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Abstract 

Wind power is an important green and sustainable source of power generation. However, the construction of wind farms does not only 

need a large amount of initial investment but also highly expensive maintenance cost for their operations during power generation. 

Therefore, accurately assessing the state of wind turbines and effectively scheduling maintenance to keep them in good operating 

condition have become crucially important to ensure efficient power generation. Digital twin, as a data-driven digital concept or 

technology, can be used to effectively address wind power maintenance issues, especially wind turbine state evaluation problem. This 

article proposes a novel intelligent state evaluation and maintenance arrangement (iSEMA) system based on digital twin, which can 

accurately evaluate the state of wind turbines, detect faults in the early stage, and provide useful information or warnings to operators 

and help them to efficiently arrange maintenance tasks. In addition, this article introduces the concept of sub-healthy state of wind 

turbines, which is very useful for designing the iSEMA system. Experimental results demonstrate that the proposed system can assess 

the state of wind turbines accurately and provide timely feedback. 
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1. Introduction
To reduce the impacts of global warming and protect Earth's 

environment, people now are more inclined to choose clean energies 

instead of traditional fossil fuels. Wind energy as one of the cleanest 

energies now account for a quarter of all kinds of power generation 

[1]. Due to the high level of noise, wind turbines (WTs) are typically 

built in remote locations away from cities, such as mountains or 

offshore areas. Therefore, maintenance tasks are essential for the 

proper operation of WTs. According to [2], the cost of maintenance 

after failure is nearly three times the cost of regular maintenance. If 

the faults can be detected and addressed early, it will significantly 

reduce maintenance costs. Thus, it is crucial to accurately assess the 

condition of WTs and schedule maintenance work effectively. 

Digital twin (DT) was first proposed by Michael Grieves [3] in 2003 

to better manage the lifecycle of physical products. After that, 

Michael Grieves and many other researchers have expanded the 

definition of DT that can be typically described as an integrated 

entity of a physical product, a virtual description of that product, and 

the data communication between them [4]. In recent years, DT has 

been applied in various fields and promotes positive developments 

in these areas. In one study [5], the applications of DT in energy 

storage were reviewed, demonstrating the positive developments 

with DT in this field and discussing the challenges of DT. In the field 

of manufacturing, DT can provide a real-time response of the 

manufacture system and increase flexibility [6]. In another work [7], 

the possibilities and challenges of DT for the construction of smart 

cities were comprehensively reviewed. In addition to the aforemen-

tioned fields, DTs have also been employed in WTs to ensure their 

stable operation more effectively. A real-time planetary gear fault 

diagnosis method was proposed by Wang et al. [8] by combining the 

atom search optimization-support vector machine and DT which 

can significantly improve the operation of WTs. Kim et al. [9] utilize 

various environmental information to design a predictive model for 

offshore WT power generation based on DT. The proposed system 

enables an accurate representation of the offshore WT power 

generation and proposes contributions to the safety of the power 

system. 

To characterize the dynamic behaviors of WTs, mathematical 

equations or models based on First Principles can be used to con-

struct virtual representations of physical entities. For example, in 

the work by Kim et al. [9], five equations are used to describe the 

various behaviors of the WT system, while Xie et al. [10] used 

around 10 equations to describe bearings. In both studies [9] and 

[10], the First Principles models are used to build a DT which can 

significantly facilitate the study of the original physical systems 

(e.g., to generate data via numerical simulations by considering a 

variety of environmental conditions). It may not be highly 
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difficult to obtain mathematical models to describe the behaviors 

of WTs for some specific tasks, but for many real application 

scenarios where WTs are installed in harsh environments with 

severe climatic conditions, it may not be straightforward to build 

reliable mathematical models. As an attractive alternative, data-

driven modeling techniques, such as system identification [11, 12], 

reduced-order models [13], joint load-response estimation based 

on unified linear input and state modeling methods [14], and 

machine learning methods [15–17], provide a powerful tool 

which can learn and extract some useful information from data 

without the need of prior knowledge of the original physical 

systems; the learned information or extracted features can 

usually be used to perform fault detection and diagnosis tasks. 

This work proposes a novel intelligent state evaluation and main-

tenance arrangement (iSEMA) system of WTs by innovatively 

combining deep learning and DT technology, where long short-

term memory (LSTM) is employed to construct a virtual entity of 

DT. The main contributions of this work include: 

a) the innovative application of LSTM to construct the virtual 

entity of WTs; 

b) the proposal of a criterion to define the sub-healthy state of 

WTs; and 

c) the design of a novel intelligent system to evaluate the state 

of WTs and facilitate the maintenance arrangements. 

The motivation for proposing the iSEMA system is to better 

monitor the status of WTs and to schedule the maintenance more 

effectively. Typically, wind farm operators perform maintenance 

on a WT until the system enters a period of low wind speed. If 

slight or mild anomalies in power generation can be identified in 

advance and addressed earlier, then multiple manual shutdowns 

may be prevented and avoided, thereby minimizing WT down-

time and maximizing economic returns. The iSEMA system 

proposed in this study can effectively identify the “sub-healthy” 

state of WTs: a state where a WT’s performance has already 

deteriorated but obvious faults have not yet manifested. The 

system records the monitoring process and alerts wind farm 

operators once any “sub-healthy” state occurs. Operators can 

then judiciously schedule maintenance activities accordingly. 

This study focuses on WT’s operating under both steady and 

turbulent wind conditions, covering a range of wind speeds from 

low to high, as typically observed in inland and offshore environ-

ments. The system is designed to account for varying wind 

patterns, including turbulence intensity and vertical wind shear, 

which are critical for accurate performance assessment. 

The remainder of this article is organized as follows. Section 2 

introduces the relevant methods. Section 3 demonstrates the 

details of the proposed system. In Section 4, experimental results 

are presented and analyzed. The final section provides a 

summary of the work. 

2. Literature review of related methods 
2.1. Long short-term memory 

The recurrent neural network (RNN) is an important type of deep 

learning model and has been widely employed in many different 

fields. Compared with other deep learning models, the main 

difference is that RNNs have a powerful capability of handling 

time series data and extracting nonlinear features [18]. Figure 1 

shows the basic structure of an RNN which has a special delay 

layer that can store previous memory [19]. Although RNNs 

perform well with time-series data, traditional RNNs suffer from 

gradient vanishing and gradient explosion issues. In addition, 

traditional RNNs cannot keep long-term information [18]. To 

solve this problem, the gate mechanism [20] was introduced to 

form a special type of RNN, called long short-term memory 

(LSTM), and the inner structure is shown in Figure 2. 

 

Figure 1 • The structure of recurrent neural network. 

 

Figure 2 • The inner structure of the long short-term memory 

unit. 

The introduction of three gates and a memory cell state 
t

c  into 

the RNN structure enables LSTM to have both long-term and 

short-term memory; the hidden state is known as short-term 

memory and the cell state is known as long-term memory [21]. 

The following formula is used in the calculation of the LSTM unit: 
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o  represent the forget, input gate, and output 

gate, respectively; 
t

x  and 
t

h  are the input and hidden state, respec-

tively; 
t

c  and 
t

c  are the updated cell state and the candidate cell 

state, respectively; W is the parameter associated with input and 

hidden state, and b is the bias parameter vector. 
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LSTM has been widely used in time series data prediction, 

natural language processing, text recognition, and so on [22] due 

to its advantages of handling time series data and addressing the 

exploding gradient problems. This work is concerned with the 

description of the dynamic behaviors of WTs using various 

environment signals and to predict the generated power of WTs 

in different environments. In this article, the generated power 

refers to the power produced by WTs in operational scenarios 

under health conditions. Data used in this article, such as power 

output and environmental conditions, are time series in nature, 

and LSTM networks have been shown to outperform traditional 

methods in capturing such temporal patterns [23]. While 

traditional regression models or other machine learning models 

could be used for power prediction, they cannot capture the 

temporal dependencies present in WT data. LSTM, on the other 

hand, is specifically designed to model such time series data, 

making it a more suitable choice for predicting both short-term 

fluctuations and long-term performance trends. 

2.2. Digital twin 

DT technology represents a digital replica of a physical system 

that continuously updates with real-time data from the physical 

counterpart. The primary advantage of DTs is their ability to 

simulate, monitor, and predict the behavior of physical systems, 

thus allowing for better decision-making and optimization [3]. 

Since the concept of DT was proposed in 2003, its content and 

connotation, structure, framework, implementation, and so on 

have been extensively investigated and developed. Nowadays, DT 

encompasses not only the virtual representation of physical 

entities but also focuses on the exchange of data between physical 

entities and their virtual counterparts, as well as using the virtual 

entities to enhance the performance of the physical entities [4]. 

In recent years, DT technology has been adopted in various 

industries, including manufacturing, healthcare, and 

increasingly, renewable energy, particularly in the wind energy 

sector [24]. An illustration of DT is shown in Figure 3. A twin 

indicates that the behavior or the state of the physical entity and 

virtual entity are equal to some degree. Once a change takes place 

in the physical entity, the change is delivered to the virtual entity 

by the signals or information. Then, the virtual entity will adjust 

the parameters to reach equality. Similarly, once a change has 

happened in the virtual entity, the change is delivered to the 

physical entity by the feedback information; therefore, the physi-

cal entity will adjust the parameters and get better performance. 

Note the structure of DT shown in Figure 3 is not fixed; it can 

be adjusted or changed to meet different specific application 

requirements. For example, Tao et al. [25] introduced a criterion 

to better describe DT after analyzing 10 application areas of DT. 

It divided DT into five dimensions, namely physical entity, virtual 

model, connection, data, and service, where the virtual model 

consists of four sub-models (i.e., geometric model, physical 

model, behavioral model, and rule model). Based on the criterion 

proposed by Tao et al. [25], Tao et al. [26] analyzed 63 

publications on manufacturing and found that only 29 of them 

included all four sub-models. 

 

Figure 3 • An illustration of digital twin. 

The application of DT technology to WTs offers several key 

advantages that significantly enhance the operational efficiency 

and reliability of WT systems including real-time monitoring, 

predictive maintenance, improving the reliability of WTs, 

extension of component service life, and improvement of 

operational efficiency [27, 28]. First, DTs facilitate real-time 

monitoring by integrating sensor data from the turbine’s various 

components, allowing for continuous performance assessment 

and early detection of anomalies. This real-time insight enables 

timely intervention, reducing the risk of unexpected failures and 

improving overall WT safety. For example, in their work [29], 

Dinh et al. proposed an assisted condition monitoring system 

based on DT for a 2-MW class double-fed induction generator-

based WT which showed a good performance. In one study [30], 

researchers used a DT-based approach to simulate the real 

operation condition of the WT drive train system and monitor the 

operation of WTs with the introduction of particle swarm 

optimization least squares support vector machine. The 

experimental results demonstrated that it can significantly 

enhance fault diagnosis accuracy and response speed, achieving 

a 99.1% success rate. 

Second, predictive maintenance is another major benefit enabled 

by DT technology. Through the analysis of historical and real-

time operational data, DTs allow for the accurate forecasting of 

maintenance needs, thus optimizing maintenance schedules and 

minimizing downtime and associated costs. In another study 

[31], the researchers had a detailed discussion about the 

distributed DT framework for predictive maintenance with a 

specific case study on WTs and demonstrated how the edge-fog-

cloud paradigm can optimize DT implementation for predictive 

maintenance in WTs. Third, DTs play a crucial role in improving 

the reliability of WTs. By continuously updating virtual models 

with real-world data, they provide decision support that allows 

for more precise predictions of system behavior under various 

conditions, thereby reducing the likelihood of unplanned 

outages. In their [32], Wang et al. provided an overview of recent 

developments in the reliability analysis of offshore WT support 

structures, with particular emphasis on the incorporation of DT 

technology alongside finite element modeling. Thus, they 

proposed a novel DT framework that facilitates real-time 

monitoring and data integration, thereby enhancing the 

operational reliability and safety of offshore wind energy 
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systems. Fourth, another notable advantage is the extension of 

component service life, achieved by using DTs to monitor fatigue 

and performance degradation. This enables more efficient asset 

management, ensuring that WTs continue to operate effectively 

even as they near the end of their design life. Some researchers 

have discussed and proposed methods to predict the remaining 

useful life of WTs based on DT technology [33, 34]. They think 

that DT technology can track and extend the lifespan of WT 

components. Finally, operational efficiency is significantly 

enhanced through the actionable insights provided by DTs, 

which optimize energy production, resource allocation, and 

overall wind farm performance. 

A WT has many different subsystems, for example, wind capture 

system, generator system, control system, and so on. The 

decrease in power generation due to the WT being in a sub-

healthy state is just a superficial observation. Various faults of 

different subsystems can potentially contribute to this 

phenomenon. Therefore, despite the fact that one single DT can 

assess the state of the WT quite well, as will be shown in this 

study, it cannot provide more specific details of a fault, such as 

the location or the type of the fault. Due to these reasons, sub-

DTs should be constructed based on different subsystems of the 

WT, and then these sub-DTs must be integrated into the overall 

DT constructed for the whole WT system. The relationship 

between WT and DT, together with their respective subsystems, 

is shown in Figure 4. 

 

Figure 4 • The relationship between wind turbine and digital twin, together with their respective subsystems. DT, digital twin; WT, 

wind turbine. 

3. Proposed system 
The iSEMA system operates by integrating multiple sources of 

data, including actual measured power out and environmental 

signals such as wind speed, direction, air density, and so on. 

These signals are gathered in real time and compared with the 

predicted power output generated by the LSTM model. The 

system’s decision-making is based on deviations between 

predicted and actual power outputs, thereby diagnosing the 

healthy or sub-healthy state of the WT. For example, once the 

power output drops below a predefined threshold (for example, 

90%), the system evaluates this deviation over a series of days to 

determine if the WT is entering a sub-healthy state. 

The structure of the proposed iSEMA system is shown in Figure 5, 

where historical data under various physical environmental 

conditions (e.g., wind speed, direction, air density, air pressure, and 

temperature) can be collected from the associated meteorological 

masts around WTs. Then, the data are divided into two parts, namely 

training data and test data. After that, the training data and test data 

are separately fed to the mathematical model, which is the virtual 

representation of WTs. In this work, the mathematical model is 

constructed by LSTM, because LSTM has the advantages of handling 

time series data and addressing the exploding of gradient problems. 

In addition, the criterion for determining whether a WT is in a 

healthy or sub-healthy condition is the difference between the actual 

power generated by the WT and the predicted power over a long 

time. Therefore, the output of this mathematical model is a 

prediction of sequence data, and LSTM is good at handling these 

sequence problems [22]. The function of this mathematical model is 

to describe the behavior and assess the states of the WT by predicting 

the generated power of the WT under different environments. More 

details of the proposed network model including the settings of the 

associated hyper-parameters (e.g., the number of hidden units and 

the optimization method used) are shown in Section 4. 

Once the mathematical model is constructed and well trained, 

collected online (in-time) data can then be fed into the model to 

assess the states of the WT. By comparing the predicted power 

and actual power, the proposed iSEMA system can distinguish 



https://www.academia.edu/journals/academia-engineering/about https://doi.org/10.20935/AcadEng7391 

ACADEMIA ENGINEERING 2024, 1 5 of 16 

the state of the WT, which is either normal (healthy) or abnormal 

(sub-healthy). The system will send an alarm and information to 

operators if the WT is in an abnormal state. Follow-up mainte-

nance can then be arranged based on the feedback signals. 

To the best of our knowledge, there is no specific universal 

criterion to clearly define, characterize, and discriminate the sub-

healthy state of WTs. Typically, the sub-healthy state of a WT 

refers to an operational condition in which the WT is still 

functioning but has deviated from its optimal performance for a 

long period. In this state, WT exhibits signs of performance 

degradation or emerging anomalies that indicate potential risks, 

though these signs have not yet resulted in a complete failure or 

necessitated immediate shutdown. The introduction of the “sub-

healthy” state concept is pivotal for preventing severe failures in 
WTs. Traditionally, WTs are categorized as either “healthy” or 
“faulty.” However, this binary classification overlooks the early 
signs of performance degradation. By defining a sub-healthy 

state, the iSEMA system allows for more proactive maintenance 

scheduling, thereby reducing unplanned downtime and 

extending the lifespan of critical WT components. If early 

warnings are sent to the WT monitoring and management center, 

then the concerned team can address these warnings during 

regular maintenance work instead of waiting until the sub-

healthy state develops or leads to more serious faults. This will 

significantly improve the efficiency of the WT and reduce any 

potential downtime. 

 

Figure 5 • The structure of the proposed intelligent state evaluation and maintenance arrangement system. WT, wind turbine. 

The conceptual scope of sub-healthy state of WT includes the 

following: 

(1) Performance deviation: The operational parameters of WT, 

such as power output (used in this article), rotational speed, 

vibration levels, or temperature, deviate from their 

designed optimal ranges, though the deviation is not severe 

enough to cause a breakdown. 

(2) Early warning signs: The sub-healthy state is characterized 

by the presence of early-stage anomalies that hint the onset 

of potential failures or accelerated wear, indicating that 

WT is at an increased risk of future malfunction if left 

unaddressed. 

(3) Need for monitoring and maintenance: While the WT can 

continue operating in the sub-healthy state, this condition 

needs close monitoring and preemptive maintenance to 

prevent further deterioration or failure. 

(4) Short-term operability: Despite being in a sub-healthy 

condition, the WT remains operational without significant 

immediate impacts on its power generation capacity. 

However, continued operation in this state over time may 

accelerate wear and lead to major faults or system 

breakdowns. 

The exclusions of sub-healthy state of WT are as follows: 

(1) Critical failure or shutdown: Once the WT reaches a state 

where it requires immediate shutdown or repair, it is no 

longer in the sub-healthy state but in a failure or fault state. 

(2) Optimal health: In the healthy state, the WT operates 

within all specified design parameters, without any signs of 

performance degradation or potential faults. 

In this article, the sub-healthy state of a WT is defined from two 

aspects, namely the dimension of power and the dimension of 

time. To better define the sub-healthy state of the WT, it is 

necessary to introduce three relevant quantities first as follows: 

(1) CP: A criterion for determining whether the WT is in a sub-

healthy state or a healthy state, which is typically 

represented as a certain percentage (CP). 

(2) Dmax: The maximum number of consecutive occurrences 

of sub-healthy days (Dmax) in historical data determined 

by the system. 

(3) PSDP: The proportion of accumulated sub-healthy data 

points (PSDP) to the total number of data points in each 

day. 

With the above quantities, the sub-healthy state of a WT can be 

described by the following three steps: 

(1) When the power of a data point at a specific moment is 

lower than a CP of the predicted generated power, then that 

data point is seen as a sub-healthy data point. 

(2) If the proportion of accumulated sub-healthy data points 

to the total number of data points (PSDP) is larger than a 

specific value within 1 day, then that day is seen as a sub-

healthy day. 
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(3) If the situation continuously remains for Dmax+1 days, the 

WT is seen as in a sub-healthy state. 

In the iSEMA system, the time scale of 1 day (24 hours) is used as 

the measurement unit for the indicator Dmax. Note that the total 

sub-healthy time determined by the system is fixed once the 

historical data were given. A smaller measurement unit (e.g., less 

than 24 hours), such as 12 hours, would not be a good choice 

because such a unit can increase the value of Dmax. 

For different types of WTs, the values of CP, Dmax, and PSDP are 

usually different; however, typically, the value of CP should be 

specified or determined in advance based on a priori knowledge 

or empirical experience. In this work, CP is chosen to be 90%; 

such a threshold is adjustable for specific requirements and 

applications. There is not a standard rule that can be used to 

choose the value of CP; in general, the value should be less than 

100% and it is not suggested to set CP to a value less than 70%. 

For a high CP value (e.g., exceeding 90%), the iSEMA system may 

not accurately determine the state of WTs. Furthermore, in 

practical scenarios, the actual power output of WTs may 

occasionally be slightly lower than the generated power, and 

usually this is not considered a faulty state. Therefore, a CP value 

that is very close to 100% is impractical. On the other hand, 

opting for a relatively low CP value, such as 50%, would imply 

that the system will not work until the actual power falls below 

50% of the generated power. Again, this is an impractical or 

ineffective option. Once the value of CP is given, the proposed 

iSEMA system can automatically obtain the value of PSDP and 

Dmax and provide the information to operators in time. For 

convenience, it is necessary to introduce another indicator, called 

the ratio of adjusted power to the actual measured power 

(RoAP2MP) which is used to manually adjust the power of WTs 

during simulations to evaluate a sub-healthy state behavior. For 

convenience, the adjusted power refers to the power changed 

based on  RoAP2MP and the measured power. Once the 

parameters and settings of the iSEMA system are determined, its 

performance can then be tested using the proposed models and 

methods. By changing the value of  RoAP2MP, different states of 

WTs can be simulated. For example, by setting the value of 

RoAP2MP to 70%, simulations can be conducted to test if the 

iSEMA system can distinguish the WT is in a sub-healthy state. 

The algorithm of the diagnosis system is shown in Table 1. 

Table 1 • The algorithm of diagnosis system 

Step 1 Divide the historical data into three parts: training data, validation data, and test data, in the ratio of 6:2:2. 

Step 2 Give the value of CP and set the value of  RoAP2MP to CP+1%. 

Step 3 Increase the value of PSDP from 50% to 100%, increasing by 5% each time to obtain the corresponding Dmax on training data.  

Step 4 Obtain all the values of Dmax that are less than 10 along with their corresponding PSDP.  

Step 5 Apply all the Dmax and corresponding PSDP on validation data and obtain the best pair of Dmax and PSDP that takes the shortest time to 

distinguish the sub-healthy state. 

Step 6 Apply the best Dmax and PSDP on test data to test if it works. 

CP, certain percentage; RoAP2MP, ratio of adjusted power to the actual measured power; PSDP, proportion of accumulated sub-healthy data points. 

Based on the above descriptions and discussion of defined 

quantities, it is clear that, in the iSEMA system, the sub-healthy 

state is determined using these quantities, such as CP, PSDP, and 

Dmax, which quantify deviations from optimal performance over 

time. CP evaluates the WT’s power output efficiency, with values 

below 90% indicating that WT may be in a sub-healthy state. If 

the power output continues to be below CP and exceeds PSDP for 

a continuous day in statistics, then that day is considered a sub-

healthy day. Note that Dmax is the maximum number of 

consecutive occurrences of sub-healthy days in historical data 

determined by the system. Since LSTM’s prediction of power 

output is not completely accurate, a normal day may be mistaken 

for a sub-healthy day. By introducing Dmax, it reduces the 

misjudgment of the WT’s sub-healthy state caused by inaccurate 

LSTM predictions to a certain extent. Together, these metrics, 

namely CP, PSDP, and Dmax, provide a detailed understanding 

of the turbine’s operational health and are critical for predicting 

maintenance needs. This allows the system to capture long-term 

trends in power output degradation, which might otherwise go 

unnoticed in traditional fault detection systems. By incorporating 

these parameters, the iSEMA system can provide early warnings 

of suboptimal performance. 

4. Experiments and results 
4.1. Experiments and data description 

The experimental design was guided by several key assumptions. 

First, we assumed that, despite differences in environmental 

conditions, the fundamental operational patterns of WTs remain 

similar. This assumption allowed us to use the same model 

architecture for both inland and offshore WTs. Second, we 

hypothesized that the LSTM model, with its LSTM capabilities, 

would effectively capture the nonlinear and time-varying dynam-

ics of WT operations. The choice of adaptive moment estimation 

(Adam) as the optimization algorithm was based on its superior 

experimental performance as confirmed by its lowest root mean 

square error (RMSE) in comparison with other optimizers. 

Finally, considering that the WT lifecycle extends far beyond four 

years, it is assumed that the data of actual measured power 

output (inland and offshore power data) are the same as that of 

the generated power in Section 4. That is to say, the WT is 

assumed in a healthy state for the first four years of its lifespan. 

The selection of variables, including wind speed, wind direction, 

air density, turbulence intensity, and so on, was based on their 

direct impact on the power generation and mechanical stress of 

WTs. These environmental factors are crucial for assessing WT 

performance and predicting potential faults. The LSTM model 

was chosen for its abilities to handle time series data and capture 

long-term dependencies, which are essential for modeling WT 
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behaviors. Furthermore, the 6:2:2 split of data into training, 

validation, and test sets was carefully selected to ensure that 

sufficient data were available for training while retaining enough 

for unbiased validation and testing. 

To validate the effectiveness and robustness of the iSEMA 

system, the experiments were designed to cover a variety of envi-

ronmental conditions and WT types, including offshore and 

inland WTs. This approach ensures that the system can 

generalize well across different operational scenarios. The 

primary goal of the experiments was to assess the system’s ability 

to diagnose the healthy and sub-healthy states of WTs under 

diverse conditions. The decision to include multiple types of WTs 

was motivated by the need to confirm that the iSEMA system 

could be generalized and applied to a broad range of real-world 

scenarios. 

This section provides two case studies: one for offshore wind 

power data analysis and modeling, and the other focusing on the 

data related to inland WTs. The work by Ding [35] provides the 

data for both cases, which are measured and collected during the 

first four years of the turbine’s operations. The data were 

recorded every 10 minutes from the WTs; environment signals, 

such as wind speed, wind direction, air density, turbulence 

intensity, and so on, were collected from the around 

meteorological masts. For each case study, data were collected 

from the same type of WTs but with different locations. In this 

study, data from one WT are employed to construct the iSEMA 

system, and data from other WTs (of the same type but installed 

at different location) are employed to evaluate the performance 

of the proposed system. To illustrate the daily variations of WTs, 

each sample comprises 144 data points. 

The public data used in this article are collected from real practice 

WTs and associated meteorological masts. The coordinates of 

WTs and meteorological masts in the data are added with a 

constant by the real coordinates for protecting their true 

geographic information. The authenticity ensures that the data 

are representative of the WT operational behaviors we aim to 

model, making them suitable for training and testing the iSEMA 

system. The data have been used and validated in studies because, 

on the webpage of this dataset, it can be found that the data have 

been viewed more than 2,000 times and downloaded more than 

500 times. 

In this study, data from different sources were used without 

standardization. The decision not to standardize the data was 

made to preserve the original characteristics of the signals, which 

could be essential for capturing the nuanced behavior of WTs 

under varying environmental conditions. Although no explicit 

standardization was performed, the data used in this study share 

common characteristics. All power outputs were collected from 

operational WTs using similar sensor configurations and all 

environment information was collected from the closest 

meteorological masts, ensuring a level of consistency across 

different data sources. These shared attributes allowed us to 

analyze the data collectively without the need for further 

normalization, as the data exhibited common temporal and 

structural patterns. 

4.2. Experiments on offshore data 

4.2.1. Design of the virtual model 

For the offshore case, there are two WTs, namely WT3 and WT4. 

Data from WT3 are employed to construct the proposed iSEMA 

system and data from WT4 are employed to test the performance 

of the designed system. As described in Section 3, LSTM neural 

networks are used to build the virtual model, whose input signals 

are wind speed, wind direction, air density, humidity, and 

turbulence intensity. Wind speed is the primary driver of power 

output, while wind direction affects the alignment and efficiency 

of the WT blades. Air density plays a key role in determining the 

energy available in the wind, with variations affecting power 

generation efficiency. Humidity affects the aerodynamic 

properties of the air and can contribute to material degradation, 

particularly in offshore environments. Finally, turbulence 

intensity significantly influences mechanical stress and fatigue, 

making it critical for predicting long-term turbine health. The 

unrolled structure of proposed LSTM networks is shown in 

Figure 6, where , ,  
t t

x c  and 
t

h  are the input data, memory 

data, and hidden data at time step t, respectively. Because the 

length of each sample is 144, the total number of time steps is 

144. 

 

Figure 6 • The unrolled structure of proposed long short-term memory networks. 
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To obtain an LSTM network model with best performance, a two-
step scheme is performed to choose the most suitable optimization 
algorithm and determine the best number of hidden units of the 
LSTM networks. In step 1, the optimization method is chosen one by 
one from stochastic gradient descent with momentum (SGDM), root 
mean square propagation (RMSProp), and Adam, with other 
parameters being kept constant. SGDM was selected for initial 
model optimization due to its ability to accelerate convergence by 
incorporating a momentum term. This helps the model navigate 
areas of high curvature more efficiently and avoid local minima, 
making it suitable for training complex models like LSTM where 
gradient instability is a potential challenge. RMSProp was evaluated 
due to its ability to adaptively adjust the learning rate for each 
parameter, which is particularly useful in time series data like WT 
performance. This method helps smooth out the learning process by 
controlling the update step for parameters that exhibit different 
levels of variability, thus enhancing model stability. Adam was 
ultimately chosen for its superior performance in balancing 
convergence speed, and stability. By combining the advantages of 
SGDM (momentum) and RMSProp (adaptive learning rate), Adam 
consistently achieved lower RMSE in our experiments, making it the 
optimal choice for fine-tuning the LSTM-based iSEMA system. 

Figure 7 demonstrates the RMSE of LSTM under different 
optimization methods for 10 trials. It can be seen that the LSTM 
model trained with Adam performs best in terms of RMSE, with an 
average value of 18.71. While SGDM and RMSProp offered specific 
benefits in terms of momentum and adaptive learning rates, Adam 
provided the best overall performance, allowing for faster 
convergence and lower prediction error, thus becoming the 
preferred optimizer for this study. 

Based on the experimental results of step 1, the Adam optimization 

method is used for further model training. Thus, in step 2, Adam is 

used to train different LSTM networks with different number of 

hidden units, ranging from 50 to 250 with an increase of 50 each 

time. For each of the cases (with different number of hidden units), 

a total of 10 experiments were carried out and the results are shown 

in Figure 8. From the experimental results, when the number of 

hidden units equals to 150, the LSTM network shows the best 

performance in terms of the average RMSE value, which is 16.25. 

Note that among all the trained models, the LSTM network model 

with 150 hidden units shows the best performance, with an RMSE 

value of 8.85 in the last trial. Therefore, this LSTM model is selected 

as the virtual representation of WT3.

 

Figure 7 • The root mean square error of long short-term memory under different optimization methods. Adam, adaptive moment 

estimation; RMSProp, root mean square propagation; SGDM, stochastic gradient descent with momentum. 

 

Figure 8 • The root mean square error of long short-term memory for different number of hidden units.  
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The distribution of the RMSE values of final selected LSTM model 

on the test data is shown in Figure 9. From the RMSE distribution 

of LSTM for the test data, it can be seen that the distribution of 

RMSE resembles a normal distribution. Figure 10 shows a 

comparison between the actual measured power and the corre-

sponding model predictions on the offshore test dataset within 1 

day. In most cases, the selected LSTM model has a good 

performance, but at certain times, the predictions are not 

accurate. For example, from Figure 10, it can be observed that 

the virtual model (LSTM networks) can predict the power 

generation very well. However, it can be noted that for the first 

around 55 data points, the actual values are higher than the 

predicted values, whereas for data points from around 105 to 125, 

the actual values are lower than the predicted values. 

To avoid the influence of imprecise predictions on WT state 

assessment and diagnosis, two indicators, namely PSDP and 

Dmax, defined in the previous section, are introduced to the 

proposed iSEMA system. The local indicator PSDP, which is 

related to the accumulated sub-healthy data points, is insensitive 

to the bias in model prediction of the generated power in a short 

time as long as the prediction errors are small. For example, if 

PSDP is defined as 90% for the proposed system, then any 

proportion of misjudged data points less than this value can be 

avoided. By introducing the global indicator Dmax, the proposed 

system can address some extreme scenarios. For example, if the 

value of PSDP is small and the proportion of misjudged data 

points is larger than PSDP, then the WT state on that day would 

be classified as in a sub-healthy state. Note that the value of Dmax 

is associated with the maximum number of consecutive 

occurrences of sub-healthy days in historical data. In this 

situation, Dmax would become larger and allows the proposed 

iSEMA system to address such an extreme scenario. 

 

Figure 9 • The root mean square error distribution of long short-

term memory in the test data. RMSE, root mean square error. 

 

Figure 10 • A comparison between the actual measured power and the predicted generated power in the offshore test dataset. 

4.2.2. Selection of indicators for the diagnosis system 

Once the LSTM model is well trained, the data are redivided into 

three parts: training, validation, and test data in the ratio of 6:2:2 to 

determine the best value of indicators for the diagnosis system. The 

sample length is 144 and the numbers of samples for training, 

validation, and test data are 471, 157, and 157, respectively. In this 

article, the CP is set to 90%, indicating that if the value of power data 

point at a specific moment is lower than 90% of the predicted value, 

then that data point is treated to be a sub-healthy point. As 

mentioned earlier, the global indicator Dmax is the maximum 

number of consecutive occurrences of sub-healthy days determined 

by the system, and PSDP is the local indicator related to the 

proportion of accumulated sub-healthy data points to the total 

number of data points in each day. Typically, the value of Dmax 

decreases with the increase of  RoAP2MP when the value of PSDP is 

constant. To illustrate this, an experiment is carried out on the 

training data, with the following settings: the value of PSDP is set to 

be constant (50%); the value of RoAP2MP changes from 85% to 93% 

with an increase of 1% each time. The model was then simulated by 

considering different states of WT1. The resulting values of Dmax are 

shown in Table 2. 
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The results in Table 2 demonstrate that the value of Dmax 

decreases with the increase of RoAP2MP when the value of PSDP 

is constant. In addition, when the value of RoAP2MP exceeds 

90%, the value of Dmax keeps constant. If the parameter CP is 

set to be 90%, then when the proposed DT model iSEMA is used 

to simulate the WTs, all samples whose RoAP2MP is less than 

90% will be treated as sub-healthy samples, resulting in a large 

value of Dmax. When WT is healthy, samples with  

RoAP2MPbeing larger than 90% will be seen as healthy samples. 

However, due to the errors in the LSTM model, some healthy 

samples may be misclassified as sub-healthy, resulting in a 

relatively small value of Dmax. 

To make the diagnosis system robust, reliable, and effective, the 

following two considerations are put together in the iSEMA 

system design. First, the diagnosis system should be able to 

effectively avoid misclassifying a healthy state as a sub-healthy 

state. Second, the system should be able to detect a sub-healthy 

state of WTs as quickly as possible. In doing so, when selecting 

the two parameters, Dmax and PSDP, the resolution capability 

for situations where  RoAP2MP is larger than CP (i.e., RoAP2MP 

is larger than 90%) is considered first. Furthermore, based on the 

results reported in Table 2, when  RoAP2MP is larger than CP, 

Dmax remains unchanged. Therefore, the selection of Dmax and 

PSDP should be carried out under the premise of RoAP2MP 

being equal to CP+1%, as shown in Table 1 (step 2). In this way, 

most misdiagnoses of misclassifying a healthy state as a sub-

healthy state can be avoided. For cases where RoAP2MP is larger 

than CP, but Dmax decreases instead of remains unchanged, the 

premise of RoAP2MP being equal to CP+1% still works. This is 

because if a relatively larger Dmax is chosen as the criterion for 

determining sub-healthy states, then the cases with a smaller 

Dmax will be classified as healthy states correctly. For example, 

if RoAP2MP is set to 90% and assume Dmax is 5, meaning that 

the WT is healthy, but it is on the verge of entering a sub-healthy 

state, then the maximum number of consecutive occurrences of 

sub-healthy days determined by the system is 5. Note that, if the 

situation of sub-healthy days persists for Dmax+1 (i.e., 6) 

consecutive days, the WT is seen as in sub-healthy state. When 

RoAP2MP is larger than 90%, the value of Dmax would be equal 

to or less than 5 which is smaller than 6. Therefore, a healthy WT 

state misjudged as sub-healthy is avoided. Based on the above 

discussions and the procedure given in Table 1, simulation 

experiments are carried out with the following settings: (1) the 

values of power are set to 91% of the actual measured power for 

all the samples on the training data, and (2) PSDP increases from 

50% to 100%. The change of Dmax is shown in Table 3. 

Table 2 • The changes of Dmax with different RoAP2MP and proportion of accumulated sub-healthy data points being fixed at 50% 

for the offshore WT3 training data (unit: day) 

 RoAP2MP 85% 86% 87% 88% 89% 90% 91% 92% 93% 

Dmax 89 84 46 28 27 17 17 17 17 

WT, wind turbine; RoAP2MP, ratio of adjusted power to the actual measured power. 

Table 3 • The change of Dmax with different proportion of accumulated sub-healthy data points and  RoAP2MP being fixed at 91% 

for the offshore WT3 training data (unit: day) 

PSDP 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

Dmax 17 17 17 15 15 12 12 11 7 4 2 

RoAP2MP, ratio of adjusted power to the actual measured power; PSDP, proportion of accumulated sub-healthy data points; WT, wind turbine. 

The results in Table 3 demonstrate that when RoAP2MP is set 

to 91%, a larger PSDP value leads to a smaller Dmax. Note that if 

the situation of sub-healthy day continuously remains for 

Dmax+1 days as described in Section 3, then the WT is seen as in 

a sub-healthy state. Clearly, the magnitude of Dmax directly 

influences the time required for determining the sub-healthy 

state of a WT. A prolonged evaluation period, in turn, may 

adversely impact the power generation or even WT shutdown, 

thereby incurring economic loss. The best values of Dmax and 

PSDP may be chosen from the last three pairs in Table 3, based 

on which Dmax can be chosen as 7, 4, or 2. It is recommended 

that the value of Dmax should be smaller than 10. By choosing 

the last four pairs of Dmax and PSDP from Table 3, experiments 

are carried out on the validation data of WT3. When the value of 

PSDP changes from 85% to 100%, the condition cases are marked 

as A, B, C, and D, respectively. The experimental results are 

recorded in Table 4. Note that a WT will usually enter into a sub-

healthy state at a certain point after an extended period of normal 

operation, thereby resulting in a decrease in power generation. 

To sufficiently cover such realistic scenarios in the simulation 

experiments, the values of the WTs’ power are adjusted based on 

RoAP2MP for part of the validation samples. 

In Table 4, H means the state of WT3 is diagnosed as healthy by the 

designed iSEMA system. According to the results reported in  

Table 4, when the WT is healthy and the adjusted power maintains 

at or above 90% of actual measured power, the system can make the 

correct judgment for all the four condition cases. When  RoAP2MP 

is within the range of 84%–89%, it means the WT is in a sub-healthy 

state; the diagnosis system cannot correctly determine the WT state 

for any of the four condition cases. When the adjusted power 

decreases to 83% of actual measured power, only the condition Case 

C (Dmax is 4 and PSDP is 95%) can make the correct judgment. It 

takes 6 days from the point where the adjusted power consistently 

falls to or below 83% of actual measured power, until then the 

system confirms that the WT is in a sub-healthy state. Although the 

system performs best for condition Case C among all the four 

condition cases, it still has an error when  RoAP2MP is within the 

range of 84%–89%. Compared with condition Case C, it usually 

requires a longer time for assessment or has a relatively larger error 

for other cases. Therefore, this work selects condition Case C, the 

most difficult tasks among the four, as a benchmark to show the 

performance of the proposed method. To test if condition Case C is 

suitable for WT3, experiments are conducted first on the test data 

and results are recorded in Table 5. 
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Experimental results in the test data demonstrate that when the 

WT is healthy and the adjusted power can be maintained at 90% 

of actual measured power or above, the diagnosis system can 

make the correct judgment. When the WT is in a sub-healthy 

state and the adjusted power decreases to 84% of actual 

measured power or lower, the system can determine that the WT 

is sub-healthy, but it takes 6 days to make a correct judgment, 

from the point where the adjusted power consistently falls to or 

below 84% of actual measured power until the system confirms 

that the WT is in a sub-healthy state. 

The results in Table 6 demonstrate that the proposed system has 

a relatively worse performance for WT4 in comparison with that 

for WT3. This may be attributed to the operating and 

environment conditions. When WT4 is healthy, the system can 

make correct judgment. When the WT is sub-healthy and the 

adjusted power decreases to 86% of actual measured power, it 

takes 8 days for the system to determine the sub-healthy state. 

The number of days required for determination is increased, but 

the error decreases. 

To further validate the feasibility of the proposed system, 

experiments are conducted on the data collected from WT4. Note 

that WT4 is the same type as WT3; both are offshore WTs 

installed in different locations. With the same model and 

experimental settings as for WT3, the results for WT4 are shown 

in Table 6. 

Table 4 • Days required to determine sub-healthy state of WT3 for different  RoAP2MP for the offshore validation dataset (unit: 

day) 

Cases 
 RoAP2MP 

75% 80% 81% 82% 83% 84% 85% 89% 90% 95% 

A 22 22 22 23 H H H H H H 

B 7 20 20 H H H H H H H 

C 4 5 5 6 6 H H H H H 

D 15 H H H H H H H H H 

RoAP2MP, ratio of adjusted power to the actual measured power; H, healthy; WT, wind turbine. 

Table 5 • Days required to distinguish sub-healthy state of WT3 for different  RoAP2MP under condition Case C in the offshore test 

dataset 

 

RoAP2M

P 

75% 80% 81% 82% 83% 84% 85% 89% 90% 95% 

Days 4 6 6 6 6 6 H H H H 

RoAP2MP, ratio of adjusted power to the actual measured power; H, healthy; WT, wind turbine. 

Table 6 • Days required to distinguish sub-healthy state of WT4 for different  RoAP2MP under condition Case C 

 

RoAP2MP 
75% 80% 81% 82% 85% 86% 87% 89% 90% 95% 

Days 8 8 8 8 8 8 H H H H 

RoAP2MP, ratio of adjusted power to the actual measured power; H, healthy; WT, wind turbine. 

After the evaluation of WTs, if the WT is in a sub-healthy state, 

the proposed iSEMA system can send an alert (as shown in 

Figure 11) to the associated staff (operators or workers). In 

addition, the proposed iSEMA system can provide an in-time 

comparison chart between the actual measured power and the 

predicted generated power as shown in Figure 12. By making 

use of the alerts and in-time comparison chart provided by the 

system, operators can proactively schedule maintenance work 

during periodic maintenance, and address potential issues and 

significantly improve the efficiency of WT. 

 
Figure 11 • The alert provided by the system. 

4.3. Experiments on inland data 

For inland data, there are also two WTs, namely WT1 and WT2. 

Data from WT1 are employed to construct the iSEMA system, 

while data from WT2 are employed to test the feasibility of the 

proposed system. Wind speed, wind direction, air density, 

turbulence intensity, and vertical wind shear were collected as 

input to construct the LSTM model, whose structure is shown in  

Figure 6. The difference in variables between the inland and 

offshore data arises from the inherent environmental differences 

between the two locations. Inland WTs are more influenced by 

factors such as humidity and turbulence intensity due to complex 

terrain and atmospheric conditions. In contrast, offshore WTs 

experience more consistent wind patterns, making variables like 

turbulence intensity and vertical wind shear more critical. These 

differences are naturally present in the raw data and reflect the 

distinct operational challenges faced by WTs in each 

environment. To construct the LSTM model, the priority is to 
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define the parameters of the LSTM networks by applying the 

same method described in Section 4.2.1. The following two-step 

scheme is employed: (1) choosing the best optimization method 

from SGDM, RMSProp, and Adam, and (2) determining the best 

number of hidden units. Finally, the number of hidden units is 

set to 150 and the optimization method used is Adam. To 

demonstrate the performance of the LSTM model, a comparison 

between the actual measured power from inland WT1 and the 

corresponding model predictions is shown in Figure 13. 

Once the LSTM model is well trained, it can then be used for 

simulation studies. In this work, the experiments are designed as 

follows: (1) splitting the inland data into three parts: training data, 

validation data, and test data in the ratio of 6:2:2; (2) setting the 

value of CP to 90%; (3) obtaining the possible values of PSDP and 

Dmax in the training data; and (4) determining the best pair of PSDP 

and Dmax in the validation data. The experimental results on the 

training data are recorded in Table 7. 

 

 

Figure 12 • The in-time comparison chart produced by the intelligent state evaluation and maintenance arrangement system of 

offshore WT4 under condition Case C. WT, wind turbine. 

 

Figure 13 • A comparison between the actual measured power and the predicted generated power for the inland test dataset. 
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Table 7 • The change of Dmax with different proportion of accumulated sub-healthy data points and  RoAP2MP being fixed at 91% 

in the inland WT1 training data 

PSDP 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

Dmax 77 32 29 20 20 20 5 4 2 2 0 

RoAP2MP, ratio of adjusted power to the actual measured power; PSDP, proportion of accumulated sub-healthy data points; WT, wind turbine. 

To enable the system to distinguish the state of WTs quickly, the 

value of Dmax should not be too large; it is suggested to be 

smaller than 10. Here, the last five pairs of indicators in Table 7 

are used as a reference to determine the value of PSDP. By using 

the last five values of PSDP in Table 7 and choosing 10 different 

values of  RoAP2MP, numerical experiments were carried out on 

the data for WT1. Table 8 shows some results of the assessment 

of the state of WT1 under different conditions in the validation 

data. 

Table 8 • Days required to determine sub-healthy state of WT1 for different  RoAP2MP in the inland validation dataset (unit: day) 

PSDP 
 RoAP2MP 

75% 80% 81% 84% 85% 86% 87% 89% 90% 95% 

80% 5 5 5 7 7 7 H H H H 

85% 4 4 4 6 6 H H H H H 

90% 2 4 4 4 4 6 H H H H 

95% 2 4 4 4 6 H H H H H 

100% 1 3 5 5 H H H H H H 

RoAP2MP, ratio of adjusted power to the actual measured power; H, healthy; PSDP, proportion of accumulated sub-healthy data points; WT, wind turbine. 

When the adjusted power maintains at or above 90% of actual 

measured power, the system can make the correct judgment for 

all the five PSDP conditions (80%–100%). Note that when  

RoAP2MP is below 90%, the WT state is defined as sub-healthy. 

From Table 8, it can be seen that when  RoAP2MP is between 

87% and 89%, meaning that the WT is in a sub-healthy sate, the 

diagnostic system incorrectly classifies them as a health state. 

When the adjusted power decreases to 86% of actual measured 

power, the system makes the correct judgment for the first and 

third cases of five PSDP conditions (80% and 90%, respectively), 

but fails to make correct judgment for other cases. When the 

adjusted power drops to 84% of actual measured power, the system 

makes correct judgment for all the five cases. It can be noted from 

Table 8 that the diagnostic system performs relatively better for the 

third case (PSDP = 90%) than for the other cases. Therefore, the 

third case is used in further simulation study. Experiments are 

carried out on test data, and the results are recorded in Table 9. 

Experimental results on the test data demonstrate that when the 

WT is healthy and the adjusted power maintains at 93% of actual 

measured power or above, the system can make the correct 

judgment. However, when the WT is actually healthy and the 

adjusted power is within the range of 90%–92% of actual 

measured power, the system classifies the WT state as in a sub-

healthy. Such errors may be explained as follows: In Table 1, 

step 3 is to find the best indicators (Dmax and PSDP) on the 

training data to avoid misclassifying a healthy state as a sub-

healthy state. However, due to the uncertainty and changes in the 

internal and external working environment of the WTs, the 

distribution of test data may not be exactly the same as that of the 

training data. Therefore, the selected indicators based on the 

training data may not best fit the test data. For example, if the 

best value of Dmax should be 10, and PSDP should be 90%, but 

the selected Dmax is 6 and PSDP is 80% based on the training 

data, then errors may occur when the trained diagnostic system 

is applied to a test dataset. As a consequence, it may misclassify 

a healthy state as a sub-healthy state. When the adjusted power 

decreases to or below 89% of actual measured power, the system 

works better on the test data: it can correctly determine the WT 

state. It takes 2 days to make the correct judgment. 

To further validate the feasibility of the proposed system, 

experiments are conducted on the data collected from WT2. Note 

that WT2 is the same type as WT1; both are inland WT but 

installed in different locations. With the same model and 

experimental settings as for WT1, the results on the whole data 

for WT2 are shown in Table 10.

Table 9 • Days required to distinguish sub-healthy state of WT1 for different  RoAP2MP under the third condition case on the test 

dataset 

 RoAP2MP 75% 80% 85% 88% 89% 90% 91% 92% 93% 95% 

Days 2 2 2 2 2 2 2 2 H H 

RoAP2MP, ratio of adjusted power to the actual measured power; H, healthy; WT, wind turbine. 
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Table 10 • Days required to distinguish sub-healthy state for different  RoAP2MP on the whole data of WT2 under the third 

condition case 

 RoAP2MP 75% 80% 81% 82% 83% 84% 85% 89% 90% 95% 

Days 2 2 2 6 9 9 H H H H 

RoAP2MP, ratio of adjusted power to the actual measured power; H, healthy; WT, wind turbine. 

The results demonstrate that the proposed system showed a 

relatively worse performance on WT2 compared to WT1. The 

reason may be attributed to the change of operating conditions 

and work environment. When WT2 is healthy, the system can 

make correct judgment. When the WT is in sub-healthy and the 

adjusted power decreases to 84% of actual measured power, it 

takes 9 days for the system to determine the sub-healthy state. 

The number of days required for determining the state is 

increased, and the range of error becomes larger. Overall, the 

proposed iSEMA system, trained with the data of WT1, works 

well for WT2. An advantage of the iSEMA system is that there is 

no need to retrain the LSTM model or re-select the values of 

indicators if the WTs are the same type. 

4.4. Discussion 

Using the proposed iSEMA system, it is possible to evaluate and 

predict the state of WTs by modeling and analyzing historical 

data of WTs. The selection of Dmax and PSDP is important for 

achieving quick and reliable diagnosis results as the two 

parameters have significant influence on the time required to 

distinguish the state of WTs. The proposed iSEMA system can 

distinguish the sub-healthy state of WTs quickly once the actual 

measured power of a WT decreases to a certain degree. Experi-

mental results demonstrate that when the actual measured 

power maintained at or above 90% of the predicted generated 

power, the system can diagnose the healthy state correctly. 

However, when the actual measured power is set in the rough 

range from 85% to 89% of the predicted generated power, the 

diagnosis accuracy of iSEMA system is reduced. It was observed 

that, if the selected indicators are not good enough, misjudgment 

may occur as shown in Table 9. 

In addition, the model trained using the data of one WT can also 

be applied to other WTs of the same type, installed at different 

locations. This is important for improving the overall evaluation 

and maintenance efficiency for large-scale wind farms, as models 

trained based on data of some WTs can be directly applied to 

other WTs without making major changes or adjustments to the 

pre-trained models deep learning models. 

5. Conclusions 

In this work, the concept and definition of the sub-healthy state 

of WTs are expounded by introducing three parameters: CP, 

PSDP, and Dmax (Section 3). A novel iSEMA system designed 

based on DT technique is then proposed. The system can 

automatically evaluate the state of WTs and provide information 

useful for monitoring the state of WTs and scheduling 

maintenance more effectively. Thus, the efficiency of WTs can be 

highly improved. 

The iSEMA system’s performance was evaluated using data from 

both inland and offshore WTs. Each dataset was split using the 

6:2:2 method. Metrics like RMSE and the number of days 

required to diagnose a sub-healthy state were used to measure 

the model performance. The iSEMA system is highly adaptable 

and can be applied to various WT types and environmental 

conditions without retraining the model for each new site. Once 

the iSEMA system is trained based on data collected from one 

specific WT, it can be directly applied to other same type WTs in 

different locations. This flexibility comes from the fact that the 

LSTM-based model learns underlying patterns between WT 

behavior and environment information, which are transferrable 

between similar machines. The system is designed for ease of 

integration into existing maintenance workflows, enabling 

operators to preemptively address potential issues before they 

escalate into major faults. 

A deficiency of the proposed iSEMA system is that when the 

measured power of WTs is within the rough range of 85%–89% 

of the predicted generated power, the model system may not 

always distinguish the state of WTs accurately. Furthermore, if 

the distribution of the test data is significantly different from the 

training data (which frequently occurs in real problem solving), 

then the selected indicators may not be good enough; as a 

consequence, misjudgment of the WT state can occasionally 

occur. Therefore, it is essential to regularly adjust and update the 

associated parameters to maintain good performance of the 

system. 

It is worth mentioning that the iSEMA system cannot provide 

specific information on the types or locations of WT faults. In 

future, more experiments on sub-DT, involving key specific 

components of WT, will be carried out by incorporating different 

sub-DT systems into the iSEMA system, to enable the system to 

provide more specific details of faults and therefore significantly 

improve the accuracy of the iSEMA system. 
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