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ABSTRACT
Due to the small size, variety, and high degree of mixing of herbaceous vegetation, remote 
sensing-based identification of grassland types primarily focuses on extracting major grassland 
categories, lacking detailed depiction. This limitation significantly hampers the development of 
effective evaluation and fine supervision for the rational utilization of grassland resources. To 
address this issue, this study concentrates on the representative grassland of Zhenglan Banner 
in Inner Mongolia as the study area. It integrates the strengths of Sentinel-1 and Sentinel-2 
active-passive synergistic observations and introduces innovative object-oriented techniques 
for grassland type classification, thereby enhancing the accuracy and refinement of grassland 
classification. The results demonstrate the following: (1) To meet the supervision requirements 
of grassland resources, we propose a grassland type classification system based on remote 
sensing and the vegetation-habitat classification method, specifically applicable to natural 
grasslands in northern China. (2) By utilizing the high-spatial-resolution Normalized 
Difference Vegetation Index (NDVI) synthesized through the Spatial and Temporal Non-Local 
Filter-based Fusion Model (STNLFFM), we are able to capture the NDVI time profiles of grass-
land types, accurately extract vegetation phenological information within the year, and further 
enhance the temporal resolution. (3) The integration of multi-seasonal spectral, polarization, 
and phenological characteristics significantly improves the classification accuracy of grassland 
types. The overall accuracy reaches 82.61%, with a kappa coefficient of 0.79. Compared to using 
only multi-seasonal spectral features, the accuracy and kappa coefficient have improved by 
15.94% and 0.19, respectively. Notably, the accuracy improvement of the gently sloping steppe 
is the highest, exceeding 38%. (4) Sandy grassland is the most widespread in the study area, 
and the growth season of grassland vegetation mainly occurs from May to September. The 
sandy meadow exhibits a longer growing season compared with typical grassland and mea-
dow, and the distinct differences in phenological characteristics contribute to the accurate 
identification of various grassland types.
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1. Introduction

Grassland is the second-largest terrestrial ecosystem in 
the world, accounting for approximately 26% of the 
world’s land area and 70% of the world’s agricultural 
area (Liu et al. 2019; Ren et al. 2021). Based on vegeta-
tion, environment, geography, and other conditions, 
grassland is classified into different types according to 
the grassland classification system. The classification 
of grassland types serves as the foundation for under-
standing, evaluating, and utilizing grassland resources. 
Therefore, accurately determining the spatial distribu-
tion range and composition of grassland types is cru-
cial in obtaining key vegetation parameters such as 
grassland yield and degradation status. This informa-
tion enables the formulation of reasonable grassland 
utilization strategies.

Remote sensing technology shows great potential for 
identifying grassland types (Wachendorf, Fricke, and 
Möckel 2018; Xu et al. 2019). However, the interpreta-
tion of grassland types using remote sensing technology 
is influenced by both artificial classification systems and 
remote sensing image features. Therefore, it is neces-
sary to explore suitable grassland classification systems 
and methods on a regional scale that consider the 
characteristics of grassland types. Currently, most 
remote sensing classification studies of grassland types 
focus on a few broad categories (Parente et al. 2019; 
Schwieder et al. 2016; Shen et al. 2016; Xu 2019) due to 
their small size, multiple species, high degree of mixing, 
and uneven vegetation coverage within different grass-
land types. These studies aim to improve classification 
accuracy and efficiency (Crabbe, Lamb, and Edwards  
2019; Zheng et al. 2017), resulting in an insufficient 
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depiction of grassland types (Ma 2015; Rapinel et al.  
2020). Consequently, they fail to adequately support the 
utilization and protection of grassland resources. For 
instance, the early United States Geological Survey 
classified grassland types into three categories: herbac-
eous grassland, shrub and scrub grassland, and mixed 
grassland (Anderson et al. 1976). Similarly, the 
International Geosphere-Biosphere Programme 
Global Land Cover Classification System divides grass-
land types into three categories: forested grassland, 
savanna, and grassland (Loveland et al. 2000). The 
EU’s GLC2000 and ESA 300 m CCI products both use 
FAO’s Land Cover Classification System and classify 
grasslands into three types: herbaceous vegetation, 
sparse herbaceous vegetation or sparse scrub, and reg-
ular floodplains covered by scrub/herbaceous vegeta-
tion (Bartholome and Belward 2005). The National 
Land Survey Protocol of China (GB/T 21,010–2017) 
(Ministry of Land and Resources of the People’s 
Republic of China 2017) classifies grasslands into four 
categories: natural pasture, swampy grassland, artificial 
pasture, and other grasslands. Therefore, it is necessary 
to propose a more refined remote sensing classification 
system for grassland types, which also places higher 
requirements on classification methods and features.

Compared with traditional pixel classification 
methods, the object-oriented classification method 
aggregates spectrally homogeneous image elements 
into image objects and then classifies each image 
object by considering spatial and spectral features 
(Shafizadeh-Moghadam et al. 2021). This approach 
can overcome the issue of intra-class spectral variabil-
ity in land cover types (Gilbertson, Kemp, and Niekerk  
2017; Teluguntla et al. 2018; Watmough, Palm, and 
Sullivan 2017). The object-oriented classification 
method has been explored for recognizing grassland 
types (Kaszta et al. 2016; Xu et al. 2019). However, the 
effectiveness of object-oriented classification relies 
heavily on the quality of image segmentation. If the 
ideal geographic object unit is accurately segmented, it 
can effectively address the high intra-class spectral 
variability resulting from the heterogeneity of vegeta-
tion within grassland types. Currently, most existing 
object-oriented segmentation algorithms utilize pixels 
as the underlying representation. However, pixels are 
basic units of the raster and do not correspond to 
natural entities, making it unlikely for them to accu-
rately represent the spatial content expressed (Fisher  
1997). It is possible to create visually significant local 
entities in an image by considering the spatial location 
of pixels, their color-texture characteristics, and their 
similarities. These entities, referred to as superpixels, 
are groups of pixels that carry more information than 
individual pixels and better align with natural bound-
aries. Superpixels, with a scale between pixel-level and 
object-level, can accelerate subsequent image proces-
sing and mitigate the effects of noise and outliers to 

some extent (Hossain and Chen 2019). Researchers 
have developed various superpixel algorithms for dif-
ferent application scenarios (Tassi and Vizzari 2020; 
Yu et al. 2018), and studies have shown that the SLIC 
superpixel segmentation algorithm exhibits distinct 
advantages over traditional segmentation methods in 
terms of geometric accuracy and computational effi-
ciency when working with natural scenes (Csillik  
2017).

The distribution of herbaceous vegetation is often 
disorderly, exhibiting a high degree of “same thing 
different spectrum” and “same spectrum different 
thing” (Bruzzone and Carlin 2006). Although the use 
of multi-seasonal multispectral remote sensing images 
can enhance the differentiation among herbaceous 
vegetation types to some extent (Van Deventer, Cho, 
and Mutanga 2019), achieving high-precision classifi-
cation results solely based on spectral features is chal-
lenging. In recent years, researchers have found that 
analyzing multitemporal spectral variations based on 
vegetation phenological characteristics is particularly 
useful in distinguishing vegetation types that undergo 
significant phenological changes (Gómez, White, and 
Wulder 2016). Particularly, phenological differences 
within a year or across consecutive years can aid in 
distinguishing herbaceous crops from grasslands (Senf 
et al. 2015) or crops from pastures (Müller et al. 2015). 
Phenological characteristics have proven successful as 
primary or secondary characteristics (Huang et al.  
2009; McInnes, Smith, and McDermid 2015) in the 
classification of herbaceous vegetation (Mao et al.  
2020), crop vegetation (Tariq et al. 2022), and other 
vegetation types (Kang et al. 2014). Additionally, 
Synthetic Aperture Radar (SAR) data can provide 
stable and high temporal resolution data products 
regardless of weather conditions, although the accu-
racy of grassland classification results using SAR data 
alone is limited (Smith and Buckley 2011). However, 
integrating SAR and optical data can improve the 
accuracy of discriminating grassland species composi-
tion (Crabbe, Lamb, and Edwards 2019). In summary, 
achieving finer classification of grassland categories 
requires the utilization of not only spectral features 
and some spatial features but also more complex spa-
tial and temporal feature information.

Zhenglan Banner in Inner Mongolia is situated in 
the core area of the Eurasian temperate grassland, 
representing a typical semi-arid grassland region and 
serving as an important ecological barrier in North 
China. The area is abundant in grassland resources, 
with a significant proportion of the total land area 
covered by various grassland types. Taking Zhenglan 
Banner as the study area, this research develops a 
grassland remote sensing classification system that is 
applicable to the region, considering the recognizabil-
ity of remote sensing images and the practical applica-
tion needs in grassland management. Based on this, 

GEO-SPATIAL INFORMATION SCIENCE 795



we integrate multitemporal active-passive remote sen-
sing data and employ the Simple Linear Iterative 
Clustering (SLIC0) superpixel algorithm and a ran-
dom forest machine learning algorithm for object- 
oriented classification to finely identify the grassland 
types within the study area. This study explores the 
potential of integrating spectral, polarization, pheno-
logical, and other spectral features for grassland type 
identification, with the aim of providing scientific data 
support for the regulation and sustainable utilization 
of local grassland resources.

2. Study area and data

2.1. Study area

Zhenglan Banner (115° 00′ − 116° 42′ E, 41° 56′ − 43° 
11′ N) is situated in the southern part of XilinGol 
League in Inner Mongolia, within the Otindag sandy 
land hinterland (Figure 1). The region covers a total 
area of approximately 10,182 km2. Zhenglan Banner 
exhibits two distinct topographical types: Otindag 
sandy land and low hills, with an average elevation of 
1300 m. It falls under the mid-temperate continental 
monsoon climate category, characterized by an aver-
age annual temperature of 1.5°C and an average 
annual rainfall of 362.5 mm, mostly concentrated 
from June to September. The average snow period in 
the winter lasts around 180 days. Herbaceous vegeta-
tion represents a valuable resource in Zhenglan 
Banner, with the available grassland area accounting 
for 86.88% of the total land area. Due to variations in 
moisture, topography, and soil conditions, herbaceous 
vegetation types can be broadly classified into three 
main categories: meadow vegetation, typical grassland 

vegetation, and sand vegetation (Ding et al. 2005). 
Being the nearest area of typical grassland and sand 
source to Beijing and Tianjin, Zhenglan Banner’s eco-
logical status holds significant importance. In recent 
years, the region has implemented various projects 
such as “Beijing-Tianjin Sandstorm Source Control,” 
“Returning Grazing Land to Grassland,” “Reclamation 
of Grasslands in the Agricultural-pastoral Staggered 
Zone,” and “Grassland Ecological Compensation and 
Reward.” These national initiatives focused on grass-
land protection and construction, resulting in substan-
tial improvements in the regional ecological 
environment (Sun et al. 2019).

2.2. Data and preprocessing

2.2.1. Remote sensing data
The remote sensing data used in this study mainly came 
from Sentinel-1 (S1) and Sentinel-2 (S2), which are 
provided by ESA and can be accessed through the 
following link: https://scihub.copernicus.eu/dhus/ 
#/home. S1 is equipped with a C-band SAR sensor 
capable of acquiring multipolarized SAR data. For this 
study, we utilized the ground distance format (GRD) 
image from its IW mode Level 1 product (Level-1), and 
the downloaded image data were visualized at a resolu-
tion of 10 × 10 m. Data preprocessing was performed 
using the SNAP software platform developed by ESA, 
which included applying orbit data, radiation calibra-
tion, filtering processing, terrain correction, and band 
synthesis. S2 consists of multispectral optical data with 
13 bands and spatial resolutions of 10, 20, and 60 m. 
The L1C-level data were freely downloaded from the 
ESA website, and the L2A-level data for research 

Figure 1. Location of the study area (Fraction of Vegetation Coverage (FVC) data is obtained from https://land.copernicus.eu/ 
global/products/fcover).
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purposes were generated using the Sen2Cor plugin 
published by ESA (Müller-Wilm 2016). Both the multi-
temporal S1 and S2 data covered three different seasons: 
spring, summer, and autumn.

2.2.2. Sample data for grassland type classification
Sample point data were obtained through field 
surveys conducted from 10 August to 18 August, 
as well as visual interpretation of multitemporal 
GF-2 satellite multispectral data and submeter 
resolution images from Google Earth. The tem-
poral phases of the GF-2 data and Google Earth 
data corresponded to the peak growing season 
(June–August), aligning with the field survey data 
and facilitating accurate determination of grass-
land types at the sample points. A total of 467 
sample points were collected, which were divided 
into training samples and validation samples in a 
7:3 ratio, as detailed in Table 1 and Figure 2. Each 
sample point represented a range of 2 × 2 pixels, 
covering an area of 400 km2 and providing infor-
mation about the grassland type within that square 
region.

3. Method

This section presents a method for achieving refined 
grassland type identification using multisource and 
multitemporal active-passive cooperative remote sen-
sing data, employing superpixel image segmentation 
and random forest classification (Figure 3). The 
method consists of three main steps:

(1) Acquisition of classification features, which 
includes extracting spectral features from 
multi-seasonal Sentinel-2 MSI multispectral 
images, capturing polarization features from 
multi-seasonal Sentinel-1 C-SAR data, and uti-
lizing eight characteristic parameters represent-
ing the full cycle of vegetation growth.

(2) Acquisition of geographic object units based on 
the SLIC0 superpixel algorithm.

(3) Utilization of the random forest algorithm and 
characteristic data at the geographic object- 
level to identify grassland types, followed by 
verification of the classification accuracy using 
a confusion matrix.

3.1. Remote sensing-based grassland 
classification system in Zhenglan Banner

The zonal grassland type in Zhenglan Banner primar-
ily consists of warm typical grassland vegetation with 
meadow vegetation, whereas the northern sandy area 
is predominantly occupied by cryptic sandy vegeta-
tion. In the sandy vegetation region, the surface land-
scape exhibits a combination of sand dunes and inter- 
dune lowlands, forming a regular interlacing pattern. 
The variations in water and nutrient conditions result-
ing from this surface landscape contribute to the 
diversity and complex distribution of sandy vegetation 
types. At the landscape scale or smaller, topography 
and soil physicochemical properties are the main fac-
tors influencing the distribution pattern of grassland 
types, as they affect soil water availability. To ensure 
the rational utilization and protection of sandy vegeta-
tion resources, it becomes necessary to further classify 
sandy grassland types based on microtopographic 
landforms, vegetation types, and structures.

Although the terrestrial grassland type of typical 
grassland has a relatively small area share, the herbaceous 

Table 1. Sample information for grassland type classification.
Grassland type Number of classified samples Number of validation samples Total number of samples

Sandy sparse forest grassland 47 19 66
Sandy shrub grassland 61 26 87
Sandy meadow 63 27 90
Low hill steppe 57 24 81
gently sloping steppe 49 21 70
Lowland meadows 52 21 73

Figure 2. Spatial distribution of samples for grassland classifi-
cation (the background map is from MOD09A1 product 
(https://ladsweb.modaps.eosdis.nasa.gov/), and the acquisi-
tion time is July 2020).
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vegetation in these areas exhibits higher productivity and 
economic performance, making it crucial for livestock 
development. However, due to the heterogeneity of 
regional water and heat, as well as human interference, 
typical grassland areas also exhibit diverse distributions 
of grassland types. Decoding and subdividing this infor-
mation directly from remote sensing imagery is challen-
ging. To achieve a more detailed classification of 
grassland types in typical grassland areas, it is necessary 
to consider topographic and geomorphological features, 
as well as grassland phenological characteristics.

Based on the aforementioned classification criteria 
for grassland types, and considering the suitability of 
medium spatial resolution remote sensing images and 
their practical applications in grassland management, 
this study adopts the vegetation-habitat classification 
method. The study mainly draws upon the “compre-
hensive classification method of occurrence manage-
ment subject characteristics” developed by Xu et al. 
(2000), as well as the grassland classification system of 
Su (1996) in the “1:1000000 China Grassland Resource 
Map.” Additionally, the research incorporates field 
survey data on grassland vegetation types in the 
study area and relevant data on livestock management. 
As a result, a relatively suitable grassland remote sen-
sing classification system is developed. At the first 
level, the system primarily reflects soil texture, encom-
passing three grassland classes: sandy grassland, typi-
cal grassland, and meadow. At the second level, the 
system further delineates the heterogeneous character-
istics within different grassland classes, consisting of 

six grassland subcategories: sandy sparse forest grass-
land, sandy shrub grassland, sandy meadow, low hill 
steppe, gently sloping steppe, and lowland meadow 
(Table 2).

3.2. Features acquisition

The presence of spectral similarity among different 
grassland types introduces considerable uncertainty 
when distinguishing between them. Additionally, the 
complexity of grassland landscapes necessitates the 
utilization of features beyond spectral characteristics 
to improve classification accuracy. Thus, this study 
incorporates a combination of spectral features 
(Reflectance and Normalized Difference Vegetation 
Index (NDVI) (Rouse et al. 1974)), polarization fea-
tures, and phenological characteristics for the identi-
fication of grassland types (Table 3).

3.2.1. Multi-seasonal spectral characteristics and 
vegetation indices
The spectral features were selected from the S2 MSI 
spectral bands, including Blue, Green, Red, and Near- 
Infrared bands at a 10 m resolution. Because grassland 
vegetation is predominantly covered by snow during 
the winter, data from three periods, namely spring 
(April 2020), summer (July 2020), and autumn 
(September 2020), were utilized to characterize the 
spectral features of different grassland types in differ-
ent seasons. Additionally, the widely used vegetation 

Figure 3. Flow chart of grassland classification method.

798 B. SUN ET AL.



index NDVI was employed to further capture the 
biophysical characteristics of grassland vegetation.

3.2.2. Multi-seasonal polarization characteristics
Considering the distinct height differences among the 
main vegetation groups within the grassland types 
identified by the classification system, this study uti-
lized S1 C-SAR data to extract the intensity of the 
backscattering coefficient σ (Equation (1)) under dif-
ferent polarization modes (VV and VH) as a polariza-
tion feature. Similar to the spectral information, data 
from three periods, namely spring (April 2020), sum-
mer (August 2020), and autumn (October 2020), were 
employed to characterize the polarization images of 
different grassland types in different seasons. 

where DN represents the digital value of each pixel.

3.2.3. Phenological characteristics
High-resolution NDVI time series with both spatial and 
temporal information can provide a detailed depiction of 
the complete vegetation growth cycle, enabling the dif-
ferentiation of various herbaceous vegetation types (Cai 
et al. 2020). However, the high-spatial-resolution S2 
NDVI data have a long revisit period and are prone to 
cloud contamination during the growing season. 
Consequently, they cannot offer the same level of tem-
poral coverage as MOD13Q1 NDVI data from MODIS 
(Moderate Resolution Imaging Spectroradiometer), 
which hinders a comprehensive representation of the 
entire vegetation growth cycle using only three seasonal 
phases of multispectral data. To address the significant 
spatial and temporal heterogeneity of grasslands and 
accurately capture the physical and typological changes 
of different grassland types, this study adopted the 
STNLFFM model proposed by Cheng et al. (2017). It 
selected the 23-period MOD13Q1 NDVI data and the S2 

Table 2. Grassland remote sensing classification system.

Level 1 Level 2 Description

MSI image 
examples 

(Standard false 
color)

Sample plot 
photos

Sandy grassland Sandy sparse 
forest 
grassland

Elm sparsely forested landscapes with tree depression less than 0.3 and 
herbaceous cover greater than 5%. In the windward slopes of dunes and 
flat sandy areas, sandy pioneer plants such as Agriophyllum squarrosum., 
Salsola collina Pall. and Corispermum mongolicum or Artemisia 
intramongolica H.C.Fu. are the main building blocks. The image tone is 
white and the texture is coarse.

Sandy shrub 
grassland

Shrubs are dominated by Caragana microphylla Lam. and herbs are mainly 
established by Polygonum divaricatum, Artemisia intramongolica H.C.Fu 
and Agropyron mongolicum, etc. The shrub cover is less than 30% and the 
herb cover is more than 5%. The image tone is greenish-gray with light 
red and rough texture.

Sandy meadow Located in the lowland between sand dunes, with no drifting sand 
disturbance on the surface, and crust layer developed, stable substrate, 
good soil moisture and nutrient status, mainly distributing communities 
such as Stipa krylovii Roshev., Artemisia frigida, Agropyron cristatum, Zornia 
glochidiata, Leymus secalinus, Carex sp., etc., with herbaceous vegetation 
coverage more than 5%. The image tone is greenish-gray and uniform, 
the texture is detailed and smooth.

Typical grassland Low hill steppe It is distributed in the low hills between 1250 and 1300 m above sea level. It 
is dominated by grass grasslands with poor weed species, and the 
representative establishment species are Stipa krylovii Roshev and 
Artemisia frigida. The total cover of the grassland is low. The image tone is 
greenish-gray, with clear boundaries with typical grasslands on gentle 
ground.

Gently sloping 
steppe

It is located on the high plains and in the peripheral areas of the mudflats, 
and is dominated by grassy grasslands with many mixed grasses, 
represented by Zornia glochidiata and Stipa grandis. Most of the grassland 
covers not less than 30%. The image tone is pink, with smooth and fine 
texture.

Meadow Lowland 
meadow

It is found in saline lowlands on river floodplains, wide valley bottoms, 
inland lake basin margins, and poorly drained lowlands. The vegetation 
type is mainly mesophytic and wet mesophytic perennial herbaceous 
plants with dense grasses and little bare ground. The image tone is bright 
red but uneven, with smooth and fine texture.

Table 3. Features for grassland types identification.
Type Variable name Parameter Definition or description

Spectral 
characteristics

Reflectance B2~B4, B8 S2 MSI data for spring, summer, and autumn time phases
Vegetation index NDVI (B8-B4)/(B8+B4)

Polarization 
characteristics

Backward scattering 
coefficient

σ S1 C-SAR data in spring, summer, and autumn phases for two polarization 
modes VV and VH under σ

Phenological 
characteristics

Phenology Phenological 
characteristics

SOS, EOS, LOS, POP, PEAK, MAU, MGS, MSP and other eight parameters
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MSI NDVI data from three seasonal phases in 2020 as a 
reference, thereby constructing a high-resolution NDVI 
time-series dataset for 2020 (with a temporal resolution 
of 16 d and a spatial resolution of 10 m). Subsequently, 
the dataset was interpolated to a daily scale to facilitate 
vegetation phenology feature extraction.

For grassland vegetation type identification, eight 
phenological characteristics were selected, including 
start of the season (SOS), end of the season (EOS), length 
of the season (LOS), position of peak value (POP), peak 
value (PEAK), mean autumn value (MAU), mean grow-
ing season value (MGS), and mean spring value (MSP). 
These characteristics were chosen based on previous 
studies (Cai, Lin, and Zhang 2019; Zhang et al. 2018) 
(Figure 4). SOS and EOS represent the dates when the 
NDVI exhibits the fastest increase and decrease at the 
daily scale, respectively. LOS is the duration between SOS 
and EOS. MGS can be calculated based on LOS. POP and 
PEAK correspond to specific points in the growth cycle. 
MAU and MGS are derived from the season length, and 
their calculation method is described in detail in the 
following main steps. Further information about the 
phenological characteristics can be found in Forkel et 
al. (2015).

The process of extracting phenological characteris-
tics involves three main steps:

(1) A cubic spline approach was applied to smooth 
and interpolate the 23-period high-resolution 

NDVI time-series data for 2020 to obtain daily- 
scale data (Migliavacca et al. 2011).

(2) Seasonality check was conducted on the 
smoothed and interpolated NDVI time series. 
Three seasonality checking methods were 
employed: the periodogram method (Ripley  
2002), autocorrelation function method (Ripley  
2002), and the seasonal trend model. To ensure 
accuracy, seasonality was assigned to the time 
series only when all three methods indicated its 
presence. If one or more methods indicated no 
seasonality, only POP and PEAK, which do not 
depend on SOS and EOS estimates, were 
calculated.

(3) The phenological parameters SOS and EOS 
were determined by identifying the extreme 
values of the first-order derivatives of the 
NDVI time series in the presence of seasonality 
(Tateishi and Ebata 2004).

3.3. Object-oriented classification

3.3.1. Image segmentation
Image segmentation plays a crucial role in object- 
oriented classification (Hossain and Chen 2019) and is 
a critical step in geographic object-based image analysis 
(GEOBIA). The quality of image segmentation directly 
affects the final feature extraction and classification accu-
racy. Studies have demonstrated (Csillik 2017; Ortiz 
Toro et al. 2015) that the SLIC superpixel segmentation 
algorithm outperforms other traditional methods in 
terms of geometric accuracy and computational effi-
ciency when applied to natural scenes (Csillik 2017). 
The SLIC algorithm is an adaptive k-means clustering 
algorithm that requires three main parameters: the initial 
clustering center distance (S) and the number of cluster-
ing iterations (I) determine the number of generated 
superpixels of the same size, whereas the compactness 
(m) controls their compactness. In this study, the S 
parameter is set to 10 × 10 as the initial size, and the 
number of iterations is set to 10 (Achanta et al. 2012). To 
generate regularly shaped superpixels in both textured 
and non-textured regions of the image, the SLIC0 algo-
rithm proposed by Achanta et al. (2012) is utilized, which 
does not require determining the m parameter. SLIC0 
can adaptively select the optimal compactness parameter 
for each superpixel. Therefore, in this study, the S2 MSI 
data from three quarters are fused as the image layer, and 
the SLIC0 superpixel algorithm (Achanta et al. 2012) is 
employed to generate regular-shaped superpixels by per-
ceptually grouping pixels with similar features.

3.3.2. Random forest classification
The random forest algorithm is a versatile machine 
learning algorithm used for classification and regres-
sion tasks (Breiman 2001). It offers advantages such as 
high classification accuracy, stable classification 

Figure 4. Phenological characteristics obtained using the 
extreme value method based on the first derivative of the NDVI 
time series. This example illustrates the eight phenological char-
acteristics based on the variation curves of NDVI over a year. The 
black line represents the curve of NDVI interpolated to the daily 
scale, whereas the gray line represents the curve of MODIS NDVI. 
The values for MSP, MAU, PEAK, and MGS are 0.42, 0.30, 0.58, and 
0.50, respectively, whereas SOS, EOS, POP, and LOS are repre-
sented on the X-axis as the day of the year, with values of 165, 
283, 210, and 118, respectively. All phenological characteristics 
are categorized into four groups: MSP&SOS, MAU&EOS, 
MGS&LOS, and PEAK&POP, and they are appropriately marked 
in the figure.
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results, and fast processing speed in high-dimensional 
data classification. It is widely used in the study of 
remote sensing classification (Belgiu and Drăguţ  
2016), even in combination with hyperpixels for 
GEOBIA (Kawamura et al. 2021). It has been widely 
used in the research of remote sensing classification, 
and there are also related researches to combine it with 
hyperpixel to realize GEOBIA classification.

When using the random forest model, the key para-
meters to be controlled are the number of decision 
trees (ntree) and the number of variables used for 
building individual trees (mtry). In this study, the 
range of values for each parameter was tested inde-
pendently, and the corresponding classification accu-
racy was calculated using the cross-validation method. 
The optimal values for both parameters were deter-
mined based on the overall classification accuracy. It 
was found that when mtry = 6 and ntree = 1500, all 
classification tasks based on different feature combi-
nations consistently achieved the highest overall accu-
racy, representing the optimal classification results.

3.4. Classification accuracy evaluation

In this study, validation sample points were employed 
to calculate the corresponding confusion matrix and 
conduct a quantitative evaluation of the accuracy of 
both pixel-based and object-oriented classification 
methods. This evaluation involved calculating 
Production Accuracy (PA), User Accuracy (UA), 
Overall Accuracy (OA), and Kappa coefficient as 
metrics to summarize the classification performance.

4. Results and Analysis

4.1. Spatiotemporal fusion effect and 
phenological characteristic extraction

In this study, a comparison was made between the 
time-series variation of MOD13Q1 NDVI products 
and the constructed high-spatial-resolution NDVI 

data for both pure and mixed pixels. Figure 5 illus-
trates that for pure pixels, there is only a minor dis-
crepancy between the MOD13Q1 NDVI time series 
and the simulated NDVI time series. However, in the 
case of mixed pixels in which two different grassland 
types are present within the same MOD13Q1 pixel, 
the MOD13Q1 NDVI time series aligns more closely 
with the NDVI time profile of sandy scrub and fails to 
capture the distribution of sandy meadows. On the 
other hand, the high-spatial-resolution NDVI gener-
ated by STNLFFM successfully captures the NDVI 
time profiles of both grassland types. These findings 
effectively demonstrate that the utilization of NDVI 
time series to extract the variations in vegetation phe-
nology among different grassland types can aid in 
defining the transitional boundaries of the six grass-
land types.

Additionally, the high-resolution NDVI time-series 
data were spatially interpolated to a daily scale. 
Subsequently, using the grassland vegetation phenolo-
gical characteristic extraction method described in 
Section 2.2 (refer to Figure 6), eight phenological 
characteristics were derived. These characteristics 
include SOS, EOS, LOS, PEAK, POP, MSP, MAU, 
and MGS. By integrating these phenological charac-
teristics with the field survey data of grassland types, it 
was observed that the six grassland types exhibited 
distinct spatial variations in their phenological peri-
ods. The extraction of phenological characteristics 
based on vegetation growth patterns proves to be 
valuable for the accurate identification of grassland 
types.

4.2. Influence of fusing different classification 
features on classification accuracy

We employed an object-oriented approach to extract 
grassland type information using four feature combi-
nations: multi-seasonal spectral features, multi-seaso-
nal spectral features with polarization features, multi- 
seasonal spectral features with phenology features, and 

Figure 5. Comparison of fused NDVI time series with MODIS NDVI time series for pure pixel (a) and mixed pixel(b).
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a combination of all three features as input. The 
extraction results are presented in Table 4 and 
Figure 7. The results demonstrate that the classifica-
tion method combining multi-seasonal spectral, polar-
ization, and phenology features achieves the highest 
classification accuracy, with an OA of 82.61% and a 
kappa coefficient of 0.79. Compared to using only 
multi-seasonal spectral features, this approach 
improves the accuracy by 15.94% and the kappa coef-
ficient by 0.19, indicating significant overall improve-
ment. The inclusion of polarization and phenological 
characteristics individually also leads to notable 
enhancements in classification accuracy. Specifically, 
the addition of polarization information improves 
accuracy by 13.76% and the kappa coefficient by 
0.16, whereas the addition of phenological character-
istics improves accuracy by 9.42% and the kappa coef-
ficient by 0.11.

Among the various grassland types, sandy sparse 
forest grasslands consistently exhibit the best perfor-
mance across different classification schemes. The use 
of multi-seasonal spectral information contributes to a 
more favorable recognition effect for this type, mainly 
because it is predominantly characterized by elm 
sparse forest landscapes, which exhibit distinct seaso-
nal differences compared with other grassland types 
dominated by herbs and shrubs. In the identification 
of sandy scrub, the inclusion of polarization features 
significantly improves classification accuracy 

compared to phenological characteristics. This 
improvement may be attributed to the fact that 
sandy scrub, with its shrub vegetation characteristics 
and relatively small intra-annual growth variation, 
exhibits greater sensitivity to the geometric features 
captured by SAR data. Sandy scrub is prone to mis-
classification with sandy meadow and low hill steppe, 
particularly evident from the confusion matrix. The 
annual NDVI variation of sandy scrub is relatively flat 
and falls within the midrange of the six types, making 
it susceptible to misclassification with these two types 
(Figure 8).

Conversely, for the lowland meadow type, phe-
nological information demonstrates a distinct 
advantage, resulting in a mapping accuracy of 
95.24%, nearly 15% higher than the accuracy 
achieved by the multi-seasonal spectral feature 
extraction method. The performance of polariza-
tion information is generally average for this type, 
mainly because it is predominantly found in low-
land areas in which SAR data’s backward scattering 
coefficient shows low sensitivity to geometric fea-
tures. The pronounced growth cycle characteristics 
of herbaceous vegetation in lowland meadows facil-
itate easier differentiation. For the remaining three 
types, namely sandy meadow, low hill steppe, and 
gently sloping steppe, the inclusion of polarization 
features or phenological characteristics leads to 
improved classification accuracy, particularly 

Figure 6. Eight phenological characteristics extracted based on the fused NDVI time series.

Table 4. Classification accuracy of different feature combinations.
Combination 
method

Multi-seasonal 
spectral characteristics

Multi-seasonal spectral +  
Phenological characteristics

Multi-seasonal spectral +  
Polarization characteristics

Multi-seasonal spectral + Phenological  
+ Polarization characteristics

OA (%) 66.67 76.09 8.43 82.61
Kappa coefficient .5975 .7117 .7639 .7903
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notable in the case of gently sloping steppe, in 
which recognition accuracy improves by approxi-
mately 30%–40%. In conclusion, combining multi- 
seasonal spectral features with polarization and 
phenology features significantly enhances the clas-
sification accuracy of grassland types.

4.3. Spatial distribution pattern of grassland 
types in Zhenglan Banner

The OA of grassland type recognition in Zhenglan 
Banner reached 82.61%, and the resulting spatial dis-
tribution of the different grassland types is illustrated 
in Figure 9. Analysis of the grassland classification 
results for the Zhenglan Banner in 2020 revealed that 
grassland dominates the region, covering a total area 
of 9309.29 km2, which accounts for 91.43% of the 
entire area. Moving from north to south, the sequence 
of grassland types is sandy grassland followed by typi-
cal grassland. Sandy grassland is the largest type, span-
ning a total area of 6381.53 km2, consisting of 564.74  
km2 of sandy sparse forest grassland, 4702.18 km2 of 
sandy shrub grassland, and 1114.61 km2 of sandy mea-
dow. Typical grassland covers an area of 2232.15 km2, 
with 1034.70 km2 located in gently sloping areas and 
1197.45 km2 in low hills. Lowland meadows, charac-
terized as cryptogamic vegetation, are primarily situ-
ated in low-lying areas and floodplains in which 
surface runoff accumulates in the southeast and 
north-central parts of the Zhenglan Banner, occupying 
an area of 695.61 km2.

Figure 7. UA and PA of the six grassland types with different feature combinations.

Figure 8. NDVI time series of six grassland types.
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4.4. Differences in phenological growth of various 
types of grassland in Zhenglan Banner

Combining the spatial distribution of grassland types 
in Zhenglan Banner, we conducted a further analysis 
of the variations in phenological growth characteris-
tics among different grassland types. As shown in 
Figure 10, each grassland type exhibits distinct pheno-
logical periods, with sandy grassland having a consid-
erably longer growing season compared with typical 
grassland and meadow. For instance, sandy sparse 
forest grassland has the longest growing season length, 
spanning 215 days (from day 85 to day 300), whereas 
lowland meadow has the shortest growing season, 
lasting only 113 days (from day 156 to day 269). 
Overall, the vegetation growth cycle is predominantly 
concentrated between May and September. Sandy 
sparse forest grassland experiences the earliest onset 
of the growing season, sprouting by the end of March 
(day 85), whereas gently sloping steppe has the latest 
start date, typically around mid-early June (day 163). 
In contrast, lowland meadows exhibit the earliest end 

date for the growing season, concluding in early 
September (day 269). These distinct phenological 
growth patterns serve as valuable indicators for accu-
rately identifying each grassland type.

5. Discussion

5.1. Construction of grassland remote sensing 
classification system

Various regions around the world have developed 
distinct grassland classification systems based on 
their economic and ecological conditions. These sys-
tems can be broadly categorized into seven major 
types: plant topography, phytocoenology, agricultural 
management, land-botany, climatology-botany, vege-
tation-habitat, and integrated climate-land-vegetation 
order (Liang et al. 2011). The Chinese grassland type 
classification system, based on land-botany theory, 
includes two main systems: the grassland comprehen-
sive sequential classification system (Hu 1997; Ren  
2008; Ren et al. 1980) and the vegetation-habitat 

Figure 9. Grassland type classification result in Zhenglan Banner.

Figure 10. Box plots of phenological characteristics of different grassland types.
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classification system of grassland (VHCS) (Chen et al.  
2002; Jia 1980; Xu, Hu, and Zhu 2000; Zhang 1988).

With advancements in remote sensing and spatial 
analysis techniques, grassland type classification has 
evolved to incorporate data from multiple sources, 
emphasizing intuition and visualization. 
Consequently, it is necessary to develop a remote sen-
sing classification system for grasslands by harnessing 
the observation capabilities of remote sensing technol-
ogy. However, there is a dearth of detailed studies on 
remote sensing classification systems for grasslands, 
necessitating the integration of rich a priori knowl-
edge. In this study, we explore the construction of a 
remote sensing classification system for grasslands 
based on vegetation-habitat taxonomy and combined 
it with the observation capabilities of S2 data. 
Although the system is representative to some extent, 
further additions and trade-offs are necessary to align 
with grassland regulation objectives, geographical 
characteristics, and the spatial resolution of remote 
sensing data.

5.2. Use of remote sensing data

This study capitalizes on the data advantage offered by 
active-passive remote sensing synergy. Multispectral 
data are the most commonly used remote sensing 
data, whereas C-band SAR data, with their limited 
penetration capability compared with L-band SAR 
data, are employed for SAR analysis due to data acqui-
sition constraints. SAR data such as S1 and GF-3, 
which are more readily available, are predominantly 
C-SAR data, and the application potential of other 
band data requires further exploration. Additionally, 
studies have shown that high-spatial-resolution visible 
data acquired by near-earth UAVs can effectively facil-
itate grassland species identification (Crabbe, Lamb, 
and Edwards 2019; Golzarian and Frick 2011; Hung, 
Xu, and Sukkarieh 2014). However, data acquisition 
limitations hinder their large-scale application. 
Hyperspectral data, with their greater spectral infor-
mation compared with multispectral data, demon-
strate advantages in extracting vegetation 
biochemical indicators, such as chlorophyll content. 
Initial applications have been made in grassland type 
identification and studies on grassland species diver-
sity (Bao et al. 2017; Peng et al. 2018; Skidmore et al.  
2010). Nevertheless, the periodic revisit of hyperspec-
tral data and limited frequency pose challenges for 
broader spatial applications. Currently, multispectral 
data remain the primary data source for grassland type 
identification. However, a single remote sensing data 
source cannot provide the required spectral, spatial, 
and temporal information simultaneously. 
Furthermore, remote sensing data alone may not suf-
ficiently capture vegetation growth habits and envir-
onmental characteristics. Consequently, integrating 

multisource data observations, including SAR, UAV, 
hyperspectral, and LiDAR data, present a crucial 
direction for enhancing the fine identification of 
grassland types.

5.3. Application of remote sensing features for 
grassland type identification

This study reveals that fusing multispectral features, 
polarization features, and phenological characteristics 
enhances the refinement level and classification accu-
racy of grassland type identification. Polarization 
characteristics reflect differences in vertical structure; 
however, considering the relatively low vegetation and 
high soil noise in grasslands, further research is 
required to determine optimal applications of polar-
ization characteristics. Some studies have indicated 
the beneficial role of physical characteristics in 
improving the accuracy of grassland type identifica-
tion (Cai et al. 2020; Lindsay et al. 2018; Qu et al.  
2021). The phenological characteristics extraction 
method proposed in this study captures the key points 
of vegetation growth changes within a year more 
accurately, thereby contributing to grassland type 
identification. Additionally, certain spectral bands, 
such as near-infrared, mid-infrared, and thermal 
infrared, have been shown to facilitate plant species 
differentiation (Csillik 2017). Texture feature grays-
cale co-occurrence matrices are often employed as 
auxiliary features to spectral features, which can 
enhance the accuracy of vegetation type classification 
to some extent (Cao et al. 2018; Yang, Smith, and Hill  
2017). Incorporating non-remote sensing information 
like topography and soil can effectively enhance the 
separability of grassland types and improve classifica-
tion accuracy (Ma 2015; Xu 2019). However, the inclu-
sion of additional features may introduce challenges 
such as feature redundancy, placing higher demands 
on classification methods, and necessitating consid-
erations of data matching in spatial and temporal 
dimensions. Nonetheless, it is evident that utilizing 
multisource features will be an effective approach to 
achieve refined recognition of grassland types.

5.4. Refinement of grassland type identification

Most studies based on remote-sensing data for grass-
land type identification exhibit a low degree of classi-
fication refinement (Parente et al. 2019; Schwieder et 
al. 2016; Shen et al. 2016). Xu (2019) utilized Landsat 
time-series data to classify land cover in the Hulunbuir 
grassland in China, achieving an overall classification 
accuracy of 94.41%. However, the primary focus was 
on distinguishing between meadow grassland and 
typical grassland. Conversely, Crabbe et al. (2019) 
classified grassland types based on species composi-
tion complexity, distinguishing between three main 
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grassland categories: single-species, two-species, and 
multispecies. The OA, based on the combined S1 and 
S2 data, reached 96%. This demonstrates that classifi-
cation accuracy tends to be higher when the degree of 
classification refinement is lower. Research on more 
refined grassland type identification is limited, as 
exemplified by this paper’s subdivision of grassland 
types into six categories with an OA of 82.61%. 
Rapinel et al. (2020) conducted a more refined vegeta-
tion type identification in the Mediterranean region 
using MODIS time-series data, achieving an overall 
classification accuracy of 76%. Currently, research on 
the identification of grassland types with higher 
degrees of refinement exhibits relatively lower accu-
racy, suggesting that this field is still in the exploratory 
stage. Future research should delve deeper into data 
and classification methods to enhance classification 
accuracy in this area.

6. Conclusions

The conclusions of this study are as follows:

(1) This study addresses the application needs of 
grassland resource regulation and proposes a 
grassland remote sensing classification system 
suitable for the northern natural grassland. 
Based on the vegetation-habitat classification 
method and the separability of remote sensing, 
the system divides the grassland into three pri-
mary categories (sandy grassland, typical grass-
land, and meadow) and further subdivides 
them into six secondary categories (sandy 
sparse forest grassland, sandy shrub grassland, 
sandy meadow, low hill steppe, gently sloping 
steppe, and lowland meadow). This classifica-
tion system can serve as a reference for con-
structing remote sensing fine identification 
systems for natural grasslands in other regions.

(2) By leveraging S2’s advantage of high spatial 
resolution and the temporal resolution advan-
tage of MODIS NDVI products, this study gen-
erates high-spatial-resolution NDVI using the 
STNLFFM method. This NDVI captures the 
temporal profile of grassland types and enables 
the accurate extraction of vegetation phenolo-
gical information, particularly in mixed pixels. 
The method accurately reflects the changing 
characteristics of different grassland types at 
various growth stages, facilitating fine 
identification.

(3) Under the object-oriented framework, this 
study utilizes SLIC0 superpixel segmentation 
and random classification for the fine identifi-
cation of grassland types. The classification 
method that integrates multi-seasonal phase 
spectrum, polarization, and phenological 

characteristics achieves the highest classifica-
tion effectiveness. The OA reaches 82.61%, 
with a kappa coefficient of 0.79. This is a sig-
nificant improvement compared with the clas-
sification method that only uses multi-seasonal 
phase spectrum, increasing the kappa coeffi-
cient by 0.19 and improving the overall classi-
fication effect. The inclusion of separate 
polarization features and phenological charac-
teristics enhances the classification accuracy by 
13.76% and 9.42%, respectively. The polariza-
tion features contribute the most to the identi-
fication of sandy scrub, whereas phenological 
characteristics exhibit a clear advantage in 
identifying lowland meadow types, achieving a 
mapping accuracy of 95.24%. The sandy sparse 
forest grassland is the easiest to identify among 
the six types, and the identification accuracy of 
typical grassland in gentle land significantly 
improves. In general, the use of polarization 
or phenological information enhances the 
extraction accuracy by approximately 30%– 
40%.

(4) The Zhenglan Banner is predominantly cov-
ered by grassland, encompassing a total area 
of 9309.29 km2, accounting for 91.43% of the 
region’s area. Among the grassland types, sandy 
grassland is the largest, covering a total area of 
6381.53 km2. Analysis of phenological charac-
teristics reveals that the growth cycle of grass-
land vegetation is concentrated in May– 
September. Sandy grassland exhibits a signifi-
cantly longer growing season compared with 
typical grassland and meadow. The growing 
season length ranges from 215 days for sandy 
sparse forest grassland to only 113 days for 
lowland meadow. These distinct phenological 
characteristics facilitate the accurate identifica-
tion of each grassland type.
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