
This is a repository copy of Networking with Dynamic Reconfigurability and Robustness for
Modular Spacecraft.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/218862/

Version: Accepted Version

Proceedings Paper:
Post, Mark Andrew orcid.org/0000-0002-1925-7039, White, James, Anderson, Cameron et
al. (2 more authors) (2024) Networking with Dynamic Reconfigurability and Robustness for
Modular Spacecraft. In: 75th International Astronautical Congress (IAC), proceedings. 75th
International Astronautical Congress (IAC) 2024, 14-18 Oct 2024, Milan, Italy. International
Astronautical Federation (IAF) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 INTRODUCTION

IAC–24–B2.7.2

Networking with Dynamic Reconfigurability and Robustness for Modular

Spacecraft

Mark A Post, David Grace

University of York, Heslington, York, England, YO10 5DD, mark.post@york.ac.uk; david.grace@york.ac.uk

James White

4Links Limited, 12 Shenley Pavilions, Chalkdell Dr, Shenley Wood, Milton Keynes, England, MK5 6LB,
james.white@4links.space

Cameron Anderson, Murray Ireland, Georgia Harvey

Craft Prospect Ltd, Suite 12, Fairfield, 1048 Govan Rd, Govan, Glasgow, Scotland, G51 4XS,
murray@craftprospect.com

Modular and dynamically reconfigurable space hardware systems are a high priority for research and develop-
ment as they can significantly decrease development costs, facilitate multiple payloads, and enable indefinite
lifetime extension for orbital assets through on-orbit servicing operations. However, dynamically reconfig-
urable space hardware systems have many fundamentally different design and implementation requirements
from monolithic single-mission systems that are currently in use. Most critically, the communications between
modular and reconfigurable components must be decentralized, robust to changes in physical organization,
common to all components at the physical, electrical, and protocol levels, and able to accommodate new
elements beyond the original mission specification.
This paper describes adaptable and robust networking technologies that are currently under development
to support novel modular satellite and space robot systems that implement dynamic reconfiguration and
autonomy. While it is desirable to adapt existing communications technologies to the use of modular space-
craft, a review of these technologies indicates a clear capability gap between current technologies and the
needs imposed by autonomous reconfigurability.
To fill this gap, we describe a novel communications protocol that can be used over existing Ethernet hardware
and CAN bus for wired communications that provides the reconfigurability and robustness needed for data
and power networking of changing physical configurations of hardware. We also describe the extension of this
protocol to wireless systems that could be deployed safely on space hardware and allow spacecraft modules
to communicate between each other and with ground stations when not physically connected.
For robust fault tolerance and connectivity with ground stations, it is necessary to have the capability to
recover from network degradation due to both internal system faults and external factors such as atmospheric
conditions and cloud cover. We have created a Machine Learning (ML) application capable of interfacing
with switch nodes in an emulated network to record traffic, predict link health using ML, and then re-route
traffic to a more optimal path.
Decentralized adaptive routing and ML-based routing test results from network emulators have showed
improvements in throughput from re-routing following fault injection. Improvements were also seen in
robustness to network changes and latency of fault response compared to traditional networking solutions,
and the nodes successfully used local autonomy to recover from dynamic reconfiguration faults. Future
development will include implementing these protocols and ML technology in a fully representative space
hardware network, with distant and autonomous modular satellite nodes.

I. Introduction

The rapid development and exploitation of space
in a sustainable and cost-effective manner necessi-
tates the development of new methodologies for con-
structing, maintaining, and managing the lifetimes of

space hardware and software systems. Satellite space-
craft, deep space probes, and planetary rovers have
previously been largely designed and deployed as one-
off systems, with a finite lifetime and limited or no
servicing and lifetime extension capability. Projects
such as PETSAT,21 iBOSS,13 MOSAR,15 HIVE12 ,

1



2 BACKGROUND

CSR4 and the modular space warehouse STARFAB6

have proposed and explored modular ecosystem con-
cepts for robotically-assembled, reconfigurable modu-
lar satellite hardware that could overcome these lim-
itations and allow future missions to be constructed,
serviced, and re-deployed.

Modular systems in general are critically reliant
on the availability of ubiquitous communications be-
tween elements. Numerous proprietary spacecraft
buses with purpose-built communications are used
by separate manufacturers, but vendor-independent
communications in modular space hardware systems
is generally provided by SpaceWire and SpaceFibre
as well as safety critical buses such as CAN,26 Time-
Triggered Ethernet (TTEthernet), and EtherCAT19

being proposed. The use of Commercial Off-The-
Shelf (COTS) hardware for space hardware buses
has been considered apace as new terrestrial tech-
nologies are developed, with buses such as Inter-
Integrated-Circuit (I2C) and IEEE 1394 ”Firewire”
being recommended for space use, but under the stip-
ulation that either mandatory changes or ”implemen-
tation options” coupled with design practices such
as redundancy provide the necessary robustness22.5

However, for autonomously reconfigurable modular-
ity, such communications systems must be sufficiently
robust for harsh environment use, designed in such
a way as to allow future expansion to support con-
nection to new functionality that is not available at
the time of launch, and also support locally intelli-
gent dynamic routing, plug-and-play style resource
discovery, and protection against unexpected faults
and security threats.18 Fulfilling these requirements
for modular space hardware is still an open problem
for currently-deployed communications hardware and
protocols.

The use of wireless communications in space for
servicer spacecraft proximity operations, interaction
with disconnected free-flying modular hardware, or
to work around faults in a physical communica-
tions system is another critical consideration in en-
abling modular ecosystems to operate robustly and
autonomously. Radio communications for long-range
links to ground stations, and more recently other
satellites in peer-to-peer configurations, have been
well explored for purposes such as multichord In-
ternet of Things (IoT) networks, with satellite IDs
hashed from orbital elements11 and CubeSat-based
Internet extensions to remote areas with mixed de-
terministic and probabilistic links.9 However, the use
of short-range dynamic wireless networking between
large numbers of autonomous modular elements has

been largely unexplored for use in space, despite wire-
less mesh networking being a mature terrestrial tech-
nology. The core focus of our ongoing research de-
scribed in this paper is to fill this gap in capabil-
ity and equip modular space hardware with suitable
dynamically-reconfigurable wired and wireless com-
munication capability.

II. Background

II.i Networking Requirements

A ”Space Internet” or ”Interplanetary Internet”
for networking space hardware to automate mission
communications is superficially feasible, but in prac-
tice introduces many complications that terrestrial
Internet technologies were not designed to overcome,
primarily:

• Long link delays due to vast distances, more so
in the case of deep space links;

• Frequent and lengthy link outages due to envi-
ronmental and operational hazards;

• High channel and Bit Error Rates (BER) due to
the harsh environment;

• Out-of-order and non-real-time arrival of data
due to delays and error rates

• Asymmetric channel rates between spacecraft
and ground links.

While these problems are less significant for the short
range communications that are most common for
modular spacecraft systems, achieving a scalable and
universal networking capability with long-distance
ground and interplanetary links still necessitates their
consideration in system design. In particular, these
problems make the required dynamic connections and
routing for reconfigurable systems very difficult to
achieve reliably and in short response times. Also,
using an asymmetric ”patchwork” of protocols will
drive up cost, complexity, and the number of poten-
tial failure modes while decreasing designed compat-
ibility between systems and should be avoided. It is
desirable to keep communications as simple as possi-
ble, to increase reliability and minimize failure cases:

• Simple hardware based on COTS technology is
cheaper, more accessible, and often more mature;

• Reducing protocol and routing complexity re-
duces the number of potential failure modes in
the system;
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• Ensuring that the system is introspectable, ex-
plainable and easily diagnosed increases main-
tainability;

• Less layers of abstraction and logic increases the
response speed of the system to changes

• Keeping the protocol as ”universal” as possible
simplifies compatibility across both physical do-
mains and temporal old/new versions of systems.

For a wired system, dynamic reconfiguration and
routing are essential to cope with arbitrary changes
in topology. For a wireless system, peer-to-peer mesh
networking is at present the most appropriate topol-
ogy as decentralization increases robustness for sys-
tems that may not be in close proximity to a func-
tioning master device.

II.ii Communications Hardware

Modular spacecraft buses to date have been pre-
dominantly physically connected, and based on ex-
isting terrestrial and spacecraft interfaces. Previous
research has recognized the value of modular and re-
configurable robots for use in space hardware. Yim et
al. focused on three characteristics of modular robots
that were advantageous: Compactness and Lightness,
Robustness, Versatility and adaptability.28 However,
appropriately dynamic communications systems have
not yet been developed for space use.18 Considering
instead the prototypes of modular robotic systems
developed for terrestrial experimentation, a wide va-
riety of docking systems and communications sys-
tems have been developed and tested.25 Since CE-
BOT was introduced by Toshio Fukuda and Yoshio
Kawauchi in 1990,10 the majority of modular systems
have used wireless infrared serial communications,
wired UART-based serial streams, wired Controller
Area Network (CAN) bus, and Bluetooth wireless
communications, as shown in 1. While these systems
are well established and inexpensively accessible in
terrestrial communications systems, they have gener-
ally been chosen for convenience and efficiency rather
than high performance and robustness in adverse con-
ditions, with data rates generally below 1Mbps. How-
ever, many modern satellite and space robot sensor
packages have much higher data rate requirements.

IEEE 802.3 based Ethernet and IEEE 802.11 based
Wireless Ethernet have much higher data rate capac-
ities, but the only example of wired Ethernet in mod-
ular robotics was found in CoSMO, part of the Sym-
bricator project.16 The Ethernet physical layer has
many desirable properties for robust networking sys-
tems: it supports data rates well above 10Mbps, uses

Fig. 1: Percentage use of terrestrial communication
systems in modular robots24

Fig. 2: Changes in the use of communications tech-
nologies in modular robots over time

EMI resistant differential pairs, is galvanically iso-
lated, and uses readily available off-the-shelf compo-
nents and wiring solutions. These features have made
Ethernet a ubiquitous networking technology for ter-
restrial computing systems, and are an ideal basis for
modular networking systems. SpaceWire itself is the
only comparable alternative, but is in most cases re-
liant on rare and expensive hardware for the physical
layer. The main disadvantages to be overcome are the
complexity of the software stack required, and the re-
liance on static addressing and routing (a limitation
shared with SpaceWire). As Figure 2 shows, there
has been a steady movement towards more complex
wireless communications such as Wifi and Bluetooth
over time. However wired serial connections are still
preferred in many cases.
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II.iii Networking Technologies

Ubiquitous data transportation throughout the
Space environment has been explored frequently
through adaptation of terrestrial networking proto-
cols, mainly Transfer Control Protocol/Internet Pro-
tocol (TCP/IP) which is used for most Internet traf-
fic. The majority of these approaches have been
classified by Wang et al. into protocols that sim-
ply build on TCP, protocols that modify both TCP
and the underlying network hardware infrastructure,
and novel protocols developed independently from
TCP.23 While TCP and its connectionless counter-
part UDP (User Datagram Protocol) are excellent
examples of protocols that have maintained near-
universal compatibility between Internet devices for
decades, they were also designed for a very differ-
ent set of requirements and constraints than modern
robots and space hardware devices have.

Communications channels in space typically have
long propagation delays (less than a second to or-
bit, but up to several hours for interplanetary links),
higher bit error rates (from 10−5 for intersatellite
links to 10−1 for interplanetary links), and bandwidth
asymmetry between uplink and downlink channels
typically on the order of 1:1000.1 TCP is designed
under the assumption of very low error rates and uses
a congestion window mechanism for avoiding packet
collisions, which wastes significant amounts of link
time and misinterprets any data loss as a congestion
loss, and demands a retransmission if losses or er-
rors are detected, resulting in long delays from small
errors. This also makes TCP undesirable for use
in cyber-physical and real-time systems in general.
While TCP can be re-designed to some degree to mit-
igate these problems, the protocol will generally no
longer be compatible with terrestrial TCP networks,
necessitating the division of the network into multi-
ple separate transport connections, and subsequently
increasing complexity and potential modes of failure.
Since this limits the value of re-using the TCP de-
sign, and it is not ideal for robotic use in any case,
we focus in this work on novel communications con-
cepts that are not based on TCP/IP. It is assumed
that connecting these networks to existing Internet
infrastructure will unavoidably involve a dedicated
gateway. However, this does not prevent re-use of ex-
isting terrestrial hardware technology such as IEEE
802.3 physical interfaces that may already be suitable
for space communications systems.

There is general agreement on a fundamental set of
technologies required for space networking that can
be derived from this previous work. Foremost among

these are the concept of Delay-Tolerant Networking
(DTN). DTN is a classification for protocols that pro-
vide higher reliability and performance for networks
that experience the complications and problems de-
scribed in the space environment, mainly character-
ized by the long and frequent delays in transmission
that result. The main feature of DTN networks is
usually the replacement of TCP/IP’s immediate for-
warding and anti-congestion and retransmission-on-
error mechanisms with a store-and-forward informa-
tion routing model, in which a copy of all informa-
tion sent over the link is cached at each routing step,
stored long enough to ensure that the data reaches its
next destination as confirmed by an acknowledgement
(ACK), and is used as a fallback in case retransmis-
sion is required.3 This kind of protocol is well suited
to robotics and real-time systems and makes the net-
work far more robust to point failures and trans-
mission delays. The Licklider Transmission Protocol
(LTP) is one of the most mature DTN protocols, and
uses selective block transmission mechanisms to en-
sure that complete datasets are transferred efficiently
over channels with large BER, delays and channel
asymmetry. IT has been modelled with respect to
performance in deep space networks27 and has sev-
eral open-source implementations, particularly the
Interplanetary Overlay Network (ION) developed by
Ohio University and the NASA Jet Propulsion Lab-
oratory.14 Drawbacks of the protocol itself include
that it is designed only for point to point links (not
networks) and lacks congestion control, but these fea-
tures can be added to the protocol itself or the soft-
ware stack implementing it. Achieving a ”single”
protocol for end-to-end networking across modular,
orbital, planetary, and interplanetary scales is often
considered infeasible, as any of the networking com-
plications listed above may occur at any link in this
multi-scale chain of connections. One proposed solu-
tion to this is the use of Bundle Protocol (BP) as a
store-and-forward ”overlay” for custody-based delay-
tolerant retransmission of a variety other link-specific
protocols.20 Although the LTP and BP approaches
overlap in terms of storing information in DTN, it
is intended to ”bundle” LTP as well as TCP and
UDP through the use of a Convergence Layer Pro-
tocol (CLP) compatibility layer.

Efficient mesh networking systems have also been
developed for spacecraft constellations flying in for-
mation, which are closest to the use case of a modular
satellite system. A Mesh network architecture using
a Time Division Multiple Access scheme was devel-
oped for small satellite constellations at NASA Mar-
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shall Space Flight Center.2 TDMA has the advan-
tages of saving power by turning off the transceiver
during sleep periods in an active frame, and being
implementable on a wide variety of serial communica-
tion radio hardware by moving network management
into software. The system was tested using XBee Pro
2.4GHz radios, then on an AstroDev Li-1 UHF radio,
then on a formation of 6 quadcopters using XBee ra-
dios with GPS. While this network does not provide
all the functions of a robust DTN such as store-and-
forward routing and bundling, it is a very simple and
flexible transport for serial data in a mesh network.

II.iv Data Representations

Modular space hardware represents the extreme of
hardware compatibility challenges, as modular hard-
ware placed in space may be required to maintain
compatibility with other systems engineered and de-
ployed potentially decades after its original launch,
without the possibility of detailed re-engineering
work to maintain compatibility with evolving stan-
dards. As such, schema-based protocols and data se-
rializers that are artificially limited to use of a fixed
ontology or dictionary of messages are a bad fit to
such systems. It is desirable to have the data pay-
load of DTN networks flexible enough to carry any fu-
ture message type, including variable-size data pack-
ets. Self-describing semantics and also simplicity in
the network protocol and routing also contributes to
future-proofing by not over-constraining the uses of
the network. However it may also make interpre-
tation of messages more complex. It is also impor-
tant that heterogeneous physical layers can be net-
worked using a single protocol as translation of data
between multiple protocols can increase complexity
immensely due to the number of translation per-
mutations needed, significantly increasing processing
power required and the number of failure modes.

Schema-free and self-describing communications
(dynamically interpretable semantics) means that
many strongly-typed data formats that rely on fixed
schemas and message types should be avoided, for
example ASN.1, Protocol Buffers, Cap’n Proto, flat-
buffers, and most uses of XML. XML schemas such as
XML Telemetric and Command Exchange (XTCE)
are considered to be XML for comparison purposes,
since the overheads for translation to binary and the
limitations in dynamic expansion f the schema still
exist. In the case of many transformations such as
that used in ASN.1, there is a significant encoding
overhead incurred when converting a memory rep-
resentation of a message into a serial stream, as was

made clear in the implementation of the InFuse Com-
mon Data Fusion Framework using TASTE7.8 Mes-
sagePack is an example of a serializer without the
requirement for a schema and uses a very efficient se-
rialization transformation. However, there is still a
serialization overhead when encoding arbitrary data
into the data stream. The most efficient solution is to
make the memory storage format of the information
to be transferred equivalent to the serialization for-
mat when sent through communications channels, as
is done in the Cap’n Proto serialization. This requires
consideration of the serialization of data at low levels
in the communications software stack and potentially
inclusion of the serialization mechanism within the
transport layer of communications. Isomorphism to
convert data to and from markup languages such as
XML is also desirable given the dependence of many
data management systems on human-readable stor-
age formats, and for facilitation of debugging and
system explainability to operators. AXON eXtended
Object Notation and Rusty Object Notation (RON)
with Serde XML are formats that facilitate this capa-
bility. Currently, Msgpack and Cap’n Proto are used
for serializaton, and further investigation of the suit-
ability of Flatbuffers and Dhall will also be done. A
comparison chart of serialization protocols is shown
in Table 1.

III. Modular System Prototype

III.i Modular Hardware

As a research platform for reconfigurable modu-
lar cyber-physical systems, we have developed a het-
erogeneous modular robot platform based on a cubit
lattice topology that can be assembled into a variety
of structures through a standardised docking mecha-
nism that provides mechanical and electrical connec-
tion between modules. We have named this platform
Mo* due to the wide range of modular technologies
that it can serve. The Mo* modular robot platform
has been developed to meet the following high level
goals:

1. Hardware based on a 10cm cubic unit of volume

2. Heterogenous modules in different form factors
possible using a common docking system

3. Design capacity to include arbitrary payloads in-
cluding actuators, power, and advanced compu-
tation

4. Flat surfaced genderless docking system with
single sided disconnect
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3.1 Modular Hardware 3 MODULAR SYSTEM PROTOTYPE

Protocol No Schema Dynamic Size Dynamic Types Semantics No Copy Efficient Readable
XML Optional Yes Yes Yes No No Yes
YAML Yes Yes Yes Yes No No Yes
ASN.1 No No No No No Yes As Code
AXON Yes Yes Yes Yes No No Yes
RON Yes Yes Yes Yes No As Rust With Serde
JSON Yes Limited Limited Yes No No Yes

Protobuf No Yes Yes Yes No Yes Yes
Msgpack Yes Yes Yes Yes Nearly Yes Yes

Cap’n Proto No Yes Yes Yes Yes Yes Yes
Flatbuffers Optional Yes Yes Yes Yes Yes Yes

Dhall Programmable Yes Yes Yes Yes Yes Yes

Table 1: Caption

5. Capability to transmit both power and data be-
tween modules

The physical module enclosures are simple in de-
sign and 3D printed from PLA for laboratory use
as shown in Figure 3, but could similarly be con-
structed of more robust and environmentally toler-
ant materials. A cubic module is composed of six
”tiles” that form the sides of the cube, and can con-
tain electronic or mechanical hardware to perform
part of the module’s function. Four pairs of mag-
nets with spring-loaded pogo pins behind them are
currently used in the docking interfaces to ensure a
strong connection between eight separate conductive
contacts. In configurations where magnetic fields are
undesirable, the magnets can be replaced with spring
contacts and retracting mechanical latches, some ini-
tial designs of which have been prototyped for Mo*.
Single-sided disconnect and mechanical unlatching
are accomplished in active interfaces by rotating op-
posing polarity pairs of magnetic contacts such that
alignment is reversed, pushing the interfaces apart
physically. A micro metal gear motor rotates all four
pairs simultaneously using a spur gear arrangement
as shown in Figure 4.

A complete module is assembled as shown in Fig-
ure 5. Tiles need not all have active interfaces, nor
any interfaces at all in the case of sensor or com-
munications tile requiring a clear surface. Passive
interfaces as shown in Figure 3 with static, unactu-
ated magnets or latches can also be used to lower
cost and complexity of modules without preventing
an attached active interface from using single-sided
disconnection although at least one interface must be
active in order to achieve controlled mechanical con-
nection and disconnection. The differing properties
of each side of each module must be taken into ac-
count in the use of planning algorithms for assembly

Fig. 3: 1U (10cm) prototypes of Mo* sub-modular
spacecraft hardware17

Fig. 4: Arrangement of gears in an active module
docking interface24
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of modular structures.

III.ii Physical Communications Interfaces

Following a review of mature and commercially-
used hardware as a basis for building suitable com-
munications hardware for harsh environments, The
IEEE 802.3 100Base-TX Ethernet standard was cho-
sen as the basis for modular networking in Mo*. This
allows the interface to operate with only four connec-
tor wires, unlike 1000BASE-T which requires eight,
and makes it possible to use the industry standard
Reduced Media Independent Interfaces (RMII) and
high-speed Medium Access Control (MAC) hardware
which is the fastest interface for many commercial mi-
crocontrollers. Inexpensive and easily available MAC
hardware can be used for essential galvanic isolation
of the conductive contacts between modules. The
complexity of Ethernet hardware and multiple-device
routing topologies, not used on most modular robots,
is seen as a necessary expense in this case, as bus
topology communications such as RS-232 RS-485 and
CAN bus have the drawback that a single faulty de-
vice on the bus can cause the entire bus to become un-
usable. Isolating each communications link between
modular elements using dynamic routing of data and
power, so that redundant routes around faulty links
and hardware can be formed, is a critical benefit for
modular systems and is the main feature of the mod-
ular communications system on Mo*.

The processing hardware used in each module for
this communications research is built around a Xil-
inx Zynq 7020 System-on-a-Chip, which contains two
arm processing cores and Artix-7 FPGA fabric, as-
sembled on a Trenz Electronic TE0720 System on
Module. This forms a communications ”master”
tile shown in Figure 6 one of which is required in
each module for routed bus communications through
multiple modules.The FPGA fabric on the device
is utilised for networking protocol implementation
and connecting to the 6 Ethernet physical layer
transceivers. The Texas instruments DP83825 Ether-
net PHY is used for this. Each transceiver then con-
nects to a corresponding tile in the module via Molex
PicoBlade pin headers. The tile interface contains an
IEEE 802.3 transformer IC which then connects to
the tile magnets. In addition to this Ethernet data
bus, Controller Area Network (CAN) is used within
modules as a secondary low-bandwidth system man-
agement data bus. The CAN bus is isolated and not
used externally as it is a multidrop bus topology and
any electrical faults or external connections may dis-
able it for all hardware within the module.

Table 2: Pinout of Power, 802.3 and CAN on internal
PicoBlade connectors

TD P TD N GND VBus CANH CANL VBus GND RD P RD N

Fig. 5: 5 tiles assembled into a 1U cube with all in-
terfaces actuated24

Fig. 6: Master tile using Xilinx Zynq System-on-
Module and 6-port Ethernet-based switch imple-
mented in FPGA24
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An additional benefit of using Ethernet PHY tech-
nology is tolerance to connector contact permutations
via automatic Media Dependant Interface (MDI)
crossover detection. Any modular interface with rota-
tional symmetry that allows connections at multiple
angles, such as a cube face with 90◦ angles of symme-
try, will cause a different permutation of contact con-
nections between modules when rotated. The most
common solutions to this are either to use geometri-
cally invariant contacts such as concentric rings, or to
duplicate all contacts at each angle of symmetry, both
of which cause complications and restrictions on de-
sign. IEEE 802.3 Ethernet physical layers can detect
whether a direct connection to a hub or switch with
TX and RX contacts crossed over (MDI-X) is used,
or connection to another identical interface (MDI),
and also if differential pairs themselves are crossed
over. Mo* interfaces use 8 contacts duplicated once
for redundancy, and arranged in differential pairs as
per IEEE 802.3 standard. Module docking causes
TX and RX contacts normally crossed over (MDI-X)
when they are connected front-to-front at 0◦ or 180◦,
but cross over differential pairs when connected at
90◦ or 270◦. This can be automatically detected by
the PHY without disruption to communications, and
can also be used to help detect the orientation of con-
nected modules internally.

Ethernet PHY Interface

State machines were implemented for handling
transmission and reception on the RMII interface.
There are 4 main state machines operating. One for
generating the di-bit stream and handling the TX
control signal on the RMII interface from byte-wise
data, one for receiving the di-bit stream on the RMII
interface and converting it to byte-wise data, one for
frame transmission, and one for frame reception. The
state transition diagram for the frame transmission
state machine is shown in Figure 7. The state tran-
sition diagram for the frame reception state machine
is shown in Figure 8

MDIO Interface

The MDIO (Management data input/output) in-
terface is used for accessing the register space of the
Ethernet PHYs, as defined in the IEEE 802.3 stan-
dard. It is a serial bus consisting of a clock and one
data signal line. The data line is bi-drectional. The
MDIO standard defines a packet structure to use to
communicate with PHYs. The preamble is 32 bits
long, consisting of repeating ’1’. ST is the start field
that is two bits long and always ”01”. The OP field
is the OP code which denotes whether the packet is

Fig. 7: State transition diagram for the state machine
that handles RMII frame transmission.

Fig. 8: State transition diagram for the state machine
that handles RMII frame reception.
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a read (”10”) or write (”01”) operation. PHYADDR
is the address of the PHY to be accessed. The stan-
dard allows up to 32 phys to share the same mdio bus.
REGADDR denotes the register to be read from or
written to. TA is a turnaround field. When data is
being written to the PHY, the MAC writes ”10” to
this line. When data is being read, the MAC releases
the data line for reception. DATA is a 16 bit data
field for reading from or writing to the register space
at the address specified earlier in the packet. In to-
tal a packet on the MDIO line is 64 bits long. The
MDIO clock can be user defined, based on the chip
being used. The DP83825 chip used in this system al-
lows a maximum clock rate of 25MHz on the MDIO
bus. The DP83825 PHY only supports up to four
PHYs sharing an MDIO bus, so two seperate MDIO
buses had to be used in this system.

Motor Interface

The motor that actuates the master tile is driven
by the DRV8837 Low-voltage H-bridge driver from
Texas Instruments. This has two motor control in-
puts and a sleep input. There is a quadrature encoder
attached to the motor which has two outputs. The
absolute position of the tile connector is obtained by
a DRV5055 hall effect sensor that provides an analog
output proportional to the observed magnetic field
strength at a normal to the top of the device. All of
the digital signals are electrically routed to the FPGA
portion of the Zynq device and then internally routed
to the EMIO peripheral of the Arm microprocessors.
This allows direct control of the motor and reading
of the quadrature encoder from the processor por-
tion of the Zynq device. The analog output from
the hall effect sensor is routed to an XADC periph-
eral on the Zynq device, and can be monitored from
the ARM processors through the AXI interface. At
power on, if the connector is not connecting to an-
other module at present, the tile controller initiates
a homing sequence where the connector rotates 1 full
revolution counted by the number of steps from the
encoder. The analog input from the hall effect sensor
is also sampled at this stage, and where a positive
peak forms is taken as the home position, as this is
where the south facing side of a magnet is passing
over the sensor. The connector then goes to its home
position.

CAN interface

The CAN interface is implemented as an embed-
ded CAN peripheral on the Zynq device. This inter-
faces with the ARM processing cores on the device
directly. Xilinx provides a library for interfacing with

the CAN peripheral. This library provides functions
to set up the CAN device, pass data to a TX buffer,
and receive data from an RX buffer. The CAN in-
terface is primarily used to allow the master tile to
control the docking connectors on each of the slave
tiles. The master tile sends a message to the slave

Slave Tiles

The embedded software on the slave tile is primar-
ily responsible for communicating with the master
tile via the CAN bus and controlling the motor that
actuates the tile docking connector. There is a CAN
peripheral built in to the microcontroller. The device
supports a bit rate of up to 1Mbit/s. Motor control is
achieved using the same devices as on the master tile.
At start up the microcontroller homes the connec-
tor, sweeping the connector through one full rotation
while keeping track of encoder steps and sampling the
hall effect sensor that is connected to one of the ana-
log inputs on the device. After this the home position
of the connector can be determined and the controller
moves the connector to that position. After this, the
controller sits idle waiting for a CAN message from
the master tile to initiate any other actuations that
are required. The slave tile board also includes a 12
pin GPIO extension connector. This has 10 GPIO
connections and two power connections. Combina-
tions of these pins can be used as digital IO, Analog
IO or SPI,UART or I2C communication. This pro-
vides flexibility in designing extension boards for the
slave tile.

IV. Mo* Network Protocol

IV.i Data Format

The hardware layer of the networking system is
built around IEEE802.3 compliant Ethernet PHY
transceivers. As such it is required to use the stan-
dard Ethernet frame format as the base data unit of
the system. An Ethernet frame consists of a preamble
that is used to ensure that the two connected PHYs at
either end of the MDI link are synchronised. This is a
stream of 7 bytes of ”10101010”. Following this there
is a start of frame delimiter byte of ”10101011”. After
this there is a field containing the destination MAC
address followed by the source MAC address. These
are each 6 bytes long. The MAC address is a unique
identifier of the Ethernet MAC. After this there is
a field containing the length of the frame, specified
in the standard as a maximum of 1500 bytes for the
data field. Finally there is a cyclic redundancy check
field which is used to confirm that a packet has been

9
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successfully received. The structure of the packet is
outlined in table 3.

On top of these Ethernet frames, the Mo* pro-
tocol packets are used as the packet for data trans-
mission around the network. The aim of this proto-
col was to implement a system that is as simple as
possible. Keeping the packet header to a minimum
increases the rate at which usable data can be propa-
gated around the network. It is the hope that this
protocol could be implemented on other hardware
mediums in modular systems. As such it is required
to have another form of ID in the protocol header. If
the protocol were only to be used on Ethernet hard-
ware layers, then the MAC address could be used as
the only identifier for modules, as this can be set in
the packet construction logic in the FPGA. At cur-
rent, the maximum number of modules expected to
be in a network is less than 125, which would be a
solid three dimensional structure of 5x5x5 modules or
larger structures that are not completely filled, such
as a rover configuration. As such a one byte field is
used for each module ID. The packet begins with the
destination ID, then the source ID. IDs are assigned
during the topology discovery phase of the protocol.
After this there is a data class field. This is used
to allow efficient processing of packets. The relevant
protocol state machine is assigned to process a packet
based on this data class field. Following this there is a
length field, which is equal to the length of the packet
including the header. Finally the header contains a
checksum that is uses to check the integrity of the
packet. The data in the packet can be a minimum
of eight bytes long and a maximum of 65529 bytes
long. This is equal to 216 − headerlength. If these
packets are larger than the maximum Ethernet frame
size, then they are fragmented across multiple Ether-
net frames and reassembled on the receiver side. This
protocol packet structure is shown in Table 4.

IV.ii Store-and-Forward Serial Transfer

The core feature of Delay-Tolerant Networking is
the use of a robust Store-and-Forward system be-
tween communications nodes on a network. Remote
caching of data is used in some other networking sys-
tems, such as Network File System (NFS) local file
caching and Bluetooth Low Energy (BLE), but the
requirements for DTN are significantly more onerous
as each node effectively needs to take ownership of
all data and metadata at each routing node from the
start to the destination.

Mo* implements this by caching several metadata
for each received data packet at each communication

node:

1. A database of packets that have recently passed
through the node

2. Source and destination addresses for routing
each packet received

3. Timestamps for reception and destination ac-
knowledgement for each packet

4. A cached routing table to each destination in the
current network

5. A cached table of content (services and capabili-
ties) for each destination in the current network

Of these, the latter is the most costly in terms of
storage, but is necessary to make the network robust
to sudden disruptions. The routing table for mod-
ules within the network is refreshed when first con-
nected, and on detection of topology changes or faults
in the system. The routing table for each node also
includes the semantics of its services and capabilities,
currently limited to a simple table of static variables
that need to be refreshed by sending packets through
the network.

The process of resource and route discovery is com-
putationally expensive, so periodic refreshes should
be avoided as much as possible, and storing as much
information as possible persistently on each node is
important to efficient operation of the system. This
is similar to the operation of Generic Attribute Pro-
file (GATT) caching used in Bluetooth 5.1 and up to
store remote attribute handles in a database on each
mesh node. The challenge in this approach is being
able to detect reliably when a refresh of the network
is required. If a network link is detected to be non-
functional (consistently no response on transmission
of data over a timeout threshold), all nodes must then
refresh their databases by re-building the routing and
content table by sending a broadcast ”refresh” packet
throughout the network.

IV.iii Protocol Simulation

To enable development of networking protocols, re-
configuration algorithms, and task planning in the
Mo* modular robotic system, a simulation environ-
ment has been created to model the relevant aspects
of the system. The simulation environment contains
two main components. The physical simulation is
performed using the Unity engine, and a custom
POSIX compliant network simulator has been cre-
ated to model the network interconnections between

10
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Table 3: Format of an IEEE802.3 compliant Ethernet frame

Bytes 1-7 1 6 6 2 46-1500 4
Field Preamble SFD Dest MAC Source MAC Length Data CRC

Table 4: Mo* Protocol Format

Bytes 1 1 1 2 2 8-65529
Field Dest ModID Source ModID Data Class Length Checksum Data

Fig. 9: A modular rover configuration in simulation

modules. Unity was chosen as the physical simula-
tion engine as it is has a very flexible implementation.
All aspects of the unity simulation environment are
customisable through a common c# interface. Unity
uses PhysX for its physics engine. The network simu-
lator is time synchronised from the Unity simulator.
Arbitrary module configurations can be created in
the simulator. Currently a model of a kinematically
static module and a wheel module exists. With this,
modular rovers can be created in simulation, like that
shown in Figure 9.

The high level architecture of the simulator is
shown in Figure 10. The simulator is broadly split
in to two parts; the backend simulator, and the unity
simulator. The Unity simulator uses the Unity engine
to simulate all of the physical aspects of the system
including the connecting forces of the docking connec-
tors. The backend simulator handles all of the electri-
cal and software aspects of the modules including the
network model. This has been created from scratch
in C++. Attempts were made to integrate network
simulators such as NS3 in to the Mo* simulation en-
vironment, but this proved out of the scope of this
PhD. The two parts interface with each other using
inter process communication via the sockets API in
Linux.

The aim of the simulator was to create a flexible
simulation platform for modular robotics in which it
is relatively simple to alter components of the sim-
ulator for different scenarios. The back end simula-
tor is split in to various components for the different
parts of the system. There is a unity sim interface

module that handles the passing of data between the
backend simulator and the unity physics simulator
through the sockets API. This interfaces with a sim-
ulation manager module that is responsible for man-
aging data flow between and synchronising the Ether-
net channel simulator and the module manager. The
module manager is responsible for managing the data
flow between the various parts of each of the module
instances. In an attempt to make the simulator as
versatile as possible, each module instance itself was
split in to a PHY emulator, FPGA functions emula-
tor and Module code section. The goal of this was to
make it possible to write code for the different parts
of a module between the application code and the
FPGA, and test this with different PHY device im-
plementations. In hindsight, this was too optimistic
an undertaking. The system works as intended, but
took a lot longer than expected to get to this stage. A
simpler architecture would have allowed much more
time for experiments to be run. It is hoped that the
current implementation can be built upon to generate
a unified simulation environment for modular robots.

Experiments have been run to test the models of
the network side of the simulator. Experiments were
run on a 3x3x3 module strictly orthogonal network
of kinematically static modules. A broadcast packet
is sent from one of the corner modules, and the time
taken for that packet to reach all other modules in the
system is recorded. This experiment is repeated with
packet payload sizes from 1-5 bytes. The results from
this experiment is shown in Figure 11. These results
show the latency of the packet propagation increas-
ing with payload size as expected. A render of the
network of modules used in this simulation is shown
in Figure 12. Once full integration of a module’s me-
chanical and electronic components have been cre-
ated, this experiment can be repeated in hardware
to test the reality gap of the simulator, and tune the
parameters of the models used.

11
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Fig. 10: Network simulation architecture used for verification of Mo* protocol

12
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Fig. 11: Simulation results of propagation delay of a
broadcast packet in a strictly orthogonal network
for varying packet payload sizes (bytes).

Fig. 12: Render of a 3x3x3 strictly orthogonal net-
work of modules in simulation.

V. Wireless Communications

V.i Hardware Selection

For the requirements of a short-range, flexible,
high-bandwidth mesh network with off-the-shelf com-
ponents, IEEE 802.11 based ”WiFi” systems are clos-
est to the requirements. WiFi has been used in
several modular robotic systems, including Swarm-
bot, Imobot, SMORES and T.E.M.P.24 The IEEE
802.11s standard published in 2011 is a wireless Lo-
cal Area Network (LAN) standard for mesh net-
working using WiFi hardware. 802.11s defines an
architecture and protocol for both multicast and
unicast transmission using multi-hop routing, but
uses 802.11a/b/g/n/ac/ax point-to-point standards
to carry the actual traffic, and uses IEEE 802.21
based handoff between multiple network types. In
addition, routing requires at minimum the Hybrid
Wireless Mesh Protocol (HWMP) and optionally sup-
ports other protocols such as Optimized Link State
Routing Protocol (OLSR), Better Approach to Mo-
bile Ad-hoc Networking (B.A.T.M.A.N.), or others.
This makes an 802.11s software stack complex, rela-
tively power-hungry, and closely linked by design to
TCP/IP and other Internet protocols.

Other mature wireless networking hardware sys-
tems with lower power or complexity requirements
capable of mesh networking include Bluetooth, Blue-
tooth Low Energy (BLE), ZigBee, and NB-IoT which
is a low-power wide-area (LPWA) technology used
in 5G communications. High-performance propri-
etary mesh networks such as Wirepas and Rajant
Kinetic Mesh have been developed for specific ter-
restrial applications, but are not considered in this
work due to the closed and specialized technologies
used. Bluetooth, and BLE in particular, is focused on
schema-based variable writes and reads, which works
fairly well for non-dynamic data systems but modu-
lar systems will require significant adaptivity in the
descriptor-based framework. ZigBee is designed well
for mesh networking but generally requires a coordi-
nator or gateway node, and needs some adaptation to
be suitable for self-healing peer-to-peer communica-
tions. NB-IoT as part of the 5G suite of technologies
is potentially the best adapted, but hardware is not
yet easily and inexpensively available and deployment
is not complete as of yet in many applications.

V.ii Implementation

Implementation of wireless networking for Mo*
is still in development, but currently targets soft-
ware radio hardware and RISC-V ESP32-C6 micro-
controllers for experiments. While implementation
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of general communications functions into hardware
can be beneficial, moving network and protocol func-
tions into software as in2 has the advantages of allow-
ing communications to be largely platform-agnostic,
while additionally facilitating forward and backward
compatibility of protocols, which has been stated as
an important design goal. The implementation on
software radio hardware is intended to be largely
platform-agnostic for maximizing flexibility.

VI. Fault Tolerant Routing with ML

Dynamic and real-time optimization of routing be-
tween multiple elements in a network is a challenging,
multi-objective task that is still being explored. One
promising way to facilitate this is the use of Machine
Learning (ML) to allow the system to learn to adapt
to different configurations and operating conditions.

In a space-based optical network, optical links
between satellites and OGS can be affected by at-
mospheric conditions such as turbulence or adverse
weather conditions, which affects the requirements on
optical links to have a clear line of sight. Addition-
ally, ISLs could be affected by factors such as chang-
ing distances between satellites, capabilities of differ-
ent LCTs and varying solar background conditions.
These scenarios could cause performance degradation
on network links and lower throughput.

The ML solution to make the data-plane resilient
to outages is through implementing autonomic net-
work functionality by deploying a software applica-
tion on each switch node to monitor its links, analyse
the traffic to make a prediction on the link quality us-
ing ML and then implement local re-routing to send
the traffic on the best path to reach the desired end
point. This software application will be termed an
’Agent’.

The main feature of the Agent is the prediction
of link quality using a novel Machine Learning (ML)
model termed a deep temporal regressor (DTR). The
DTR takes as an input a small time series window
of network statistics arriving at the given node it is
deployed on and from this makes a prediction of the
link quality. An overview of the model architecture
is shown in Figure 13.

Following a prediction on link quality, the Agent
determines if some local re-routing action is required
and what the best path to the network end point
is based on its knowledge of the network topology
and latencies across the network that the different
Agents placed around the network have predicted.
The Agent applications can communicate with each
other, sending notifications of path updates so knowl-

Fig. 13: Architecture of the deep temporal regression
(DTR) model. Blue blocks are used at inference.

edge of a link degradation is shared with the nodes
immediately neighbouring a degraded link, or with
nodes within a limited local radius of the degraded
link. This allows for each Agent to calculate the
shortest path from itself to the destination at any
given time leading to a rapid local rerouting be-
haviour.

Results in Figure 14 show the improvement in
throughput that is gained through using the Agents
for local rerouting instead of a centralised SDN con-
troller at higher bandwidth reductions. Testing was
carried out at Craft Prospect’s ML test bench by inte-
grating Agents with an SDN network simulator based
on mininet. It is also a suitable methodology for
implementation on modular wired or wireless mesh
networks under fault and variable connectivity con-
ditions.

VII. Conclusions

We have presented our ongoing research towards
the creation of a ”Space Internet” with short-range
networking capacity for modular space robots and
satellites operating in proximity, aimed at applica-
tions such as the MOSAR and STARFAB modu-
lar space hardware ecosystems. The Mo* modular
robotic hardware prototypes and networking protocol
are part of an ongoing multi-disciplinary research and
development programme aimed at maturing adapt-
able, robust modular hardware for both terrestrial
and space applications by building on existing com-
mercial hardware with key innovations required for
modular ”ecosystems” to be useful. The results to
date show that it is possible to reach the challeng-
ing performance goals for modular space hardware
by applying innovative technologies for interfacing,
adaptivity, and ML-based optimization, although a
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Fig. 14: the average throughput after bandwidth lim-
itation for ML agent response and SDN controller
response. Datapoints are grouped by starting
throughput (1MBps and 2MBps) and the per-
centage reduction in bandwidth

significant amount of future work is needed to ma-
ture these technologies for safe use in space.

VIII. Future Work

VIII.i System Expansion

Currently, no sensor tiles have been created for
the Mo* system. There are a wide variety of sensor
tiles that could be created for varying applications.
Autonomous navigation of a modular rover could
be achieved with sensing capabilities such as cam-
era, LIDAR or IMU tiles. Tiles to conduct scientific
measurements gathering environmental data could
also be created. One can imagine this in the con-
text of a planetary exploration modular rover. Some
such tiles that could be developed include tempera-
ture,humidity,pressure, atmospheric light, and radia-
tion sensors.

An array of kinematic tiles and modules could be
developed for the Mo* system. Wheel tiles could en-
able reconfigurable rovers to be created. Modules
that allow even one rotational degree of freedom be-
tween two connection mechanisms could be connected
together in a chain configuration to create complex
mechanical structures with many degrees of freedom.
Linear actuation modules could also be developed.
This could enable configurations where active sus-
pension could be applied to modular rovers, or sensor
turrets that can accurately set their position relative
to the target or help maintain sensor stability during
locomotion.

Some work was done to implement a wheel module
in the system, but this was not completed and tested
within the time frame of the project. Giving the sys-
tem locomotion capabilities would aid in demonstrat-
ing the capabilities of modular systems in real world
settings. Multiple rover configurations could be im-
plemented to give the system the ability to adapt to
different terrains.

VIII.ii Environmental Testing

Evaluating the robustness of the Mo* communi-
cations system will require representative conditions
of what modular spacecraft will encounter. This
can include conditions ranging from Low Earth Or-
bit (LEO) to Deep Space, with significant differences
in temperature, radiation exposure, and other fac-
tors. Software simulation of bit errors and carrier
loss in communications channels, Single Event upsets
(SEUs) and other hardware faults will be performed
as a baseline. Ultimately, terrestrial network testing
with environmental factors and fault injection will be
done. It is also hoped that some hardware testing can
be carried out under representative space conditions.

VIII.iii Routed Power Switching

The electrical components for power sharing over
the Ethernet channel are similar to that of the
IEEE802.3af standard. This allows a DC voltage dif-
ferential to be applied between the data pairs. A sys-
tem could be developed where certain modules are
net producers of energy, containing large battery re-
serves. They could then supply power to other mod-
ules in the system that are net power consumers. In-
telligent power routing schemes could be developed
to efficiently share power around the system. This
could enable modules that have excess energy, or have
a lower mission priority, to share power to modules
that are critical to mission success. This could create
an intelligent power grid system with similar prop-
erties to national electrical grids, ensuring power is
supplied to the correct parts of the system to ensure
mission success.

VIII.iv Autonomous Software Deployment

Currently each of the tiles in a module need to have
program code loaded on to them individually. This
involves five programming operations for the slave
tiles, with the code being the same apart from the
CAN bus ID which is individually assigned for each
tile. The master tile needs to be programmed sepa-
rately using Xilinx Vivado tools. Work was done to
implement programming of the slave tiles from the

15



8.5 ML-based Routing and Optimization REFERENCES

master tile, and loading new program code on to the
master tile through the external ethernet interface.
But this implementation has not been completed.

VIII.v ML-based Routing and Optimization

Simulation has verified that Machine Learning
based optimization of routes can improve both
throughput and response latency. Work is ongoing to
explore how ML can be applied to the Mo* protocol
and software simulation to improve routing efficiency,
dynamic response, and robustness in modular wired
and wireless mesh networks.
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lal Wehbe, Jérémi Gancet, Alessandro Bianco,
et al. A common data fusion framework for space
robotics: architecture and data fusion methods.
ESA, 2018.

[8] Raul Dominguez, Mark Post, Alexander Fabisch,
Romain Michalec, Vincent Bissonnette, and
Shashank Govindaraj. Common data fusion
framework: an open-source common data fu-
sion framework for space robotics. Interna-
tional Journal of Advanced Robotic Systems,
17(2):1729881420911767, 2020.

[9] Marius Feldmann, Juan A Fraire, Felix Walter,
and Scott C Burleigh. Ring road networks: Ac-
cess for anyone. IEEE Communications Maga-
zine, 60(4):38–44, 2022.

[10] Toshio Fukuda and Yoshio Kawauchi. Cellular
robotic system (cebot) as one of the realization
of self-organizing intelligent universal manipula-
tor. In Proceedings., IEEE International Con-
ference on Robotics and Automation, pages 662–
667. IEEE, 1990.

[11] Ahmed Ismail Abdel Ghafar, Ángeles Vazquez
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