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Long-read RNA sequencing of archival tissues reveals
novel genes and transcripts associated with clear cell
renal cell carcinoma recurrence and immune evasion
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Rosamonde E. Banks,5 Daniel J. Turner,4,6 Naveen S. Vasudev,5 and Dimitris Lagos1,2

1Hull York Medical School, University of York, York YO10 5DD, United Kingdom; 2York Biomedical Research Institute, University of

York, York YO10 5DD, United Kingdom; 3Department of Biology, University of York, York YO10 5DD, United Kingdom; 4Oxford

Nanopore Technologies Plc, Oxford OX4 4DQ, United Kingdom; 5Leeds Institute of Medical Research at St James’s, University of

Leeds, St James’s University Hospital, Leeds LS9 7TF, United Kingdom

The use of long-read direct RNA sequencing (DRS) and PCR cDNA sequencing (PCS) in clinical oncology remains limited,

with no direct comparison between the twomethods. We used DRS and PCS to study clear cell renal cell carcinoma (ccRCC),

focusing on new transcript and gene discovery. Twelve primary ccRCC archival tumors, six from patients who went on to

relapse, were analyzed. Results were validated in an independent cohort of 20 patients by qRT-PCR and compared to DRS

analysis of RCC4 cells. In archival clinical samples and due to the long-term storage, the average read length was lower (400–

500 nt) than that achieved through DRS of RCC4 cells (>1100 nt). Still, deconvolution analysis showed a loss of immune

infiltrate in primary tumors of patients who relapse as reported by others. Differentially expressed genes in patients who

went on to relapse were determined with good overlap between DRS and PCS, identifying LINC04216 and the T-cell exhaus-

tion marker TOX as novel candidate recurrence-associated genes. Novel transcript analysis revealed over 10,000 candidate

novel transcripts detected by both methods and in ccRCC cells in vitro, including a novel CD274 (PD-L1) transcript encoding

for the soluble version of the protein with a longer 3′ UTR and lower stability than the annotated transcript. Both methods

identified 414 novel genes, also detected in RCC4 cells, including a novel noncoding gene overexpressed in patients who

relapse. Overall, we showcase the use of PCS and DRS in archival tumor samples to uncover unmapped features of cancer

transcriptomes, linked to disease progression and immune evasion.

[Supplemental material is available for this article.]

Kidney cancer contributes∼2%of all newly diagnosed cancer cases

worldwide (Sung et al. 2021). The most common form of kidney

cancer is renal cell carcinoma (RCC) and the most frequent RCC

type is clear cell RCC (ccRCC, ∼75% of all RCC cases [Ricketts

et al. 2018]). Inactivation of the VHL gene function is an almost

universal hallmark of ccRCC. Secondary mutations are required

in hotspot genes, including PBRM1, SETD2, and BAP1, as well as

copy number changes in Chromosomes 9p and 14q (Hsieh et al.

2018). Of note, ccRCC tumors contain one of the highest percent-

ages of tumor-infiltrating immune cells among all cancer types at

∼30%of all cells (Aran et al. 2015; Rooney et al. 2015; Ricketts et al.

2018). Treatment of localized ccRCC typically involves the remov-

al of part or all of the kidney (radical/partial nephrectomy).

Approximately one-third of patients have metastases detected at

preoperative screening and 30%–50% develop metastases after

the removal of the primary tumor (Rini et al. 2009). Several ap-

proaches have been proposed for assessing the risk of disease recur-

rence following surgery (Cotta et al. 2023). Scores based on gene

expression signatures have also been proposed to refine risk predic-

tion (Brannon et al. 2010; Rini et al. 2015; Morgan et al. 2018).

However, despite a recognized need (Correa et al. 2019; Vasudev

et al. 2020), so far, no set of biomarkers has reached routine clinical

practice.

Aberrant co- and posttranscriptional events (e.g. alternative

splicing/polyadenylation, posttranscriptionalmodifications, etc.),

drive oncogenesis but also tumor immunogenicity (Sveen et al.

2014; Smith et al. 2019). Our understanding of cancer transcrip-

tomes is nearly exclusively based on short-read sequencing plat-

forms. Given that the average length of an mRNA is 1.5–2 kb in

mammals this approach requires high depth of sequencing to con-

fidently call transcript variants and is limited with regard to recon-

struction of full-length novel transcripts. Often the reliance on

reference genomes/transcriptomesmeans that this approachmiss-

es or discards novel transcripts. Furthermore, it is extremely diffi-

cult, if not impossible, to confidently establish transcriptional

codependencies, i.e. coexistence of distinct features (e.g. specific

splice junctions and untranslated regions—UTRs) on the same

transcript. Long-read direct RNA sequencing (DRS) and PCR

cDNA sequencing (PCS) have emerged as transformative method-

ological alternatives to overcome these limitations (Nature

Methods Editors 2023). Yet, in cancer, there are only a handful

of reports using long-read sequencing in tumor samples from pa-

tients with solid (Qu et al. 2022; Veiga et al. 2022; Mock et al.

2023) or blood cancers (Tang et al. 2020; Pratanwanich et al.
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2021; Cortés-López et al. 2023), with only one example of using

DRS (in three myeloma patient samples [Pratanwanich et al.

2021]). Currently, there are no reports directly comparing PCS to

DRS in clinical samples and long-read sequencing has not been ap-

plied to kidney cancer.

Here, we aimed to explore whether archival surgical fresh fro-

zen nephrectomy tissue samples (typically stored for over 10 years)

could be used for Oxford Nanopore Technologies (ONT) DRS

(RNA002 kit) and PCS (PCS111 kit) analyses (Garalde et al. 2018)

to explore ccRCC transcriptomes. We focused on differential

gene expression analysis to identify novel candidate predictors of

disease relapse and the discovery of novel genes and transcripts

with evidence of cancer cell-intrinsic expression and potential as-

sociation with disease relapse.

Results

To demonstrate the feasibility of utilizing long-read RNA sequenc-

ing technologies for characterizing ccRCC transcriptomes in archi-

val surgical fresh frozen specimens, we sequenced 12 snap-frozen

nephrectomy samples using ONT PCS and DRS on ONT

PromethION flow cells, using 200 ng and 2 μg of total RNA, respec-

tively. These samples consisted of six specimens frompatients who

later developed ccRCC recurrence and six nonrecurrent controls

(see Methods and Supplemental Table S1). For each clinical speci-

men, the same RNA sample was used for DRS and PCS analysis. No

significant differences in RNA quality (based on RNA integrity

numbers [RINs]) were observed between recurrent and nonrecur-

rent controls (Supplemental Fig. S1A). An overview of the study de-

sign and data analysis pipeline is shown in Figure 1A.

DRS and PCS of ccRCC nephrectomy samples

All nephrectomy specimens were successfully sequenced using

both PCS and DRS. After 72 h of sequencing, PCS generated reads

ranging from50million to 85million (median= 56.6million, total

= 701 million), with ∼80% qualified as pass reads (median=45.8

million, total = 561 million) having a minimum read Q score of

7. DRS generated between 2.4million and 5.5 million reads (medi-

an=4.6 million, total = 52.6 million), with ∼70% qualified as pass

reads (median=3.2 million, total = 37.4 million). Summary se-

quencing output statistics can be found in Table 1 and Supplemen-

tal Table S2.

Both PCS and DRS reads were next mapped to the human ref-

erence genome. The median alignment length for PCS and DRS

reads were 517 and 405 nt, respectively, which is lower than that

typically observed (Garalde et al. 2018). A range of 21%–37.1%

(median=25.95) of PCS- and 3.2%–18.1% (median=7.6%) of

DRS-aligned reads represent full-length transcripts (coverage of at

least 95% of the mapped reference annotation) (Fig. 1B,C). As

RNAmolecules are sequenced from 3′ end, gene coverage is biased

toward 3′ end (Supplemental Fig. S1B). Overall, PCS and DRS reads

achieved median accuracies of 95.5% and 90.5%. The longest

aligned reads for PCS andDRSwere 27,854 and 7822nt, respective-

ly. This was likely due to the significantly higher sequencing depth

achieved by PCS. These results demonstrated the capability of ONT

long-read RNA sequencing to produce high depth, PCS andDRS se-

quencing data sets from flash-frozen historical clinical specimens.

The modest average read length is likely due to the long-term stor-

age of these samples.

To evaluate the ability of long-read sequencing to capture the

diversity of the transcriptome, we examined the RNA biotypes of

genes identified by PCS and DRS. PCS identified 39,115 genes

across the 12 samples, with a median of 26,203 mapped genes

per specimen (Supplemental Fig. S1C). Among all PCS-mapped

genes, 45.47% were classified as protein-coding genes, 29.48% as

long noncoding RNAs (lncRNA) and 12.34% as processed pseudo-

genes (Fig. 1D). In comparison, DRS identified 26,457 genes across

the specimens (median=18,057 per sample) (Supplemental Fig.

S1C), with 32.48% classified as protein-coding genes, 28.81% as

lncRNAs and 16.50% as processed pseudogenes (Fig. 1D); 25,692

genes were mapped by both methods (Fig. 1E); 13,423 genes

were exclusively mapped by PCS, likely due to higher sequencing

depth compared to DRS. Notably, 765 genes were exclusively

mapped by DRS.

We observed that the majority of expressed genes for both

PCS and DRS were protein-coding (89.4% and 91.7%, respective-

ly), followed by mitochondrial rRNAs (mt-rRNAs) (5.35% and

4.66%), processed pseudogenes (2.57% and 1.74%) and lncRNA

(1.71% and 1.10%) (Fig. 1D; Supplemental Fig. S1D). The observed

bias toward the detection of protein-coding genes was likely due to

both PCS and DRS using poly(A)-targeting probes for library con-

struction, also meaning all sequenced transcripts are polyadeny-

lated. Some read-through events were observed but we did not

analyze them systematically as we were mindful of the relatively

low percentage of full-length reads in our analyses of archival tis-

sue. Despite using total RNA as input for PCS andDRS library prep-

aration, highly abundant rRNAs were sequenced at negligible

levels. Distribution of gene expression levels for each biotype by

PCS and DRS are illustrated by violin plots in Supplemental

Figure S1E. Furthermore, among genes mapped by both PCS and

DRS (n=25,692), we found significant correlation in their gene ex-

pression levels (Fig. 1F; Supplemental Fig. S2). Overall, while PCS

provided greater sequencing depth, our data demonstrated that

bothmethods can capture a diverse range of transcripts fromarchi-

val clinical samples, yielding highly concordant gene expression

profiles.

Differential gene expression analysis reveals that ccRCC

recurrence is associated with suppressed tumor immune

infiltration

We then tested whether DRS and PCS can identify features associ-

ated with ccRCC recurrence. After alignment to the reference ge-

nome, PCA did not result in visually distinct gene expression

clusters correlating with ccRCC recurrence status, sex, or the num-

ber of mutations on ccRCC prognostic markers for either PCS or

DRS (Supplemental Fig. S3A,B). We explored the effect of number

of mutations in addition to VHL as we have previously shown

poorer outcomes for tumors with VHL + 2 or more mutations

(Scelo et al. 2014; Vasudev et al. 2023). No sample separation

was observed based on RNA integrity or number of pass sequenc-

ing reads (Supplemental Fig. S3C,D). However, differential gene

expression analysis identified 159 and 68 genes with significantly

differential expression (|log2FoldChange|≥2, Padj≤0.1) between

recurrent and nonrecurrent tumors by PCS and DRS, respectively,

with substantial overlap (Fig. 2A,B; Supplemental Tables S3, S4).

The directionality of gene expression among these differentially

expressed genes (DEGs) showed strong correlation (Fig. 2C). We

note that we did not observe any outliers with regard to the time

to relapse within the recurrent disease group.

As PCS produced substantially higher number of sequencing

reads, we further evaluated ccRCC gene expression patterns using

randomly subsampled PCS reads (5%) compared to DRS. We
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selected 5% as this brings the PCS depth to similar levels of the

range achieved by DRS (2–4 million passed reads). PCA did not re-

veal a distinct cluster correlating with ccRCC recurrence

(Supplemental Fig. S3E). We observed similar proportions of

RNA biotypes of mapped genes across all tumor samples using

5% subsampled PCS data (Supplemental Fig. S3F). Differential

gene expression analysis of 5% subsampled PCS data identified

92 DEGs, with significant overlap with DRS. The number of com-

monly identified DEGs between 5% PCS and DRS increased as a

percentage of total DEGs identified by PCS and decreased as a per-

centage of total DEGs identified by DRS (Fig. 2D,E; Supplemental

Table S5).

Within the overlapping DEGs between PCS, 5% PCS, and

DRS, several key adaptive immune genes, including CD8B,

PDCD1, GZMK, and TOX, were significantly downregulated in re-

current samples (Fig. 2A,B). To evaluate variations in biological

processes (BPs) and pathways between recurrent and nonrecurrent

ccRCC tumors, we performed Gene Ontology (GO) analysis. The

top 10 most significantly enriched (by Padj) GO BPs terms from

PCS data were all associated with adaptive immunity (Supplemen-

tal Fig. S4A). This patternwas also found usingDRS data, where en-

richment plot for the top 5 enrichedGOBP terms (by Padj) by DRS

showed identified suppression of adaptive immune response-relat-

ed pathways (i.e. positive regulation of cell killing, T-cell-mediated

cytotoxicity) in ccRCC recurrent samples (Supplemental Fig. S4B).

To further explore the relationship between ccRCC recur-

rence and immune infiltrate populations, we used the ESTIMATE

algorithm (Yoshihara et al. 2013), which uses gene expression sig-

natures to infer tumor purity and immune cell abundance. Using

PCS data, we found that recurrent ccRCC exhibited significantly

lower immune scores and higher levels of tumor purity compared

with nonrecurrent controls (Fig. 2F; Supplemental Fig. S4C). DRS

data displayed a borderline nonsignificant trend toward decrease

in immune scores in recurrent ccRCC tumors (P=0.0881) and a

A

B

D E F

C

Figure 1. DRS and PCS of ccRCC nephrectomy samples. (A) Summary of study design and data analysis workflow—figure made with BioRender (https
://www.biorender.com). (B) Violin plot showing Log10 transformed raw read lengths of passed reads generated by PCS. (C) as in (B), but for DRS. (D) Pie
chart depicting the proportions of gene biotypes of all mapped genes from the reference genome (Ensembl release 105, GRCh38) mapped PCS and DRS
reads of sequenced tumor samples. (E) Venn diagram showing the overlap between PCS and DRSmapped genes. (F) Correlation between gene expression
levels (Log10 reads per million [RPM]) of all genes mapped by both PCS and DRS (n=25,692). Diagonal line represents the line of best fit. R2 value was
computed to measure goodness-of-fit and P-value was generated from F-test, with P<0.05 considered statistically significant. Lowest expression values
shown correspond to the minimum normalized abundance derived for genes detected only at one read in the sample with the highest total number of
reads.
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high degree of concordance was found between DRS and PCS

ESTIMATE immune scores (R2=0.87, P<0.0001) (Supplemental

Fig. S4D,E). Both PCS and DRS data sets also had significantly low-

er immune scores for recurrent samples according to xCell analysis

(Supplemental Fig. S4F).

Immune infiltrate profiles were further analyzed using anoth-

er cell-type deconvolution algorithm, CIBERSORTx (Newman

et al. 2019). Both PCS and DRS exhibited a significant reduction

in the fraction of CD8+ T cell within recurrent ccRCC tumors

when compared to nonrecurrent controls (Fig. 2G; Supplemental

Fig. S4G,H). Similarly, EPIC, another immune cell-type deconvolu-

tion method (Racle and Gfeller 2020), also indicated suppression

of CD8+ T cell within the immune infiltrates among the recurrent

ccRCC tumors (Supplemental Fig. S4I). These findings agreed with

a previously reported, qRT-PCR based, ccRCC recurrence predic-

tion assay, which also linked lower expression levels of immune re-

sponse genes with an increased likelihood of disease recurrence

(Rini et al. 2015). Among the 11 recurrence-related genemakers ex-

amined in that study, our PCS and DRS analyses also identified

that levels of NOS3 and CCL5 were significantly decreased in the

recurrent tumors (Supplemental Fig. S4J).

Critically, we sought to validate our long-read sequencing re-

sults by an independent method (qRT-PCR) for CD8B, PDCD1,

GZMK, and TOX using samples from both the sequenced cohort

but also an independent validation cohort (n=20, 10 from recur-

rent ccRCC patients and 10 nonrecurrent controls). This analysis

confirmed significant downregulation of the CD8+ T-cell marker

CD8B, the activation marker GZMK, and the T-cell exhaustion

marker TOX in the recurrent tumors (Fig. 2H; Supplemental Fig.

S5A–C). We note that for TOX the effect was statistically signifi-

cant both in the pooled data and when analyzing the sequenced

and validation cohorts separately. PDCD1 (also known as PD-1)

levels were not statistically differentwhen assessed by qRT-PCR be-

tween the two groups (Fig. 2H; Supplemental Fig. S5D). To explore

if the additional sequencing depth achieved by PCS could lead

to the identification of more candidate gene correlates of disease

recurrence we used qRT-PCR to measure levels of three DEGs

(LINC04216, LINC04217, and POU4F1) that were only signifi-

cantly differentially expressed according to PCS.We found signifi-

cant downregulation of LINC04216 using the sequenced cohort

and when both cohorts were pooled (Fig. 2H; Supplemental Fig.

S5E). No significant changes were found for LINC04217 and

POU4F1 by qRT-PCR (Supplemental Fig. S5F,G).

Collectively, these findings demonstrated that both PCS and

DRS can identify differential expression signatures associated with

disease relapse. PCS and DRS showed a significant suppression of

immune infiltration, particularly CD8+ T cells, in tumors of pa-

tients who later experience disease recurrence, and identified the

exhaustion marker TOX and the LINC04216 noncoding RNA as

novel candidate recurrence-associated genes.

Differential transcript usage analysis identifies candidate

isoform switching events associated with ccRCC recurrence

One of the advantages of the long-read sequencing approach lies

in its ability to identify and quantify transcript isoforms. By align-

ing sequencing reads against the reference transcriptome, isoform-

level expression data can be used to detect differential transcript

usage (DTU) events. We first compared reference genome- and ref-

erence transcriptome-based methods in gene expression and dif-

ferential gene expression analysis. For both PCS and DRS, the

reference transcriptome alignment method detected similar num-

ber of genes compared to reference genome alignment, with sub-

stantial overlap (Fig. 3A). Gene expression levels of the PCS and

DRS of nephrectomy samples also displayed strong correlation be-

tween the two alignment methods (r=0.7685 for PCS, r=0.7087

for DRS) (Fig. 3B). Differential gene expression analysis using

PCS and DRS reference transcriptome alignment data identified

197 and 34 significant DEGs between recurrent and nonrecurrent

controls, respectively, with good overlap with the reference ge-

nome-alignment method (Fig. 3C; Supplemental Fig. 6A; Supple-

mental Tables S6, S7). The directionality of gene expression

among these DEGs showed a strong correlation (Supplemental

Fig. 6B).

DTU analysis was carried out on both PCS and DRS of ccRCC

tumor samples using DRIMSeq (Nowicka and Robinson 2016) and

DEXSeq (Anders et al. 2012). Analysis of the PCS data identified 31

genes that displayed isoform switching in recurrent ccRCC tumors

compared to nonrecurrent controls (Fig. 3D; Supplemental Table

S8). These included CMC1 that showed statistically significant

Table 1. Sequencing statistics of PCS and DRS of archival ccRCC tumor samples

PCR-cDNA-seq

Tumor samples 135 171 243 254 260 273 314 318 320 329 382 395

Passed reads (Q>7, 106) 72.3 43.9 59.5 71.7 60.7 53.7 51.0 27.6 72.8 53.6 51.3 63.2

Median alignment length (nt) 461 554 519 447 515 552 616 539 446 552 490 510

Median accuracy (%) 95.3 95.6 95.2 95.9 95.9 96.0 95.5 95.0 95.2 95.5 92.0 95.4

Full-length transcripts (%) 22.7 37.1 25.2 21.8 25.1 34.2 36.4 30.3 21.0 31.7 25.4 26.4

Direct-RNA-seq

Tumor samples 135 171 243 254 260 273 314 318 320 329 382 395

Passed reads (Q>7, 106) 4.44 5.10 6.01 4.05 4.71 4.95 3.43 5.44 2.41 5.06 3.62 3.39

Median alignment length (nt) 426 483 507 301 342 396 384 413 362 481 419 345

Median accuracy (%) 90.1 91.0 89.8 90.6 90.8 91.0 90.7 90.5 90.0 90.6 90.5 90.3

Full-length transcripts (%) 15.8 11.3 18.1 2.76 3.20 7.20 4.90 7.40 7.80 10.3 8.14 4.20

Tables showing the number of passed reads (Q>7), median reference genome (Ensembl release 105, GRCh38) alignment length (nt), median read ac-
curacy (%), and percentage of reads representing full-length transcripts (95%+ coverage of reference transcript isoform) of sequenced archival ccRCC
tumor samples.
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Figure 2. ccRCC recurrence is associated with suppressed tumor immune infiltration. (A) Volcano plots showing DEGs (red) between recurrent and
nonrecurrent ccRCC tumors from PCS and DRS data using Ensembl genome reference (Ensembl release 105). (B) Venn diagram showing overlaps of
DEGs identified by both PCS and DRS. (C) Correlation between log2FoldChange of DEGs identified by either or both PCS and DRS (recurrent vs. nonre-
current ccRCC tumors). Diagonal line represents the line of best fit. R2 value was computed to measure goodness-of-fit and P-value was generated from F-
test, with P≤0.05 considered statistically significant. (D) Volcano plots showing DEGs (red) between recurrent and nonrecurrent ccRCC tumors from 5%
subsampled PCS data using Ensembl genome reference (Ensembl release 105). (E) Venn diagram showing overlaps of DEGs identified by both 5% sub-
sampled PCS and DRS. (F ) Grouped dot plot showing an estimated immune score of nonrecurrent (blue) and recurrent (red) ccRCC tumor by the
ESTIMATE algorithm, using PCS gene expression data. (G) Grouped dot plot showing the relative population of CD8+ T cells within immune infiltrates
of nonrecurrent (blue) and recurrent (red) ccRCC tumors estimated by CIBERSORTx using PCS gene expression data. (H) CD8B, TOX, PD-1, GZMK, and
LINC02416 mRNA levels measured by qRT-PCR in recurrent and nonrecurrent tumors from the sequenced cohort (blue and red, n=12) and validation
cohort (black, n=20), relative to average mRNA levels in nonrecurrent tumors. mRNA levels were normalized to GAPDH and ACTB. For (A) and (D),
blue and red dots represent significantly down and upregulated genes by either or both PCS and DRS. Dotted lines indicate the significance threshold
(|log2FoldChange|≥2, Padj≤0.1). Names of genes that were validated by qRT-PCR with validation cohort are shown. For (F )–(H), two-tailed Mann–
Whitney U tests were used with P≤0.05 considered significant. (∗) P<0.05, (∗∗) P<0.01, (∗∗∗∗) P<0.0001. Line represents the median for each group.
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Figure 3. DTU events associated with ccRCC recurrence. (A) Venn diagram showing overlaps between reference genome- and reference transcriptome-
alignment method mapped genes in PCS and DRS of nephrectomy samples. (B) Correlation between gene expression levels (Log10 RPM) of all genes
mapped by both reference genome-alignment method and reference transcriptome alignment method in PCS (n =35,797) and DRS (n=22,038).
Diagonal line represents the line of best fit. r value denotes Pearson’s correlation coefficient and P-value was generated from F-test, with P<0.05 considered
statistically significant. (C) Venn diagram showing the overlaps of DEGs identified by both between reference genome- and reference transcriptome-align-
ment method in PCS and DRS of nephrectomy samples. (D) Venn diagram showing the overlaps of genes that displayed significant DTU by DRIMSeq and
DEXSeq in PCS nephrectomy samples. (E) Stack bar graphs representing proportions of CMC1 isoforms in ccRCC tumors using PCS data. DRIMSeq and
DEXSeq Padj values for DTU of CMC1 are indicated in the graph. (F ) Graphical representation of CMC1 isoforms Ensembl reference annotations in
Integrative Genomics Viewer (IGV), with black boxes representing exons. Sashimi plots of CMC1 from PCS and DRS recurrent (135) and nonrecurrent
(273) ccRCC samples. Junction lines are shown for junction coverages with at least 5% of total CMC1 reads.
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DTUbybothDRIMSeq andDEXSeq andwas also identified byDRS

to display DTU (Supplemental Table S9). In PCS, most of the iso-

forms that are expressed in recurrent ccRCC samples are

ENST000423894 and ENST00000466830 (Fig. 3E,F, labeled as pur-

ple and teal, respectively). In contrast to nonrecurrent counter-

parts, recurrent ccRCC specimens also expressed very low level of

ENST00000468330 and ENST00000495428 (Fig. 3E,F, labeled as

yellow and green, respectively). Overall, this analysis revealed a

limited number of candidate disease recurrence-associated DTU

events.

Long-read RNA sequencing enables the discovery of novel

full-length transcripts expressed in ccRCC cells

A unique strength of long-read sequencing is the potential to dis-

cover novel transcript isoforms and genes, not currently included

in the reference transcriptome. To identify novel transcript iso-

forms that are present in the ccRCC nephrectomy specimens, we

applied StringTie2 to perform transcriptome assembly using PCS

reads aligned to the reference genome. StringTie2 assembled iso-

forms were subsequently compared to the reference annotation

(Ensembl release 105) with both SQANTI3 and GffCompare (see

Methods). SQANTI3 classifies each assembled isoform into known

or novel based on their splice junctionmatches. Known transcripts

comprise full splice match (FSM) and incomplete splice match

(ISM), whereas novel in catalog (NIC), novel not in catalog

(NNC), antisense, fusion, genic, genic intron, and intergenic iso-

forms are classified as novel transcripts (Fig. 4A; Supplemental

Table S10). Similarly, GffCompare assigns each StringTie2 assem-

bled isoform with a transcript class code which corresponds to

“Known” and “Novel” transcripts (Supplemental Fig. S7;

Supplemental Table S10).

Both SQANTI3 and GffCompare classifications revealed that

novel transcripts constitute more than 50% of the assembled tran-

scripts from the nephrectomy specimens (Fig. 4B). For SQANTI3

classification, the most prominent class of assembled transcripts

were FSM (36.5%, n=19,722 out of a total 54,185) (Fig. 4C).

Within the FSM isoforms, 15.3% exhibited an alternative 3′ end

(n=3010), 11.0% contain an alternative 5′ end (n= 2170), and

4.9% of FSM transcripts display alternative 3′ and 5′ ends (n=

962) when compared to the reference annotation (Supplemental

Table S11). Under a broader classification criterion, these isoforms

could be considered as putative novel transcripts. Importantly,

analysis by SQANTI3 also indicated that the large proportion of

novel transcripts may possess coding potential (Fig. 4D).

Similarly, GffCompare analysis revealed that the predomi-

nant class of StringTie2 assembled transcripts was “j” (Novel, mul-

tiexon genewith at least onematched exon junction) (40.58%, n=

21,635), followed by “=” (Known, complete intron chain match)

(28.32%, n=15,099) (Supplemental Table S12). Applying the

alternative long-read RNA-seq transcript assembler FLAIR on PCS

reads, GffCompare characterization reaffirmed that the majority

of assembled transcripts are novel isoforms (Supplemental Table

S12). Detailed characterizations of novel StringTie2 assembled

transcripts by SQANTI3 and GffCompare can be found in Supple-

mental Table S13.

Next, we asked whether the novel assembled transcripts can

also be detected by DRS of nephrectomy samples and, ccRCC tu-

mor cells in vitro. The latter was used to avoid artifacts associated

with the modest read length and full-length transcript coverage

achieved in clinical samples, and to indicate the cancer cell-intrin-

sic origin of these transcripts. To address this, we performed DRS

analysis of the VHL-negative, ccRCC cell line RCC4 under both

untreated and IFNG- and TNF-treated conditions using DRS. The

cytokine treatment conditions aimed to simulate in part the tran-

scriptomic response of tumor cells to immune cells. Workflow and

sequencing statistics can be found in Supplemental Figure S8, and

DEG analysis data can be found in Supplemental Table S14. The

mean read length was over 1100 nt and the full-length transcript

coverage over 45% for all samples. Out of the 26,834 novel iso-

forms that were mapped by PCS of nephrectomy samples,

14,544 were also mapped in at least one DRS of the nephrectomy

samples, and 13,336 were also detected in the DRS of RCC4 sam-

ples, whereas 10,645 novel transcript isoforms were detected in

all three data sets (Fig. 4E). Levels of novel isoforms that were de-

tected in all three data sets showed comparable expression levels

compared to known reference isoforms (Fig. 4F). Furthermore, ex-

pression levels of these novel isoforms exhibited strong concor-

dance between PCS and DRS of nephrectomy samples (R2=

0.6832, P=<0.0001) (Fig. 4G). Despite starting with a reference

based on our PCS data set, a small number of StringTie2 transcripts

were mapped exclusively in DRS of nephrectomy samples (n =80)

and RCC4 (n= 332). This may be due to the assignment of multi-

mapping, ambiguous sequencing reads by the sequence alignment

program (minimap2). These results reveal a plethora of previously

uncharacterized and unmapped transcripts within the ccRCC

transcriptome. Despite differences in sequencing depth, novel

transcripts from PCS could also bemapped byDRS, with a substan-

tial proportion of these novel transcripts also detected in ccRCC

cells in vitro.

Long-read RNA sequencing reveals the full exonic structure of

ccRCC splice variants

Taking advantage of the ability of long-read sequencing to reveal

whole transcript exonic structures, we next examined recently re-

ported novel, nonreference annotated splice variants (SVs) specific

to ccRCC tumors, which were supported by proteomics data and

associated with clinical outcomes (Chang et al. 2022). We found

sequence read the evidence for all 16 reported SVs (15/16 for

PCS of nephrectomies, 9/16 for DRS of nephrectomies, and 13/

16 for DRS of RCC4). Moreover, PCS StringTie2 assembled tran-

scripts spanning 11 of the unannotated SVs (Supplemental Table

S15). For example, the StringTie2 assembled transcripts

MSTRG.9279.18 and MSTRG.9269.19 accurately replicated two

ccRCC-specific SVs fromMVK (Fig. 4G). This was supported by ref-

erence genome-aligned reads from all three long-read RNA-seq

data sets (Supplemental Fig. S9A). In addition, sequencing results

showed that these ccRCC SVs adopt the 3′-UTR structure of

MVK-002 (ENST00000392727) instead of the longer 3′ UTR from

canonical MANE transcript MVK-001 (ENST00000228510) (Fig.

4H). Another example was HPCAL1, where two StringTie2 assem-

bled transcripts (MSTRG.20400.11 and MSTRG.20400.12) were

found to span the ccRCC-specific SV (Supplemental Fig. S9B).

The two isoforms exhibit variation in the exon 3 usage, where ev-

idence of exon 3 retention can be found in PCS as well as RCC4 se-

quencing results. Overall, three additional SVs (SYNPO, EGFR, and

FAM107B) were found to be encompassed by two StringTie2 as-

sembled transcripts (Supplemental Table S15). We also examined

VHL isoform expression in PCS and DRS of nephrectomies, as

well as DRS of RCC4. The 3′ UTR of the VHL mRNA is 4 kb-long.

As such, even though full-length VHL transcripts were detected,

most PCS and DRS of archival samples did not span the 5′ up-

stream exons (Supplemental Fig. S10). The longer sequencing
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Figure 4. Long-read RNA sequencing enables the discovery of full-length novel transcripts. (A) Graphical representation of the major SQANTI3 isoform
categories (antisense, genic intron, genic genomic, and intergenic not shownhere). (B) Bar chart showing the proportion of Novel and known transcripts in
StringTie2 assembly as curated by SQANTI3 and GffCompare. (C) Pie chart depicting the distribution of SQANTI3 isoform categories among StringTie2
assembled transcripts (n=54,185). (D) Bar chart showing the proportion of coding and noncoding StringTie2 assembled transcripts by SQANTI3 isoform
categories. (E) Venn diagram showing the number of overlapping mapped StringTie2 novel transcripts between PCS and DRS of ccRCC tumor samples,
and DRS of ccRCC cell line RCC4. (F) Violin plot showing the expression levels (Log2 RPM) of known and novel transcripts in PCS and DRS of ccRCC tumor
samples, and DRS of ccRCC cell line RCC4. The width of the violin plots represents the density of transcripts at different expression levels. Black dots rep-
resent mean expression levels. The top and bottom of box plots represent upper and lower quartiles, respectively. (G) Correlation between transcripts ex-
pression levels (Log2 RPM) of all StringTie2 novel transcriptsmapped by both PCS andDRS (n=14,544). Diagonal line represents the line of best fit. R2 value
was computed tomeasure goodness-of-fit and P-valuewas generated from F-test, with P<0.05 considered statistically significant. Lowest expression values
shown correspond to theminimum normalized abundance. (H) IGV visualization ofMVK reference annotations (blue), ccRCC-specificMVK splice junctions
(black), StringTie2 assembled novel transcripts (green), PCS coverage track (gray) illustrating the depth of sequence coverage across the region of interest
(red bar, hg38 Chr 12: 109,594,200–109,598,600) and PCS sequencing reads aligned to the reference genome in the region of interest.
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read length achieved in the DRS analysis of RCC4 cells allowed us

to capture mainly full-length VHL. The majority of expressed VHL

transcripts in RCC4 correspond to ENST00000256474, but with a

shorter 3′ UTRcompared to the reference genemodel. Collectively,

using recently reported ccRCC-related SVs (Chang et al. 2022), we

demonstrated the ability of long-read sequencing to reveal tran-

scriptomic codependencies, in this case, the co-occurrence of spe-

cific SVs with specific UTRs, providing unparalleled insight into

novel features of ccRCC.

Discovery of a novel soluble PD-L1 isoform expressed by

ccRCC tumor cells

Having identified that a reduction in the immune infiltrate of

ccRCC tumors was linked to disease recurrence and that the ccRCC

transcriptome includes a high number of previously uncharacter-

ized novel transcript isoforms we focused on transcripts of im-

mune checkpoint proteins. Here, we focused on PD-L1 (official

symbol CD274). While most studies on PD-L1 have focused on

the membrane-bound isoform (mPD-L1), recent attention has

been drawn to a soluble PD-L1 isoform (sPD-L1) lacking exon 5,

6, and 7. sPD-L1 is currently unannotated in the Ensembl gene

annotation, but it has been described in the NCBI GenBank

database (NM_001314029). An Ensembl annotated transcript

(ENST00000474218) partially overlapswith the 3′ UTRof theGen-

Bank sPD-L1 transcript, serving as a proxy for mapping sPD-L1.

Upon closer inspection to the exon 4 and 3′-UTR region of sPD-

L1 (Chr 5: 5,462,800–5,463,400), reference genome reads coverage

and StringTie2 supported two distinct isoforms with varying 3′-

UTR lengths (Fig. 5A). While the shorter sPD-L1 represents the

GenBank transcript, the alternative sPD-L1 includes a 3′ UTR

more than twice the length of GenBank annotation (61 nt vs.

154 nt) (Fig. 5A). StringTie2 assembly revealed this elongated 3′-

UTR structure, with supporting evidence stemming from reference

genome-aligned reads of PCS and DRS data from ccRCC tissues, as

well as DRS data from RCC4 cells (Supplemental Fig. S11A–E). To

further validate our findings, we performed short-read Illumina

RNA sequencing analysis of RCC4 cells and we were able to detect

reads corresponding to the novel sPD-L1 3′ UTR. Furthermore,

analysis of publicly available short-read RNA-seq data of normal

human kidney and lung tissues from the Genotype-Tissue Expres-

sion (GTEx) project (The GTEx Consortium 2013) also validated

the existence of this PD-L1 isoform (Supplemental Fig. S11F,G).

Upon evaluating the expression of PD-L1 in ccRCC tumors,

no significant disparity in gene-level expression was found be-

tween recurrent and nonrecurrent nephrectomy samples (Fig.

5B). However, at the isoform level, while mPD-L1 was suppressed

in the recurrent samples, both sPD-L1 isoforms (NM_001314029

and novel sPD-L1) showed no significant differences (Fig. 5C).

We note that in the clinical samplesmPD-L1 is the most abundant

PD-L1 transcript, whereas expression of the novel and annotated

sPD-L1 isoforms is comparable (Fig. 5C). Subsequent expression

validation via qRT-PCR with the sequenced and independent val-

idation cohort displayed the same pattern of results, where mPD-

L1 displayed a borderline nonsignificant (P=0.09) downregula-

tion, while sPD-L1 isoforms remained unchanged (Supplemental

Fig. S12).

As all PD-L1 transcripts, including the novel sPD-L1 isoform,

were detected in RCC4 cells by DRS, we sought to further explore

their regulation in cancer cells. The expression of all PD-L1 iso-

forms increased in response by IFNG and TNF treatment (Fig.

5D). However, expression levels of mPD-L1 were profoundly

more responsive to cytokine treatment than the soluble isoforms

(∼30-fold induction of mPD-L1 as opposed to threefold to 10-

fold induction of sPD-L1 isoforms) (Fig. 5D,E). mRNA stability as-

says revealed that cytokine treatment significantly reduced the

stability of sPD-L1 but notmPD-L1 (Fig. 5F). Furthermore, the nov-

el sPD-L1 isoform exhibited lower stability than the total sPD-L1

isoforms. Taken together, our findings revealed the existence of

an up-to-now uncharacterized sPD-L1 isoform with a longer 3′

UTR and low stability, and key differences in the regulation of

membrane and soluble PD-L1 isoforms in ccRCC tumors and in re-

sponse to inflammatory cytokines in vitro.

Discovery of novel genes associated with ccRCC recurrence

In addition to the characterization of novel isoforms within

known genes, long-read RNA-seq also enables the discovery of

novel genes that are absent from the reference gene annotation.

Using the PCS StringTie2 assembly, we identified 1350 novel genes

(curated by SQANTI3) that were mapped in the PCS data set. The

majority of these genes were classified as either intergenic

(59.76%) or antisense (39.86%) transcripts (Fig. 6A). Most of these

novel genes have a single isoform, with the majority being non-

coding, multiexon isoforms featuring canonical splice sites (Fig.

6B; Supplemental Fig. S13A–C). The expression levels of these nov-

el genes are similar to those of reference annotated genes, with the

coding novel genes demonstrating higher expression levels than

noncoding novel genes (Supplemental Fig. S13D). Importantly,

of the 1350 novel genes that were mapped by PCS, 982 (72.7%)

were also detected in the DRS data of tumor nephrectomies, and

414 (30.7%) novel genes were also mapped in the DRS data of

RCC4 cells (Fig. 6C). This suggests that a large number of novel

genes might be expressed in ccRCC tumor cells.

Next, we performed DEG analysis with the PCS StringTie2 as-

sembly and identified a set of significantly differentially expressed

(|log2FoldChange|≥2, Padj≤0.1) novel genes (n=40 for PCS, n =4

for DRS) between recurrent and nonrecurrent samples (Fig. 6D;

Supplemental Fig. S13E; Supplemental Tables S16–S19). The direc-

tionality of gene expression for these differentially expressed novel

genes demonstrated strong concordance between PCS and DRS

(Fig. 6E). Thirteen differentially expressed novel genes were also

identified between untreated and IFNG and TNF treated RCC4

cells (Supplemental Fig. S13F).

To further validate our sequencing findings, we sought to ex-

perimentally measure the levels in recurrent and nonrecurrent

ccRCC nephrectomies of two novel genes: MSTRG.29728 and

MSTRG.38727 using qRT-PCR.MSTRG.29728, a StringTie2 assem-

bled gene is located on Chromosome 5, with its nearest reference

annotated genes (5′: CSNK1G3, 3′: LINC01170) situated more

than 300 kb away (Fig. 6F). Notably, the presence of this novel

gene was also supported by reference genome-aligned reads from

the DRS and our short-read RNA sequencing analysis of RCC4 cells

(Fig. 6F). Based on coverage data from all sequencing experiments,

the most highly expressed MSTRG.29728 isoform consists of two

exons (Supplemental Fig. S14A,B) and its levels of expression are

intermediate (Supplemental Tables S16–S18). Analysis of publicly

available cell line data further validated the existence of this gene

and suggested that it was enriched in kidney cancer cell lines

(Supplemental Fig. S14C).MSTRG.29728was significantly upregu-

lated in recurrent ccRCC tumors in both PCS and DRS data sets.

This upregulation was confirmed by qRT-PCR in both sequenced

and independent validation cohorts (Fig. 6G). The second tested

novel gene, MSTRG.38727, is located on Chromosome X with
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Figure 5. Discovery of a novel sPD-L1 isoform expressed by ccRCC tumor cells. (A) IGV visualization of reference annotation of mPD-L1 isoform (black,
ENST00000381577), sPD-L1 (black, NM_001314029), and StringTie2 reference annotation (green) (top tracks); graphical representation of membrane,
soluble, and novel soluble PD-L1 exon 4; Ensembl (black) and StringTie2 reference annotations (green) and IGV coverage tracks for PCS of ccRCC tumors
(red) and DRS of RCC4 (green). (B) Grouped dot plot showing reference DESeq2 normalized PD-L1 expression in nonrecurrent (blue) and recurrent (red)
tumors’ PCS data. DESeq2 Padj value is shown in the graph. Center line represents the median for each group. (C) Grouped dot plots showing normalized
mPD-L1, sPD-L1, and novel sPD-L1 expression (log2(RPM+1)) in nonrecurrent (blue) and recurrent (red) tumors’ PCS data. (D) Grouped dot plots showing
mPD-L1, sPD-L1 (all isoforms), and novel sPD-L1 mRNA levels measured by qRT-PCR in recurrent and nonrecurrent tumors from sequenced cohort (blue
and red, n =12) and validation cohort (black, n=20) relative to average mRNA levels in nonrecurrent tumors. (E) Stacked bar graphs representing propor-
tions ofmPD-L1, sPD-L1, and novel sPD-L1 isoforms in RCC4 cells based on DRS data. For (C )–(E), two-tailedMann–WhitneyU tests were used with P≤0.05
considered significant. (∗) P<0.05. Center line represents the median for each group. (F ) mRNA decay curves formPD-L1, sPD-L1, and novel sPD-L1 in un-
stimulated (blue) and IFNG+TNF treated (red) RCC4 cells. Half-lives of isoforms are indicated in the graph (blue for unstimulated, red for IFNG+TNF treat-
ed RCC4). Comparisonsweremade using unpaired Student’s t-test with P≤0.05 considered significant. (n.s.) not significant, (∗) P<0.05, (∗∗) P<0.01, (∗∗∗)
P <0.001.
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Figure 6. Discovery of ccRCC recurrence-associated novel genes by long-read RNA-seq. (A) Bar chart showing the isoform classifications of StringTie2
assembled transcripts from novel genes as classified by SQANTI3. (B) Pie chart illustrating the proportion of coding and noncoding StringTie2 assembled
transcripts from novel genes as classified by SQANTI3. (C) Venn diagram showing the number of overlapping mapped novel genes between PCS and DRS
of ccRCC tumor samples, and DRS of RCC4. (D) Volcano plots showing DEGs (red) between recurrent and nonrecurrent tumors from PCS and DRS data
using StringTie2 assembled reference. Number of differentially expressed novel and known genes are shown in table below plots. Names of novel genes that
were validated by qPCR with validation cohort are shown on plots. (E) Correlation between log2FoldChange of differentially expressed novel genes iden-
tified by either or both PCS and DRS between recurrent versus nonrecurrent tumors (n =40). (F ) IGV visualization of MSTRG.29728 isoforms StringTie2
reference annotation (green) and the closest neighboring genes (LINC01170 and CSNK1G3) in the Ensembl reference annotation (Ensembl release
105) at Chr 5: 123,500,000–124,300,000 (top track); Sashimi plot showing abundance of reference genome-aligned reads and splicing patterns along
MSTRG.29728 (Chr 5: 123,859,000–123,868,000) for PCS (red) and DRS (blue) of ccRCC tumor samples, and DRS (green) and short-read Illumina se-
quencing (orange) of RCC4; representative PCS sequencing reads (gray) aligned to the reference genome in the region of interest. (G) MSTRG.29728
mRNA levels measured by qRT-PCR in recurrent and nonrecurrent tumors from sequenced cohort (blue and red, n=12) and validation cohort (black, n
=20), relative to average mRNA levels in nonrecurrent tumors. mRNA levels were normalized to GAPDH and ACTB. Two-tailed Mann–Whitney U test
was used with P≤0.05 considered significant. (∗) P<0.05. Center line represents the median for each group.
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read coverage fromPCS andDRS of nephrectomy specimens, albeit

absent in DRS data from RCC4 (Supplemental Fig. S15A–C). PCS

sequencing results showed that MSTRG.38727 expression was

highly elevated in three of the six recurrent ccRCC tumors

(Supplemental Fig. S15D). This was corroborated through qRT-

PCRvalidationwithin the sequenced cohort, butwas not validated

in the independent validation cohort (Supplemental Fig. S15E).

Overall, long-read sequencing revealed a high number of can-

didate novel genes present in ccRCC transcriptomes. Further test-

ing for two such genes by orthogonalmethods and in independent

patient cohorts provided further support for their existence and,

critically, identified MSTRG.29728 as a novel noncoding RNA

gene associated with ccRCC recurrence in both study cohorts.

We provisionally term MSTRG.29728 as RECART, for Renal

Carcinoma Recurrence-Associated Transcript.

Discussion

Long-read sequencing technologies represent a new era in cancer

genomics and RNA medicine (Sakamoto et al. 2020; Wang et al.

2023). We used DRS and PCS to explore transcriptomes of primary

ccRCC tumors. Our study aimed to demonstrate the methodolog-

ical application of long-read sequencing, both PCS and DRS, in

cancer and specifically ccRCC, focusing on the use of archival fresh

frozen tissue samples and new gene and transcript discovery, and

using disease recurrence as a proof-of-principle context. Even

though we analyzed a sequencing and an independent validation

cohort, the relatively low total number of study participants (n =

32) is a limitation of our study that should be considered. In addi-

tion, the relatively modest read length acquired for clinical sam-

ples should also be considered as a limitation. As a mitigation for

this, we used the RCC4 DRS data set as a high-quality reference,

as well as further validation for selected isoforms and genes.

Using this approach, we showcase how long-read RNA sequencing

can lead to the discovery of novel disease-associated transcripts

and genes, the existence of which is supported by multiple ap-

proaches including short-read Illumina sequencing, targeted

qRT-PCR, and validation in independent cohorts. We opted not

to perform more detailed analyses such as the estimation of

poly(A) length per transcript or posttranscriptional RNAmodifica-

tion analyses (Krause et al. 2019). However, our work sets the foun-

dation for follow-up studies using the new ONT DRS platform

(RNA004) comparing the ability to detect changes in such features

in fresh and archival samples.

From a methodological point of view, the distinguishing fea-

tures of our study are (1) the use of long-term stored tissue, (2) the

direct comparison between DRS and PCS of clinical samples, (3)

the successful sequencing of archival fresh frozen tissue samples,

and (4) the use of total RNA as starting material for DRS and PCS

library preparation. In reference to the latter point, compared to

the pg–ng range of total RNA input requirement for short-read

RNA sequencing library preparation, previous studies using ONT

DRS have typically used 50–500 ng of poly(A) enriched RNA,

which is hugely demanding for clinical samples (Jain et al.

2022). Here, we used 2 μg and 200 ng total RNA for DRS and PCS

from tissues, respectively, without poly(A) enrichment. Indeed,

it has been suggested that poly(A) selection can introduce a poten-

tial bias towardmRNAswith longer poly(A) tails (Viscardi and Arri-

bere 2022). PCS achieved a higher depth and, consequently,

detected a higher number of transcripts and genes in all tested

samples, and a higher number of DEGs in primary tumors of pa-

tients who experienced recurrence than DRS. We note that we

did not multiplex samples for PCS, but used a subsampling ap-

proach (5% PCS) that identified similar gene expression patterns

bothwith regard toDEGs and enriched pathways. The 5% subsam-

pling level was chosen to reduce the PCS read depth within the

range achieved by DRS (2–4 million passed reads). On the other

hand, DRS does not include a PCR amplification step, providing

further confidence in the overlapping gene sets between the two

methods. With regard to read length, both methods produced

long reads. On average, raw reads generated by PCS were longer

than DRS reads likely because of the fact that raw reads from PCS

have additional ligated reverse transcription, PCR amplification

primer, and uniquemolecular identifier. Once aligned to the refer-

ence genome, both methods achieved similar read lengths,

although PCS achieved a higher percentage of full-length tran-

scripts likely due to the size selection step following PCR (Bayega

et al. 2022). Alignment to reference transcriptome showed good

correlation with genome mapping and DTU analysis identified

candidate DTU events associated with recurrence, including

changes in CMC1 transcript usage. It should be noted, however,

that, when using historical samples and achieving relatively mod-

est read lengths, there might be limitations in the ability to accu-

rately measure ratios of different SVs of the same gene. We note

that as we used archival tumor samples, our DTU analysis should

be interpreted with caution as it is likely to be underestimating

the number of disease relapse-associated DTU events. This is why

we focused on gene-level comparisons and the discovery of novel

transcripts and genes that could be validated by other methods in-

cluding DRS of RCC4 cells that achieved higher quality measures

and by qRT-PCR.

The primary biological objective of our study was to use DRS

and PCS to explore ccRCC recurrence-associated transcriptome

features including previously uncharacterized genes and tran-

scripts. Our differential expression and deconvolution analyses

identified a loss of immune infiltrate and specifically CD8+ T cells

as a key feature of primary tumors that go on to relapse after sur-

gery. This is reported by others (Ghatalia et al. 2019; Peng et al.

2022), providing a biological validation of our findings. Despite

the low numbers of samples tested in our sequencing cohort, we

were able to see similar expression patterns for NOS3 and CCL5,

two previously reported recurrence markers (Rini et al. 2015),

but also the novel finding of downregulation of TOX and

LINC04216 linked to recurrence (note that TOX levels were not

measured in the study that identified loss ofNOS3 and CCL5 as re-

currence markers [Rini et al. 2015]). In addition, our study also

identified upregulation of a novel gene,MSTRG.29728 or RECART,

as a candidate marker of disease relapse. These candidate prognos-

tic biomarkers of relapse will need to be validated in the future in

independent cohorts.

A unique strength of long-read sequencing is the ability to

determine preferential use of specific UTRs by specific SVs, which

can suggest tissue- or disease-specific cotranscriptional processing

mechanisms. Indeed, we demonstrated this for recently identified

ccRCC-associated SVs (Chang et al. 2022), including MVK and

HPCAL1. Focusing these analyses on immune checkpoints led to

the discovery of a novel sPD-L1 transcript with a longer 3′ UTR

than the currently annotated sPD-L1. This means that the novel

sPD-L1 is likely to be controlled by additional posttranscriptional

mechanisms, including microRNA-mediated silencing or regula-

tion by RNA-binding proteins. Of note, regulation through the

3′ UTR is a major determinant of mPD-L1 expression (Sun et al.

2018; Yamaguchi et al. 2022). Indeed, the novel sPD-L1 transcript

demonstrates lower stability than the other PD-L1 transcripts
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under homeostatic or inflammatory conditions in vitro.We found

that there is a trend for downregulation for tumormPD-L1 but no

differences in sPD-L1 in patients that experience recurrence. This is

consistent with the observed loss of CD8+ T cells from these tu-

mors and the enhanced responsiveness of mPD-L1 to IFNG and

TNF observed in vitro. Clinically, this is important as PD-1/PD-

L1-targeted checkpoint inhibitors are currently being explored in

the adjuvant setting (Gorin et al. 2022; Motzer et al. 2023;

Choueiri et al. 2024) and expression of sPD-L1 has been linked

with ccRCC prognosis and immunotherapy treatment outcome

(Larrinaga et al. 2021; Mahoney et al. 2022). Future studies will

have to explore the relative contributions of the different PD-L1

transcripts, including the novel one reported here, to tumor im-

mune evasion and response to immunotherapy.

Overall, we demonstrate the feasibility of both DRS and PCS

in archival clinical samples with significant overlap between the

two methods with regard to detectable transcripts, differential

gene expression analysis, pathway enrichment analysis, and novel

transcript and gene discovery. We also identify a common limita-

tion in that when using historical samples that have been stored

for long periods of times (years) both methods might result in rel-

atively shorter read length. Higher depth can be achieved for PCS,

whichmight be beneficial for initial comparative analyses. On the

other hand, demonstrating the feasibility of DRS using archival

clinical samples opens the way for future studies exploring ques-

tions that can only be addressed by DRS (e.g. RNA posttranscrip-

tional modifications) avoiding biases associated with reverse

transcription and PCR amplification. We provide evidence for

the existence of thousands of novel transcript isoforms and hun-

dreds of novel genes detected by both DRS and PCS in primary

ccRCC tumors but also in vitro in ccRCC cell lines. We describe

the loss of TOX and LINC04216 and upregulation of RECART as

novel candidate predictors of relapse. We discover and validate

through orthogonal methods a novel sPD-L1 isoform with differ-

ential stability. These findings demonstrate that the application

of long-read RNA sequencing, even in long-term stored tissue sam-

ples, has the potential to lead to a radical revision of our under-

standing of cancer transcriptomes.

Methods

Study participants and ethics

In this observational study,we used 32 ccRCC tumor nephrectomy
samples (16 nonrecurrent and 16 recurrent cases) collected be-
tween 2000 and 2012 and stored in the Leeds multidisciplinary re-

search tissue bank. Twelve samples were used as a discovery cohort
for DRS and PCS sequencing (six nonrecurrent and six recurrent)
and 20 (10 in each group) were used as an independent validation

cohort. For the recurrence group, the median time to relapse was
23months (5–176). For the control group,median follow-upwith-

out relapse was 11 years (7–18). Groups were matched for demo-
graphic, pathological, and clinical characteristics including TNM
and Leibovich score (Supplemental Table S1, age is shown in 5-

year intervals). The sample/kidney IDs were not known to anyone
outside the research group. Mutation status of each sample

was determined as described (Scelo et al. 2014; Vasudev et al.
2023). This study was approved by regional ethics committee ap-
proval: Yorkshire and the Humber—Leeds East Research Ethics

Committee, reference 15/YH/0080. The research conforms with
the principles of the Declaration of Helsinki. All patients gavewrit-

ten informed consent for their participation in this study.

Tissue sample preparation

Following surgical removal, tissue samples were washed in phos-
phate-buffered saline (PBS), blotted on a tissue before being envel-

oped in aluminum foil and snap frozen in liquid nitrogen. Once
thawed, samples were immediately used for RNA extraction with-
out further freeze-thawed cycles. All cases underwent pathology re-

view of a parallel formalin-fixed paraffin-embedded (FFPE) block
to confirm ccRCC histology and tumor cell viability, as part of a

separate study (Scelo et al. 2014).

Cell culture and cytokine treatment

RCC4 cells weremaintained at 37°C in a humidified atmosphere of
5%CO2 and grown in complete Dulbecco’smodified Eagle’smedi-

um (DMEM, Gibco 21969-05), supplemented with 10% fetal bo-
vine serum (FCS) (Gibco A5256701), 1% 200 mM L-glutamine
(Gibco 25030), and 1% penicillin/streptomycin (Gibco 15140).

For RCC4 DRS experiment, 1 × 106 RCC4 cells were seeded in 15
mLof completeDMEM in T75 flasks. Twenty-four hours after seed-

ing, media were changed into complete DMEM, with or without
the addition of IFNG (1000 U/mL, PeproTech 300-02) and TNF
(25 ng/mL, Peprotech 300-01). Cells were harvested 24 h later for

RNA extraction. Three flasks of T75s were used for each replicate
for the sequencing experiment.

RNA extraction

Total RNAwas extracted from nephrectomy specimens or cultured

cells using QIAzol (Qiagen 79306) and RNeasy kits (Qiagen 74004)
with on-columnDNase I digestion step, according to themanufac-
turer’s instructions. Nephrectomy specimens were homogenized

in QIAzol using a TissueLyser LT (Qiagen 85600) with stainless
steel beads (Qiagen 69997). RIN was determined using the 2100

Bioanalyzer with RNA Nano kit (Agilent 5067) and quantified us-
ing Qubit RNA HS assay kit (Invitrogen Q32852). Total RNA from
RCC4 for DRS was enriched for poly(A)+ RNA molecules using the

Dynabeads Oligo(dT)25 mRNA isolation kit (Invitrogen 61002).

Library preparation and RNA sequencing

Sequencing libraries used for PCR-cDNA-seq and Direct RNA-seq
were generated using the SQK-PCS111 and SQK-RNA002 kit

(Oxford Nanopore Technologies, ONT), respectively. For the ne-
phrectomy specimens, 200 ng and 2 μg of extract total RNA were

used as input for each sequencing library for PCR-cDNA-seq and
Direct RNA-seq, respectively. Five hundred nanograms of
poly(A)+ RNA was used for each sequencing library for Direct

RNA-seq of RCC4 cells. For PCR-cDNA-seq, cDNA libraries were
preparedwith the SQK-PCS111 kit according to themanufacturer’s

instructions with 14 cycles of PCR cycles. For Direct RNA-seq, li-
braries were prepared with the SQK-RNA002 kit according to the
manufacturer’s instructions including the optional reverse tran-

scriptase step. Sequencing libraries for each experiment were pre-
pared together to mitigate batch effects. All sequencing libraries

were sequenced on ONT PromethION sequencer with R9.4.1
PromethION flow cells (ONT) for 72 h. Basecalling and FASTQ
file generation were performed with Guppy (v5.1.12, ONT).

Quality control and reads alignment

Sequencing reads generated fromDirect RNA-seq, and PCR-cDNA-
seq with a minimum read quality score (Q score) of 7 were used for
mapping and downstream analysis. FASTQ files generated from se-

quencing runs were concatenated using catfishq (v1.4.0, https
://github.com/philres/catfishq). PCR-cDNA-seq reads were orien-

tated by Pychopper v2 (v2.5.0, https://github.com/epi2me-labs/
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pychopper), filtered for the presence of 5′ and 3′ sequencing adap-

tors and trimmed by cutadapt (v4.1) (Martin 2011). Direct RNA-
seq and processed PCR-cDNA-seq reads were aligned to either hu-
man genome, transcriptome (GRCh38, Ensembl release 105) or

StringTie2 assembly using minimap2 (v2.24), with recommended
parameters (Genome alignment: -ax splice –uf –k14; Transcrip-

tome alignment: -ax map-ont –p 0 -N 10) (Li 2018). Aligned reads
were sorted, merged, and indexed to BAM files with SAMtools
(v1.13) (Li et al. 2009). For subsampling, reference genome-aligned

PCS reads were randomly selected using the SAMtools view com-
mand with “-s 0.05”. The workflows for reads alignment are avail-

able at Supplemental Code and https://github.com/joshuacylee/
DRS and https://github.com/joshuacylee/PCR-cDNAseq.Mapping
data quality and statistics of sequencing data were analyzed by

NanoPlot and BamSlam (De Coster et al. 2018) (https://github
.com/josiegleeson/BamSlam). Illumina sequencing readswere pro-

cessed with FastQC, trimmed using cutadapt (version 1.18) to
remove sequence adaptors, followed by reference genome align-
ment with HISAT2 (Kim et al. 2019).

Differential gene expression

Gene-level expression quantification was performed using
featureCounts with long-read counting mode (-L) (subread

v2.0.0) (Liao et al. 2014). Transcript isoform quantification was
performed using Salmon (v1.7.0) with Oxford Nanopore long-
reads mode (‐‐ont) (Patro et al. 2017). Normalization and identifi-

cation of DEGs (Padj≤0.1 and |log2FoldChange|≥2) were per-
formed using the R package (R Core Team 2022) DESeq2

(v1.40.2) (Love et al. 2014). PCA plots were generated by DESeq2
and volcano plots were generated with the R package Enhanced-
Volcano (v1.18.0). Workflow for differential gene expression iden-

tification is available at Supplemental Code and (https://github
.com/joshuacylee/DESeq2).

Gene set enrichment analysis and tumor-infiltrating

immune cell analysis

Gene set enrichment analysis was performed using clusterProfiler
(v4.4.4) (Wu et al. 2021).

GO BP and molecular function databases were used for
functional enrichment analysis. Parameters used for GO enrich-
ment were as follows: Permutations (nPerm):10,000, minimum

gene set size (minGSSize): 5, Maximum gene set size (maxGSSize):
500, Minimum P-value (PvalueCutoff) = 0.05, Organism (Orgdb) =

org.Hs.eg.db, PAdjustMethod=Benjamini–Hochberg (BH). Tumor
purity and tumor-infiltrating immune cell population abundance
were estimated using two gene signature-based algorithms: ESTI-

MATE (v1.0.13) and xCell (v1.1.0) (Yoshihara et al. 2013; Aran
et al. 2015). Tumor-infiltrating immune cell type deconvolution
was performed using CIBERSORTx and EPIC (Newman et al.

2019; Racle and Gfeller 2020).

Differential transcript usage

DTU analysis of DRS and PCS data was performed with RNA-

seqDTU (version 3.14) workflow, which employs both DRIMSeq
andDEXSeq, followed by stageR statistical postprocessing. Isoform

quatification was scaled and normalized (dtuScaledTPM) before
analysis. Analysis was performed on transcripts which had mini-
mum expression levels of 5 (normalized TPM) across all 12 tumor

samples, with 5% of total gene expression in at least half of the
samples in at least half of the samples. Genes with Padj values be-

low 0.1 were considered significant.

Transcriptome assembly and novel gene/isoform discovery

Using reference genome-aligned PCR-cDNA-seq BAM files, tran-
script assembly was performed with StringTie2 (v2.2.1) and

FLAIR (Kovaka et al. 2019). StringTie2 assembly was performed
with long-reads processingmode (-L), guided by reference gene an-
notation (Ensembl release 105). StringTie2 transcriptome assem-

blies from all sequenced nephrectomy specimens were then
merged using the –merge option to generate transcript annotation

file (GTF file). StringTie2 annotation used for novel gene mapping
was performed by merging all nephrectomy assemblies with refer-
ence gene annotation (Ensembl release 105). FLAIR assembly was

generated using the “flair correct” and “flair collapse” commands,
with the long-read optimized option selected (‐‐trust_ends).
Generated transcript annotation files from StringTie2 and FLAIR

were compared to Ensembl reference gene annotation (with –r op-
tion) where each assembled transcript was classified with a class-

code using GffCompare (v0.12.6). In accordance with Gleeson
et al. (2022), transcripts were categorized into three main catego-
ries: “Known” (“=”: Complete intron chain match, “c”: Partial in-

tron chain match), “Novel” (“j”: Multiexon with at least one
matched junction”, “k”: Containing reference, “m”: Retained in-

tron(s)—all covered, “n”: Retained intron(s)—not all covered,
“i”: Contained within intron, “o”: Overlapped exon, “x”:
Overlapped antisense, “y”: Containing reference within intron,

“u”: None of above/Unknown), and “Potential Artefacts” (“p”:
No overlap, “e”: Single exon partially covering an intron, “s”:

Intron matched on opposite strand, “r”: Repeat).
StringTie2 assembled transcripts were also characterized by

SQANTI3 (v5.1.2), which classifies genes as “annotated” or “novel,”

and isoforms as FSM, ISM,NIC, NNC, antisense, genic intron, genic
genomic, and intergenic (Pardo-Palacios et al. 2024). FSM represents
isoforms with the exact same splice junctions and number of exons

with the reference annotation. ISM represents isoforms with fewer
exons from the 5′ end but with the remaining internal splice junc-

tion sites matching with the reference annotation. NIC isoforms
contain novel combinations of known splice junctions/exons com-
pared with the reference annotation. NNC represents isoforms with

at least one novel, unannotated splice site. In the SQANTI3 model,
FSM and ISM represent the “Known” transcripts, whereas NIC,

NNC, antisense, genic intron, genic genomic, and intergenic iso-
forms represent the “Novel” transcripts. SQANTI3 also predicts cod-
ing potential of transcripts using the GeneMarkS-T model (Tang

et al. 2015). IGV tracks and reference genomemapped reads aligned
to the region of novel genes and isoforms were visualized using IGV

viewer (Robinson et al. 2011). Evidence of novel transcript expres-
sion was derived from analysis of the GTEx project RNA-seq data
of normal tissues (The GTEx Consortium 2013) and LocExpress

RNA-seq of cancer cell lines (Hou et al. 2016).

cDNA synthesis and qRT-PCR

RNA molecules were reverse transcribed to cDNA molecules using
Oligo(dT) primer (Novagen 69896) and SuperScript II reverse tran-

scriptase (Invitrogen 18064022). qPCR assays were performed using
Fast SYBR Green master mix (Applied Biosystems 4385612) and
prevalidated primers (Eurofins) on a StepOnePlus Real-Time PCR

system (Applied Biosystems) for 40 amplification cycles. Relative
transcript levels were determined using the ΔΔCt (cycle threshold)

method with GAPDH and ACTB used as loading controls. Details
on the primers used can be found in Supplemental Table S20.

RNA stability assay

In total, 4 × 104 RCC4 cells were seeded in 12-well plates. Twenty-

four hours after seeding, media were changed into complete
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DMEM, with or without the addition of IFNG (1000 U/mL) and

TNF (25 ng/mL). Twenty-four hours later, Actinomycin D (2 μg/
mL, Thermo Fisher Scientific, 11805017) was added and cells
were harvested after 0, 2, 4, and 8 h of incubation for RNA extrac-

tion and qPCR. Three wells were used as technical replicates for
each biological replicate (n=3) for each time point.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 9. Two-
tailed Mann–Whitney U tests were used to compare nonparamet-
ric analysis of gene or transcript isoform expression levels, tumor

purity estimations, immune scores, and relative immune cell
populations between experimental groups, with P≤0.05 consid-

ered statistically significant. For comparison of more than two
groups, Kruskal–Wallis test was used with P≤0.05 considered
significant. For correlative analysis, R2 (coefficient of determina-

tion) was used to calculate the goodness of fit between data sets,
and P-values were generated from F-test, with P≤0.05 considered

statistically significant. Differential gene expression analysis by
DESeq2 implements the Wald test, followed by false discovery
rate correction by the BH method. Genes with Padj < 0.05 and

|log2FoldChange|≥2 are considered to be significantly differen-
tially expressed. All P-values of nonsignificant results are indicated
in graphs.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession numbers:

GSE242204 (PCS), GSE241932 (DRS), GSE242084 (RCC4 DRS),
GSE246408 (RCC4 short-read Illumina sequencing). The work-

flows for read alignment are available at GitHub (https://github
.com/joshuacylee/DirectRNAseq and https://github.com/joshua
cylee/PCR-cDNAseq) and as Supplemental Code. Workflow for dif-

ferential gene expression identification is available at GitHub (https
://github.com/joshuacylee/DESeq2) and as Supplemental Code.
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