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A B S T R A C T   

This work presents an advanced agent-based model developed within the FLAMEGPU2 framework, aimed at 
simulating the intricate dynamics of cell microenvironments. Our primary objective is to showcase FLAME-
GPU2’s potential in modelling critical features such as cell-cell and cell-ECM interactions, species diffusion, 
vascularisation, cell migration, and/or cell cycling. By doing so, we provide a versatile template that serves as a 
foundational platform for researchers to model specific biological mechanisms or processes. We highlight the 
utility of our approach as a microscale component within multiscale frameworks. Through four example ap-
plications, we demonstrate the model’s versatility in capturing phenomena such as strain-stiffening behaviour of 
hydrogels, cell migration patterns within hydrogels, spheroid formation and fibre reorientation, and the simu-
lation of diffusion processes within a vascularised and deformable domain. This work aims to bridge the gap 
between computational efficiency and biological fidelity, offering a scalable and flexible platform to advance our 
understanding of tissue biology and engineering.   

1. Introduction 

The extracellular matrix (ECM) is a complex network of proteins and 
molecules that surround cells within tissues, providing mechanical 
support, biochemical signals, and a scaffold for cell attachment and 
migration [1,2]. It forms the structural framework of tissues and plays a 
fundamental role in cellular behaviour, tissue development, and overall 
tissue integrity. Moreover, the ECM facilitates cell communication, 
essential for tissue homeostasis and repair. Trying to mimic this, 
hydrogels are widely used both in cell culture for in vitro experiments 
and in tissue engineering, due to their proven biocompatibility proper-
ties and their efficacy in substituting biological tissues [3]. Hydrogels 
share similar characteristics with the ECM, such as their 
three-dimensional porous structure, water content, and biocompati-
bility. Like the ECM, hydrogels can be tailored to have specific me-
chanical properties [4], which can influence cell behaviour and tissue 
formation. Additionally, hydrogels can be functionalised with bioactive 
molecules, such as growth factors, to guide cell differentiation and 
tissue-specific functions. Moreover, their ability to absorb and retain 
water allows hydrogels to maintain a hydrated environment for cells, 
promoting their survival and functionality [5]. By mimicking the ECM, 

hydrogels offer a promising platform for creating artificial tissues and 
supporting cell growth. Understanding the intricate interactions of cells 
within the ECM is crucial for advancing our knowledge of tissue biology, 
development, and diseases, as well as for guiding the design of bio-
materials for tissue engineering and regenerative medicine applications 
[6,7]. 

However, in vitro experiments can be expensive and time- 
consuming, particularly for complex or long-term studies, limiting the 
number of scenarios that can be explored. Moreover, external factors in 
the experimental environment may lead to uncontrolled variables, 
potentially influencing the outcomes and introducing confounding ef-
fects, leading to uncertainties in the validity and reliability of the find-
ings. In recent years, numerous computational models of the ECM have 
been developed [8–10], complementing and extending actual experi-
ments to understand its mechanical behaviour and how it affects 
cell-matrix interactions [11,12]. Some of these works [13] have gone 
further by providing a computational framework for simulating 
cell-ECM interactions by generating random fibre networks that closely 
resemble actual collagen type I gels in terms of key geometric charac-
teristics, including connectivity distribution, free-fibre length, and 
orientation correlation between adjacent fibres. These microstructural 
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features have been identified as the primary factors influencing the 
mechanical properties of fibre networks [14]. These sophisticated 
models provide valuable insights into the complex behaviour of 
hydrogels under varying physiological conditions and offer a deeper 
understanding of their mechanical, chemical, and biological properties. 
However, integrating such models with individualised cell behaviour 
may prove challenging, often needing multiscale approaches or hybrid 
models combining continuum and particle modelling [8,10,11,15]. 

The use of agent-based models (ABMs) in the biomedical field, 
especially at the cellular level, has been on the rise in recent years. This 
has been due to their flexibility and the development of both hardware 
and software that has combined to enable the simulation of increasing 
numbers of agents. These models, usually categorised as microscopic, due 
to their direct focus on emergent behaviour arising from the behaviour 
and interactions of individual agents in a bottom-up methodology, 
provide a means for investigating intricate phenomena that would 
otherwise be challenging to analyse using a top-down approach, such as 
traditional Partial Differential Equations (PDEs). A variety of cell-agent- 
based model frameworks (Chaste [16], PhysiCell [17], TiSim/CellSys 
[18], CBMOS [19], Gell [20], and FLAMEGPU2 [21] among others) have 
originated by extending solutions from particular workflows, incorpo-
rating a range of functionalities that allow users to dedicate their time to 
their research questions rather than to code design and implementation 
[22]. While some of these platforms, such as PhysiCell, have garnered 
great popularity, with a substantial and dedicated user community, they 
are computationally limited when the number of agents increases 
beyond the tens of thousands, as they are usually based on OpenMP 
(Open Multiprocessing) and/or MPI (Message Passing Interface) ap-
proaches for parallelisation. On the other hand, Gell, CBMOS and 
FLAMEGPU2 were built to work on graphical processing units (GPUs), 
allowing simulations to scale to millions of agents whilst remaining 
computationally viable. CBMOS, for example, leverages CuPy’s rapid 
GPU vector operations for efficient computation, achieving simulation 
speeds up to 30 times faster than its CPU counterpart. However, its 
capability to manage large systems is constrained by the platform’s 
design in terms of GPU memory usage, which can surpass 16 GB. In 
contrast, Gell, while less versatile, addresses these limitations in 
large-scale hybrid cell simulations effectively, achieving speed increases 
up to 150 times faster than similar simulations using multi-core Phys-
iCell, while also being more memory-efficient. It should be noted that 
PhysiCell_GPU [23] is an ongoing project designed to migrate portions 
of its serial CPU code to run on GPUs using OpenACC. Although this 
approach has certain drawbacks, including redundant data transfers 
between the host and the GPU, it may soon be integrated into the core 
PhysiCell software. In the same way, FLAMEGPU2 is in active devel-
opment, and while it does not include predefined and detailed ECM or 
cell-related functions (as it is a general-purpose platform, rather than 
being focused on biomedical applications) it provides the necessary 
tools to do so. 

The primary objective of this study is to demonstrate the potential of 
FLAMEGPU2 as a powerful tool in the biomedical field for simulating 
the cell-tissue microenvironment, encompassing critical features such as 
cell-ECM and cell-cell mechanical interactions, species diffusion, cell 
migration, and cell cycling. By doing so, we aim to provide a founda-
tional template that not only showcases FLAMEGPU2’s capabilities in 
handling complex biological simulations, but also serves as a versatile 
starting point for researchers without specialised GPU programming 
expertise, looking to model specific mechanisms or processes within the 
cell microenvironment. We anticipate that future studies can build on 
this template by incorporating more detailed models of cellular behav-
iour, biochemical signalling pathways, and mechanical properties of the 
ECM. In summary, this work intends to bridge the gap between 
computational efficiency and biological fidelity, in terms of freedom and 
versatility, offering a scalable and flexible platform for advancing our 
understanding of tissue biology and engineering. 

2. Methods 

In this section, we describe the model structure, as well as the main 
interactions and mathematical equations that govern it. Importantly, we 
present it as a base model to build upon, including the basic function-
alities to act as a virtual cell laboratory that takes advantage of the 
power of GPU computation. In this first version, we include ECM, cell 
and vascularisation agents that interact with each other and with the 
domain boundaries. All agents can be activated/deactivated to perform 
different types of experiments. Each of the agent behaviours subse-
quently presented can be easily adapted and tailored to the user needs 
with a minimal programming knowledge of Python and/or C++. 

2.1. FLAMEGPU2 implementation 

The model has been implemented using the FLAMEGPU2 framework 
[21], a generalised ABM and simulation system which allows not only 
the abstraction of the GPU’s complexity away from the end user, but also 
provides significant speedup over alternative CPU ABM frameworks. 
FLAMEGPU2 uses a state-based representation, which permits modellers 
to describe an agent-based system as a state machine with internal 
memory that is updated by functions. It is worth noting that serial 
agent-based simulations typically loop through agents, executing their 
behaviours sequentially, followed by shuffling agents to avoid 
order-induced bias. Conversely, the approach of state-based represen-
tation is inherently parallel. Where bias may have existed in the serial 
equivalent due to competition, a conflict resolution approach is required 
[24]. In FLAMEGPU2, this typically requires agents to use functions to 
bid for resources with bias resolved in the selection process by using 
some form of agent prioritisation (which in most cases is a randomly 
assigned priority value). The state-based description of a model requires 
a collection of agents, each having a defined set of variables, states and 
functions. These functions enable agents to transition between states by 
updating their memory through predefined mathematical operations. 
Within FLAMEGPU2, the order of execution of agent functions can be 
specified explicitly using layers. Note that functions within the same 
layer may execute in parallel, and therefore have strict limitations to 
avoid race conditions (situations where concurrent processes lead to 
unpredictable outcomes, due to shared resource conflicts). Additionally, 
inter-agent communication is facilitated by global message lists, which 
can be written to, and read from, by agents. These message lists provide 
an abstraction for indirect agent communication. Furthermore, 
FLAMEGPU offers the possibility to define and represent environment 
variables (or properties) that do not belong to any specific agent 
instance. FLAMEGPU2’s macro environment properties serve as an 
alternative to messages, enabling lightweight indirect communication 
between agents through globally accessible variables that can be 
atomically manipulated (e.g. individual cells consuming nutrients). It 
should be noted that the order of atomic operations is nondeterministic 
and determined by the GPU’s execution model, which may affect 
reproducibility of results. 

Any model implemented within the FLAMEGPU2 framework must 
follow the aforementioned rules and therefore adhere to a general 
layout. Fig. 1 shows the present model layout which can be considered 
as a standard template, with the exception of the function dependency or 
layer structure, which constitutes the core of the model as it determines 
function priority and call order. The type and initial number of agents 
must be configured prior to the simulation. Their starting positions and 
states can be defined both programmatically or loaded from a pre- 
existing file. For the rest of the simulation, a first block of layers must 
be defined to retrieve all agent locations. Notably, all agents can 
spatially move in 3D but the ECM agents are additionally constrained to 
a regular grid (Fig. 2). This not only influences the mechanical behav-
iour, as explained later, but has an important impact on computation 
speed as it determines the type of messages that may be used. In a second 
block, we compute the mechanical interactions between the different 
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kinds of agents present in the simulation. A third block computes (if 
present) the diffusion of species, from the domain boundaries or from 
the vascularisation agents, through the ECM grid. In the last two blocks, 
we update the states of both the agents (e.g. cell migration, cell division, 
ECM deformation, fibre alignment, etc.) and the environment (e.g. 
boundary positions or species concentration). 

In the following sub-sections, we describe in detail the mechanisms 
or interactions defined within the aforementioned layers of the model. 
Importantly, once the ABM layout is set, adding or modifying agent 
behaviour is remarkably straightforward, providing an excellent tool to 
test and study a wide variety of emerging phenomena. 

2.2. Model assumptions 

This section, together with Fig. 2, aims to provide a broad vision of 
the model hypotheses and simplifications before expanding the details 
of each agent and their interactions.  

• The ECM is conceptualised as a 3D regular grid of ECM agents 
confined within specified domain boundaries (a virtual prism).  

• ECM agents are modelled as point masses, which simplifies their 
interaction by focusing only on translational motion and ignoring 
any volumetric properties or rotational dynamics. This assumption 
streamlines the calculation of forces and motion updates.  

• The viscoelastic properties of the ECM are modelled through a 
spring-damper system connecting every pair of adjacent ECM agents 
in a Moore neighbourhood.  

• The elastic constant for each ECM agent depends on various local 
factors such as collagen concentration, matrix degradation, fibre 
orientation, and deformation.  

• Parameters like elastic or damper constants are normalised by mass, 
simplifying the computation and assuming uniform density or mass 
distribution across ECM agents, which may not capture variations in 
biological tissue properties. This can, however, be alleviated by using 
custom factors modifying properties of individual ECM agents (e.g. 
pre-loading an heterogenous spatial distribution of ECM constants). 

• Force transmission between ECM agents is affected by the direc-
tionality of fibres, with parallel fibres transmitting force more 
effectively than perpendicular ones.  

• Fibre direction is dynamically updated based on the direction of 
maximum stretching, reflecting real-time reorientation and reor-
ganisation in response to mechanical loads.  

• Cells are modelled as distinct types of agents and unlike ECM agents, 
are not confined to a fixed grid. 

• Cell agents interact with ECM agents and other cell agents via con-
strained search radii, creating localised effects.  

• A repulsive force profile is introduced between cell and ECM agents 
to prevent physical overlap.  

• Mechanical interactions between cells and ECM are modelled using a 
spring-damper system, taking into account both the fibres and the 
cell body orientation.  

• The orientation of cell agents is updated over time to align with the 
direction of maximum stretching, reflecting adaptive responses to 
mechanical stimuli.  

• Cell agents’ migration is modulated by external forces, orientation 
and random vectors.  

• Cell cycle is simplified to phases G1, S, G2 and M. Duration and 
behaviour of cells in each phase is not defined by default.  

• The default behaviour of cell agents includes linear growth until 
division in the M phase.  

• The timing of cell division within the M phase is assumed to follow a 
uniform distribution, modified by the time elapsed to ensure that 
division occurs exactly once during this phase.  

• Different diffusing species are modelled as non-interacting by 
default, which simplifies the complexity of biological interactions. 
Should the simulation of competitive, or should synergistic diffusion 
effects among multiple species be required, these interactions must 
be explicitly programmed by the researcher.  

• Vascularisation agents are included to represent blood vessels or 
specific source points. These agents act as constant sources of species 
concentration, diffusing to their surroundings as per the reaction- 
diffusion dynamics. This assumption simplifies the role of vascular-
isation but effectively integrates it into the broader diffusion model.  

• The mobility of vascularisation agents is constrained by their 
attachment to the nearest ECM agent, implying that any deformation 
in the ECM directly translates to the vascularisation. 

2.3. Domain boundaries 

Before further describing the main agent interactions, it is necessary 
to define the simulation domain. This domain is a virtual prism of any 
size (a cube by default), whose limits are naturally defined by 6 faces or 
planes. Different conditions can be individually set in each of these 
faces, including concentration of multiple species and different me-
chanical behaviours. These affect each agent type differently, as will be 
described in the relevant section. In general, these planes can act as: i) 
sticky surfaces: once an agent gets close enough, it gets stuck for the rest 
of the simulation; ii) sliding surfaces: impeding an agent passing in 
perpendicular directions; iii) visco-elastic surfaces: using the ECM-ECM 
interaction model; iv) periodic surfaces: agents migrating through them 

Fig. 1. Model layout. The model is implemented upon FLAMEGPU2 following a 
basic setup that can be fully customised. Firstly, global variables affecting the 
environment and boundary conditions must be defined. Then, message settings 
such as the type of interaction between agents as well as their basic parameters 
(e.g. search radius) must be established, followed by the definition of each 
agent’s behaviour and the functions to be executed in each layer. This is the 
core of the model as it determines function priority and call order (i.e. functions 
in layer 1 will be called before those in layer 2, but they can be called in any 
order within the layer). In this sense, the model defines a first block (1) of layers 
to retrieve all agents’ positions, a second block (2) to compute the mechanical 
interactions between different types of agents, a third block (3) to compute (if 
present) the diffusion of species and two final blocks (4,5) to update the states 
of both the agents (e.g. cell migration, cell division, ECM deformation, fibre 
alignment, etc.) and the environment (e.g. boundary positions or species con-
centration). Finally, a series of simulation settings must be configured 
depending on user needs such as parallelisation, result logging or live- 
visualisation. 
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re-enter the domain from the opposite plane; and v) moving surfaces: 
whose position over time is defined by a function (by default, linear and 
oscillatory movements are included). The combination of these bound-
ary conditions provides a very flexible environment for simulating a 
wide variety of experiments, from traction-compression assays to mul-
tiscale models within a much bigger domain. 

2.4. ECM-ECM interaction 

The ECM is represented by a 3D regular grid of ECM agents which is 
surrounded by the domain boundaries (Fig. 2 top left). The viscoelastic 
mechanical behaviour of the ECM is modelled using a spring-damper 
system that connects every pair of ECM agents. This system comprises 
two springs in series, representing the elastic behaviour of the matrix, in 
parallel with a damper that accounts for the viscosity of the media. 
Importantly, every agent interacts only with its immediate Moore 
neighbourhood. In other words, every time an ECM-ECM interaction is 
evaluated, the current agent will receive messages from its 26 neigh-
bours. The elastic constant of each agent (kECM,i) may depend on 
different factors such as collagen concentration ([Ccol]), matrix degra-
dation (md, ranging from 0 to 1), fibre orientation (α) and deformation 

(ε), which is reflected on eq. (1): 

kECM,i(ε, α, [Ccol],md)= (1 − md) [Ccol]
[C0

col
] cos (αi) k0

ECM

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

e
ε

b0 ε ≤ 0
1 0 < ε ≤ εs

e
(ε−εs)

s0 εs < ε

eq. 1 
The collagen concentration is defined relative to a base value (C0

col) in 
order to facilitate parameter calibration in different conditions (i.e. 
model parameters can be adjusted for a specific gel and used as a 
reference for different tests). Strain-stiffening is a well-known phe-
nomenon in hydrogels [25,26], involving a linear elastic regime fol-
lowed by an exponential increase in stiffness as the fibres are subjected 
to higher levels of stretching. Following the equation proposed by 
Ref. [27] the mechanical behaviour of the ECM agents is assumed to 
display three distinct regimes: buckling, straightening, and stretching. 
The elastic constant is therefore multiplied by a function characterised 
using only four parameters: (i) a buckling coefficient (b0), which ac-
counts for an exponential reduction in fibre stiffness during compres-
sion; (ii) linear stiffness (k0

ECM); (iii) critical strain (εs) at which strain 

Fig. 2. Visual description of the ABM model. Top row, left, shows the lattice grid representing the ECM. Each of the ECM agents interacts with its Moore neigh-
bourhood. Thus, the equilibrium length of the spring-damper system joining the agents depends on the relative position of the agents. In turn, the ECM spring 
constant may depend on other variables such as collagen concentration, degradation or relative fibre alignment (eq. (1)). The simulation domain is surrounded by 
boundary planes which can be configured to interact differently with agents (sticky, periodic, and sliding) and subject to motion, both external (linear, oscillatory, 
parallel/perpendicular) and due to agents’ action (elastic). Bottom row shows other agents that may be included in the simulations, such as cells or vascularisation 
agents. The model includes basic functionality to account for cell cycling (cell growth and division), as well as cell-ECM (yellow shade) and cell-cell interactions (blue 
shade), mechanical or otherwise. Cell forces are aligned with their orientation, therefore creating heterogeneous strain fields (green shade). Cells tend to cluster if 
within a cell-cell interaction zone. Overlap is avoided by defining a repulsive force profile when the distance between cell agents is less than the sum of their radii (eq. 
(7)). Diffusion of multiple species from boundaries and/or vascularisation agents is computed following a forward-Euler scheme (eq. (14)). 
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stiffening commences; and (iv) an exponential strain stiffening coeffi-
cient (s0). 

Each of the ECM agents has assigned a fibre direction to further 
represent how well the force can be spatially transmitted. This unitary 
direction (df ) is projected (cos (α)) on the direction joining every pair of 
agents (d12) affecting each of the kECM,i (eq. (1) and Fig. 2 top right). 
Thus, two agents with highly parallel oriented fibres will transmit force 
more effectively than two with perpendicular ones. Additionally, the 
fibre direction of each agent is updated at a given rate (δ) towards the 
direction of maximum stretching (dε) within every ABM iteration (Fig. 2 
top right), reflecting the fibre-reorientation and reorganisation 
depending on loads (see Supp.Movie1). This is described in eq. (2): 

Δdf = δ

(

dt
f ×
(

dε × dt
f
))

Δt eq. 2 

Supplementary video related to this article can be found at https://d 
oi.org/10.1016/j.compbiomed.2024.108831 

The force acting between two ECM agents separated by a distance (d) 
can be therefore calculated as follows: 
⃒

⃒

⃒

⃒

f→ECM−ECM

⃒

⃒

⃒

⃒

=
(d − L0

∗

)

( kECM1 kECM2
kECM1 + kECM2

)

+ cECM

⃒

⃒

⃒

⃒

v→rel

⃒

⃒

⃒

⃒

eq. 3  

where L0
∗ is the equilibrium length that depends on the relative position 

of the agents within the virtual grid (regardless their current 3D posi-
tion) and the number of agents – domain size relationship (Fig. 2 top 
middle), cECM is the ECM damping constant (agent independent) and 
⃒

⃒

⃒

⃒

v→rel
⃒

⃒

⃒

⃒

the relative speed between the interacting agents projected on the 
direction joining them (d12). 

2.5. Cell-ECM interaction 

Cells are represented by a different type of agent whose communi-
cation with other agents does not rely on a fixed grid, but on different 
search radii (SR) in 3D (one for each type of agent as shown in Fig. 2 
bottom left). In other words, cells only interact with those ECM agents 
within a certain range (SRcell−ECM), exerting forces depending on the 
distance between them (d) and the cell agents’ orientation (dor), which 
create heterogeneous strain fields around them (see in Fig. 2 bottom 
right). The mechanical model is similar to the one described for the ECM 
(spring-damper system with its corresponding constants kcell and ccell), 
with the difference that a repulsive profile is added when the distance is 
smaller than the cell agent’s radius (Rcell) to avoid overlap. Therefore, 
cell-ECM forces are computed following the equation: 

⃒

⃒

⃒

⃒

f→cell−ECM

⃒

⃒

⃒

⃒

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(SRcell−ECM − d)
( kcellkECM

kcell + kECM

)

+ ccell

⃒

⃒

⃒

⃒

v→rel

⃒

⃒

⃒

⃒

d ≥ Rcell

f cell−ECM
max
Rcell

d − f cell−ECM
max + ccell

⃒

⃒

⃒

⃒

v→rel

⃒

⃒

⃒

⃒

d < Rcell

eq. 4  

where f cell−ECMmax is: 

f cell−ECM
max =

(SRcell−ECM − Rcell
)

( kcellkECM
kcell + kECM

)

eq. 5 

Similar to the ECM agents, the orientation of cell agents aligns over 
time with the direction of maximum stretching with a given rate (δ) (that 
may be different between cells and ECM agents): 
Δdor = δ

(dt
or ×

(dε × dt
or
))

Δt eq. 6  

2.6. Cell-cell interaction 

Cell agents interact with other cell agents within a certain range 
(SRcell−cell) and attract each other linearly with distance (d) until they are 

in contact (d =
(Rcell1 + Rcell2

)), when the force profile switches to 
repulsion to avoid overlap (eq. (7)) (see Fig. 2 bottom). Since, unlike the 
ECM agents, cell agents’ movement is unrestricted, they will tend to 
form clusters according to the following equations. Nevertheless, the 
equilibrium is broken by adding random movements, preferentially in 
their direction of orientation (dor) (see ECM deformation and cell migra-
tion section). 

⃒

⃒

⃒

⃒

f→cell−cell

⃒

⃒

⃒

⃒

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(SRcell−cell −d)
( kcell1 kcell2

kcell1 +kcell2

)

+ ccell

⃒

⃒

⃒

⃒

v→rel

⃒

⃒

⃒

⃒

d≥(Rcell1 +Rcell2 )

f cell−cell
max

(Rcell1 +Rcell2 )
d− f cell−cell

max + ccell

⃒

⃒

⃒

⃒

v→rel

⃒

⃒

⃒

⃒

d< (Rcell1 +Rcell2 )

eq. 7  

where f cell−cellmax is: 

f cell−cell
max =

(SRcell−cell − (Rcell1 +Rcell2 )
)

( kcell1 kcell2
kcell1 + kcell2

)

eq. 8  

2.7. Cell cycle 

The cell cycle is a complex process due to its intricate regulation and 
coordination of numerous molecular events. The presented imple-
mentation provides minimal functionality that can be easily expanded 
for specific user needs. Importantly, FLAMEGPU automatically in-
tegrates the possibility of adding/removing agents (agent birth/death) 
on the fly, and it is up to the user to define the conditions under which 
such events take place. In the current model, cell agents include a var-
iable defining their current phase in the cell cycle (G1, S, G2, M) [28] as 
well as an internal clock that determines when they switch to a different 
phase. Users must define the duration of each phase according to the cell 
type, and the behaviour of the cell in each of the states. As stated before, 
including specific behaviours for different types of cells is out of the 
scope of the present work. However, we include, by default, linear cell 
growth and cell division at some point in M. When a cell divides, two 
daughter cells, of half the radius, appear along the direction of the 
mother’s orientation (dor) (the original mother cell agent ceases to 
exist). 

Once a cell agent enters the M phase, we compute the probability of 
its division by drawing from a conditional uniform distribution, which 
ensures that the probability is independent of the simulation time step 
(Δt) and that the cell divides with probability 1 during this phase. To this 
end, we use a dynamic random procedure considering for each time step 
(t) that the probability of cell division is expressed by eq. (9), a uniform 
distribution in 

{

1,…,Mlength
}

(where Mlength is the duration of the M 
phase) conditioned to no occurrence in {1,…, t − 1} (i.e. truncated 
uniform). In other words, we compute the conditional probability of cell 
division occurring at current time (P(Dct

)) provided that division has not 
happened so far in M phase (see Supp.Movie2). 

P(Dc
t
)

=P(Dc
t
⃒

⃒

⋂t−1
i=1Dc

i
)

=

1
Mlength

(Mlength−t+1)
Mlength

eq. 9 

Supplementary video related to this article can be found at https://d 
oi.org/10.1016/j.compbiomed.2024.108831 

2.8. ECM deformation and cell migration 

ECM agents are modelled as point masses subjected to inertia, but 
lack volume and are not subject to rotational forces. Hence, all the forces 
acting upon them (i.e. other ECM agents, cell agents and/or boundaries) 
are utilised to update each ECM agent’s position at the end of every ABM 
step following the equation of motion (eq. (10) and eq. (11)). Parameters 
involved in computing the forces, such as elastic or damper constants, 
are normalised by mass for simplicity: 
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v→t
ECM = v→t−1

ECM +

(

f→boundary−ECM + f→cell−ECM + f→ECM−ECM

)

Δt eq. 10  

x→t+1
ECM = x→t

ECM + v→t
ECMΔt eq. 11 

Cell migration is computed in a similar fashion but includes two 
extra velocity vectors to account for directed migration ( v→prot) aligned 
with cell agent’s orientations (dor) and randomness ( v→rand). The size of 
such vectors can be tuned to achieve different migration patterns (see 
Supp. Movie3). 

v→t
cell = v→t−1

cell + v→t
prot + v→t

rand + f→cell−cellΔt eq. 12  

x→t+1
cell = x→t

cell + v→t
cellΔt eq. 13 

Supplementary video related to this article can be found at https://d 
oi.org/10.1016/j.compbiomed.2024.108831 

2.9. Transport of nutrients 

By taking advantage of the 3D grid representing the ECM, transport 
of species is included in the model by solving the reaction-diffusion 
equation at each point of the grid following a forward Euler scheme: 
∂C
∂t =

Ct+1
i,j,k −Ct

i,j,k
Δt =D

((Ct
i+1,j,k−2Ct

i,j,k+Ct
i−1,j,k

Δx2

)

+

(Ct
i,j+1,k−2Ct

i,j,k+Ct
i,j−1,k

Δy2

)

+

(Ct
i,j,k+1−2Ct

i,j,k+Ct
i,j,k−1

Δz2

)

+Rt
i,j,k

)

eq.14  

where Δx,Δy,Δz are the distances between neighbour ECM agents, D 
the diffusion coefficient, C the concentration and R the source/sink term 
at each point. It is worth noting that this equation is solved for any 
number of species, and that those species can diffuse from either the 
boundaries, the vascularisation agents (see Vascularisation section) or 
both (see Supp.Movie4). In the present model, different species don’t 
interact, but that functionality could be easily implemented by the user, 
tailored to their needs. 

Supplementary video related to this article can be found at https://d 
oi.org/10.1016/j.compbiomed.2024.108831 

2.10. Vascularisation 

Vascularisation agents are included to represent vessels or specific 
source points to account for more complex systems that cannot simplify 
the diffusion of species conditions to the six flat domain surfaces. Hence, 
these agents act as a constant source of species concentration, which 
diffuses to their surroundings following eq. (14). Importantly, for 
simplicity, vascularisation agents’ movements are tied to the closest 
ECM agent. Hence, ECM deformations translate to the vascularisation in 
an affine way (see Supp.Movie5). This feature, together with the pos-
sibility of combining the diffusion of multiple species, makes our plat-
form very attractive for multiscale systems that require a very detailed 
simulation of the microenvironment, but also macroscopic variables 
such as nutrient availability or mechanical inputs (see Results - Example 
4). 

Supplementary video related to this article can be found at https://d 
oi.org/10.1016/j.compbiomed.2024.108831 

3. Results 

In this section, we show four different example applications of our 
model to demonstrate its potential and versatility. Our intention is not to 
validate specific experiments with particular parameters, but rather to 
demonstrate how the model can be adapted to a wide range of simula-

tion conditions. In the first simulation study, we perform a rheology 
assay with only ECM agents present, capturing the strain-stiffening 
behaviour of hydrogels. In the second, we simulate a large domain (in 
the order of hundreds of microns) representing the hydrogel within a 
microfluidic device where cell agents migrate and interact with ECM 
agents. In the third, we simulate the formation of spheroids within a 
hydrogel and their interactions with the ECM. Finally, we show the 
potential of combining diffusion of multiple species from different 
sources (i.e. vessels and boundaries). It is worth noting that matrix 
degradation mechanisms have not been explicitly implemented for these 
example cases, so its parameter value (md) is set to 0. Additionally, we 
present a computational efficiency and scalability study of our model to 
highlight its speed and potential use for large scale problems. 

3.1. Example application 1: simulating strain-stress curve of hydrogels of 
different concentrations 

As previously stated, collagen hydrogels, commonly used for cell 
culture experiments, exhibit strain-stiffening behaviour due to the 
structural arrangement of the fibres within the gel matrix. In Ref. [29], 
this behaviour was experimentally measured in hydrogels with three 
different collagen concentrations (Fig. 1). To capture this same 
strain-stress relationship, we simulated a shear-stress assay, with a small 
grid of 10 × 10 × 10 ECM agents with initial random fibre orientation, 
by imposing a horizontal displacement of the top boundary face of the 
domain, while constraining the bottom one. Then, we computed the 
shear modulus (G), following: 

G=
F/A
Δx/l eq. 15  

where F was the force measured in the direction parallel to the move-
ment of the top face of area A, and Δx/l the deformation in the stretching 
direction (See Supp.Fig1 and Supp. Movie1). We then adjusted the pa-
rameters used in eq (1), namely: the linear stiffness (k0ECM), the buckling 
coefficient (b0), the critical strain (εs) and the strain-stiffening coeffi-
cient (s0). Matrix degradation (md) was set to 0 in these simulations. It is 
worth noting that, in this scenario, the magnitude of the measured forces 
is proportional to the number of agents and the value of k0

ECM, which is in 
turn multiplied by Ccol/C0

col to account for the collagen concentration. 
C0

col was set to 2.5 mg/mL and Ccol was set accordingly for the three 
different cases (2.5, 4 and 6 mg/mL respectively). A sensitivity analysis 
was performed to select the final values of the remaining parameters 
involved (see Supp. Fig. 2). 

For all concentrations, the experimental and computational curves 
follow a similar trend, showcasing an initial region of lower modulus 
followed by a steep ascent that depends on collagen concentration. The 
slight deviations between the experimental and computational curves 
may be attributed to the simplifications inherent in the computational 
model or to experimental variability, but this study shows the potential 
of the model to be tailored to specific research needs. In fact, we 
managed to fit the three curves by only varying Ccol, as we are simulating 
the same material (collagen) at different concentrations, but finer ad-
justments could be achieved by varying the remaining parameters 
independently. 

3.2. Example application 2: simulating cell migration within hydrogels 

Microfluidic devices, in combination with hydrogels, are widely used 
in the field of biomedical research, serving as powerful tools for precise 
condition manipulation and control in a variety of applications, 
including cell culture, drug screening, and the study of cellular re-
sponses to different stimuli [30]. For this reason, we simulated cell 
migration within a hydrogel using common experimental setups in terms 
of gel size and experiment duration [12,31]. In particular, we simulated 
the migration of 1000 cell agents within a rectangular domain of 2000 ×
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1300 × 300 μm. This domain, representing collagen, was formed by a 
regular grid of ECM agents placed every 20 μm, resulting in a total of 
101 × 66 × 16 = 106,656 ECM agents. We ran 5000 simulation steps, 
with each step representing 1.5 min, totalling approximately 5 days. 

Fig. 4A displays the entirety of the domain at an arbitrary time point, 
demonstrating how the ECM grid has been deformed by the actions of 
cell agents. Concurrently, Fig. 4B provides a detailed view of the fibre 
orientation, captured at the same time point. We tuned 

⃒

⃒

⃒

⃒

v→prot
⃒

⃒

⃒

⃒

and 
⃒

⃒

⃒

⃒

v→rand
⃒

⃒

⃒

⃒

ratio (
⃒

⃒

⃒

⃒

v→prot
⃒

⃒

⃒

⃒

≈ f ∗
⃒

⃒

⃒

⃒

v→rand
⃒

⃒

⃒

⃒

) within the cell agents to illustrate two 
extreme cases of movement: purely random motion (f = 0) and highly 
directed motion (f = 2).This parameter (f) has the strongest impact on 
the migration pattern (i.e. Brownian, persistent) and may be used as a 
starting point to adjust the simulation depending on cell types or other 
conditions, achieving the desired directionality ratios (see Sup. Material 
and Supp.Fig.3). Further refinement can be achieved by tweaking cell- 
cell and cell-ECM interactions. 

Fig. 4C shows the relative cell trajectories at the end of the simula-
tion. As would be expected, the spread is much higher in the persistent 
case, as cells tend to continue migrating in their orientation direction 
(dor). Mean squared displacement (MSD) of the tracked trajectories was 
obtained and used to fit a power law (MSD(t) = γtα) to determine the 
kind of motion (α < 1 for confined motion, α = 1 for Brownian or purely 
diffusive motion and α > 1 for directed or persistent motion). Fig. 4D 
compares the MSD of both migratory cases confirming the theory with 
the α values obtained (0.96 ± 0.18 and 1.87 ± 0.13 for Brownian and 
persistent cases respectively). Similarly, along with the type of migra-
tion, cell velocity can be modulated by setting a reference value. The 
combination of both parameters (directionality and expected speed) 
results in a range of mean (instantaneous) and effective (measured from 
the starting to the endpoint) speeds (vmean and veff, respectively) as 
depicted in Fig. 4E. As an example, the speeds in these simulations were 
varied within the physical range expected for fibroblasts migrating in 
collagen [31]. 

3.3. Example application 3: spheroid formation and fibre reorientation 

Spheroids are 3D aggregates of cells that closely mimic the archi-
tecture and function of tissue in vivo and are integral to the under-
standing of cellular organisation, differentiation, and proliferation [32]. 
The formation of these spheroids and their interaction with the ECM’s 
fibrous network is of particular interest in tissue engineering and cancer 
research, as it provides insight into the spatial dynamics of cell growth 
and the biomechanical properties of the ECM. Our platform may be used 

to replicate this complex interplay by employing more advanced func-
tionalities (i.e. cell cycle) to capture the emergent properties of spheroid 
structuring and ECM adaptation. To showcase this, we employed a 
cubical domain of 100 × 100 × 100 μm with 8 cells randomly placed in 
the central region, and we allowed them to grow for 200 h. 

Fig. 5 illustrates the temporal progression of collagen fibre alignment 
in relation to the forming spheroid. As the simulation progresses, there is 
a marked alignment of fibres orienting towards the spheroid, culmi-
nating in near-perfect alignment by the end of the simulation period, as 
depicted in the right panel of Fig. 5. This phenomenon is consistent with 
empirical findings that demonstrate the ability of tumour spheroids to 
reorient surrounding collagen fibres, extending radially up to five times 
the spheroid’s radius - well beyond the immediate zone of tumour 
expansion and cellular migration [33]. While the specific dynamics of 
fibre realignment and the intricate interactions among cells, or between 
cells and the ECM fibres, were not the focus of this simulation, given its 
simplified representation of a highly complex process, the results 
nonetheless underscore the versatility of our computational framework 
in modelling and understanding such biological phenomena. 

3.4. Example application 4: simulating diffusion of multiple species within 
a vascularised deformable domain 

In this fourth example, we present a simple simulation that captures 
the diffusion of multiple species within a (randomly) vascularised and 
deformable domain of 1 mm3. This aims to show the potential of our 
framework to compute highly detailed simulations that could constitute 
a single component within a larger, multiscale problem. A similar 
approach has been used previously to simulate the evolution of neuro-
blastoma tumour [34], but including only cell agents at the micro-level. 
These agents were modelled in deep detail (including signalling path-
ways, mutations etc.), but the role of the ECM (i.e. a drag term affecting 
cell motion) and the available nutrients (i.e. constant concentration of 
oxygen) were greatly simplified. Including both ECM agents and vas-
cularisation allows for a more nuanced exploration of cellular dynamics 
within a tumour environment, providing a robust platform for under-
standing the interplay between cells, ECM architecture, and nutrient 
diffusion facilitated by vascularisation. While the detailed characteri-
sation of these behaviours falls beyond the scope of the present work, we 
employ an illustrative example as a proof of concept. In this example, 
Species A diffuses from the vessels to the ECM, and Species B diffuses 
from one of the boundaries. 

Fig. 6 shows the concentration of species A (Fig. 6, first row) and B 
(Fig. 6, second row) over time (t = 0,1 and 5 min). It is worth noting that, 
in these simulations, there are no cell agents and the species do not 
interfere with one another in any way. Therefore, their diffusion profiles 
are unaltered by the presence of other species or agents. The graph 
(Fig. 6, right) compares the concentration profiles of species A and B 
over time at two distinct points within the domain, to visualise more 
easily the spatial heterogeneity that can be achieved by using this 
approach. In fact, although only two species were simulated in this 
example, there is no limit in the number of species diffusing simulta-
neously (with their own particular dynamics) and/or interacting with 
the ECM or cell agents Furthermore, our framework facilitates the 
investigation of more intricate scenarios by accommodating domain 
deformability (i.e. displacements arising from the macroscale within a 
multiscale problem, or deformations induced by the cell agents that 
exert forces on the boundaries), all while integrating with the diffusion 
calculations which are linked to the ECM grid, in turn linked to the 
vascularisation agents (see Supp.Movie 5). 

3.5. Computational efficiency and scalability 

To evaluate the computational efficiency and scalability of our 
model, we performed simulations with an increasing number of agents 
on two different devices: a laptop and a High-Performance Computing 

Fig. 3. Graphical comparison of the shear modulus (Pa) as a function of applied 
strain for collagen at varying concentrations (2.5, 4, and 6 mg/mL), obtained 
through both experimental (‘exp’) measurement from Ref. [29] and computa-
tional simulation (‘comp’) from this work. 
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(HPC) cluster (University of Sheffield’s Stanage HPC system). The 
technical specifications of these devices were as follows:  

• Laptop: Intel i7-10710U@1.10GHz (4.7 GHz Boost), NVIDIA 
GeForce GTX 1650  

• HPC Cluster: AMD EPYC 7413@2.65GHz (3.6 GHz Boost), NVIDIA 
H100 PCIe 

We carried out two types of studies: 
First, we simulated a cubical domain with a fixed size of 1 mm3 

divided in a regular grid of NECM x NECM x NECM ECM agents where Ncell 
cell agents were randomly placed. We varied these quantities up to a 
maximum combined total of 2 million agents. Specifically, we tested 
combinations of:  
Ncell = 1000; 10,000; 100,000; 1,000,000                                              
NECM = 10; 20; 30; 40; 50; 60; 70; 80; 90; 100                                      

This range of agent numbers was chosen to cover scenarios from in- 
vitro to in-vivo studies, allowing us to assess the performance and 
scalability of our model across a wide range of biological complexities. 

Secondly, we simulated a cubical domain with a fixed density of 
agents, and we tested the model efficiency by multiplying iteratively 8- 
fold the volume of the domain, starting with 1 mm3 up to 512 mm3. The 
initial total agent numbers for this test were Ncell = 10,000 and NECM =
30 (a combined total of 37,000 agents), which increased up to Ncell =
5,120,000 and NECM = 240 (a combined total of 18,940,000 agents) in 
the largest case. This secondary set of simulations aims to demonstrate 
that the code’s efficiency is more dependent on model parameters than 
on the number of agents. 

In all the cases, diffusion of two different species from boundaries 
was present, and there were no vascularisation agents. 

The duration of the simulations is influenced by both the initialisa-
tion phase and the number of simulated steps. Consequently, we focused 
on two primary parameters: (i) initialisation time, which encompasses 
the time required to initialise the FLAME GPU library and configure the 
simulation parameters, position and initialise all agents’ states, func-
tions, and variables; and (ii) average step time, defined as the time 
needed to execute a single model time step, averaged over 100 consec-
utive steps. Notably, this implementation of a Python model on 
FLAMEGPU2 has the drawback of higher initialisation times compared 
to a pure C++ model, due primarily to the use of run time compilation of 
the GPU agent functions. Additionally, any host (CPU) initialisation 
functions occurring within the Python code incur the overhead of Py-
thon being an interpreted language. However, once the model is 
running, the utilisation of GPUs on HPC systems results in significant 
speed improvements, achieving step times that can be orders of 
magnitude faster than on regular machines, especially for larger 
simulations. 

A summary of the results is shown in Fig. 7, and a full listing of the 
recorded timings can be found in Supp. Table 1. For the first set of 
simulations (with varying agent density), the initialisation time for the 
H100 (Fig. 7A) ranged from 0.276s to 273.607s and increased gradually 
with the number of cell and ECM agents. In contrast, the GTX1650 
(Fig. 7E) showed a wider range (from 0.358s to 526.322s), with a 
steeper increase as the number of agents increased. The average step 
time for the H100 (Fig. 7B–G) remained relatively low, ranging from 
7.4e-4s to approximately 0.1511s, corresponding with the most 
demanding cases. Conversely, the GTX1650 (Fig. 7F and G) experienced 
much higher step times, from 0.0021 to about 5.124 s, indicating more 
significant performance degradation with larger agent numbers. In the 
same way, the total simulation time (Fig. 7C) for both GPUs increased 
exponentially with the number of agents, but the GTX1650 shows 
significantly longer times, particularly beyond 1 × 106 agents. In fact, 

Fig. 4. A) Depicts the overall domain at a selected time point, illustrating the deformation of the ECM grid as a result of interaction with cell agents (blue), with ECM 
agents (orange). B) Provides a focused view on a cluster of cell agents within the ECM, highlighting the proximity and potential interactions between cells and ECM 
fibres. C) Shows trajectories of cell agents with two types of migration patterns: Brownian (random) and persistent (directed), represented in teal and purple 
respectively. D) Mean squared displacement (MSD) against time delay for both migration types, with the slope of the line indicating the nature of each movement 
pattern - Brownian (α ≈ 1) or superdiffusive (α > 1). E) Comparison of effective (veff) and mean (vmean) velocities of cell agents, illustrating the range of observed 
speeds, found significantly different (***), within the simulated ECM environment. ANOVA tests were performed among the cell migration data sets, and statistical 
significance was assumed when p < 0.001 (***), p < 0.01 (**) or p < 0.05 (*). 
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the slowest simulations, indicated by markers (Fig. 7C–G) highlighted 
with a coloured box, correspond to cases with NCELL = 1 × 106 and 
varying numbers of ECM agents. These simulations exhibit a significant 
increase in both total simulation time and average step time (over 7 
times higher) compared to those with similar number of agents but 
composed by NECM3 = 1 × 106 and different numbers of cell agents. This 
difference, also illustrated by the predominantly vertical contour lines in 

Fig. 7B and F, arises because ECM agents utilise grid communication 
(each interacting with just their 26 neighbours), whereas cell agents 
employ 3D spatial communication, using a search radius to identify 
other agents for interaction. The method of agent communication is 
generally the largest factor impacting performance in FLAME GPU 
models [21]. 

The predominant dependence of computation time of cell agent 

Fig. 5. Temporal Evolution of collagen fibre reorientation in response to spheroid formation. Panels depict the simulation at time points t = 0, t = 25, t = 50, t = 100, 
and t = 200 h, showing the initial state and subsequent stages of spheroid development and associated collagen fibre alignment. Initially, fibres are randomly 
oriented (t = 0). As the spheroid forms, a gradual reorientation of fibres towards the spheroid becomes evident (t = 100), leading to a pronounced alignment at t =
200, as seen in the rightmost panel. The colour gradient on this panels represents the degree of fibre alignment over time, from low (dark purple) to high (bright 
yellow). In addition, cell agents are coloured as a function of their cycle phase (1:G1, 2:S, 3:G2, 4:M). The accompanying graph quantifies the fibre alignment, with 
the shaded area indicating the interquartile range (Q1–Q3) and the solid line representing the median, reflecting the overall increase in alignment over time (see 
Supp.Movie2). 

Fig. 6. Simulation of diffusion of multiple species within a vascularised domain. The top row (left) illustrates the diffusion of Species A at time points t = 0, t = 1, and 
t = 5 min, with the source being the vascularisation agents (pink). The bottom row (left) shows the diffusion of Species B, which source is one of the domain 
boundaries. The graph on the right quantitatively compares the concentration profiles of Species A and B over time at two distinct points within the domain: Point 1 
(dotted lines) and Point 2 (solid lines), demonstrating the detailed spatial heterogeneity that can be achieved. 
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number has two direct implications: i) since ECM density has less 
impact, it gives the researcher more freedom to choose the level of detail 
for the mechanical problem; and ii) the cell search radius is a critical 
parameter that depends on the cell type and/or the simulated problem. 
In these tests, its value was set to 50 μm, resulting in an exponential 
increase in the number of interactions for cases with 1 × 106 cells/mm3 

compared to those with 1 × 105 cells/mm3 or less. To confirm this, we 
conducted a second series of simulations with a fixed agent density, 
increasing the total number of agents to nearly 19 million. Importantly, 
the density was chosen so that the search radius did not play a significant 
role. The biggest simulation was executed only on the HPC system, as the 
GTX1650 lacked memory capacity. As it can be seen in Fig. 7D, the total 
simulation time was similar for both GPUs, as over 90% of the total time 
corresponds to model initialisation (which is carried out mostly on 
CPU). It’s important to note that for longer-running simulations, the 
impact of this initialisation time would be amortised, leading to a more 
significant performance advantage for the GPUs during the actual 
simulation process. Fig. 7H highlights how the H100 maintains an 
average step time significantly below that of the GTX1650. In fact, the 
average step time on H100 for a simulation of 18,94 million agents was 
0.1 s, three times lower than the average step time of a simulation with 
6,84 million agents on the GTX1650. In both cases, times grow expo-
nentially with the number of agents, with no step changes as in the 
previous series, demonstrating the raw capabilities of the framework 
and its potential scalability to enormous problems. 

A deeper analysis of the FLAMEGPU2 framework performance and 
scalability can be found in the original work [21]. 

4. Discussion 

Computational simulations are emerging as essential tools in over-
coming the limitations of traditional experimental imaging, facilitating 
the visualisation of cellular behaviours in three dimensions. These 
models complement experimental techniques, offering scalable, cost- 
effective means to hypothesise, predict, and guide experimental de-
signs in studying complex biological processes. In this work, we explore 
the development and application of an innovative agent-based model 
platform designed for simulating cell microenvironments using the 

FLAMEGPU2 framework. This model demonstrates a foundational 
approach intended to be built upon, specifically tailored for modelling 
the complexities of cell microenvironments. It is worth noting that the 
examples presented in this work are intended to showcase the capabil-
ities of the model rather than to validate specific experimental condi-
tions. In fact, the examples involving spheroid formation and the 
integration of diffusion with vascularisation present complexities that 
would require specialised experimental data and additional modelling 
efforts that are beyond the scope of this manuscript. 

The utilisation of FLAMEGPU2 offers significant computational ad-
vantages, enabling extremely rapid calculations that enhance the 
model’s efficiency and applicability to a broad range of scenarios. In 
fact, one of the core strengths of this platform is its highly efficient GPU 
utilisation. FLAMEGPU2 has been meticulously crafted from the ground 
up with a focus on efficient agent communication and scalability. It 
utilises hand-written and finely-tuned CUDA code, distinguishing it from 
other approaches that rely on pragma-based standards such as Open-
ACC. Although OpenACC is known for its ease of use and portability, it 
often fails to deliver peak performance in complex applications due to 
redundant data transfers between host and GPU, as well as inefficient 
conflict resolution algorithms. Furthermore, FLAMEGPU2 offers exten-
sive support for running ensembles across multiple GPUs and nodes, 
facilitating easy integration with high-performance computing (HPC) 
environments, which is crucial for scalability, as we have demonstrated 
in our performance study. Nevertheless, we have also shown that a very 
large number of agents can be effectively simulated on personal com-
puters, highlighting the potential for conducting complex simulations in 
more accessible and cost-effective environments, thereby broadening 
the scope for research in this field. 

Aside from the advantages of the underlying architecture, our model 
offers significant flexibility in incorporating any type of custom agents, 
including customisable templates for ECM, cell, and vascularisation 
agents, and managing intricate interactions between them. We also 
provide comprehensive control over domain boundary conditions, fea-
tures that are typically restricted in other solutions. Basic events, such as 
agent birth and death, are seamlessly integrated within our messaging 
scheme, granting researchers complete autonomy over the conditions 
triggering them. Unlike alternatives like PhysiCell or Gell, which tend to 

Fig. 7. Comparison of simulation timings between NVIDIA H100 PCle and GTX1650 GPUs. A, E) Initialisation time [s] of the model using the H100 PCle and 
GTX1650 GPUs respectively: time required to compile and configure the simulation parameters, position and initialise all agents’ states, functions, and variables. B, 
F) Average step time [s] of the model using the H100 PCle and GTX1650 GPUs respectively: time needed to execute a single model time step, averaged over 100 
consecutive steps. C) Total simulation time [s] vs. total number of agents, D) Total simulation time [s] vs. total number of agents in fixed density conditions G) 
Average step time [s] vs. total number of agents. H) Average step time [s] vs. total number of agents in fixed density conditions. In C) and F), coloured boxes highlight 
markers corresponding to cases with NCELL = 1e6 and varying numbers of ECM agents. 
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oversimplify the mechanical behaviour of the ECM by reducing it to a 
drag term in the migration equation, our approach considers its visco- 
elastic properties. Moreover, we account for factors like local fibre 
orientation and matrix degradation. The mechanical equations in our 
model are not only customisable but can also be expanded by re-
searchers as needed. However, it is important to note that this degree of 
flexibility and customisation adds a layer of complexity and requires 
additional effort from the researcher. 

However, we believe that this flexibility is crucial for accurately 
replicating the dynamic and complex nature of biological systems, as 
illustrated by the examples provided in this work, ranging from simu-
lating cell migration within microfluidic devices to simulating the 
tumour microenvironment. In fact, our model’s adaptability might be 
particularly relevant for simulating phenomena where vascularisation 
plays a critical role. For example, vascular networks are crucial for 
tumour growth and progression, affecting the delivery of nutrients and 
the removal of waste. Our model’s ability to accurately represent these 
processes enhances its value, not only helping understand the underly-
ing biological dynamics, but providing a highly detailed microscale 
component within a broader macroscale analysis, such as a finite 
element (FE) simulation. This integration would allow for a dynamic 
exchange of information, where the macroscale FE model might provide 
overarching boundary conditions and global parameters to the micro-
scale agent-based model. Conversely, insights from the microscale, 
regarding cellular behaviours, molecular diffusion, ECM degradation or 
deformation, would inform adjustments and updates at the macroscale 
level. This reciprocal flow of information would enhance the predictive 
accuracy and relevance of simulations across different spatial scales, 
offering a comprehensive understanding of complex biological systems. 
The applicability of such an agent-based model, developed using 
FLAMEGPU2, within a multiscale approach has been already tested by 
the authors in a previous study [34], showing promising results in per-
sonalised medicine. 

While our framework marks a significant step forward, it presents 
some limitations and potential areas for improvement. Currently, 
FLAMEGPU2 lacks a robust user community and the comprehensive 
suite of default behaviours found in more established frameworks like 
PhysiCell. These frameworks offer a wide variety of pre-defined models 
for cell phenotype, diffusing substrates, signalling factors, and biologi-
cally driven sub-models for processes such as cell cycling, apoptosis, and 
necrosis, which are not inherently included in our model. These built-in 
functionalities significantly reduce the time required for setup and 
development, and ensure standardisation across studies. In fact, these 
models are often well-tested and validated, providing a reliable foun-
dation that facilitates the comparison of results and enhances the 
reproducibility of research. Additionally, this ease of use makes 
advanced simulations more accessible, especially for those who may not 
have deep coding expertise or familiarity with complex modelling 
techniques. In contrast, our model, while not excessively complex, de-
mands a higher level of technical proficiency and a deeper under-
standing of modelling principles, making it more challenging for 
unexperienced researchers. Finally, another constraint is the require-
ment for a CUDA compatible GPU, which may not be readily available in 
many research laboratories. This dependency could limit the model’s 
accessibility and utility across the broader scientific community, 
potentially hindering its adoption and integration into existing research 
workflows. 

5. Conclusions 

Despite these limitations, our model represents a significant 
advancement in the simulation of cell microenvironments, providing a 
powerful tool for researchers to explore and understand the complex 
dynamics of cellular interactions. In fact, the potential for incorporating 
submodels into our framework opens avenues for modelling more 
complex scenarios that were not explored in this work. The FLAMEGPU2 

submodel feature allows for the integration of nested models, offering a 
versatile tool for simulating iterative algorithms for conflict resolution 
problems, or complex interactions that require different temporal res-
olutions, such as the diffusion of species and cell migration, or intricate 
ECM interactions. The ability to map agent variables between models 
and share environment properties enhances the framework’s flexibility, 
enabling the construction of sophisticated simulations that can address a 
wide range of biological questions. This capability significantly expands 
the model’s applicability, allowing for the detailed simulation of bio-
logical processes that are challenging to capture with traditional 
modelling approaches. Future developments should focus on enhancing 
the model’s versatility, incorporating more templates for detailed bio-
logical processes, and expanding its accessibility to foster a wider user 
community. 

Availability of data and materials 

The work presented here was built upon the FLAMEGPU2 frame-
work. The code is publicly available via: https://doi.org/10.5281/zeno 
do.10804507. To run it, an NVIDIA graphics card is needed and 
FLAMEGPU2 must be installed. Instructions can be found at https://flam 
egpu.com/and their release archive: https://zenodo.org/doi/10. 
5281/zenodo.5428984. 
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