
This is a repository copy of Restricted Reservoirs on Heterogeneous Timescales.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/219022/

Version: Accepted Version

Proceedings Paper:
Wringe, Chester, Stepney, Susan orcid.org/0000-0003-3146-5401 and Trefzer, Martin 
Albrecht orcid.org/0000-0002-6196-6832 (2024) Restricted Reservoirs on Heterogeneous 
Timescales. In: Lecture Notes in Computer Science:Artificial Neural Networks and 
Machine Learning - ICANN. Lecture Notes in Computer Science . , pp. 168-183. 

https://doi.org/10.1007/978-3-031-72359-9_13

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Restricted Reservoirs on Heterogeneous

Timescales

Chester Wringe1[0000−0002−5764−2181], Susan Stepney1[0000−0003−3146−5401], and
Martin A. Trefzer2[0000−0002−6196−6832]

1 Department of Computer Science, University of York, UK
2 School of Physics, Engineering and Technology, University of York, UK

{chester.wringe,susan.stepney,martin.trefzer}@york.ac.uk

Abstract. The Reservoir Computing model is one that is suited to com-
puting with physical materials. However, the limitations of those mate-
rials can lead to low computational power. To address this, we plan to
combine reservoirs operating on different timescales together to create a
heterogeneous reservoir. We simulate this using a new multiple timescale
ESN model. We also introduce “mock materials” so that future works
may focus on combining different materials to study the effect. We bench-
mark our multi-timescale ESN on a multiple timescale problem, MSO.

Keywords: Echo State Networks · Reservoir Computing · multiple timescales
· heterogeneous reservoirs · Multiple Superimposed Oscillators.

1 Introduction

Reservoir Computing (RC) is a computational model that is frequently used
in low-power in materio computing. The model arises from Artificial Neural
Networks, where two RC models, Echo State Networks (ESNs) [16] and Liquid
State Machines [24] are proposed as a way to efficiently train Recurrent Neural
Networks. The RC model relies on training only the output weights of a given
system, leaving the inner state (or “reservoir”) as a black box. As such, the
inner state can be replaced by various physical systems, so long as they have
sufficiently rich dynamics [4, 7, 11]. These in materio reservoirs can make ideal
low-power devices that excel at time-series recognition.

The computational properties of materials do not always scale well with the
physical size of the reservoir [8]. In order to more fully exploit the properties
of physical materials, we investigate combining multiple reservoirs. Combining
multiple homogeneous ESNs together can lead to similar performance to a larger
ESN with the same total number of nodes on simple tasks [35]; however, this does
not appear to extend to more complicated tasks, particularly those on multiple
timescales.

Here, we study whether this performance can be improved by running the
component ESNs on multiple timescales. To do this, we introduce a multi–
timescale ESN model, built on our previous Restricted ESN model. We also
refine our simulations, so that our simulated ESNs more closely resemble the
kinds of physical materials that might be used.



2 C. Wringe, S. Stepney, and M. Trefzer

2 Background: Combining ESNs

There are a number of works investigating combining multiple Reservoir Com-
puters, particularly ESNs. One of the more popular ones is the deep-ESN model
[5, 14, 15, 22], based on deep learning networks. Other multi-ESN networks in-
clude the dual-reservoir network (DRN) [21], dual-reservoir model [33], and the
multilayered echo state machine (ML-ESM) [25]. The Reservoir with Random
Static Projections (R2SP) [3] and the φESN [13] are models that combine ESNs
with Extreme Learning Machines (ELMs).

Some multi-reservoir models have per-subreservoir input and output layers,
forming a Modular ESN [35]. Some examples of this in the literature are the Dy-
namic Feature Discoverer (DFD) [18], the modular ESNs are also used in acoustic
modelling [32, 33], and the ConvESN [23]. The majority of multi-reservoir net-
works, however, combine reservoirs by combining the reservoir state and weights
using a direct sum, and then treating these as the inner state of the larger reser-
voir, with a single input and output layer. These Restricted ESNs [35] are the
focus of this paper.

The ESNs studied in our work are restricted ESNs, and are based on the
Reservoir of Reservoirs (RoR) [6]. They also resemble the scale-free highly clus-
tered ESN (SHESN) [10], the hierarchically clustered ESN (HESN) [20], and
the modular ESN [29]. We also base much of our work on the Decoupled ESN
(DESN) [36], as it explores the idea of decoupling ESNs from each other as a
method of solving tasks which are too difficult for standard ESNs.

Of the models described above, the ConvESN [23] and Dynamic Feature Dis-
coverer (DFD) [18] both work on multiple timescales. Multi-timescale Restricted
ESNs can also be simulated using leakage rates [26].

3 Restricted ESNs on Multiple Timescales

3.1 Argument for Temporal Heterogeneity

Simple Restricted ESNs perform as well as standard ESNs at simple tasks such as
the NARMA and sunspot prediction benchmarks, but more demanding bench-
marks, such as the Multiple Superimposed Oscillators benchmark (MSO), per-
form worse using restricted ESNs [35]. The worse performance can be addressed
by decoupling the subreservoirs from each other [36]. A recent review paper [38]
has compared this behaviour to that of sdecoupled neurons communicating with
each other [12]. The neurons in [12] are decoupled temporally, using different
rhythms; the Decoupled ESN [36] uses physical decoupling, through the weights
connecting the subreservoirs. Here, we investigate whether we can recreate this
decoupling using multiple rhythms.

3.2 Restricted ESNs

The restricted ESN model [35] is based on the classical Echo State Network
model [16,19] (fig.1a). The classical ESN model is a Random Recurrent Network,
where the training is performed on only the output weights.



Restricted Reservoirs on Heterogeneous Timescales 3

input state (u)
output state (v)

inner state (x)

input weights (Wu)

trained
output
layerinner

weights (W)

(a) A classical ESN

u

x

vinput weights (Wu)
inner
weights (W)

trained
output layer

(b) Elements of a classical ESN

u

subreservoir 2 (x2)

subreservoir 1 (x1)

v

trained
output layer

Wu1

Wu2

W1

W2

B12

B21

(c) Elements of a restricted
ESN

Fig. 1: An example of a possible classical ESN (a) with n = 7 nodes, and (b)
an abstraction of its different elements. The ESN takes one or more inputs u

which are then sent to the inner state x through weighted input edges Wu. The
weights within the reservoir, W, are recurrent and randomly initialised. The
output state v receives the inner state through the trained output layer. (c)
Elements of a restricted ESN with 2 subreservoirs, showing the partitioned state
and components of the internal weight matrix.

The ESN at time t takes an input u(t), has an inner state x(t), and produces
an output v(t), as defined [31] by the update equation:

x(t+ 1) = f(Wuu(t) +Wx(t)) (1)

v(t+ 1) = Wvx(t)

where Wu is the random input weight matrix, W is the random internal weight
matrix, Wv is the trained output weight matrix, f is a nonlinear function, typ-
ically tanh.

The restricted ESN [26] is a variant where we partition the reservoir state
into smaller subreservoirs (resulting in a block diagonal weight matrix), with
restricted connections between the subreservoirs (sparse off-block-diagonal com-
ponents).

The state vector x of a restricted ESN with n subreservoirs is the concate-
nation of the subreservoir state vectors:

x =







x1

...
xn






(2)

where xi is the state of the subreservoir i. The input weight matrix and inter-
nal weight matrix are analogous concatenations of input weights to individual



4 C. Wringe, S. Stepney, and M. Trefzer

(a) Wu2 = O (b) W2 = I (c) B12 = O (d) B21 = O

Fig. 2: Four components of how a subreservoir might “sleep” (notation as in
fig.1c, with a dashed line indicating a sleeping communication). In each case, the
lower subreservoir is asleep, with one of its connections affected: (a) it receives
no external input; (b) it receives no input from its previous state; (c) it receives
no input from other reservoirs; (d) it sends no output to other subreservoirs.

(a) total sleep (b) input sleep (c) output sleep

Fig. 3: The sleep modes used for our experiments, which determine the behaviour
of reservoirs when asleep. In each figure, the lower subreservoir sleeps when
t = tsleep. The weight matrices that are changed are indicated by the dotted
lines.

subreservoirs, of internal subreservoir weights, and of matrices describing the
connections between subreservoirs:

Wu =







Wu1

...
Wun






W =







W1 . . . B1n

...
. . .

...
Bn1 . . . Wn






(3)

where Wui is the input weight matrix of subreservoir i, Wi is the weight matrix
of subreservoir i, and Bij gives the connections from subreservoir i to subreser-
voir j. Note that Bij is square iff subreservoirs i and j are the same size. The
components of a two-substate restricted reservoir are shown in figure 1c.

We could use the same approach to assign a different function fi to each
subreservoir, for example, to model different material properties. This can be
set to the identity function, id.

3.3 Sleep modes

Here we introduce a model that allows us to define timescales on a per-subreservoir
basis. We use the idea of a “sleeping” subreservoir: Instead of updating on every



Restricted Reservoirs on Heterogeneous Timescales 5

clock tick, a subreservoir might only update “normally” on some of them. During
the rest of the clock ticks, we may change the input and inner weight matrices
to any combination of the following effects (see figure 2):

– not receiving input from its previous state (Wn = I)

– not receiving input from the input layer (Wun = 0)

– not receiving communication from other subreservoirs (B n = 0)

– not sending communication to other reservoirs (Bn = 0)

The trained output weights are not affected by the sleeping reservoirs, as
these are externally set during the training phase, and do not have any effect on
the reservoir state. Instead, the output will always see the last updated state of
every subreservoir.

We can compose these individual sleep components in multiple ways. For our
experiments here, we define three different sleep modes:

– total sleep: when the subreservoir is asleep, no communication takes place
between it and other subreservoirs, nor from the external input; figure 3a.

– input sleep: no inputs or communication from other reservoirs affect the state
of the sleeping reservoir, but communication from it can still be received by
the other subreservoirs; figure 3b.

– output sleep: the subreservoir reacts to external and internal inputs, but does
not send out any communication to other subreservoirs; figure 3c.

In each of the sleep modes, the subreservoir does not react to its own past
input. At this time, we keep the transfer function as tanh during both sleep and
wake states.

3.4 Multiple Timescales with an extended transfer func-
tion

Once we have defined what the sleep state for a given subreservoir entails, we
can extend our update equation to reflect this. In order to do this, we use time
dependent weights in our transfer function. For illustration, consider the case of
a single reservoir that is awake every odd timestep, but that sleeps (receives no
input, and no internal update) every even timestep. We would have:

x(t+ 1) = f(Wu(t)u(t) +W(t)x(t)) (4)

Wu(t) = Wu,W(t) = W (t odd)

Wu(t) = 0,W(t) = I (t even) (5)

For a standard ESN, this model would be overly complicated; we can easily
simulate a sleep state by removing every other input value from our input set.
In a restricted ESN, however, this model allows us to have one substate sleep
while the other substate is awake. For illustration, consider a two subreservoir
case, where subsreservoir 1 behaves as above, and also receives no input from,



6 C. Wringe, S. Stepney, and M. Trefzer

Algorithm 1 building the restricted weight matrix at time t

1: WBASE := weight matrix, with all subreservoirs awake
2: for t in timesteps do
3: for i in subreservoirs do
4: if subreservoir i is awake then

5: Ct

i := Cwake
i

6: else

7: Ct

n := C
sleep
i

8: Wt :=
⊙

n

1
Ct

i ⊙WBASE

and sends no output to, the other subreservoir while asleep, while subreservoir
2 is awake all the time. We then have:

Wu(t) =

(

Wu1

Wu2

)

,W(t) =

(

W1 B12

B21 W2

)

(t odd)

Wu(t) =

(

0

Wu2

)

,W(t) =

(

I 0

0 W2

)

(t even) (6)

This is the simplest multi-transfer equation model: it allows for only one
subreservoir to be asleep at a time. Here, we use an ESN with three subreservoirs,
each with its own sleep/wake rhythm. To allow for this, we must be able to build
the weight matrix for the full reservoir at each timestep, a process which we
describe in section 3.5.

3.5 Building the reservoir edge matrices

Our model allows us not only to have subreservoirs be in their wake or sleep
state independently of each other, but also for each reservoir to have their own
sleep mode for communicating with other subreservoirs when asleep. In order to
allow for this, we need to build the weight matrix at every timestep t.

The N × N full weight matrix is built by taking the Hadamard product
(elementwise multiplication, denoted ⊙) of WBASE, the inner weight matrix of
our reservoir when every subreservoir is awake, and the N × N connectivity
matrix Ct

i for each subreservoir i. Ct
i is constructed from:

– an Ni × Ni matrix cti corresponding to the sleep state of subreservoir i at
time t (1 if awake, 0 if asleep; see fig.2b)

– horizontal and vertical strips of blocks corresponding to the sleep modes of
the connections between i and the other subreservoirs, at time t (1 if awake,
0 if asleep; see fig.2c,d)

– an all-ones matrix in every other block.

We illustrate this in algorithm 1 and figure 4.

4 Mock Materials

When studying combining heterogeneous reservoirs, we encounter a plethora of
possible parameter values, making them difficult to compare over. Some of these



Restricted Reservoirs on Heterogeneous Timescales 7

ct1

1

⊙

1 1

ct2

1 1
⊙

ct3

1 ⊙

input communication

output communication WBASE

Fig. 4: Building the restricted reservoir’s weight matrix Wt for timestep t, taking
into account which reservoirs are awake and which are not.

parameters include: density, spectral radius, architecture/topology, number of
nodes. When studying heterogeneous timescales, we introduce the following fur-
ther parameters: rhythm (pattern of awake/asleep); tempo (number of timesteps
that a reservoir is asleep over); sleep mode (behaviour of the reservoir when
asleep).

This results in a combinatorial explosion of possibilities. In order to reduce
this space, our work focuses on a set of three simulated materials, each with their
own fixed properties. These materials are inspired by materials and models used
for reservoir computing, but some liberties are taken, both because the ESN
model does not fully correspond to existing materials, and to provide a larger
range of properties. We also use different sleep modes for each material, both to
reflect the fact that materials may have different sleep properties, and to study
a range of different modes.

Here, we simulate three materials by constraining various parameters of the
ESN, and we focus on the effect of different timescales over multiple subreservoirs
made of a single simulated material. In future work, we will focus on combining
the materials. As such, this paper does not describe a tempo or rhythm for
each individual material, instead, the rhythms for each subreservoir is asleep are
described in section 5.

4.1 Ring

The Ring mock material topology [28] is intended to be a spatial representation
of delay-line reservoirs [2]. The nodes in this substrate are laid out in a ring,
connecting only to themselves and to a single neighbour.

The weight matrix of the ring material has weights drawn from U [−a, a],
normalised to a spectral radius ρ(W) = 1.

A ring subreservoir communicates with other subreservoirs via two “spine”
nodes: one node within the ring receives any input communications from other
subreservoirs, while another transmits all output communications. This commu-
nication model is again based on the delay-line reservoir, where the input is fed
into the reservoir via a single virtual node at every timestep τ . We use two dis-
tinct spine nodes to allow for some processing of information before the state is
communicated to the other reservoirs.

For this material, we use total sleep mode for most experiments.



8 C. Wringe, S. Stepney, and M. Trefzer

subreservoir

1

2

3

timestep 0 5 10

Fig. 5: Sleep rhythms used for the multiple timescale experiment. At every
timestep, if the subreservoir is awake, the square is white, and if it is asleep,
the square is black.

4.2 Lattice

The Lattice mock material is inspired by reservoirs made out of magnetic ring
arrays [1], which can be laid out in a grid formation. As such, the nodes are
laid out in a grid, with each node having an edge to itself and to every node in
its von Neumann neighbourhood. The edges do not wrap, as this would instead
form a torus [9].

The weight matrix of the ring material has weights between U [−a, a], ad-
justed to ensure the spectral radius ρ(W) = 1.

Communication between a lattice subreservoirs and other subreservoirs in
a restricted ESN takes place via “sides” of the grid, in order to reinforce the
physical idea of distance between unconnected nodes. In preliminary work, the
model was arranged so that the nodes on one side of the lattice received all the
input communications from other reservoirs, while the nodes on the opposite
side transmitted outputs. However, this model performed poorly, as it took many
timesteps for information to propagate through the subreservoir and on to its
siblings. Here, we use a single side for both input and output, leading to improved
results.

For this material, we use input sleep mode for most experiments.

4.3 Bucket

The Bucket mock material is inspired by a bucket of water, one of the first
materials in which reservoir computing was performed [11]. Unlike the other two
materials, this one has a fully connected weight matrix, giving us a “well-mixed
bucket”. To reflect the relatively simple dynamics of the system, the spectral
radius ρ(W) = 0.8.

The communication between a bucket subreservoir and other subreservoirs
is performed by four communication nodes, which both receive input commu-
nications and transmit output ones. This allows us to study three restricted
reservoirs with different amounts of communication between them.

For this material, we use output sleep mode for most experiments.

5 Experimental setup

For each material, we compare the performance of a restricted ESN with three
64-node subreservoirs on a single timescale, to one on three timescales. For the
multi-timescale experiment, each subreservoir has its own sleep/wake rhythm:



Restricted Reservoirs on Heterogeneous Timescales 9

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Fig. 6: Connections between subreservoirs during the first four timesteps of our
lattice experiment. (a) t = 1, all subreservoirs are awake; (b) t = 2, both sub-
reservoir 2 and subreservoir 3 sleep; (c) t = 3, only subreservoir 2 is asleep; (d)
t = 4, only subreservoir 3 is asleep. The dotted arrows indicate which connec-
tions are affected by the sleeping reservoirs.

one is awake every timestep, one is awake every other timestep, and one is awake
one timestep out of three (Fig. 5). No attempt is made here to match the rhythms
used to the task; instead, we use the simplest nontrivial set of rhythms.

We illustrate how this rhythm structure affects the connections between sub-
reservoirs in our lattice experiment over four timesteps in figure 6.

5.1 Scaling the Weight Matrix

Scaling the weight matrix is a necessary step when working with Echo State
networks, in order to ensure that the Echo State Property is kept and so the
reservoir state doesn’t diverge. This is often accomplished by scaling the spectral
radius ρ of the weight matrix W. The spectral radius is a global parameter
of the Echo State Network that has a large effect on the performance. It is
commonly accepted that a larger spectral radius can lead to violating the echo
state property, while keeping the spectral radius smaller than 1 ensures the echo
state property [27].

Our mock materials each have a given spectral radius. However, the spectral
radius of the full reservoir weight matrix (composed of three subreservoirs of the
same mock material) may be different from the spectral radius of the subreser-
voirs, because of the extra off-block-diagonal communication edges (matrices
Bij). Hence the full weight matrix needs to be rescaled. In our case, preliminary
experiments show that scaling the spectral radius of the full weight matrix to one
does not give good performance; instead, we use the more restrictive method of
scaling the largest singular value, σ̄, to one [37]. This results in a spectral radius
less than one, but here it gives improved performance.

The largest singular value of the full reservoir could be scaled to 1 by uni-
formly scaling the entire weight matrix. However, in the case of our restricted
reservoir model, this would affect the properties of the subreservoirs, by scaling
the weights within each of them. This would risk losing any properties that are
particular to our mock material based on its weight matrix. This would also not
readily transfer to using physical materials, as their effective weight matrix is



10 C. Wringe, S. Stepney, and M. Trefzer

Algorithm 2 Scaling the off-diagonals

1: WB := W from eqn.3 with each Wi replaced by all-ones
2: WB := WB× random matrix
3: σ̄ := largest singular value of WB

4: WB := WB/σ̄

1

1

⊙

1 1

1

1 1
⊙

1

1 ⊙
\\1

input communication

output communication

random matrix

\\x scaling largest singular value to 1

Fig. 7: Representation of Scaling the Off-diagonals

a given. So instead, we scale only the off-diagonal connections between differ-
ent subreservoirs to ensure the overall scaling, as illustrated in algorithm 2 and
figure 7.

Once WB is scaled, we superimpose the weight matrices for the subreservoirs
over the diagonals. This step does change the scaling slightly, but not significantly
for our purposes.

5.2 The MSO* benchmark

The Multiple Superimposed Oscillators is a prediction benchmark task. The aim
of the task is to predict y(t+ 1) given y(t) of the function

y(t) =

n−1
∑

i=0

sinαit (7)

where α ∈ [0.2, 0.311, 0.42, 0.51, 0.63, 0.74, 0.85, 0.97].
The first use of the MSO-2 benchmark, then referred to as “additive dynam-

ics” was introduced in a presentation by Jaeger [17]. It has subsequently been
extended to include higher frequency α values, up to MSO-5 [34] and MSO-8 [30].

We use a variation on this task referred to as MSO* [35]. We use this mod-
ification due to the fact that the slowest reservoir in our experiments is only
“awake” one out of every three timestep. In order to prevent potential under-
sampling of the higher frequency tasks (as illustrated in fig. 8), we sample the
MSO function 8 times more frequently. The modified equation is given by:

y∗(t) =

n
∑

i=1

sin

(

αit

8

)

(8)

This input is then scaled to be between −0.5 and 0.5.
We choose this task as it includes multiple incommensurable timescales. The

task has previously been approached by physically decoupling the reservoirs



Restricted Reservoirs on Heterogeneous Timescales 11

Fig. 8: Illustration of how we sample the MSO*-8 function, compared to the typ-
ical MSO-8 sampling. The higher row shows the more commonly used sampling,
where each datapoint is y(t). As we can see though, in a multi–timescale reser-
voir, this would lead to undersampling by the slower reservoirs. Reduce the MSO
frequency by a factor of 8, allowing reservoirs of all speeds to see the details of
the curve.

Fig. 9: Data used in our MSO* experiments, which each include 1100 datapoints.
The differently coloured zones indicate the washout, training, and testing points.

from each other [36]. In this work, we add a temporal decoupling element to
this physical decoupling3 in order to find out whether this has an impact on the
results.

In this paper, we study three MSO* problems: MSO*-2 , MSO*-4, and MSO*-
8 (fig. 9). We use the same data lengths as previous work [36]: 100 timesteps for
the washout, 600 steps for the training, and 200 steps for testing.

6 Results

The results for all the experiments show that generally, the multi-timescale per-
form worse than the single timescale ones. This effect does not apply as strongly
across materials, however, being more pronounced in the “bucket” material and
almost nonexistent with the “ring” material.

3 The physical decoupling is accomplished here by scaling the largest singular value
of the weight matrix to 1.



12 C. Wringe, S. Stepney, and M. Trefzer

Fig. 10: Ring material results for the MSO* experiments. The results are given
as log10(NRMSE).

Fig. 11: Lattice material results for the MSO* experiments. The results are given
as log10(NRMSE).

The “ring” material is the one with the best performance overall. The per-
formance of the single timescale reservoir is very similar to the “bucket” sin-
gle timescale, both of which are slightly better than the lattice material. More
promisingly, with this material, the multi-timescale case gives us a similar MSO*-
2 performance in the best case (with a higher variance), a very similar perfor-
mance overall for MSO*-4, and a slightly better performance for MSO*-8. In the
MSO*-8 case, this leads to the multi-timescale “ring” reservoir having the best
performance at this task overall.

The “lattice” model performs poorly compared to the other materials, in both
the single and multi-timescale case. This performance is worsened by adding
multiple timescales, although the effect diminishes as the task gets harder.

The “bucket” material has single-timescale results that are similar to that
of the “ring” material. In this material though, the multi-timescale reservoir
performs consistently worse than the single-timescale one. As with the lattice
material, this difference in performance diminishes as the task gets more com-
plex.

Two likely reasons for the difference in the effect of multiple timescales are:

– The sleep mode used has a significant effect on how well a multi–timescale
reservoir performs

– the physical properties of our reservoirs may suit them more or less to a
multi–timescale approach.



Restricted Reservoirs on Heterogeneous Timescales 13

Fig. 12: Bucket material results for the MSO* experiments. The results are given
as log10(NRMSE).

In order to test these hypotheses, we run the MSO*-8 experiment on the “ring”
(fig. 13a) and “bucket” (fig. 13b) materials, but this time using all three different
sleep modes.

(a) (b)

Fig. 13: Results for the experiments performed on the (a) Ring and (b) Bucket
materials, using different sleep modes. The previously used sleep mode is marked
by *.

We see in these additional results that both hypotheses play a factor. With
the “ring” material, the different types of sleep modes appear to have very little
effect on the results. In each case, the multi-timescale model works better than
the single–timescale one, but no sleep mode appears to be better than the other.
With the “bucket” material, however, the type of sleep mode has a very large
effect, with the model using ring-style sleep modes performing as well as the
single-timescale model, and the other two performing much worse.

This leads us to conclude that the different sleep modes can have an effect
on performance, but that this effect changes depending on the other properties
of the reservoir.

7 Conclusions

In this work, we introduce an extension of the ESN model that allows us to
operate at different timescales over different regions of the reservoir, which we
call subreservoirs. We introduce “sleep states” for the subreservoirs, which let us
study different possible implementation of multiple timescales. To evaluate these



14 C. Wringe, S. Stepney, and M. Trefzer

timescales, we introduce “simulated materials”, which allow us to experiment
over a number of different parameter sets and sleep models.

We find that adding multiple timescales can sometimes improve performance
of reservoirs at certain multi-timescale tasks, such as the MSO*-8 task. This
improvement in performance depends on both the mock material properties,
and on the sleep mode used. Future work is needed to explore this in further
depth, for which this work can be used as a baseline.

Our model allows for mixing and matching of different materials, as well as
sleep modes. In this work, we focus on the heterogeneity of the timescales of the
different reservoirs. In future work, we will study heterogeneous materials.

Acknowledgment

This work was made possible by PhD studentship funding from the Computer
Science Department of the University of York.

References
1. Allwood, D.A., et al.: A perspective on physical reservoir computing with nano-

magnetic devices. Appl. Phys. Let. 122(4), 040501 (2023)
2. Appeltant, L., et al.: Information processing using a single dynamical node as

complex system. Nat. Commun. 2, 468 (2011)
3. Butcher, J.B., et al.: Extending reservoir computing with random static projec-

tions. In: ESANN 2010. pp. 303–308 (2010)
4. Caluwaerts, K., et al.: Locomotion Without a Brain: Physical Reservoir Computing

in Tensegrity Structures. A. Life 19(1), 35–66 (2013)
5. Canaday, D., et al.: Model-free control of dynamical systems with deep reservoir

computing. J. Phys. Complex. 2(3), 035025 (2021)
6. Dale, M.: Neuroevolution of hierarchical reservoir computers. In: GECCO 2018.

pp. 410–417. ACM (2018)
7. Dale, M., et al.: Evolving carbon nanotube reservoir computers. In: UCNC 2016.

LNCS, vol. 9726, pp. 49–61. Springer (2016)
8. Dale, M., et al.: Computing with magnetic thin films: Using film geometry to

improve dynamics. In: UCNC 2021. LNCS, vol. 12984, pp. 19–34. Springer (2021)
9. Dale, M., et al.: Reservoir computing quality: connectivity and topology. Nat.

Comput. 20(2), 205–216 (2021)
10. Deng, Z., Zhang, Y.: Collective behavior of a small-world recurrent neural system

with scale-free distribution. IEEE TNN 18(5), 1364–1375 (2007)
11. Fernando, C., et al.: Pattern recognition in a bucket. In: Advances in A. Life. pp.

588–597. Springer (2003)
12. Fries, P.: Rhythms for cognition: communication through coherence. Neuron 88(1),

220–235 (2015)
13. Gallicchio, C., Micheli, A.: Architectural and Markovian factors of echo state net-

works. Neural Netw. 24(5), 440–456 (2011)
14. Gallicchio, C., Micheli, A.: Echo state property of deep reservoir computing net-

works. Cognit. Comput. 9(3), 337–350 (2017)
15. Gallicchio, C., et al.: Deep reservoir computing: A critical experimental analysis.

Neurocomputing 268, 87–99 (2017)
16. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural

networks – with an erratum note. German Ntnl. Research Ctr. for Info. Tech. GMD
Tech. Rep. 148(34), 13 (2001)



Restricted Reservoirs on Heterogeneous Timescales 15

17. Jaeger, H.: The echo state approach to recurrent neural networks (pres.) (2004),
https://www.ai.rug.nl/minds/uploads/ESNStandardSlides.pdf, accs. 29 November
2023

18. Jaeger, H.: Discovering multiscale dynamical features with hierarchical echo state
networks. Tech. Rep. TR-10, Jacobs University Bremen (2007)

19. Jaeger, H., Maass, W., Principe, J.: Special issue on echo state networks and liquid
state machines. Neural Netw. 20(3), 287–289 (2007)

20. Jarvis, S., et al.: Extending stability through hierarchical clusters in echo state
networks. Front. Neuroinform. 4 (2010)

21. Ma, Q., et al.: Decouple adversarial capacities with Dual-Reservoir network. In:
ICONIP 2017. pp. 475–483. Springer (2017)

22. Ma, Q., et al.: Deep-ESN: A multiple projection-encoding hierarchical reservoir
computing framework. arXiv:1711.05255 [cs.LG] (2017)

23. Ma, Q., et al.: Convolutional multitimescale echo state network. IEEE Trans Cy-
bern 51(3), 1613–1625 (2021)

24. Maass, W., Natschläger, T., Markram, H.: Real-Time Computing Without Stable
States: A New Framework for Neural Computation Based on Perturbations. Neural
Comput. 14(11), 2531–2560 (2002)

25. Malik, Z.K., et al.: Multilayered echo state machine: A novel architecture and
algorithm. IEEE Trans Cybern 47(4), 946–959 (2017)

26. Manneschi, L., et al.: Exploiting multiple timescales in hierarchical echo state net-
works. Front. Appl. Math. Stat. 6 (2021)

27. Montavon, G., et al.: Neural Networks: Tricks of the Trade. Springer (2012)
28. Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural

Netw. 22(1), 131–144 (Jan 2011)
29. Rodriguez, N., et al.: Optimal modularity and memory capacity of neural reser-

voirs. Netw Neurosci 3(2), 551–566 (Apr 2019)
30. Roeschies, B., Igel, C.: Structure optimization of reservoir networks. Logic J. of

the IGPL 18(5), 635–669 (2010)
31. Stepney, S.: Non-instantaneous information transfer in physical reservoir comput-

ing. In: UCNC 2021. pp. 164–176. Springer (2021)
32. Triefenbach, F., et al.: Phoneme recognition with large hierarchical reservoirs. Adv.

Neural Inf. Proc. Syst. 23, 2307–2315 (2010)
33. Triefenbach, F., et al.: Acoustic modeling with hierarchical reservoirs. IEEE TASLP

21(11), 2439–2450 (2013)
34. Wierstra, D., et al.: Modeling systems with internal state using evolino. In: GECCO

2025. pp. 1795–1802. ACM (2005)
35. Wringe, C., et al.: Modelling and evaluating restricted esns on single-and multi-

timescale problems (2023)
36. Xue, Y., et al.: Decoupled echo state networks with lateral inhibition. Neural Netw.

20(3), 365–376 (2007)
37. Yildiz, I.B., et al.: Re-visiting the echo state property. Neural Netw. 35, 1–9 (2012)
38. Zhang, H., Vargas, D.V.: A survey on reservoir computing and its interdisciplinary

applications beyond traditional machine learning. IEEE Access 11, 81033–81070
(2023)


