2π
eiω(t ′−t )

]

= −2π i

√

Vμ, j

2π

∫ t

t0

dt ′c j (t
′)δ(t ′ − t )

= −iπ

√

Vμ, j

2π
c j (t ), (B4)

where the integral with respect to t ′ gives a factor of 1/2

because δ(t ′ − t ) is centered at one of the integration limits.

Dividing through by
√

2π leads to

1
√

2π

∫ ∞

−∞
aμ(ω, t ) dω − aμ,in(t ) = −

i

2

√

Vμ, jc j (t ), (B5)

where

aμ,in(t ) =
1

√
2π

∫ ∞

−∞
aμ(ω, t0)e−iω(t−t0 ) dω (B6)

is the definition of an input operator in the input-output

formalism [59]. Returning to Eq. (B2), relabeling t with t ′,
integrating from some time t to an “output time” t1 and re-

peating the remaining steps gives

aμ,out(t ) −
1

√
2π

∫ ∞

−∞
aμ(ω, t ) dω = −

i

2

√

Vμ, jc j (t ), (B7)
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where

aμ,out(t ) =
1

√
2π

∫ ∞

−∞
aμ(ω, t1)e−iω(t−t1 ) dω (B8)

is the definition of an output operator in the input-output

formalism [59]. Equations (B5) and (B7) can easily be

rearranged to obtain the following expressions for the input

and output operators:

aμ,in(t ) =
1

√
2π

∫ ∞

−∞
aμ(ω, t ) dω +

i

2

√

Vμ, jc j (t ), (B9a)

aμ,out(t ) =
1

√
2π

∫ ∞

−∞
aμ(ω, t ) dω −

i

2

√

Vμ, jc j (t ), (B9b)

which immediately lead to the input-output relations

aμ,out(t ) = aμ,in(t ) − i
√

Vμ, jc j (t ). (B10)

From the input-output relations in Eq. (B10), we can ob-

tain the single-cavity transfer matrix Tj that relates the input

and output modes aL,in, aR,out on the right side of cavity j

to the input and output modes aR,in, aL,out on the left side

of the cavity (see Fig. 9) by eliminating the cavity operator

c j (t ). This can be achieved using the Heisenberg equation for

c j (t ), given in Eq. (B11) below. We derive this again using

the frequency-space Hamiltonian H j from Eq. (A5), and we

use the bosonic commutation relations for the cavity mode

operators, i.e., [c j (t ), c
†
j (t )] = 1 (all other equal-time commu-

tators involving the cavity operators are zero). We also use

the definitions of the input operators aR,in(t ) and aL,in(t ) from

Eq. (B9a) to eliminate the integrals:

d

dt
c j (t ) = i

[

H j, c j (t )
]

= −iωc, jc j (t ) − ig
∗
jσ

−
j (t ) − i

√

V ∗
R, j

2π

∫ ∞

−∞
aR(ω, t ) dω − i

√

V ∗
L, j

2π

∫ ∞

−∞
aL(ω, t ) dω

=
(

− iωc, j −
1

2
|VR, j | −

1

2
|VL, j |

)

c j (t ) − ig
∗
jσ

−
j (t ) − i

[

√

V ∗
R, jaR,in(t ) +

√

V ∗
L, jaL,in(t )

]

. (B11)

If we assume coherent driving at frequency ω, the evo-

lution of the cavity operator can be approximated as

c j (t ) ≈ c j (0)e−iωt , provided that the cavity couples to the

driving field more strongly than to the two-level emitter within

it. This means that d
dt

c j (t ) ≈ −iωc j (t ) which, upon substi-

tution into Eq. (B11), yields an algebraic equation involving

c j (t ),

(

− i�c, j +
1

2
|VR, j | +

1

2
|VL, j |

)

c j (t ) + ig
∗
jσ

−
j (t )

= −i

[

√

V ∗
R, jaR,in(t ) +

√

V ∗
L, jaL,in(t )

]

, (B12)

where �c, j = ω − ωc, j is the frequency detuning between the

input coherent driving field and cavity j. This equation can

be solved for c j (t ) in terms of the input operators aR,in(t )

and aL,in(t ) once the lowering operator σ−
j (t ) of emitter j is

eliminated. The Heisenberg equation for σ−
j (t ) is

d

dt
σ−

j (t ) = i
[

H j, σ
−
j (t )

]

= −iωe, jσ
−
j (t ) + ig jσz, j (t )c j (t ),

(B13)

for which we again use the Hamiltonian from Eq. (A5), and

the operator definitions σ+
j (0) = |e j〉〈g j |, σ−

j (0) = |g j〉〈e j |,
and σz, j (0) = |e j〉〈e j | − |g j〉〈g j |. Again, by approximating

the time evolution as being dominated by the coherent driving

field with frequency ω, we have σ−
j (t ) ≈ σ−

j (0)e−iωt , and

hence d
dt

σ−
j (t ) ≈ −iωσ−

j (t ). Furthermore, assuming that the

coherent input is weak leads to the simplification σz, j (t ) ≈ −1

for all t , which is the weak-excitation approximation [60].

With these approximations, the Heisenberg equation for σ−
j (t )

in Eq. (B13) reduces to

σ−
j (t ) =

g j

�e, j

c j (t ), (B14)

where �e, j = ω − ωe, j is the frequency detuning between the

input coherent driving field and emitter j. Substituting this

result into Eq. (B12) and then rearranging for c j (t ) gives

c j (t ) =

√

V ∗
R, jaR,in(t ) +

√

V ∗
L, jaL,in(t )

�c, j − |g j |2
�e, j

+ i
2
(|VR, j | + |VL, j |)

. (B15)

Finally, the above expression for c j (t ) can be substituted into

the input-output relations in Eq. (B10), which leads to simul-

taneous equations that relate the input and output modes in the

single-cavity subsystem shown in Fig. 9. These can be written

in the matrix equation

(

aR,out

aL,in

)

= Tj

(

aR,in

aL,out

)

, (B16)
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where Tj is the transfer matrix for cavity j, as given in the following and in Eq. (9) in terms of α
(±)
j = i

2
(|VR, j | ± |VL, j |),

β j = �c, j − |g j |2/�e, j , and ζ j = −i(VR, jV
∗

L, j )
1
2 :

Tj =
1

�c, j − |g j |2
�e, j

+ i
2
(|VR, j | − |VL, j |)

⎛

⎝

�c, j − |g j |2
�e, j

− i
2
(|VR, j | + |VL, j |) −i

√

VR, jV
∗

L, j

i
√

VL, jV
∗

R, j �c, j − |g j |2
�e, j

+ i
2
(|VR, j | + |VL, j |)

⎞

⎠. (B17)

In the derivation of Tj we assumed a weak coherent input

field, corresponding to photons of a single frequency ω. How-

ever, in our work we apply this result in calculations involving

wave packets with a finite spectral width. This is valid because

different frequency components are independent when we

neglect multiphoton nonlinearities such as four-wave mixing.

2. Waveguide transfer matrices

We now show how the waveguide transfer matrices T
(i, j)

wg

in Eq. (10) can be derived. In the waveguide regions of length

di, j separating the cavities, photon propagation is governed by

the free waveguide Hamiltonian

Hwg =
∫ ∞

−∞
ω

[

a
†
R(ω)aR(ω) + a

†
L(ω)aL(ω)

]

dω, (B18)

which is based on the linear dispersion approximation [free

waveguide term in Eq. (A5)], as shown in Appendix A. The

Heisenberg equations for the waveguide operators aR(ω, t )

and aL(ω, t ) in this case are therefore

d

dt
aμ(ω, t ) = i[Hwg, aμ(ω, t )] = −iωaμ(ω, t ), (B19)

where again μ ∈ {L, R}. These have the trivial solutions

aμ(ω, t ) = aμ(ω, 0)e−iωt . For photon propagation between

neighboring cavities (i, j) over the distance di, j , the evolu-

tion occurs for a time t = di, j/vg, so we define the input

operators aμ,in = aμ(ω, 0) at t = 0 and the output operators

aμ,out = aμ(ω, di, j/vg) at t = di, j/vg. With these definitions,

the relationships between the output modes and the input

modes for a waveguide region of length di, j are

aμ,out = aμ,ine−iωdi, j/vg. (B20)

These can be written in matrix form as
(

aR,out

aL,in

)

= T (i, j)
wg

(

aR,in

aL,out

)

, (B21)

where

T (i, j)
wg =

(

e−iωdi, j/vg 0

0 eiωdi, j/vg

)

(B22)

is the transfer matrix that describes free photon propagation

over the distances di, j in the waveguide, as given in Eq. (10).

APPENDIX C: CAVITY AND EMITTER LOSSES

In any physical realization of the waveguide-coupled

cavities, photons will leak out from the cavities into the en-

vironment and emitters will have a nonzero probability of

coupling to noncavity modes, resulting in photon loss from

the system. We can include losses from cavity j and emitter j

in the relevant transfer matrix Tj by adding Lindblad terms

to the Heisenberg equations for the cavity operator c j and

the emitter operator σ−
j . In particular, the Lindblad operator

Lc, j = √
κ jc j describes photon loss from cavity j at rate κ j ,

and the Lindblad operator Le, j = √
γ jσ

−
j describes photon

loss from emitter j at rate γ j . For an operator A(t ) corre-

sponding to an observable in a system with Hamiltonian H ,

the Lindblad master equation in the Heisenberg picture is

d

dt
A(t ) = i[H, A(t )] +

∑

k

[

L
†
k
A(t )L

k
−

1

2
{L†

k
L

k
, A(t )}

]

,

(C1)

where the Lk are Lindblad operators. Including Lindblad

terms with the operators Lc, j and Le, j in the Heisenberg equa-

tions for c j (t ) and σ−
j (t ) given in Eqs. (B11) and (B13) leads

to the following:

d

dt
c j (t ) = i[H j, c j (t )] + L

†
c, jc j (t )Lc, j −

1

2
{L†

c, jLc, j, c j (t )}

= −i

(

ωc, j −
iκ j

2

)

c j (t ) − ig
∗
jσ

−
j (t ) − i

√

V ∗
R, j

2π

∫ ∞

−∞
aR(ω, t ) dω − i

√

V ∗
L, j

2π

∫ ∞

−∞
aL(ω, t ) dω, (C2a)

d

dt
σ−

j (t ) = i[H j, σ
−
j (t )] + L

†
e, jσ

−
j (t )Le, j −

1

2
{L†

e, jLe, j, σ
−
j (t )}

= −i

(

ωe, j −
iγ j

2

)

σ−
j (t ) + ig jσz, j (t )c j (t ). (C2b)

Comparing Eqs. (C2a) and (C2b) with Eqs. (B11) and (B13), we see that introducing the Lindblad terms simply amounts to us-

ing the substitutions ωc, j → ωc, j − iκ j/2 and ωe, j → ωe, j − iγ j/2 in the original Heisenberg equations for c j (t ) and σ−
j (t ) [82].
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In terms of the frequency detunings �c, j = ω − ωc, j

and �e, j = ω − ωe, j , these substitutions are equivalent to

�c, j → �c, j + iκ j/2 and �e, j → �e, j + iγ j/2. Since these

substitutions do not modify any subsequent steps in the cal-

culation of Tj in Appendix B, they can be used directly in

the final result in Eq. (B17). This allows us to include losses

from all the cavities and emitters in our system within the

transmission and reflection coefficients that we calculate using

the transfer matrices.

APPENDIX D: ANALYTICAL RESULTS FOR IDENTICAL,

EQUALLY SPACED CAVITIES

In general, each cavity can have a different resonance

frequency ωc, j , each emitter can have a different transition

frequency ωe, j , the cavity separations di, j can all be dif-

ferent, and both the coupling rates g j , VR, j , VL, j and loss

rates κ j , γ j can vary from cavity to cavity. In this general

situation, the parameter space increases in size as the num-

ber of cavities N increases, since every additional cavity

brings an extra eight parameters to the model. This makes

obtaining analytical results for transmission and reflection

more challenging for larger N . In this Appendix, we con-

sider the ideal case where all the cavities are identical and

equally spaced. Here the number of parameters in the model

is independent of N . To simplify the general waveguide-

coupled cavity system shown in Fig. 1 to this special case,

we set ωc, j = ωc, ωe, j = ωe, g j = g, VR, j = VR, VL, j = VL,

κ j = κ , and γ j = γ for all j ∈ {1, 2, . . . , N}, and di, j = d for

all (i, j) ∈ {(1, 2), (2, 3), . . . , (N − 1, N )}. We neglect cavity

and emitter losses in the calculation that follows, and include

them in the final results using the substitutions described in

Appendix C. A consequence of the above simplifications is

that all the cavity transfer matrices Tj are identical to each

other, and all the waveguide transfer matrices T
(i, j)

wg are iden-

tical to each other. If we write Tj = Tc for all the cavities and

T
(i, j)

wg = Twg for all the free photon propagation regions, from

Eq. (8) it follows that

Ttot = (Tc Twg)N (D1)

is the total transfer matrix, where we have multiplied by

an additional waveguide transfer matrix Twg from the right,

which will simplify the rest of the calculation. Physically, this

corresponds to offsetting the input/output photon phase by a

constant factor and hence only introduces a global, unobserv-

able phase e±iωd/vg that does not affect the transmission |tN |2
and reflection |rN |2.

Equation (D1) shows that, in order to calculate the total

transfer matrix Ttot (and hence the transmission and reflection

coefficients), we only need to find the N th power of the prod-

uct matrix Tc Twg. This product is given in Eq. (D2), which we

find using Eqs. (B17) and (B22). In Eq. (D2), �c = ω − ωc

(�e = ω − ωe) is the frequency detuning between the input

photons and the cavities (emitters):

Tc Twg =
1

�c − |g|2
�e

+ i
2
(|VR| − |VL|)

(

�c − |g|2
�e

− i
2
(|VR| + |VL|) −i

√

VRV ∗
L

i
√

VLV ∗
R �c − |g|2

�e
+ i

2
(|VR| + |VL|)

)

(

e−iωd/vg 0

0 eiωd/vg

)

=
1

�c − |g|2
�e

+ i
2
(|VR| − |VL|)

(

[

�c − |g|2
�e

− i
2
(|VR| + |VL|)

]

e−iωd/vg −ieiωd/vg
√

VRV ∗
L

ie−iωd/vg
√

VLV ∗
R

[

�c − |g|2
�e

+ i
2
(|VR| + |VL|)

]

eiωd/vg

)

. (D2)

The total transfer matrix for N identical, equally spaced

waveguide-coupled cavities therefore has the form

Ttot =
1

[

�c − |g|2
�e

+ i
2
(|VR| − |VL|)

]N
AN , (D3)

where A is the final 2 × 2 matrix in Eq. (D2) without the

prefactor, which has the simple form

A =
(

a b

b∗ a∗

)

, (D4)

with

a =
[

�c −
|g|2

�e

−
i

2
(|VR| + |VL|)

]

e−iωd/vg, (D5a)

b = −ieiωd/vg
√

VRV ∗
L . (D5b)

We can obtain AN by diagonalizing the matrix A. From

the characteristic equation |A − λ±1| = 0 (where 1 is the

identity matrix and | . . . | denotes the determinant), we find

the eigenvalues of A to be

λ± = 1
2
(a + a∗) ± 1

2

√

(a − a∗)2 + 4|b|2, (D6)

and from the eigenvalue equations Au± = λ±u±, it follows

that the eigenvectors are

u± = C±

(

b

λ± − a

)

, (D7)

where C± are normalization constants, which ensure that

u± · u± = 1. By matrix diagonalization, we therefore have

A = PDP−1, where

D =
(

λ+ 0

0 λ−

)

(D8)

is the diagonal matrix that contains the eigenvalues of A, and

P =
(

C+b C−b

C+(λ+ − a) C−(λ− − a)

)

(D9)

is the matrix constructed from the normalized eigenvectors of

A. It then follows that AN = PDN P−1, where DN is simply the

matrix D with the diagonal elements λ± raised to the power N .

The result obtained for AN after calculating the inverse matrix

042615-12



EFFICIENT, HIGH-FIDELITY SINGLE-PHOTON SWITCH … PHYSICAL REVIEW A 110, 042615 (2024)

P−1 and performing the matrix multiplication is

AN = PDN P−1 =
(

C+b C−b

C+(λ+ − a) C−(λ− − a)

)(

λN
+ 0

0 λN
−

)(

C+b C−b

C+(λ+ − a) C−(λ− − a)

)−1

=
1

λ− − λ+

(

λN
+(λ− − a) − λN

−(λ+ − a) b(λN
− − λN

+)
1
b
(λN

+ − λN
−)(λ+ − a)(λ− − a) λN

−(λ− − a) − λN
+(λ+ − a)

)

. (D10)

We can now substitute the result in Eq. (D10) into the total

transfer matrix Ttot in Eq. (D3), and use Eq. (13) to find the

N-cavity transmission and reflection coefficients tN and rN

from the matrix elements of Ttot. The final results for tN and rN

that are valid for an arbitrary number N of identical, equally

spaced cavities are given in Eqs. (D11a) and (D11b) below

in terms of the eigenvalues λ±, which are given in terms of

the system parameters in Eq. (D12) [obtained by substituting

a and b from Eqs. (D5a) and (D5b) into Eq. (D6)]. The

oscillatory transmission behavior that we observe for N > 1

due to interference in the waveguide is clearly visible in these

analytical results. To include losses from the cavities and emit-

ters, we can use �c → �c + iκ/2 and �e → �e + iγ /2 in

Eqs. (D11a), (D11b), and (D12), as discussed in Appendix C.

We note that, when we use these substitutions, the matrix A no

longer has the form given in Eq. (D4), as the frequency detun-

ings effectively become complex and the diagonal elements of

A are no longer complex conjugates of each other.

tN =
(λ+ − λ−)

[

�c − |g|2
�e

− i
2
(|VR| − |VL|)

]N

(λN+1
+ − λN+1

− ) − (λN
+ − λN

−)
[

�c − |g|2
�e

− i
2
(|VR| + |VL|)

]

e−iωd/vg

, (D11a)

rN =
−ie−iωd/vg

√

VLV ∗
R (λN

+ − λN
−)

(λN+1
+ − λN+1

− ) − (λN
+ − λN

−)
[

�c − |g|2
�e

− i
2
(|VR| + |VL|)

]

e−iωd/vg

, (D11b)

where

λ± =
(

�c −
|g|2

�e

)

cos

(

ωd

vg

)

−
1

2
(|VR| + |VL|) sin

(

ωd

vg

)

±

√

|VRVL| −
[(

�c −
|g|2

�e

)

sin

(

ωd

vg

)

+
1

2
(|VR| + |VL|) cos

(

ωd

vg

)]2

. (D12)

As previously mentioned, including the extra waveguide

transfer matrix Twg in Ttot [Eq. (D1)] only gives rise to a global

phase in tN and rN , which does not affect the transmission

and reflection spectra that we calculate using these results.

However, since the global phase is ω-dependent, it has ob-

servable consequences in the fidelities Fν because we have

to integrate over ω [it essentially becomes a relative phase

in this case; see Eq. (14b)]. This is why we use the general

approach for calculating tN and rN outlined in the main body

of the paper when we compute the switch fidelities, rather than

the analytical results presented in this Appendix.

APPENDIX E: ANALYSIS OF DISORDER IN THE SWITCH

In this Appendix we analyze how disorder in the

waveguide-coupled cavities could affect the transmission

spectrum of the proposed switch, in the situation where fab-

rication imperfections cannot be overcome completely. In

particular, we generate a Gaussian distribution of a cho-

sen parameter and observe how disorder in this parameter

changes the ideal ten-cavity spectra in Fig. 4. We consider

disorder in the cavity mode wavelengths λc, j , the emitter

wavelengths λe, j , the coupled-cavity Q factors Qc, j , and the

nearest-neighbor cavity separations di, j . For each of these

parameters, we generate a Gaussian distribution with a chosen

standard deviation σ . After generating the parameters, we

use Eq. (8) with N = 10 to find the total transfer matrix for

ten cavities, and obtain the transmission coefficient t10 from

the matrix elements using Eq. (13). We then compare the

transmission spectra in the disordered cases to the ideal case

shown in Fig. 4, in both the weak and strong emitter-cavity

coupling regimes. After studying disorder in the parameters

mentioned above, we consider how the operation of the switch

is affected when the strong coupling regime cannot be reached

in one of the cavities in the array.

The various types of disorder are shown in Figs. 11–14.

In each of the figures, “avg” refers to a Gaussian distribution

of a chosen disordered parameter that was obtained by av-

eraging over 1000 randomly generated Gaussian distributions

with standard deviation σ , which shows the expected behavior

of the system with the specified standard deviation (solid

curves). In addition, “rand1” and “rand2” correspond to two

randomly generated, nonaveraged Gaussian distributions that

provide additional examples of how the switching behavior

may be affected by disorder for a given σ (dashed curves).

The ideal ten-cavity transmission spectra from Fig. 4 are indi-

cated with shaded regions in each of these figures for ease of

comparison.
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FIG. 11. Transmission spectra for ten waveguide-coupled cavi-

ties, comparing the ideal case with no disorder from Fig. 4 (indicated

by the shaded regions here) with the disordered case where the cavity

mode wavelengths λc, j form a Gaussian distribution with a mean of

1550 nm and a standard deviation [(a), (c)] σ = 1 nm (red curves) or

[(b), (d)] σ = 5 nm (green curves). Panels (a) and (b) correspond to

the weak coupling regime (g j/2π = 100 MHz for all j), and panels

(c) and (d) correspond to the strong coupling regime (g j/2π = 1 THz

for all j).

We first consider disorder in cavity mode wavelengths λc, j

in Fig. 11, with a mean of 1550 nm and a standard deviation

σ = 1 nm [red curves, Figs. 11(a) and 11(c)] or σ = 5 nm

[green curves, Figs. 11(b) and 11(d)]. All other parameters

are the same as those used to generate the ideal spectra

in Fig. 4 [Qc, j = 500, Qu, j = 5 × 104, λe, j = 1550 nm, and

γ j/2π = 1 GHz for all j ∈ {1, 2, . . . , 10}, di, j = 31.5 µm

for (i, j) ∈ {(1, 2), (2, 3), . . . , (9, 10)}, and vg = 0.3c]. Fig-

ures 11(a) and 11(b) correspond to the weak emitter-cavity

coupling regime (g j/2π = 100 MHz), and Figs. 11(c)

and 11(d) correspond to the strong coupling regime

(g j/2π = 1 THz). When σ = 1 nm, the FWHM [2
√

2 ln(2)σ ]

of the Gaussian distribution of the cavity mode wavelengths

λc, j is less than the bandwidth of operation of the ideal

switch (which is approximately 10 nm, extending from about

1545 nm to 1555 nm; see shaded regions). Here the change

in transmission compared to the ideal case is small in the

switching region, in both the weak [Fig. 11(a)] and strong

[Fig. 11(c)] coupling regimes. Conversely, when σ = 5 nm,

the FWHM of the cavity wavelength distribution is larger than

the switching bandwidth, and we see that the transmission dip

in the weak coupling regime can split into multiple narrower

dips, resulting in undesired transmission features within the

switching region [Fig. 11(b)]. The transmission window in

the strong coupling regime [Fig. 11(d)] is also distorted to

a greater degree than in Fig. 11(c). Based on these results,

we expect that the performance of the switch will remain

high as long as the distribution of the disordered cavity mode

wavelengths does not exceed the switching bandwidth.

In Fig. 12 we show how the switch performs when the emit-

ters are tuned on resonance with cavities that have disordered

mode wavelengths λc, j . The only change compared to Fig. 11

is that we now have λe, j = λc, j for all j, rather than having

all the emitters tuned to the center of the switching region at

FIG. 12. The same as Fig. 11, except that the emitters are now

tuned on resonance with the disordered cavities (λe, j = λc, j for all

j), instead of having identical transition wavelengths at the center of

the switching region.

1550 nm. As expected, Figs. 12(a) and 12(b) are identical to

Figs. 11(a) and 11(b), respectively, as the emitter wavelengths

are insignificant in the weak emitter-cavity coupling regime,

where the presence of the emitters does not affect the trans-

mission spectra. In the strong coupling regime, we observe

that there is little change to the ideal switching bandwidth

when the disorder in the emitter wavelengths is less than this

bandwidth [σ = 1 nm, Fig. 12(c)]. However, when σ = 5 nm

[Fig. 12(d)], the FWHM of the wavelength distribution ex-

ceeds the width of the switching region, and the transmission

of the switch can be completely destroyed. Therefore, for the

Rabi splitting to produce the desired transmission window,

the disorder in the emitter wavelengths cannot exceed the

switching bandwidth.

Figure 13 shows how disorder in the coupled-cavity Q

factors Qc, j affects the switching operation. We consider a

Gaussian distribution with a mean coupled-Q factor of 500

and a standard deviation σ = 50, i.e., 10% of the mean value

[red curves, Figs. 13(a) and 13(c)], or σ = 125, i.e., 25% of

the mean value [green curves, Figs. 13(b) and 13(d)]. All other

parameters are the same as those used for ten identical cavities

in Fig. 4 [in particular, λc, j = λe, j = 1550 nm for all j, and

di, j = 31.5 µm for all nearest neighbors (i, j)]. We see that for

both σ = 50 and σ = 125 the transmission in the switching

region remains almost identical to the ideal case indicated

by the shaded regions, implying that the proposed switch

is robust against reasonably large variations in the cavity Q

factors, and hence against variations in the cavity-waveguide

coupling rates VR, j = VL, j = ωc, j/2Qc, j .

Next, we consider a Gaussian distribution of nearest-

neighbor cavity separations di, j in Fig. 14, with a mean of

31.5 µm and a standard deviation σ = 0.01 µm [red curves,

Figs. 14(a) and 14(c)] or σ = 1 µm [green curves, Figs. 14(b)

and 14(d)]. All other parameters are identical to those used for

ten cavities in Fig. 4 (λc, j = λe, j = 1550 nm and Qc, j = 500

for all j). We observe that, for subwavelength disorder on the

order of 10 nm [Figs. 14(a) and 14(c)], the change compared

to the ideal spectra is very small, while for wavelength-scale

disorder on the order of 1 µm [Figs. 14(b) and 14(d)], the
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FIG. 13. Transmission spectra for ten waveguide-coupled cav-

ities, comparing the ideal case with no disorder (shaded regions)

with the disordered case where the coupled-cavity Q factors Qc, j

form a Gaussian distribution with a mean of 500 and a standard

deviation [(a), (c)] σ = 50, i.e., 10% of the mean (red curves), or

[(b), (d)] σ = 125, i.e., 25% of the mean (green curves). As in the

previous figures in this Appendix, panels (a) and (b) correspond to

the weak coupling regime (g j/2π = 100 MHz for all j), and panels

(c) and (d) correspond to the strong coupling regime (g j/2π = 1 THz

for all j).

transmission spectrum can be significantly distorted. This is

caused by modified interference resulting from a change in

the phase shifts acquired by photons in the waveguide due to

the modified cavity separations.

Finally, we consider how the transmission spectrum of the

switch is affected if one cavity in the array does not satisfy

the strong coupling condition when the switch is operated in

transmission mode. In particular, in Fig. 15 we consider the

situation where g j/2π = 1 THz for all j except j = 7, where

we have g7/2π = 100 MHz. In this way, we take into account

FIG. 14. Transmission spectra for ten waveguide-coupled cavi-

ties, comparing the ideal case with no disorder (shaded regions) with

the disordered case where the cavity separations di, j form a Gaus-

sian distribution with a mean of 31.5 µm and a standard deviation

[(a), (c)] σ = 0.01 µm (red curves), or [(b), (d)] σ = 1 µm (green

curves). Panels (a) and (b) correspond to the weak coupling regime

(g j/2π = 100 MHz for all j), and panels (c) and (d) correspond to

the strong coupling regime (g j/2π = 1 THz for all j).

FIG. 15. Transmission spectra for ten waveguide-coupled cav-

ities, comparing the ideal strong coupling case with no disorder

[shaded region, same as Fig. 4(b)] with the case where emitter 7

is weakly coupled to its cavity, i.e., g7/2π = 100 MHz, g j/2π = 1

THz otherwise (light, dashed red curve). We also show how the high

transmission window is recovered when the cavity with the weakly

coupled emitter is either detuned to λc,7 = 1543 nm (dark, dashed

red curve), or decoupled from the waveguide completely by setting

VR,7 = VL,7 = 0 (solid red curve).

the situation where not all emitters may be strongly coupled

to their cavities even if they are tuned on resonance, for ex-

ample due to the positional dependence of the emitter-cavity

coupling arising from the spatial profile of the cavity mode

fields. While we choose emitter 7 to be weakly coupled in

this example, we note that a different emitter choice would

not significantly change the transmission spectra shown in

Fig. 15. The transmission in the system of ten waveguide-

coupled cavities with emitter 7 weakly coupled and all the

others being strongly coupled is shown by the light, dashed

red curve in Fig. 15, where we leave all other parameters

identical to those used in Fig. 4(b) for ten cavities in the

strong coupling regime (shaded region here). We see that the

high transmission window changes into a transmission dip

at the cavity resonance wavelength, which arises because we

effectively obtain a convolution of the spectrum correspond-

ing to nine waveguide-coupled cavities containing strongly

coupled emitters with the spectrum of a single cavity with a

weakly coupled emitter [as in Fig. 3(a)]. This result implies

that all emitters must be strongly coupled to their cavities

for the switching operation to work as intended. Fortunately,

there are several different approaches we can take to recover

the high transmission window if there is a “bad” cavity that

cannot satisfy the strong coupling condition. One option is

to detune the cavity containing the weakly coupled emitter

away from the switching bandwidth (in the present example,

this would be cavity 7). We show this with the dark, dashed

red curve in Fig. 15, for which we change only the reso-

nance wavelength of the bad cavity with the weakly coupled

emitter from 1550 nm to λc,7 = 1543 nm compared to the

light, dashed red curve. We see that detuning the bad cavity

recovers the high transmission window. The farther away the

cavity is detuned, the closer the transmission in the switching

region becomes to the ideal case indicated with the shading.
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Another option would be to decouple the bad cavity from the

waveguide completely, for example by physically displacing

it away from the waveguide to reduce the spatial overlap

between the waveguide and cavity modes (this is the same

mechanism that we can use to modulate the cavity Q factors).

We show this with the solid red curve in Fig. 15 by setting

VR,7 = VL,7 = 0 for the coupling rates between cavity 7 and

the waveguide (all other parameters are the same as for the

light, dashed red curve). We see that decoupling the bad cavity

in this way returns the transmission window very close to the

ideal case. Regardless of whether we detune the cavity from

the switching region or decouple it completely from the rest of

the system, we effectively end up with a switch operating with

nine waveguide-coupled cavities. This does not reduce the

transmission bandwidth because the bandwidth in the strong

coupling regime is determined by the Rabi splitting of the

cavity modes. The transmission spectrum is more sensitive

to the cavity number in the weak coupling regime (i.e., in

reflection mode), where it is preferable to have all the cavities

coupled to the waveguide and tuned to the same resonance

wavelength.

APPENDIX F: EFFICIENCY AND FIDELITY

DERIVATIONS

In this final Appendix, we derive the efficiency and fidelity

expressions given in Eqs. (14a) and (14b). We consider the

right-moving single-photon input wave packet

|ψin〉 =
∫ ∞

−∞
dω f (ω)a†

R,in(ω)|0〉, (F1)

with Gaussian envelope

f (ω) =
[

4 ln(2)

πσ 2
ω

]1/4

e−2 ln(2)(ω−ωcen )2/σ 2
ω , (F2)

where ωcen is the central frequency and σω is the FWHM in

frequency units. This satisfies the normalization condition

〈ψin|ψin〉 =
∫ ∞

−∞
| f (ω)|2dω = 1. (F3)

After the interaction with the cavities takes place, the output

state will in general be a superposition of transmitted and

reflected components:

|ψout〉 =
∫ ∞

−∞
dω[tN (ω) f (ω)a†

R,out(ω)

+ rN (ω) f (ω)a†
L,out(ω)]|0〉. (F4)

When the switch is operating in reflection mode (weak

emitter-cavity coupling regime), the ideal left-moving output

wave packet would be

|ψr,id〉 =
∫ ∞

−∞
dω f (ω)a†

L,out(ω)|0〉, (F5)

while the actual (unnormalized) reflected wave packet is

|ψr,act〉 =
∫ ∞

−∞
dω rN (ω) f (ω)a†

L,out(ω)|0〉. (F6)

We define the reflection fidelity Fr as the modulus squared

of the overlap between the actual and ideal reflected wave

packets,

Fr = |〈ψr,id|ψr,act〉|2 =
∣

∣

∣

∣

∫ ∞

−∞
rN (ω)| f (ω)|2dω

∣

∣

∣

∣

2

, (F7)

and we define the reflection efficiency Er as the modulus

squared of the overlap between the actual reflected wave

packet and itself, which is equal to one if the input wave

packet is guaranteed to be reflected (i.e., |rN (ω)|2 = 1 for all

ω), or less than one if there is a nonzero probability of the

wave packet being transmitted or lost into the environment:

Er = |〈ψr,act|ψr,act〉|2 =
∣

∣

∣

∣

∫ ∞

−∞
|rN (ω)|2| f (ω)|2dω

∣

∣

∣

∣

2

. (F8)

When the switch is operating in transmission mode (strong

emitter-cavity coupling regime), the ideal right-moving output

wave packet is

|ψt,id〉 =
∫ ∞

−∞
dω f (ω)a†

R,out(ω)|0〉, (F9)

while the actual (unnormalized) transmitted wave packet is

|ψt,act〉 =
∫ ∞

−∞
dω tN (ω) f (ω)a†

R,out(ω)|0〉. (F10)

Analogously to the reflection case, we define the transmission

fidelity Ft as the modulus squared of the overlap between the

actual and ideal transmitted wave packets,

Ft = |〈ψt,id|ψt,act〉|2 =
∣

∣

∣

∣

∫ ∞

−∞
tN (ω)| f (ω)|2dω

∣

∣

∣

∣

2

, (F11)

and we define the transmission efficiency Et as the modulus

squared of the overlap between the actual transmitted wave

packet and itself:

Et = |〈ψt,act|ψt,act〉|2 =
∣

∣

∣

∣

∫ ∞

−∞
|tN (ω)|2| f (ω)|2dω

∣

∣

∣

∣

2

. (F12)

In order to obtain the results presented in the main body of

the paper, we express the efficiencies and fidelities in terms of

wavelength λ. Using ω = 2πc/λ, dω = −(2πc/λ2) dλ, and

σω = (2πc/λ2
cen)σλ, we arrive at

Eν =
∣

∣

∣

∣

∫ ∞

−∞
|ν̃N (λ)|2| f̃ (λ)|2 dλ

∣

∣

∣

∣

2

(F13)

for the efficiencies and

Fν =
∣

∣

∣

∣

∫ ∞

−∞
ν̃N (λ)| f̃ (λ)|2 dλ

∣

∣

∣

∣

2

(F14)

for the fidelities (ν ∈ {r, t}), where ν̃N (λ) = νN (2πc/λ), and

f̃ (λ) =
λcen

λ

[

4 ln(2)

πσ 2
λ

]1/4

e−2 ln(2)(λcen/λ)2(λ−λcen )2/σ 2
λ (F15)

is the transformed Gaussian wave packet, with central wave-

length λcen (ωcen = 2πc/λcen) and FWHM σλ in wavelength

units. We note that the relationship σω = (2πc/λ2
cen)σλ be-

tween the FWHM in frequency and wavelength units is

valid only for narrow wave packets, where σλ ≪ λcen. Since

we consider input wave packets with central wavelength
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λcen = 1550 nm and values of σλ up to 1 nm, we satisfy

this condition. In addition, we can restrict the range of inte-

gration in Eqs. (F13) and (F14) to a few nanometers around

λcen to a very good approximation, as the value of f̃ (λ) is

negligible outside of this range for wave packet widths up to

1 nm.
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[46] H. Altug and J. Vučković, Two-dimensional coupled photonic

crystal resonator arrays, Appl. Phys. Lett. 84, 161 (2004).

[47] P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H.

Mabuchi, Integration of fiber-coupled high-Q SiNx microdisks

with atom chips, Appl. Phys. Lett. 89, 131108 (2006).

[48] M. Notomi, E. Kuramochi, and T. Tanabe, Large-scale arrays of

ultrahigh-Q coupled nanocavities, Nat. Photonics 2, 741 (2008).

[49] T. Heuser, J. Große, A. Kaganskiy, D. Brunner, and S.

Reitzenstein, Fabrication of dense diameter-tuned quantum dot

micropillar arrays for applications in photonic information pro-

cessing, APL Photonics 3, 116103 (2018).

[50] Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S.

Noda, Strong coupling between distant photonic nanocavities

and its dynamic control, Nat. Photonics 6, 56 (2012).

[51] R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, Large

optical Stark shifts in semiconductor quantum dots coupled

to photonic crystal cavities, Appl. Phys. Lett. 98, 121109

(2011).

[52] A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal

Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes,

A. Lemaître, and P. Senellart, Deterministic and electrically

tunable bright single-photon source, Nat. Commun. 5, 3240

(2014).

[53] J. Q. Grim, A. S. Bracker, M. Zalalutdinov, S. G. Carter, A. C.

Kozen, M. Kim, C. S. Kim, J. T. Mlack, M. Yakes, B. Lee, and

D. Gammon, Scalable in operando strain tuning in nanopho-

tonic waveguides enabling three-quantum-dot superradiance,

Nat. Mater. 18, 963 (2019).

[54] I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A.

Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and

A. M. Fox, Restoring mode degeneracy in H1 photonic crystal

cavities by uniaxial strain tuning, Appl. Phys. Lett. 100, 121116

(2012).

[55] X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke,

and X. Tang, An in-plane nano-mechanics approach to achieve

reversible resonance control of photonic crystal nanocavities,

Opt. Express 18, 22232 (2010).

[56] R. Ohta, Y. Ota, H. Takagi, N. Kumagai, K. Tanabe, S. Ishida, S.

Iwamoto, and Y. Arakawa, Electro-mechanical Q factor control

of photonic crystal nanobeam cavity, Jpn. J. Appl. Phys. 52,

04CG01 (2013).

[57] E. T. Jaynes and F. W. Cummings, Comparison of quantum and

semiclassical radiation theories with application to the beam

maser, Proc. IEEE 51, 89 (1963).

[58] J. Larson and T. Mavrogordatos, The Jaynes–Cummings Model

and Its Descendants (IOP Publishing, Bristol, 2021), Chap. 1,

Sec. 1.1.

[59] C. W. Gardiner and M. J. Collett, Input and output in damped

quantum systems: Quantum stochastic differential equations

and the master equation, Phys. Rev. A 31, 3761 (1985).

[60] E. Rephaeli and S. Fan, Few-photon single-atom cavity QED

with input-output formalism in Fock space, IEEE J. Sel. Top.

Quantum Electron. 18, 1754 (2012).

[61] E. Waks and J. Vuckovic, Dipole induced transparency in drop-

filter cavity-waveguide systems, Phys. Rev. Lett. 96, 153601

(2006).

[62] J.-T. Shen and S. Fan, Theory of single-photon transport in a

single-mode waveguide. I. Coupling to a cavity containing a

two-level atom, Phys. Rev. A 79, 023837 (2009).

[63] T. S. Tsoi and C. K. Law, Single-photon scattering on �-type

three-level atoms in a one-dimensional waveguide, Phys. Rev.

A 80, 033823 (2009).

[64] W.-B. Yan, W.-Y. Ni, J. Zhang, F.-Y. Zhang, and H. Fan, Tun-

able single-photon diode by chiral quantum physics, Phys. Rev.

A 98, 043852 (2018).

[65] Y.-l. Ren, S.-l. Ma, J.-k. Xie, X.-k. Li, M.-t. Cao, and F.-l. Li,

Nonreciprocal single-photon quantum router, Phys. Rev. A 105,

013711 (2022).

[66] T. Berndsen, N. Amgain, and I. Mirza, Band gap engineering

and controlling transport properties of single photons in peri-

odic and disordered Jaynes–Cummings arrays, J. Opt. Soc. Am.

B 41, C9 (2024).

[67] Z.-G. Lu, Y. Wu, and X.-Y. Lü, Chiral interaction induced near-

perfect photon blockade, arXiv:2402.09000 [quant-ph].

[68] G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer,

Vacuum Rabi splitting in semiconductors, Nat. Phys. 2, 81

(2006).

[69] I. Märki, M. Salt, and H. P. Herzig, Tuning the resonance of a

photonic crystal microcavity with an AFM probe, Opt. Express

14, 2969 (2006).

[70] E. Gil-Santos, C. Baker, A. Lemaître, S. Ducci, C. Gomez, G.

Leo, and I. Favero, Scalable high-precision tuning of photonic

resonators by resonant cavity-enhanced photoelectrochemical

etching, Nat. Commun. 8, 14267 (2017).

[71] X. Zhou, R. Uppu, Z. Liu, C. Papon, R. Schott, A. D. Wieck,

A. Ludwig, P. Lodahl, and L. Midolo, On-chip nanomechanical

filtering of quantum-dot single-photon sources, Laser Photonics

Rev. 14, 1900404 (2020).

[72] D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and
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