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Abstract

Analysing network motifs is a common way of characteris-
ing biological networks. Motifs are small subgraphs that are
more abundant in the observed network than would be ex-
pected in random graphs. They may play an important role in
network function, and as such may be selected by evolution.
In some cases, such as neural networks, they are instantiated
via a developmental process. The processes used to structure
Artificial Neural Networks, whether training or evolution, do
not usually result in motifs or modularity more generally. We
introduce a new version of Developmental Graph Cellular
Automata (DGCA) which can be used in an evolutionary and
developmental (evo-devo) process to produce networks with
specific motif profiles. We evolve developmental rules (the
“genome”) so that networks are produced with similar motif
profiles to specific biological networks. Networks produced
in this way may have useful computational and/or dynami-
cal properties when deployed as Recurrent Neural Networks
(RNNs) or in Reservoir Computing (RC).

Introduction

Networks are found in living organisms in many forms: neu-

ral networks, metabolic networks, gene regulatory networks

(GRNs), signal transduction networks, and more. Whilst Ar-

tificial Neural Networks (ANNs) are inspired by the first of

these, studying the “biochemical connectionism” of the oth-

ers may provide additional insight into how network struc-

ture can affect function (Lones et al., 2013).

Traditional network science metrics such as degree distri-

bution, average path length and so on can be a useful starting

point for describing these networks, but can get us only so

far in actually understanding how they work. The field of

Systems Biology has made significant progress in analysing

the microstructure of biological networks and how it relates

to network function using the concept of network motifs

(Alon, 2007). In neural networks we also see larger-scale

repeated structures, for example in cortical micro-columns,

which may form functional modules (Bennett, 2020). Re-

peated structure, from small scale motifs to larger modules,

may confer benefits on the network.

Neuroscientists such as Hiesinger (2021) have highlighted

the large gap between biological neural networks and ANNs

in this regard. The former are rich in structure with a de-

velopmental process “unfolding” genetic information into

the final network. In conventional feedforward ANN archi-

tectures, the structure is predetermined and fixed, and the

weights are trained. Training procedures such as backprop-

agation usually do not result in any repeating network struc-

tures. When the network structure is the result of an evo-

lutionary algorithm, as in Topology and Weight Evolving

ANNs (TWEANNs) such as NEAT (Stanley and Miikku-

lainen, 2002), modularity also does not typically arise. In-

deed, even if the network is seeded with modular structure

it normally disappears over the course of evolution, as there

are likely to be mutations which increase fitness and break

modularity (Kashtan and Alon, 2005).

Although breaking modularity may increase fitness for

a particular task, there is ample evidence to suggest that

modular structure may confer other benefits, such as robust-

ness, generalisation, interpretability and evolvability. For

example, in the field of Reservoir Computing (RC), Wringe

et al. (2023) find that Restricted ESNs, which have a de-

gree of enforced modularity by having sub-reservoirs with

sparse interconnections, can improve performance. Kashtan

and Alon (2005) find that networks with modular structure

are more able to evolve, as it can take very few mutations

to reconfigure the interactions between modules, allowing

higher-level functions to be composed out of subroutines.

This can also make it easier to interpret the network struc-

ture. Recurrent Neural Networks (RNNs), can be viewed

as discrete dynamical systems, particularly when used in

Reservoir Computing (RC). Network motifs can affect the

dynamics of these systems: Prill et al. (2005) find that dif-

ferent 3-node subgraphs (triads) confer differing degrees of

stability on the network, with some encouraging static or os-

cillatory behaviour whilst others are more prone to chaotic

behaviour. In RC such properties may impact higher level

functionality of the network such as kernel rank, generalisa-

tion rank and memory capacity, metrics often used to char-

acterise RC substrates (Dale et al., 2019). Alon (2007) dis-

cusses how particular biochemical network motifs can give

rise to lasting or fading memory of input signals, proper-



ties which are highly relevant to RC, which relies on fading

memory to ensure the Echo State Property (Jaeger, 2001).

Here we introduce a way to create networks with far-

from-random motif distributions using an evolutionary and

developmental process based on Developmental Graph Cel-

lular Automata (DGCA) (Waldegrave et al., 2023a), a bio-

inspired model of development where each network node

uses only local information to determine its developmental

steps with reference to fixed rules (the common “genome”).

The paper is organised as follows. We review existing

methods of creating networks with modular structure, de-

scribe how evolutionary and developmental processes may

influence the occurrence of motifs in biological networks,

and describe a commonly used method of motif detection.

We then introduce DGCA-M, used to model growing net-

works with an evolvable growth rule. We then present the re-

sults of two sets of experiments that demonstrate the ability

of DGCA-M to grow networks with a range of different mo-

tif profiles: the first uses random search over growth rules;

the second uses-goal directed evolution towards a particular

distribution of motifs based on real biological networks.

Background

Generating Networks with Structure

The most basic way of creating a random network is the

Erdős–Rényi model, which requires only two parameters:

N , the number of nodes and p the probability of a connec-

tion between any pair of nodes (Erdős and Rényi, 1959).

That model does not tend to create networks with repeated

structure, and instead is used as a baseline against which

motif occurrence is measured.

An elaboration of the Erdős–Rényi model is the Second-

Order Network (SONET) model (Zhao et al., 2011). It de-

fines four two-edge subgraphs (reciprocal, convergent, di-

vergent and chain) whose probabilities can deviate from the

independent edge probability p. For instance, whereas the

independent probability of reciprocal edges between two

nodes is p2, this can be modified by the parameter αrecip to

p2(1 + αrecip). There are four such α parameters that mod-

ify the probabilities of the four two-edge subgraphs. This

approach is likely to be effective only for very small motifs,

as the higher order correlations between edge probabilities

quickly become very complex with larger motifs.

An alternative approach is to have a predefined library of

larger motifs or modules that can be composed to produce

the final network. This is the approach taken by Walter et al.

(2023), who use a genetic algorithm to find effective combi-

nations of predefined modules. This works well in the con-

text of electronic circuits where it makes sense to have a

predefined library of blocks. However, it is difficult for new

motifs or modules to emerge.

One approach that encourages the spontaneous emer-

gence of network structure during the evolutionary process

is described by Kashtan and Alon (2005). During evolution,
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Figure 1: The chain of causation implied by combining the two
hypotheses (motifs are evolved / due to developmental constraints)
into an evo-devo process. The dashed arrow shows the simplified
loop used in experiments here: we search directly for motif occur-
rence rather than assessing the functional properties of the network.

they regularly switch between two target functions which are

easily decomposed into shared subfunctions. For example,

they use the two Boolean logic functions: (X XOR Y) AND

(Z XOR W) and (X XOR Y) OR (Z XOR W). By switch-

ing between these two targets, they encourage the networks

to develop two submodules implementing the XOR func-

tion, which can then be combined in different ways. This

approach relies on having target functions that can be easily

decomposed, and it is not clear how it would scale to more

complex tasks.

Evo-Devo Approach

It is hypothesised that the over-representation of certain mo-

tifs in biological networks is due to evolutionary selection:

abundance or lack of particular subgraphs affects the dynam-

ical behaviour of the network, which in turn affects the func-

tion of the network, ultimately influencing the fitness of the

organism (Prill et al., 2005). Eom et al. (2006) show that

the motif profiles of metabolic networks are more similar

to each other in organisms from the same taxonomic group,

supporting the claim that evolution is responsible for the dis-

tribution of subgraphs. Shellman et al. (2014) claim that

analysis of network motifs of metabolic networks can pro-

vide information about the evolutionary origin of organelles.

An alternative hypothesis (also in Prill et al. (2005)) is

that there are certain constraints on the development of the

network that lead to over- or under-representation of partic-

ular motifs. Leier et al. (2007) support this view, arguing

that the particular far-from-random motif distributions ob-

served in GRNs are a consequence of the processes of net-

work generation (gene duplication followed by functional

divergence) rather than evolutionary selection. From an evo-

devo standpoint these two views are not incompatible. It

may be that the rules or constraints on network development

are the direct cause of motif abundance, but that these rules

are themselves genetically encoded and selected by evolu-

tion. The full chain of causation for this combined hypothe-

sis is shown in Figure 1.

In this paper, we used a simplified version of this loop,

basing our fitness evaluation directly on the motif distribu-



tion rather than actually assessing the behaviour of the net-

work. The aim is to assess the ability of our system to pro-

duce networks with a wide range of different motif profiles,

rather than to optimise a network for a particular task.

We build on Developmental Graph Cellular Automata

(DGCA) Waldegrave et al. (2023a) to model the develop-

ment of networks. The DCGA update rules (encoded as

weights) constitute the “genome”, which controls develop-

ment of the network from a small seed graph (which can

be a single node) into a large network. Development can

be stopped after an arbitrary number of time steps or at a

fixed network size, or it can automatically come to a halt as

the system enters an attractor. This may be a point attrac-

tor, where the network remains in a static configuration, or

a cyclic attractor, where the network can cycle through two

or more configurations (Waldegrave et al., 2023b). We ex-

tend DCGA to include the capability to create networks with

repeating structure.

Motif Detection

A k-node subgraph is termed a “motif” if statistically over-

represented in a particular network. Subgraphs that occur

less than expected are “anti-motifs”. Following Milo et al.

(2004), Prill et al. (2005), Shellman et al. (2014) and others,

we consider three-node subgraphs. There are thirteen possi-

ble node-induced connected three-node subgraphs, or triads

as shown in Figure 2 (throughout the analysis self-loops are

not considered1).

We follow Milo et al. (2002) to determine whether a triad

is under- or over-represented in a network. Since the de-

gree distribution of a graph might have a large impact on

the occurrence of motifs, the count of the triads in the ob-

served network is compared with the counts in an ensemble

of randomised graphs with the same degree distribution. The

ensemble is generated using a shuffling procedure: for each

edge in the network, its source or target is swapped with the

source or target of another randomly selected edge.

The Z-score of triad i is calculated as:

zi =
creali − ⟨crandi ⟩

std(crandi )
(1)

where creali is the count of triad i in the real network, and

⟨crandi ⟩ and std(crandi ) are the mean and standard deviation

of the counts of triad i in the ensemble.

Treating the collection of Z-scores (13 of them when

k = 3) as a vector z, the length (L2 norm) of this vector

can summarise in a single number how atypical the motif

count distribution of the observed network is compared to

the randomised networks.

∥z∥2 =
√

∑

jz
2
j (2)

1There are 86 possible 3-node motifs with self-loops, only 13
without self-loops. Excluding self-loops also follows the literature:
although this is not explicitly stated in Milo et al. (2002), it is evi-
dent from the reported size of networks used.

Following Milo et al. (2004) we normalise the vector of

Z-scores to get the “significance profile” vector s:

s = z/∥z∥2 (3)

These normalised Z-scores range from −1 to 1. Tri-

ads with positive normalised Z-scores (or greater than some

threshold) can be considered motifs of the network, whilst

those with negative scores can be considered anti-motifs.

The vector s is known in the literature as the Triad Signif-

icance Profile (TSP) and can be used to characterise a net-

work. Figure 3 shows the TSPs of four biological networks.

A key step in the procedure described above is counting

the number of k-node subgraphs (in the observed network

and in the ensemble of randomised ones). This has received

considerable attention in the literature, as it is computation-

ally intensive. We use the RAND-ESU algorithm (Wer-

nicke, 2006), as implemented in the graph-tool Python li-

brary (Peixoto, 2014). This uses an unbiased random sample

of k-node subgraphs from the input graph. We sample 50%

of the 3-node subgraphs, with sampling rates of [1, 1, 0.5] at

each level of the ESU tree (see Wernicke (2006, Fig.4) for

an explanation). These values were chosen after a parameter

sweep to determine a good trade-off between significance

profile stability and speed.

Developmental Graph Cellular Automata

Here we describe our extended version of the Waldegrave

et al. (2023a) DGCA system. Our DGCA-M can create

more complex graph structures, including graphs with a

wide range of motif significance profiles.

Unlike a traditional CA, which has cells arranged on a

grid, in a Graph CA cells are nodes in a graph, with an ar-

bitrary topology, usually fixed in advance. The nodes in a

Graph CA may have different numbers of neighbours, mak-

ing it difficult to use a lookup-table state transition rule. One

approach is to use outer totalistic rules: simply count the

neighbouring nodes with different states, so it does not mat-

ter how many neighbours there are (Hill et al., 2005; Marr

and Huett, 2009). Another option is to use a small neural

network for the transition rule (Grattarola et al., 2021).

DGCA takes the latter approach, but in addition to up-

dating the node state, the update process for each node can

choose an “action”, including removing the node from the

graph or “dividing” to create a new node. In this way, the

structure of the graph can change over time. All of these

actions are decided at the level of the individual nodes, us-

ing only local neighbourhood information: there is no cen-

tralised control of the development of the graph.

In this respect, DCGA has parallels with biological mor-

phogenesis. In particular, it takes inspiration from juxtacrine

signalling, where signals are passed between cells in direct

contact, as opposed to longer range signalling by diffusion

or circulation of signalling molecules (paracrine/endocrine).
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Figure 5: Node A and B are connected at time t (so are “siblings”).
They each divide at time t + 1, creating child nodes A’ and B’.
These nodes can have connections to their parents, the neighbours
of their parents (“aunts”) and any children of their aunt also created
at time t+ 1 (“cousins”).

the same timestep, where there is a connection between the

parents (who are therefore “siblings”). This is shown in Fig-

ure 5. Nodes have no way of predicting whether their sibling

nodes will divide, so when cousin edges are specified, they

are only potential connections. For example, in Figure 5,

offspring node A’ can specify that it wants a connection to

offspring node B’, but this is instantiated only if B’ exists.

We judge that the creation of an edge between A’ and B’

does not break the localism rule, that it does not constitute

a connection to a “remote” node. It is as if the two parent

nodes A and B have been cloned along with their edge A–B.

Figure 6 shows all the valid edges for a newly created

node. It can have an edge from or to its parent node (red

edges in Figure 6a and 6b respectively). It can have the

same incoming or outgoing edges as its parent (green edges

in Figure 6a and 6b). It could also have the reverse of its par-

ent’s incoming and outgoing edges (blue edges in Figure 6a

and 6b). Furthermore, it could have edges to other newly

created nodes, as shown in Figure 6c: to itself (red), to the

children of its parent’s outgoing nodes (ie. cousins, shown

in green), or to the children of its parent’s incoming nodes

(blue). Allowing new nodes to have some subset of these

edges preserves localism whilst allowing complex network

structure (including repeated subgraphs) to emerge.

In order to prevent the graph becoming too dense (since

biological networks tend to be very sparse), we allow each

new node to have only one set of edges (red, green or

blue) from each of the three categories: edges from exist-

ing nodes, edges to existing nodes, edges to newly created

nodes. Whichever set of edges is chosen within each cate-

gory, the new node gets all of those edges. A fourth possi-

bility is to have no edges in a category. This process is illus-

trated in the last 12 rows of Table 1: there are four choices

within each of the three categories.

The last 12 entries in the Action SLP output vector are

correspondingly divided into three groups of four. The

argmax within each group specifies which set of edges from

that group the new node should have. An example output for

three of the nodes in Figure 4 is shown in Table 1.

In the example shown in Figure 4 the subgraph ACD has

been replicated in full, with the addition of two extra edges

(D’ → A’, D’ → C’). This highlights how the system is

able to replicate subgraphs of arbitrary size, while also intro-

ducing variation to the copies. All the “decisions” are made

at the level of the individual nodes using only local infor-

mation: there are no predefined modules or groups of nodes

which take action together. It should therefore be capable

of creating the repeating structures (with variation) that we

see in biological networks, and do so in a somewhat “bio-

plausible” way.
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NodeC NodeD NodeE

Action
Remove 0.25 0.47 0.87
Keep 0.11 0.23 0.64
Divide 0.38 0.72 0.05

From Existing

None 0.87 0.92 0.94
Parent (kfi) 0.45 0.26 0.73
Parent Incomers (kfa) 0.22 0.32 .25
Parent Outgoers (kft) 0.70 0.64 -2.57

To Existing

None 0.79 0.44 0.53
Parent (kbi) 0.02 0.66 -0.73
Parent Outgoers (kba) 0.67 0.23 0.81
Parent Incomers (kbt) 0.27 0.02 1.22

To New

None 0.34 0.31 -3.73
Self (kni) 0.54 0.37 0.05
Equivalent (kna) 0.86 0.40 0.38
Reverse Equivalent (knt) 0.48 0.78 0.49

Table 1: Illustrative Action SLP output vectors for the nodes
marked C, D and E in Figure 4. Nodes C and D are to divide,
whereas node E is to be removed (argmax of first three entries,
highlighted in yellow). The rest of the output vector for node E
can be ignored. The newly created node C’ gets no edges from or
to previously existing nodes, but does get edges to any newly cre-
ated nodes that are the offspring of its parents outgoers (“cousins”).
Node D’ gets no edges from previously existing nodes but does
get an edge to its parent. It also gets “cousin” edges, but these are
reversed (ie. D’ → A’ rather than the A → D of the parents’
generation.)

Node State Update Function: The final step of the update

(Figure 4) is to update the node states. The node neighbour-

hood information vectors are generated in the same way as

before and passed through the State Update SLP, which has

3s+ 1 inputs and s outputs. The argmax of the output gives

the node’s new state. Like the action step, this state update

is done in parallel for all nodes. This step is the same as a

state update in a Neural Graph CA (Grattarola et al., 2021).

Implementation. DGCA-M can be run entirely using ma-

trix multiplication, along with Kronecker tensor products

to perform the graph restructuring step. We represent the

graph using the adjacency matrix A(n×n) and the state ma-

trix S(n×s): these two matrices are updated every timestep.

This makes the system fast to run, even for large graphs. The

graph restructuring function can be defined using Kronecker

tensor products. We start by defining four 2 × 2 matrices

which indicate each of the four quadrants of a matrix, with

a single entry of 1.

Qm =

[

1 0
0 0

]

, Qf =

[

0 1
0 0

]

, Qb =

[

0 0
1 0

]

, Qn =

[

0 0
0 1

]

(6)

Qm indicates the upper left quadrant, which contains the

original adjacency matrix; Qn indicates the lower right

quadrant, which contains the new nodes; Qf indicates the

upper right quadrant, which contains the links forward from

the original nodes to the new nodes; Qb indicates the lower

left quadrant, which contains the links backward from the

new nodes to the original nodes. We then define

A
′ = Qm ⊗A

+Qf ⊗ (In · diag(kfi) +A · diag(kfa) +A
T · diag(kft))

+Qb ⊗ (diag(kbi) · In + diag(kba) ·A+ diag(kbt) ·A
T)

+Qn ⊗ (diag(kni) · In + diag(kna) ·A+ diag(knt) ·A
T)

(7)

where Qm ⊗A indicates that the original adjacency ma-

trix, A (size n× n) is placed into the upper left quadrant of

a 2n × 2n matrix, with the other three quadrants filled with

zeros. The nine different k vectors indicate how new nodes

should be connected. They are effectively horizontal slices

through the output matrix of the action update SLP which is

partially illustrated in Table 1 (after it has been transformed

to 1s and 0s by taking argmax of the column sections). For

example, kni indicates whether the new nodes should have

a self connection (the line “To New: Self” in Table 1). The

meanings of the other k vectors are also marked in Table 1,

with the colours corresponding to the sets of edges in Fig-

ure 6. These vectors are diagonalised and multiplied by the

relevant matrices: the identity matrix I to create connections

from/to parent nodes; the original adjacency matrix A to

create the same connections that the parent node had; the

transposed adjacency matrix AT to create the reverse of the

parent connections. This is done three times to create the

three categories of edges (from existing, to existing, to new),



0 10 20 30 40 50 60 70 80 90 100
Grown Graphs (sorted by Significance Profile)

1
3
5
7
9

11
13M

ot
if 

Nu
m

be
r

Triad Significance Profile

1.0

0.5

0.0

0.5

1.0

No
rm

al
ise

d 
Z-

Sc
or

e

Figure 7: The triad significance profiles of 100 graphs grown with random growth rules (SLP weights). Columns are sorted so that the
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has created graphs with a wide range of different significance profiles. Refer to Figure 2 for the key to the 13 triad numbers.

with the results placed into the relevant quadrants via tensor

products with the Q matrices.

The matrix A′ has size 2n × 2n and would be the new

adjacency matrix if all the nodes were to divide. Since not

all the nodes may in fact have chosen to divide, and since

some of the existing nodes may have chosen to be removed

from the graph, the final step is to reduce A′ to only those

nodes that should be kept:

A′′ = (A′
ij)i,j∈r∪d (8)

where r is a vector of the original node indices that should

remain in the graph and d is a vector of the new node in-

dices of the nodes that have chosen to divide. A′′ is the final

updated adjacency matrix.

Experiments

Random Search

This experiment aims to establish whether DGCA-M is able

to grow graphs with a range of different motif profiles. We

randomly initialise the weights of the two SLPs that con-

trol the growth process. We use a 3-state system: each node

can be in one of three states (in contrast to Figure 4 which

illustrates a 2-state system for the sake of simplicity). Us-

ing three states rather than two allows a greater range of de-

velopmental behaviour (see also Waldegrave et al. (2023b)).

Starting with a “seed graph” of a single node, we run the

system for up to 256 development steps or until the graph

has reached 300 nodes. We discard any graph with < 100
nodes. We also only look at graphs with relatively sparse

connectivity, between 0.003 and 0.03, roughly the range of

connectivity of the biological networks considered here. We

ran this procedure until we had 100 valid graphs, and we

then calculated the TSP for each. To get 100 graphs which

met these conditions 1632 had to be discarded: 1321 be-

cause they were too small (including those where all nodes

had been removed), 240 because they were too sparse, and

71 because they were too dense. The results are shown in

Figure 7. Each column shows the TSP of one graph over

the 13 triads. The columns are sorted to highlight the wide

range of different significance profiles found.

This demonstrates that DGCA-M is capable of growing

graphs with a range of different motifs and anti-motifs. It

appears that, when using random growth rules, it is “easier”

for the system to produce graphs with certain triads as mo-

tif. For example, in Figure 7 we see 25 of the 100 graphs

have the “Mutual-V” triad (number 6) as their most signif-

icant motif, whereas only 3 have the “Regulated Mutual”

triad (number 9) as their most significant motif.

Goal-directed Evolution

This experiment aims to evolve developmental rules (in the

form of SLP weights) that produce graphs with TSPs match-

ing those of various biological networks. This follows the

evo-devo loop shown in Figure 1 with the “short circuit”

route of judging fitness directly on motif profile rather than

on the functional behaviour of the network.

We use the TSPs of two biological networks as targets for

the evolutionary search: the E. Coli transcriptome and the

C. Elegans neural network. These are shown in Figure 3.

We use one from each “family” of networks. Since |z| is

higher for the C. Elegans neural network, indicating that its

distribution of triads is more non-random, we might expect

that it would be more difficult for evolution to generate a

network with this TSP.

We use a modified version of the Microbial Genetic Al-

gorithm (MGA) (Harvey, 2011), to evolve the SLP weights.

This is a steady-state evolutionary algorithm in which pairs

of individuals are chosen at random to be evaluated. Af-

ter each contest the losing individual receives some of the

genetic material of the winner, inspired by horizontal gene

transfer in bacteria. In our case this crossover operation

is effected by replacing half of the rows of the losing SLP

weights matrix, with the equivalent rows from the winner.

The losing individual is also mutated: we randomly change

2% of the SLP weights.

Since we have two separate SLPs (one for action choice

and one for state update), we treat the two sets of weights

as separate chromosomes. We use a population of 6 of each

chromosome, combining them to give 36 (62) “genetically

complete” individuals.
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Figure 8: The evolutionary run with the E.Coli transcription net-
work TSP as the target. The upper chart shows the minimum MAE
over the course of the evolutionary run. The best result was found
after 1253 trials, with a MAE of 0.013. The lower chart plots the
TSP of the best evolved network against the biological network.

When two individuals are evaluated, the weaker individ-

ual receives genetic material from the stronger in both chro-

mosomes unless one of these has previously been part of an

individual fitter than the winner. In this case it is not changed

since we wish to avoid changing the weights of an SLP that

has been effective in combination with a different partner,

even if it does not perform well in its current combination.

Since we are running an evo-devo experiment, the fitness

evaluation step involves growing the graph. We use the

same procedure as described in the random search experi-

ment above.

We also use the same criteria for graph size and range of

connectivity. If the grown graph does not meet these condi-

tions, we assign it a fitness of 0 (or an error of ∞), making

it automatically the loser of the contest. If it does meet the

conditions, we calculate its TSP, as described in the Motif

Detection section.

We then calculate the Mean Absolute Error (MAE) of this

significance profile compared to the target; the inverse of this

error is used as the fitness in the evolutionary process.

The results of running this evolutionary process are shown

in Figures 8 and 9. The best evolved growth rules are able to

create graphs with MAEs of 0.013 for the E. Coli transcrip-

tion network, and 0.063 for the C. Elegans neural network.

In the first case the error became low almost immediately:

this is probably because it is relatively easy for the system

to grow networks with an abundance of triad number 7, as

discovered in the random search experiment. It took the evo-

lutionary process longer to find developmental rules to grow

a network with a TSP like that of the C. Elegans neural net-

work. The random search experiment shows that random

rules produce few networks with triad number 10 as their
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Figure 9: The evolutionary run with the C.Elegans neural network
TSP as the target. The best result was found after 1607 trials, with
a MAE of 0.063.

most significant.

Conclusion

This work has built on the DGCA system to allow the growth

of graphs with a wide range of TSPs. Used in an evo-devo

setup, it can create networks with TSPs similar to those of

certain biological networks. These could be useful as ANNs

or in an RC context, since it is hypothesised that motifs af-

fect the network’s dynamics and function. They could also

be useful in other ALife contexts where modular structure

is required. Milo et al. (2004) have observed that biologi-

cal and designed networks can be classified into a few “su-

perfamilies” based on network motifs. The approach intro-

duced here could be used to generate families of networks

with similar TSPs to observed biological networks in order

to study how much of their behaviour is generically due to

the TSP rather than the exact wiring.

Future Work Future work will run the evo-devo process

on the full loop shown in Figure 1 and evaluate the devel-

oped networks on a range of tasks, rather than assessing fit-

ness based on TSPs.

We also plan to evaluate DGCA-M’s ability to create net-

works with bigger network motifs (k > 3) and larger-scale

modular structure. In particular, the ability of the system to

reproduce network structures whilst also introducing vari-

ation suggests it could present an interesting analogue of

structures in biological neural networks.

Source Code. Source code for the DGCA-M system and

the experiments conducted in this paper is available at: https:

//github.com/rvrsdl/dgca motifs
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