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Abstract

Purpose of Review The purpose of this review is to provide a background of osteoporosis and air pollution, discussing 
increasing incidence of the disease with exposure to pollutants and the role that inflammation may play in this process.
Recent Findings Osteoporosis-related fractures are one of the most pressing challenges for the ageing global population, with 
significant increases in mortality known to occur after major osteoporotic fractures in the elderly population. Recent studies 
have established a firm correlative link between areas of high air pollution and increased risk of osteoporosis, particularly 
alarming given the increasingly urban global population. While the culprit pollutants and molecular mechanisms underlying 
this phenomenon have not yet been elucidated, initial studies suggest a role for inflammatory cascades in this phenomenon.
Summary While much more research is required to identify the most damaging air pollutants and to delineate the specific 
inflammatory molecular mechanisms, it is clear from the literature that shedding light on these pathways would unveil potential 
therapeutic targets to treat bone diseases, including osteoporosis. Major deficiencies of current animal models highlight the 
need for complex human in vitro models such as organ-on-a-chip technology to better understand the impact of air pollution.

Keywords Osteoporosis · Air pollution · Inflammation · Bone mineral density

Introduction

This review begins with a brief discussion of the the key 
drivers of osteoporosis, and the current standard of care. 
This is then followed by a review of air pollutants, their 
influence on human disease and the role played by inflamma-
tion in these conditions. The article next explores the puta-
tive link between air pollution and osteoporosis, discussing 

the state-of-the-art in the field, before concluding with a 
future perspective on the potential of targeting air pollution 
and related inflammatory pathways to inhibit the develop-
ment of osteoporosis.

Osteoporosis

Osteoporosis presents as loss of bone mass, leading to frac-
tures, severe pain, deformity and increased rates of mortal-
ity [1]. Clinically, the disease is classified as either primary 
or secondary osteoporosis. Primary osteoporosis refers to 
both bone loss occurring due to oestrogen deficiency in post-
menopausal women (type I) and bone loss associated with 
the normal ageing process (type II). Secondary osteoporosis 
describes bone loss that occurs due to other diseases (e.g. can-
cer) or drug treatment (e.g. chemotherapies). Post-menopausal 
osteoporosis (type I), as the most common diagnosis, arises as 
the result of deficient oestrogen following the menopause [2].

Healthy bone maintains its strength and mineral homeo-
stasis via bone remodelling, which is a coordinated and bal-
anced process whereby osteoclasts continuously resorb aged 
or damaged bone and osteoblasts reform new bone tissue in its 
place [3]. However, this balance is perturbed during oestrogen 
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deficiency, with osteoclasts removing excess bone without 
adequate formation by osteoblasts [4]. With the continuation 
of this process, bone loss manifests when trabeculae (internal 
supporting struts of bone) become thin and resorb completely, 
or fracture [5]. Eventually, this process allows debilitating 
bone fractures to occur under minimal trauma in the bones of 
the hip, wrist and spine.

The healthy remodelling process is also disrupted by disuse 
due to skeletal mechanical unloading [6]. A range of mecha-
nosensing mechanisms exist in bone cells, such as mesenchy-
mal stromal cells (MSCs) [7], including the primary cilium, a 
solitary sensory organelle that protrudes from the membrane 
of all bone cells that has been shown to act as key media-
tors of inflammatory signalling and mechanotransduction [8]. 
Mechanical stimulation via primary cilia, for instance by oscil-
latory fluid flow-induced shear stress, triggers osteogenic dif-
ferentiation [9]. Primary cilium expression is similarly crucial 
in the process of osteoclastogenisis, with recent work demon-
strating that increased primary cilium expression can inhibit 
osteoclast formation [10]. Furthermore, the primary cilium is 
well known to play an important role in mechanotransduction 
by osteocytes [11–13], thought to be the master orchestrator 
of bone adaptation to mechanical loading in health [14] and 
during osteoporosis [15, 16]. Thus, lack of mechanical stimu-
lation can ultimately lead to imbalance of bone remodelling.

Age-related fractures are increasingly common. For exam-
ple, in the US approximately ∼2.1 million osteoporosis-related 
bone fractures occur annually [17, 18]. Osteoporosis impacts 
women more than men, with 80% of the estimated 10 mil-
lion Americans with osteoporosis being women. and one in 
two women over 50 experiencing a bone fracture because of 
osteoporosis [19]. Indeed, women over 45 years of age spend 
more days in hospital due to osteoporosis than diabetes, heart 
attack or breast cancer [20].

While a number of established diagnosis and treatment 
options exist for osteoporosis, clear deficiencies remain, high-
lighting the need for further research into treatment and pre-
vention. Indeed, with a rapidly growing global population of 
ageing individuals, uncovering new mechanisms underlying 
the development of osteoporosis and ways to mitigate them is 
becoming increasingly urgent. Even more concerning, given 
the increasingly urban world population, air pollutants have 
recently been implicated in the development of osteoporosis, 
as will be discussed hereafter.

Air Pollution

kl;Air pollution is generally defined as solid, liquid and 
gaseous compounds that affect biological systems through 
one mechanism or another. Major sources of air pollution 
include vehicle emissions, industrial processes, power gen-
eration, and wildfires. Forms of air pollution can include 

gases such as ozone (O3), and noxious gases such as car-
bon dioxide (CO2), carbon monoxide (CO), nitrogen oxides 
(NO, NO2) and sulphur oxides (SO, SO2), as well as vola-
tile organic compounds [28]. Pollution can also include 
particulate matter (PM), which can be classified according 
to the nature of particles, as biological, chemical, mineral 
and metal. However, while varied in nature, their inflamma-
tory action is classified based on particle size, with diam-
eter of PM ≤ 10 μm, ≤ 2.5 μm, ≤ 1 μm, ≤ 100 nm all classi-
fied as coarse particles (PM10), and in order of decreasing 
size fine particles (PM2.5), very fine particles (PM1.0) and 
ultrafine particles (PM0.1 or UFPs), respectively. Although 
the mechanism of air pollution affecting the lungs is obvi-
ous, how air pollutants can affect other body systems is still 
poorly understood and an area of broad study.

Air Pollutants and Inflammation

The effects of air pollution on organs distant from the 
lungs, the site of inhalation, is thought to lead to health 
defects due to oxidative stress or inflammation [29]. While 
it is currently unclear which components of air pollution 
may trigger immune and inflammatory responses, and by 
what mechanism, there are multiple studies into the vari-
ous types of pollutants and the diseases they are linked to.

Particulate matter, comprising extremely small parti-
cles, is able to enter the bloodstream via inhalation, and is 
known to trigger the systemic release of proinflammatory 
cytokines, including TNF-α, IL-1, IL-6 and IL-8 [26, 30, 
31], and to elevate the incidence and severity of autoim-
mune disease [32]. Increased levels of these cytokines in 
systemic circulation may lead to an increase activity of 
immune cells and induce tissue damage.

PM2.5 exposure has been associated with elevated levels 
of circulating monocytes and T cells, but not B cells [33], sug-
gesting activation of T cells via receptors or pathways specific 
to these immune cells. This is further supported by a study 
that found that polluted air caused an imbalance of T cells, 
leading to increased production of proinflammatory cytokines, 
oxidative stress, and methylation changes [26]. An alternative 
proposed mechanism of action is that air pollution leads to dam-
aged mitochondria, triggering oxidative stress, which causes an 
over-production of inflammatory cytokines, and the stimulation 
of T helper lymphocytes type 1 (Th1) production [26].

Long term exposure to PM2.5 leading to increased 
cytokine expression has been associated with cardiovascular 
disease [31], as well as increased incidence of Alzheimer’s 
disease [34]. Furthermore, in vitro and in vivo studies have 
found that PM induces high levels of several inflammatory 
markers, including IL-1a, IL-1B, IL-6, IL-8, IL-17, and TNF-
α, in the lungs [35, 36]. Another air pollution study linked 
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elevated exposure to NO2 to increased systemic inflammation 
in COPD patients [37]. Thus, when individuals are exposed 
to air pollution, there are likely multiple pollutants trigger-
ing a range of immune responses simultaneously, activat-
ing a variety of pathways that lead to the development of a 
particular disease. Given this complexity, specific molecular 
mechanisms are difficult to target clinically, and both funda-
mental science and drug discovery in this space will rely on 
improvements in in vivo and in vitro models of these diseases.

Linking Air Pollutants and Bone Health

A number of studies (outlined in Table 1), with increasing 
pace in the last five years, have shown that in addition to 
affecting many other physiological systems, a strong link 

exists between air pollution and bone degeneration. Early 
indications of a potential relationship between air pollution 
and bone health arose a 2007 study of Norwegian popula-
tions, with an Oslo-based study finding a weak, but still sig-
nificant, correlation that air pollution was inversely associ-
ated with total body BMD [38]. Two additional studies found 
in 2010 that increased levels of outdoor air pollution could 
be correlated with loss of bone density and increased rates 
of forearm fracture [39], and in 2011 that urban women have 
a 29% higher relative risk of forearm fracture and reduced 
bone mineral density compared to women in rural areas [40], 
further hinting that air pollution could affect bone health. 
Later, in 2015 researchers found similar results in Mexi-
can American populations, reporting a relationship between 
road traffic metrics, associated ambient air pollution and low 
BMD [41]. Despite these findings, a systematic review in 

Table 1  The effect of air pollution on bone fracture risk, BMC, BMD, and in vivo bone turnover markers

(ALP – alkaline phosphatase, OC – osteocalcin, OPG – osteoprotegrin, PTH – parathyroid hormone)

Authors Year Study Type Sample (n) Findings

Alvaer et al.,
Osteopor Int [38]

2007 Epidemiological 1525 (men) PM10, PM2.5 & NO2 linked to lower whole-body 
BMD

Alver et al.,
Osteopor Int [39]

2010 Epidemiological 1039 (mixed) PM10, PM2.5 & NO2 linked to forearm fracture 
risk

Omsland et al.,
J Bon Min Res [40]

2011 Epidemiological 7333 (women) Increased forearm fracture risk in urban popula-
tions

Chen et al.,
Osteopor Int [41]

2015 Epidemiological 1175 (mixed) Total and pelvic BMD decreased with proximity 
to heavy road traffic

Prada et al., Lancet Planet Health [43] 2017 Epidemiological 9.2 million (women),
1219 (men)

Greater risk of osteoporotic fracture at multiple 
anatomical sites in areas with higher PM2.5 or 
black carbon

Mazzucchelli et al.,
Osteopor Int [44]

2018 Epidemiological 4271 (mixed) SO2, NO & NO2 linked to increased prevalence 
of hip fractures

Kheirouri et al., Envir Health Toxicol [45] 2020 in vivo 32 (rats) SO2, O3 & PM did not alter ALP, OC, OPG & 
PTH in blood samples

Ranzani et al.,
Environ Health [46]

2020 Epidemiological 3717 (mixed) PM2.5 associated with lower BMC in the spine 
and hip

Qiao et al.,
Environ Res [47]

2020 Epidemiological 8033 (mixed) PM1, PM2.5, PM10 & NO2 all linked to 
increased osteoporosis risk

Adami et al.,
Osteopor Int [48]

2021 Epidemiological 59,950 (women) PM10 & PM2.5 linked to higher risk of osteo-
porotic T-score at any site

Prada et al., Lancet eClinicalMedicine [49] 2023 Epidemiological 161,808 (women) PM10, NO, NO2, & SO2 all linked to lower BMD

Qi et al.,
J Bon Min Res [50]

2023 Epidemiological 446,395 (mixed) PM10, PM2.5, NO2 & NOx all linked to higher 
fracture risk

Yu et al.,
Front Pub Health [51]

2023 Epidemiological 430,120 (mixed) PM10, PM2.5, NO2 & NOx interact with genetics 
to increase fracture risk

Yang et al.,
Chemosphere [52]

2023 Epidemiological 341,311 (mixed) PM10, PM2.5, NO2 & NOx all linked to lower 
BMD

Ge et al., Environ

Health Perspec [53]
2023 Epidemiological

in vivo

in vitro

67,206(mixed)
 12 (mice)
4 (replicates)

PM2.5 linked to lower BMD, increased osteo-
clasts and osteoclastic signalling both in vivo 
and in vitro

Zhang et al.,
Arch Osteopor [54]

2023 Epidemiological 5044 (mixed) PM10, PM2.5, & NO2 linked to higher osteoporo-
tic fracture risk

Jiang et al., Arch Med Sci [55] 2024 Epidemiological 423,796 (mixed) PM10, PM2.5, NO & NO2 linked lower BMD
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2021 found that the links between particulate pollution and 
osteoporosis are inconclusive, partly due to heterogeneity in 
study design and subject populations [42].

It has been shown that short-term air pollution exposure 
increases hip fracture risk in multiple European populations 
(Fig. 1A) [44, 48]. Similar associations have also been found 
in multiple human studies across a wide range of countries 
in Asia [46, 47, 56–58].

Perhaps most importantly, a recent landmark paper has 
prospectively determined the impact of criteria air pollutants 
and their mixtures on BMD in ~ 161,000 postmenopausal 

women in the US [49], using two separate epidemiologi-
cal studies to reveal a correlation between air pollution and 
a ninefold increase in risk of osteoporosis (Fig. 1B) and 
with general bone damage [43]. This study demonstrated 
for the first time that from air pollution mixtures, nitrogen 
oxides likely contribute the most to bone damage and that 
the lumbar spine is one of the most susceptible sites [43]. 
Results from these analyses indicated that poor air quality 
was a possible risk factor for BMD loss and fractures in 
older individuals and that per each 4.18 μg/m3 increase in 
PM2.5, there is a 4.1% higher rate of hospital admission for 

Fig. 1  A Long-term exposure 
to PM10 in Italy (2013–2019 
average concentration μg/m3)
[48]. Risk of osteoporosis at 
any site in patients chroni-
cally exposed to PM10 > 30 
μg/m3 and PM2.5 > 25 μg/m3. 
Model 1 adjusted for age, body 
mass index (BMI), presence 
of prevalent fragility fractures, 
family history of osteoporo-
sis, and menopause. Model 2 
adjusted for age, BMI, presence 
of prevalent fragility fractures, 
family history of osteoporosis, 
menopause, glucocorticoid 
treatment, and comorbidities. 
Model 3 (main model) adjusted 
for age, BMI, presence of 
prevalent fragility fractures, 
family history of osteoporosis, 
menopause, glucocorticoid 
treatment, comorbidities, 
and macro-area of residency 
(categorized as northern Italy, 
central Italy, and southern 
Italy). B Average PM2.5 
concentrations per zipcode 
in the US Northeast between 
2003 and 2010[43]. Spline 
shown for the multivariable-
adjusted association between 
PM2·5 exposure and number of 
hospital admissions of Medicare 
enrollees per zipcode, from 
2003 to 2010. Horizontal dotted 
line represents zero effect. C 
Example of nearest neighbour 
interpolation between measure-
ments in Taiwan [58], with big 
circles standing for monitoring 
station and small ones for par-
ticipants. A synergistic effect of 
CO and NOx on BMD T-score 
was found to be statistically 
significant (p = 0.001), as was a 
synergistic effect between SO2 
and NO2 (p = 0.004)
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bone fractures in older individuals [43, 49]. Thus, in stud-
ies using very large population sizes, there now appears to 
be a clear and significant link between air pollutants and 
bone health, but the potential underlying mechanism is as 
yet undiscovered.

This Lancet study by Prada et al. [43] was quickly fol-
lowed by a flurry of epidemiological studies demonstrating 
the same effect in other countries [59], including a number 
leveraging the unique dataset held within the UK Biobank 
[50–53]. For example, recent reports from Zhang et al. sug-
gested that long-term exposure to PM2.5 was associated 
with decreased BMD T-score and increased osteoporosis 
risk among participants from rural areas of China [54]. The 
UK Biobank studies in particular found clear links between 
a range of air pollutants and decreased bone mass, decreased 
BMD and increased risk of fracture within the UK popula-
tion [50–52], particularly identifying PM2.5 and nitrogen 
oxides as likely culprit pollutants. A recent additional study 
applied Mendelian randomisation on UK biobank data, 
which employed statistical analysis to develop greater con-
fidence in causal links between variables, finding robust 
stastical evidence affirming a causal relationship between 
decrease in BMD and increased PM2.5, PM10, NO and 
NO2 exposure [55]. A number of putative mechanisms have 
been proposed, all of which generally involve inflammatory 
signalling [60, 61]; 1) low-grade systemic inflammation 
affecting osteoblast and osteoclast differentiation and func-
tion; 2) oxidative damage in the airway and bone cells from 
compounds such as heavy metals; 3) endocrine disruption 
when binding to the receptors in bone cell; and 4) directly 
or indirectly inducing vitamin D deficiency. However, at 
present, the specific inflammatory mechanism that causes 
osteoporosis remains unknown.

Inflammation influences various important signal-
ling pathways in bone health; the release of pro-inflam-
matory cytokines has been reported to inhibit osteoblast 
mitogen-activated protein kinases (MAPK) [62] and the 
WNT–Frizzled–β-catenin pathway [63, 64] that ultimately 
suppresses the differentiation and activation of osteoblasts. 
In osteoclasts, activation via inflammatory mechanisms have 
been shown to amplify osteoclastogenesis, resulting in local 
bone loss [65].

Previous research into the effect of inflammation on pri-
mary cilia showed that cilium length was elongated follow-
ing IL-1β exposure [66]. Primary cilia mediate a number 
of key inflammatory pathways in osteocytes [67], and have 
been shown to play a role in downstream inflammatory sig-
nalling [68], increasing the release of inflammatory media-
tors within bone, and potentially altering the cells’ functional 
mechanosensation. Similarly, in the context of breast and 
bone cancer, the osteocyte primary cilium has been shown 
to mediate TGF-β and TNF-α inflammatory signalling in 

the metastatic niche [69], highlighting this organelle as a 
potential target for air-pollution mediated inflammation.

Air pollution-induced osteoporosis is therefore a signifi-
cant challenge for health systems, as the global population 
is rapidly ageing and mortality increases substantially in 
elderly patients in the years after a hip or vertebral frac-
ture. Most importantly, the global population is increasingly 
urban and exposed to these pollutants, with the UN predict-
ing 68% of the global population residing in cities by 2050 
[70]. Demonstrating the importance of place, specific locali-
ties and social groups are exposed to poorer air quality and 
therefore higher risk of bone degeneration.

A key challenge to identifying the molecular mechanism 
underlying these destructive relationships, as demonstrated 
by the few animal studies on the topic [45, 53], is that rodent 
models do not age or remodel bone in the same manner as 
humans, and do not naturally develop osteoporosis. This 
is especially true given that the mechanisms likely involve 
lung-immune-bone crosstalk, and rodents have been shown 
to have vastly different immune and healing responses to 
humans [71]. Indeed, the first animal study carried out found 
contradictory interactions, with little indication of bone dam-
age in a rat model resulting from air pollutants and increased 
blood levels of vitamin D due to exposure to some air pol-
lutants [45]. The only other animal study to date, performed 
on male C57BL/6 mice, did indeed find that PM2.5 exposure 
resulted in increased osteoclastogenesis, dysregulated osteo-
genesis and shortened femur length, although no significant 
differences in femur structure or BMD were detected [53]. 
This study did also conduct a simple in vitro experiment, 
in which they found that osteoclastogenic behaviour and 
signalling was disrupted by conditioned media from mac-
rophages exposed to PM2.5 [53]. Taken together, these lim-
ited experiments suggest that further investigation to unpick 
these molecular mechanisms is likely to require sufficiently 
complex human-derived in vitro models that can include 
components of the immune system (e.g. organ-on-a-chip or 
microphysiological systems) [72, 73]. Indeed, guidance from 
regulatory agencies (e.g. FDA, EMA) and funding bodies 
(e.g. NIH, Horizon Europe) worldwide has been updated in 
the past five years to encourage the development of more 
accurate in vitro models, including to address conditions with 
complex immune involvement as may occur in pollution-
related skeletal degeneration.

Considering the expanding body of evidence implicating 
the effects of air pollution on various organ systems, paired 
with the research into inflammation leading to loss of BMD 
and increased fracture risks, it logically follows that air pol-
lution triggers an inflammatory response in bones, leading 
to degeneration and diseases like osteoporosis. As there has 
been little research to study the effect air pollution has on 
bone health, the precise mechanisms are currently unknown.
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Conclusions

Research over the past five years has established a link 
between air pollution and bone degeneration, and an asso-
ciation with an increased fracture risk. Public interest in 
this challenge recently highlighted in an article in Science 
[74]. Increased risk of osteoporosis has been specifically 
identified, implying that systemic inflammatory factors 
may induce early onset of osteoporosis. Mounting evidence 
appears to identify nitrogen oxides and PM2.5 as irritants 
of key interest. However, while major steps have been taken 
in understanding the epidemiological and population-level 
associations, the precise mechanisms through which these 
pollutants induce bone damage or instigate osteoporotic 
cascades remain to be elucidated. Further study is required 
to identify the impact of different types of pollutants, the 
resulting impact of inflammation on bone health and the 
underlying biological pathways. Given the deficiencies of 
animal models of air pollution and bone diseases, it is clear 
that new complex human in vitro models such as organ-on-
a-chip technology will be required in this field.
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