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Abstract

Reservoir Computing is a computing model ideal for performing computation on varied physical substrates. However,

these physical reservoirs can be difficult to scale up. We propose joining various reservoirs together as an approach to

solving this problem, simulating physical reservoirs with Echo State Networks (ESNs). We investigate various methods of

combining ESNs to form larger reservoirs, including a method that we dub Restricted ESNs. We provide a notation for

describing Restricted ESNs, and use it to benchmark a standard ESN against restricted ones. We investigate two methods to

keep the weight matrix density consistent when comparing a Restricted ESN to a standard one, which we call overall

consistency and patch consistency. We benchmark restricted ESNs on NARMA10 and the sunspot prediction benchmark,

and find that restricted ESNs perform similarly to standard ones. We present some application scenarios in which restricted

ESNs may offer advantages over standard ESNs. We then test restricted ESNs on a version of the multi-timescale Multiple

Superimposed Sines tasks, in order to establish a baseline performance that can be improved upon in further work. We

conclude that we can scale up reservoir performance by linking small homogeneous subreservoirs together without

significant loss in performance over a single large reservoir, justifying future work on using heterogeneous subreservoirs

for greater flexibility.

Keywords Reservoir computing � Hierarchical ESNs � Reservoir of reservoirs � Multiple superimposed oscillators

1 Introduction

Artificial Neural Networks (ANNs) are an unconventional

computational model inspired by the brain. ANNs have

non-linear summing nodes connected by weighted edges,

where the edge weights are trained to give the desired

outputs. While training methods such as backpropagation

are used in feed-forward Neural Networks, they are costly

to use in recurrent NNs (RNNs).

Reservoir Computing in general (Jaeger 2001; Maass

et al. 2002; Jaeger et al. 2007), and the Echo State Network

(ESN) random RNN model in particular, provides a solu-

tion to the RNN training problem: instead of training the

recurrent, inner weights, these are randomly initialised, and

only the weights of the edges to the output nodes are

trained. This provides an efficient training method, and also

allows the inner network (or ‘‘reservoir’’) to be treated as a

black box. One may use any material or substrate as an in

materio reservoir.

In materio Computing (Harding and Miller 2004) is the

term for computation performed using a direct mapping of

a computational model to a physical material1. Early

instantiations of in materio computing involved evolving

physical configurations of a given substrate to perform a

given task, such as signal classification (Thompson and

Layzell 1999).
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Reservoir Computing is a powerful model for in materio

computing, as it can be mapped to any physical substrate

with sufficiently rich dynamics. One of the earliest works

in the field involved using a bucket of water as a reservoir

(Fernando and Sojakka 2003).

Physical RC has been reviewed extensively by Tanaka

et al. (2019), Zhang and Vargas (2023) review a number of

physical RC systems grouped by application. Tutorials on

how to implement physical RCs have been written by

Stepney (2024) and Cucchi et al. (2022).

Our long term aim is to scale up the capacity of in

materio reservoirs by combining several reservoirs with

differing properties. Combining reservoirs has some

potential advantages: it allows us to more fully exploit

substrates whose computational capacity does not scale

well as the size of the device increases (Dale et al. 2021),

and to exploit heterogeneous substrates with different

properties for more complex tasks, particularly those with

multiple timescales.

Here, we focus on homogeneous reservoirs, to compare

performances of multiple connected small reservoirs

against a single larger one, and to provide a baseline for

future work. We introduce a notation for describing a form

of reservoir combination. We perform some experiments

using the ESN model, using NARMA-10, sunspots, and

MSO benchmarks.

2 Background

2.1 Reservoir computing

Two ways of combining multiple reservoir computers

emerge in the literature. The first, which we call modular

reservoirs (Sect. 2.2), are larger systems that contain within

them multiple reservoir computers, each with their own set

of inputs and individually trained output weights. The

second, which we call restricted ESNs (Sect. 2.3) are the

subject of our experiments here.

2.2 Modular ESNs

A modular ESN typically comprises multiple individual

reservoirs, each with its own input layer and trained output

weights, connected in a variety of ways.

The Dynamic Feature Discoverer (DFD) (Jaeger 2007)

is a modular reservoir based on Deep Belief Networks,

with the ESNs being components of a larger system. The

ESNs may be replaced by other components, such as

Extreme Learning Machines. The ESNs are arranged

hierarchically, with each ESN being fed the standard input

as well as the outputs of all the ESNs lower in the hier-

archy. This hierarchy also allows the DFD to contain

separate timescales, such that each ESN in one level of the

hierarchy runs more slowly than those in the previous

levels.

Modular ESNs are also used in acoustic modelling

(Triefenbach et al. 2010, 2013). This model is based on the

Hidden Markov Model, with the different ESNs with dif-

ferent timescales arranged linearly and hierarchically, with

each reservoir processing dynamics that are slower than the

previous ones.

The ConvESN (Ma et al. 2021) is a modular reservoir

model based on Convolutional Neural Networks. The

reservoirs are arranged in parallel and analyse dynamics at

different timescales. The trained outputs of the ESN are

then joined together in a convolutional layer.

2.3 Restricted ESNs

A restricted ESN has the same overall structure as a single

ESN, with one input layer and one output layer. Its internal

reservoir (a random RNN in the ESN model) has its overall

state partitioned into ‘‘subreservoirs’’ with typical RNN

connections within a subreservoir, and restricted connec-

tions between the subreservoirs. There are several models

in the literature that follow this structure.

The dual-reservoir network (DRN) (Ma et al. 2017b)

connects two subreservoirs in the network with an ‘‘unsu-

pervised encoder’’, for which the weights are chosen using

Principal Component Analysis (PCA). Triefenbach et al.

(2013) have a bidirectional dual-reservoir model, which

consists of two subreservoirs running in parallel, with one

of the subreservoirs receiving the inputs in chronological

order, and the other receiving its inputs in reverse

chronological order.

The Reservoir of Reservoirs (RoR) (Dale 2018a) is a

model with dense connections within each subreservoir,

and sparse random connections between subreservoirs.

Two models are investigated: RoR, where the inputs are

sent to only one subreservoir, and RoR-IA, where the

inputs are sent to all of the subreservoirs. The multilayered

echo state machine (ML-ESM) (Malik et al. 2017) arranges

the subreservoirs sequentially, with each subreservoir fully

connected to its neighbouring subreservoirs with fixed

weights.

The Reservoir with Random Static Projections (R2SP)

(Butcher et al. 2010) and the /ESN (Gallicchio and

Micheli 2011) are both models that combine ESNs with an

Extreme Learning Machine. There are several deep-ESN

models (Gallicchio and Micheli 2017; Gallicchio et al.

2017; Ma et al. 2017a; Canaday et al. 2021) based on deep

learning networks. In these, the subreservoirs are arranged

sequentially, and the inputs are sent only to the first sub-

reservoir. They are compared to the grouped-ESN, where

C. Wringe et al.
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the subreservoirs are arranged in parallel, and deep-ESN

Input-to-All (deep-ESN IA), a deep-ESN with inputs sent

to every subreservoir.

Iinuma et al. (2022) use a restricted ESN model called

the Assembly ESN (aESN) in order to extract features from

multiple inputs. The reBASIC model (Kawai et al.

2023a, b) is another ESN model that follows the restricted

ESN architecture.

The Decoupled ESN (DESN) (Xue et al. 2007) is a

restricted ESN that tackles multi-timescale tasks by

decoupling certain sections of the inner state from each

other using a lateral inhibition unit.

The scale-free highly clustered ESN (SHESN) (Deng

and Zhang 2007) has each subreservoir connected to every

other subreservoir by ‘‘backbone nodes’’, of which there is

one in every subreservoir. The hierarchically clustered

ESN (HESN) (Jarvis et al. 2010) builds on the SHESN by

allowing several backbone nodes per subreservoir, and by

making them randomly connected as opposed to fully

connected. The HESN and the modular ESN (Rodriguez

et al. 2019) are the closest models to the ones we study

here.

3 The restricted ESN model

Here we investigate the restricted ESN (rESN) model. This

provides a model that should allow for the simulation of in

materio subreservoirs implemented with different materi-

als, with some physical interconnect between subreser-

voirs. We introduce a notation that can be used to describe

a variety of possible restrictions that may occur in practice,

including the models reviewed in Sect. 2.3.

3.1 The standard ESN model

The original ESN model (Jaeger 2001; Jaeger et al. 2007)

(Fig. 1) is a Random RNN where only the output weights

are trained. A standard ESN can be described by three state

vectors and three weight matrices (corresponding to input,

internal, and output states and weights), and a set of state

update equations.

At time t, the state of the ESN is described by the input

vector uðtÞ, the internal state vector xðtÞ, and the output

vector vðtÞ. The connections between the nodes represented

by the vectors are described by the weight matrices Wu for

the random input weights, W for the random internal

weights, and Wv for the trained output weights.

We use the update equations for the ESN from Stepney

(2021):

xðt þ 1Þ ¼ f ðWuuðtÞ þWxðtÞÞ

vðt þ 1Þ ¼ WvxðtÞ
ð1Þ

where f is a nonlinear function, typically the hyperbolic

tangent tanh(.).

3.2 Restricting the standard model

The rESN is a variant of the standard ESN model that

divides the internal reservoir state x into several smaller

subreservoir states. This division may be interpreted as

restrictions on the connections between parts of the internal

state, and thus on the internal weight matrix W. The state

vector x of a restricted ESN with n subreservoirs is the

concatenation of the subreservoir state vectors:

x ¼

x1

x2

:::

xn

0

B

B

B

@

1

C

C

C

A

ð2Þ

where xi is the state of the subreservoir i. Ni is the number

of nodes in subreservoir i; N ¼
Pn

i¼1 Ni is the number of

nodes in the entire state.

u
v

x

Wu
Wv

W

(a) A standard ESN

u

x

v

Wu

W

Wv

(b) Elements of a standard ESN

Fig. 1 An example of a standard ESN with n ¼ 7 nodes (a) and an

abstraction of its different elements (b). The ESN takes one or more

inputs (u) which are then sent to the inner state (x) through weighted

edges (Wu). The weights within the inner state (W) are recurrent and

randomly initialised. Finally, the output state (v) receives the inner

state through the trained output layer Wv

Modelling and evaluating restricted ESNs...
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The weight matrix is the concatenation of internal sub-

reservoir weight matrices, and weight matrices describing

the connections between subreservoirs:

W ¼

W1 B12 . . . B1n

B21 W2 . . . B2n

.

.

.
.
.
.

.
.

.
.
.
.

Bn1 Bn2 . . . Wn

0

B

B

B

B

@

1

C

C

C

C

A

ð3Þ

where Wi is the weight matrix that represents the con-

nections within subreservoir i, and Bij represents the con-

nections from subreservoir i to subreservoir j; Bij is square

if subreservoirs i and j have the same size. The output and

input weight matrices are unchanged.

These elements are illustrated in Fig. 2, using the

notation introduced in Fig. 1b. Equation 1 still defines the

transfer from the overall state at time t to time t þ 1.

In general, the submatrices may each have their own,

independent properties such as connection density D, the

proportion of non-zero weight values. Here we consider

uniform subreservoirs (all the Wi have the same average

densities DW ) and uniform connectivities (all the Bij have

the same average densities DB).

4 Density experiments

We are developing this model in order to provide a means

to join in materio reservoirs with different properties and

different timescales. Before investigating such heteroge-

neous systems, however, we need to investigate homoge-

neous restricted reservoirs, to determine the effect of

restriction alone. Does an rESN (with its N nodes parti-

tioned into loosely connected subreservoirs) perform sig-

nificantly differently from a standard ESN of the same

dimension (a single reservoir of N nodes)?

In order to test this question, we must determine what

constitutes a fair comparison between an rESN and a

standard ESN with the same number of nodes. We perform

a comparison of the two models over a range of different

sizes, on two common benchmark tasks.2

4.1 Experimental setup

We wish to discover whether any difference in perfor-

mance found is due merely to the architecture, or to some

other parameter affected by the restriction.

We further wish to ensure that the standard ESN and

rESN can each exhibit their best performance on the given

task; however, what this entails is not obvious. In the case

of the standard ESN, we may perform a simple search to

find some ‘‘optimal’’ weight matrix density for the task.

Given this optimised density, we investigate two options

for the rESN, which we call patch consistency and overall

consistency.

4.1.1 Patch-consistent density

For this approach, we use a physical analogy to describe

the structure of the rESN. If we see this restriction as

directly combining multiple physical (material) reservoirs,

then restricting a standard reservoir is analogous to having

multiple small pieces of a material, and joining these

together, in order to emulate a larger reservoir. As such, we

should keep the density within the subreservoirs consistent

with the overall density of the standard ESN, with sparser

connections between subreservoirs. This is illustrated in

Fig. 3b.

4.1.2 Overall-consistent density

For this approach, we use a neuronal analogy to describe

the structure of the rESN, with an underlying neural net-

work architecture being ‘‘rewired’’. Unlike the patch-con-

sistent approach, this does not lead to a lower overall

density of the restricted ESN. Having found the optimal

connection density for a standard ESN, we redistribute the

edges, moving some from the B weight matrices to the W

weight matrices, so that there are more connections within

subreservoirs than outside them, while maintaining a con-

stant number of edges (Fig. 3c). Thus, the overall density

of the rESN remains the same as the density of the standard

ESN, while ensuring the constraints on topology that

makes it an rESN.

2 Preliminary results for these two benchmarks are reported in

Wringe et al. (2023). Here we extend those results to include larger

reservoirs (up to 512 nodes), more subreservoirs (up to 8 subreser-

voirs), and a further benchmark (MSO).

Fig. 2 Elements of an rESN with 2 subreservoirs, 1 and 2, showing

the partitioned state and components of the internal weight matrix

C. Wringe et al.
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4.2 Benchmarks

In order to determine optimal densities and evaluate the

reservoir models, we use two benchmarks, NARMA-10 (an

open system, or driven system, task) and Sunspots (a closed

system task). All training is performed using ridge–

regression.

4.2.1 NRMSE

The results are reported as the Normalised Root Mean

Square Error (Lukoševičius 2012) evaluated over 50 runs.

NRMSEðv̂; vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðv̂� vÞ2i

hðv̂� hv̂iÞ2i

s

ð4Þ

where v̂ is the desired output; v is the observed output; hxi

is the mean 1
N

PN
i¼1 xi.

4.2.2 NARMA10

The Normalised Auto-Regressive Moving Average

(NARMA) tasks are a family of benchmark tasks (Atiya

and Parlos 2000) frequently used as a reservoir computing

benchmark. Here, we use NARMA10, the system with a

memory of 10 timesteps:

xðt þ 1Þ ¼ 0:3xðtÞ þ 0:05xðtÞ
X

9

i¼0

xðt � iÞ

þ 1:5uðt � 9Þ þ 0:1

ð5Þ

The input at time t, u(t), is uniformly sampled between 0

and 0.5. We use a training length of 3000 data points and

washout and testing lengths of 1000 data points each.

4.2.3 Sunspots

The Sunspots benchmark is a dynamical systems bench-

mark task that involves predicting the next output of the

dataset based on the previous outputs. This task has a long

history of being used in machine learning generally (Yule

1927), as well as reservoir computing specifically (Sch-

wenker and Labib 2009; Rodan and Tino 2011; Stepney

2021).

We use the monthly readings from the Zurich dataset,3

from January 1749 to December 1983. As the existing data

limits our input lengths, the training length for this

experiment is 1500 data points, with a washout length of

500 data points, and a testing length of 820 data points.

4.3 Optimal density

To find the optimal density DO for a standard ESN on a

given benchmark, we use a two-level grid search (Algo-

rithm 1).

Algorithm 1 Optimal density for standard ESN

Fig. 3 Illustration of the two density options: a a hypothetical

physical reservoir, as one large piece of material, or divided into two

or four smaller loosely connected pieces; b corresponding model

patch-consistency weight matrix for a material with a weight matrix

density D: each subreservoir has the same material density DW ¼ D,

and there is a lower connection density DB\D between subreser-

voirs; c overall-consistency weight matrix: the total number of

connections is constant, so the subreservoirs get increasingly higher

densities, and the subreservoir connections get increasingly lower

densities

3 https://machinelearningmastery.com/time-series-datasets-for-

machine-learning/

Modelling and evaluating restricted ESNs...
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For the patch-consistent rESN, the density within each

subreservoir, DW , is set equal to DO, while a further two-

level grid search is used to find the optimal density between

subreservoirs, DB. In this case, the algorithm is modified to

use a step of 0.025 for the first level, and 0.0025 for the

second. We also change the start and end values in the

GRIDSEARCH procedure. We set the starting density in

our search to ðn=NÞ2, where n is the number of subreser-

voirs, and N the number of nodes in the full reservoir. This

creates a lower bound for DB, in order to ensure that every

connection weight matrix Bij has at least one entry on

average. Our end value for the search is DW=4. This is to
ensure that DB is materially different from DW , as if no

such constraint is set, then the optimal value for DB is

simply DW .

For the overall-consistent rESN, we introduce a

parameter f ¼ DW=DB[ 1, specifying how much higher

we wish the internal density in the subreservoirs to be,

compared to the connections between them. We then

derive DB and DW in terms of this f, the overall optimal

density DO, and the number of subreservoirs n (see

Appendix A). There is an upper bound on the value of f:

too high and it is impossible to achieve the desired weight

ratio for a given number of connections (see Appendix B).

Given this upper bound for possible f values, we use a

similar two-level grid search4 to find the best f value for a

reservoir of size N, density DO, for the given benchmark.

Having found the optimal densities and distributions, we

then evaluate the standard and restricted reservoirs against

the task over 50 runs. The experiments are performed for

ESNs of size N 2 ½64; 128; 256; 512�, and with 2, 4, and 8

equal-sized subreservoir restricted ESNs.

The densities used for each size for each task are given

in Tables 1 and 2.

4.4 Results

4.4.1 NARMA-10

In this task, the optimal density DO is consistent at 0.1

(Table 1).

In the overall consistency case, the results as sum-

marised in the boxplots (Fig. 4a) show slightly better

behaviour for the 4-subreservoir and 8-subreservoir ESNs

64 node case. There are no significant differences in results

between the standard and 2–subreservoir ESNs of these

sizes, however. For 128 and 256 nodes, the results are

slightly worse for the rESNs, getting worse as the number

of subreservoir increases. At 512 nodes, the results level

out across all the ESN.

We hypothesise that the progression of these results,

with rESNs working better in the smaller size, worse in the

medium sizes, and equally well in the largest size may be

explained by searching for an optimal reservoir structure

Table 1 Densities used in the NARMA experiments, for 2, 4, and 8

subreservoirs

N DW DB

2 4 8

64 0.1 0.0010 0.0039 0.015

128 0.1 0.0002 0.0010 0.0039

256 0.1 1:5� 10�5 0.0002 0.0010

512 0.1 1:5� 10�5 6:1� 10�5 0.0002

N DO f

2 4 8

64 0.1 114.57 10.84 6.18

128 0.1 491.32 147.02 138.76

256 0.1 459.47 524.01 325.48

512 0.1 1311.52 3603.28 981.64

(top) patch-consistent; (bottom) overall-consistent

Table 2 Densities used in the Sunspots experiments, for 2, 4, and 8

subreservoirs (top) patch-consistent; (bottom) overall-consistent

N DW DB

2 4 8

64 0.3 0.051 0.053 0.066

128 0.4 0.05 0.076 0.079

256 0.9 0.1 0.1 0.2

512 1 0.05 0.23 0.23

N DO f

2 4 8

64 0.3 308.70 4.87 4.77

128 0.4 265.74 4.38 4:38a

256 0.5 986.74 4:99b 4:26a

512 0.5 6557.1 1116:92c 591:84c

The ideal density in these cases, 0.89, is too high to distribute. The

best density given these constraints is used instead, which leads to a

worse performance of the standard reservoir

aDO ¼ 0:3
bDO ¼ 0:5
cDO ¼ 0:1

4 The grid search is modified to split the range of f into 10 and use

that as the initial step, and then split the range between the optimal

value and its neighbour into 10 for the secondary step.

C. Wringe et al.
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using the f value. When searching for the optimal config-

uration of the restricted ESN, we find a maximal f-value,

and then perform a two-level grid search between 1 and

this maximum. The maximal f-value is smaller with

smaller ESNs and with more subreservoirs, meaning that

the search in these cases would be finer, and hence more

likely to find a good result.

We hypothesise that there is therefore a greater chance

of finding a good configuration in these smaller experi-

ments. It may also follow that we could replicate these

better results for larger ESNs by performing a more thor-

ough search.

In the patch–consistent experiments we can observe that,

for the 64 node case, the 4–subreservoir case leads to a worse

performance, although the 2–subreservoir case is similar to

the standard one. In the 128 and 256 node cases, we observe

similar results across standard and restricted ESNs.

4.4.2 Sunspots

Unlike in the NARMA experiments, we observe no

consistent optimal density across reservoir sizes; instead

the optimal density increases with reservoir size (Table 2).

We also observe that there is much less variation in per-

formance across different ESN sizes (Fig. 5). It follows

that any effect that restricting the ESN has will also, for the

most part, be much smaller.

In the overall–consistent experiments, we observe little

variation between the results from the standard and

restricted ESNs, with the 4 and 8-subreservoir cases per-

forming slightly better than the standard and 2-subreservoir

one. However, as noted in Table 2, the ideal density in the

256-node case cannot be redistributed in an overall-con-

sistent manner. Thus, while the restricted reservoirs in this

case perform the same as their standard counterpart, this is

not the optimal performance of a 256-node reservoir in this

task. This effect gets worse in the 512-node task, as we

cannot redistribute the connections between nodes so that

the results do not diverge. As such, we do not report those

results.

In the patch–consistent experiments, we observe similar

results across configurations for all experiments.

64 nodes 128 nodes 256 nodes 512 nodes

(a)

N
R
M
S
E

(b)

N
R
M
S
E

Fig. 4 The results for the NARMA-10 experiments, for row a overall consistency; row b patch consistency. In each chart, the x axis labels the

number of subreservoirs (the standard reservoir is labelled ‘1’); the y axis is the NRMSE

Modelling and evaluating restricted ESNs...

123



4.5 Conclusions

Throughout the experiments, there is no large difference

between the standard and restricted ESNs. What few dif-

ferences there are lessens as the ESNs grow larger, disap-

pearing completely by the time we reach the 512-node

case.

The more physically realistic of these models is the

patch-consistent density. This model also has the advantage

of not placing any constraints on the initial standard

reservoir’s density.

However, it is also the one with the more greater dif-

ferences in performance in smaller sizes. This is particu-

larly evident in the NARMA experiment, where the

8-subreservoir 64 node restricted ESN performs particu-

larly badly.

When modelling these reservoirs, work may be needed

to determine what makes a given subreservoir ‘‘reasonably

large’’. We will therefore focus on these larger reservoirs in

our future work.

Nevertheless, these results indicate that the restricted

ESN model, using either overall or patch consistency, does

not have a detrimental impact on performance when

compared to a single large ESN. Hence restricted ESNs can

form a suitable basis for building models of scaled-up

reservoirs, heterogeneous reservoirs comprising subreser-

voirs of different materials, and for working on multiple

timescale models.

5 MSO benchmark experiments

Having concluded that rESNs are a suitable basis to model

larger reservoirs without a detrimental affect on perfor-

mance, we now look at a more challenging task, which

explicitly includes multiple timescales, in order to provide

a baseline for future work on heterogeneous reservoirs. As

such, we perform some experiments on two variations of

the Multiple Superimposed Oscillators benchmark.

5.1 The MSO benchmark

The Multiple Superimposed Oscillators (MSO) task is a

family of open system prediction benchmarks. The task

64 nodes 128 nodes 256 nodes 512 nodes

(a)

N
R
M
S
E

(b)

N
R
M
S
E

Fig. 5 The results for the Sunspots experiments, for row a overall

consistency; row b patch consistency. In each chart, the x axis labels

the number of subreservoirs (the standard reservoir is labelled ‘1’);

the y axis is the NRMSE. The task requires a certain density to be

possible; the highest achievable density for the 512–node case (see

Table 2) lead to divergent results, so they have not been reported here
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involves predicting the next value in a sequence generated

by summing multiples of sines of the input. For MSO-n,

the time series is defined by:

yðtÞ ¼
X

n

i¼1

sinðaitÞ ð6Þ

where t is the timestep, and a ¼ ½0:2; 0:311; 0:42; 0:51;

0:63; 0:74; 0:85; 0:97�. As n increases, more sine waves of

increasing frequency are included in the sum; the specific

ai make these frequencies incommensurate, so the repeti-

tion time also increases with n. The n ¼ 2 task was origi-

nally introduced in a presentation by Jaeger (Jaeger 2004)

(what would now be called MSO-2, but there called ‘‘ad-

ditive dynamics’’). The task difficulty has been increased

by extending the list of a with higher frequency values, to

MSO-5 (Wierstra et al. 2005) and MSO-8 (Roeschies and

Igel 2010).

5.2 Experimental setup

In order to provide a suitable baseline for future work, we

modify the MSO benchmark as follows. The original

benchmark is made harder by adding higher frequency

components. Our long term aim is to investigate hetero-

geneous reservoirs with multiple timescales, with the

fastest reservoir focussing on the highest frequency input

component, and lower frequency sub-reservoirs focusing

on lower frequency components, but without undersam-

pling the higher frequency components.

Hence here we match the baseline frequency of the

reservoir with the maximum frequency sine wave, given by

a8 ¼ 0:97. To do so, we sample Eq. (6) eight times more

frequently (or, equivalently, reduce all the original MSO

frequencies by a factor of eight):

y�ðtÞ ¼
X

n

i¼1

sin
ait

8

� �

ð7Þ

We further modify the task to scale the input to be between

�0:5 and 0.5. We refer to this modified benchmark as

MSO�. This is different from the original benchmark: the

frequencies are lower, potentially making the task easier,

but, given the same number of training and testing samples,

less of the curve is sampled, potentially making the task

harder. So we do not here compare results against other

work; rather, we investigate the effect on performance of

using (homogeneous) subreservoirs.

We use MSO�-2, 4 and 8. We base our dataset lengths of

washout ¼ 100, train ¼ 800, test ¼ 200 in the existing

literature (Xue et al. 2007) and our preliminary experi-

ments. These functions, along with the data lengths used,

are shown in Fig. 6.

Continuing on from our conclusions in Sect. 4.5, we

perform the multi–timescale experiments on patch–con-

sistent rESNs. Instead of finding individual optimal den-

sities as in the single–timescale experiments, we instead

use DW ¼ 0:005 and DB ¼ 0:001, chosen using prelimi-

nary experiments using the methodology described in

Sect. 4.

The experiments involve testing the MSO*-2, MSO*-4

and MSO*-8 tasks on a standard ESNs and rESNs with 2,

4, or 8 equal-sized subreservoirs, for ESNs of size

N 2 ½64; 128; 256; 512�.

5.3 Results

As in our preliminary single-timescale experiments, we

take the NRMSE of the output over 50 runs, which are

shown in Fig. 7 (note that here we report the logarithm of

NMSRE, as the results vary dramatically across systems).

In all the experiments, we observe very similar behaviour

in the standard ESN as it grows in size:

• best performance (lowest NRMSE) remains the same

• worst performance (highest NRMSE) improves

Fig. 6 Data used in our MSO� experiments (including range scaling), which each include 1100 datapoints (ranging from t ¼ 0 to 138 in the

original MSO equation). The coloured zones indicate the washout, training, and testing points
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We dub the best performance in this case the ‘‘saturation

point’’, by analogy to the ‘‘saturation length’’ observed in

certain benchmarks where increasing the training length

has no effect on the performance of the reservoir (Dale

2018b).

The MSO*-2 experiments in Fig. 7 show that the per-

formance of the rESNs is variable with the smaller reser-

voirs, but outperforms the standard reservoir as we increase

the total number of nodes. In the 64-node case, only the

2-subreservoir restricted reservoir outperforms the standard

reservoir, with the 4 and 8-subreservoir cases performing

worse. By 512 nodes, however, all the reservoirs have

reached the saturation point.

In the MSO*-8 experiments, we see a similar behaviour

of the Standard ESN as we do in the MSO*-2 task, but with

a saturation point which is higher than that of the MSO*-2

task. The MSO*-8 experiment also shows us a negative

correlation in the 64-node case between the performance of

the restricted reservoirs and the number of subreservoirs.

This correlation also exists in the 128-node case, but not

for the larger reservoirs. There, we see that all the restricted

reservoirs outperform the standard one, and the number of

subreservoirs has no effect on this performance.

64 nodes 128 nodes 256 nodes 512 nodes

MSO*-2

lo
g
(N
R
M
S
E
)

MSO*-4

lo
g
(N
R
M
S
E
)

MSO*-8

lo
g
(N
R
M
S
E
)

Fig. 7 The results for the MSO* experiments; the rows are the results for MSO*-2, MSO*-4, and MSO*-8. In each chart, the x axis labels the

number of subreservoirs (the standard reservoir is labelled ‘1’); the y axis is log10(NRMSE)
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No such patterns are apparent in the MSO*-4 experi-

ments. There, we have very varied results in the 64-node

case, followed by more consistent results in the larger

reservoirs, with some exceptions. The 8-subreservoir 128

node restricted reservoir and the 4-subreservoir 256 and

512 node restricted reservoir have much worse results than

the rest of the reservoirs. This inconsistency contrasts with

the fairly regular results of the MSO*-2 and MSO*-8

experiments.

5.4 MSO* conclusions

Unlike the tasks in Sect. 4, we see some direct effects from

restricting our ESNs. The effect does not appear to be

consistent across the task size, leading to a better perfor-

mance with MSO*-2 and MSO*-8 as we reach the larger

subreservoir sizes, but have some odd outliers in the

MSO*-4 case. We suggest that this effect may stem from

the number of timescales involved in the task; in future

work we will focus on decoupling subreservoirs by using

different timescales.

6 Discussion and conclusions

Here we look at the effect that restricting larger reservoirs

has on the performance of the reservoir on certain bench-

mark tasks, as a first step to determining whether joining

smaller physical reservoirs together would be a good basis

for scaling them up. We find that for more classical

benchmark tasks like NARMA-10 and the Sunspots

benchmark, there is very little effect that comes from

restricting an ESN. With the more challenging task of

MSO*, which explicitly incorporates multiple distin-

guishable timescales, though, this lack of effect no longer

holds, and different complexity tasks respond to restriction

in different ways.

Previous work (Xue et al. 2007) shows that a reservoir’s

performance at the MSO task can be improved upon using

spatial decoupling within subreservoirs. We suggest that

our inconsistent improvement or lack thereof comes from

an analogous ‘‘accidental decoupling’’. In future work we

will focus on ensuring the decoupling exists, focusing on

temporal rather than spatial decoupling.

A Calculating DW for the overall-consistent
case

Given an ESN with N nodes and an average density

0�D� 1, we wish to restrict that ESN to have n sub-

reservoirs of equal size; we assume n divides N. We set the

density within the subreservoirs, DW , to be greater than the

density outside the subreservoirs by a factor of f, that is,

DW ¼ fDB.

In a restricted ESN with n subreservoirs, each of size N/

n, there are n regions in the edge matrix W of size ðN=nÞ2

with density DW , and a further n2 � n regions also of size

ðN=nÞ2 with density DB.

Hence the average density D of such a restricted ESN is:

D ¼
nDW þ ðn2 � nÞDB

n2
ð8Þ

Substituting DW ¼ fDB, and rearranging to get an expres-

sion for DB in terms of D, we get:

DB ¼
Dn

f þ n� 1
ð9Þ

Once DB is known, we also have DW from DW ¼ fDB.

B Optimising f

In order to find the best possible restricted ESN within our

constraints, we optimise over the parameter f. However, we

must somehow limit our search space.

In the restricted ESN, we want DB to be strictly less than

DW (less dense connections than subreservoirs); therefore,

f [ 1.

To find an upper bound, we assume that every sub-

reservoir is connected to every other subreservoir, that is,

every connection weight matrix Bij has at least one entry.

This requires DB �ðn=NÞ2. (In the experiments, the weight

matrices are generated probabilistically, so when close to

this density limit, it may be the case that there is not an

edge between all subreservoirs.)

Rearranging Eq. 9 gives:

f ¼
Dn

DB

� nþ 1 ð10Þ

The lower limit on DB gives an upper limit on f:

f �
N2D

n
� nþ 1 ð11Þ

We also have an upper limit on the derived density, DW � 1

(equality implies there are no zero elements in the relevant

weight matrix). Substituting for DW in Eq. 9 gives:

fDn

f þ n� 1
¼ DW � 1 ð12Þ

Rearranging gives another upper limit on f:

f �
n� 1

Dn� 1
ð13Þ

Hence we have the upper and lower bounds on f:
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1\f � min
N2D

n
� nþ 1;

n� 1

Dn� 1

� �

ð14Þ
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