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A B S T R A C T

In this study, we employ a Moran’s i based Lasso (Mi-Lasso) methodology to address the spatial dependence of an
unspecified functional form, investigating the association between a country’s economic growth and the rate of
deforestation. Our aim is to explore the existence of a forestry environmental Kuznets curve (EKC). Our approach
to handling spatial dependence overcomes limitations identified in existing EKC literature. We estimate a series
of cross-sectional data models spanning the period from 1990 to 2020 for 146 countries. Our findings indicate a
non-linear relationship, revealing a change peak rate of deforestation over time. Additionally, we observe that
the income threshold at which the deforestation rate begins to decrease changes over time with differences
observed between model specifications. Crucially, our results highlight that failing to account for spatial
dependence leads to a significant absolute upward bias in ordinary least squares (OLS) estimates of income and
worse model fit.

1. Introduction

Understanding the relationship between environmental degradation
and economic development is an important question, especially in the
context of accelerating climate change. Grossman and Krueger (1991),
Shafik and Bandyopadhyay (1992) and Grossman and Krueger (1995)
are among the first to examine the relationship between economic
growth and environmental quality using the environmental Kuznets
curve (EKC). Subsequently, a huge literature has developed examining
empirically and theoretically the EKC. Insightful reviews and surveys of
the literature are provided by Stern (2017), Shahbaz and Sinha (2019),
and Purcel (2020).

One natural resource that has been the subject of significant empir-
ical EKC research is forestry (EKCf). Forests, are an important resource at
both global and local levels. At the global level, forests play a pivotal role
in carbon storage (Seymour and Busch, 2016) whereas at the local level,
forests play a key role in supporting biodiversity. The extent of biodi-
versity loss of forest specialist species is reported by Almond et al.
(2022) to have been 53% between 1970 and 2018. However, the eco-
nomic value of forest ecosystem services is still globally significant (Taye
et al., 2021).

The main reason why forestry has been examined in relation to the
EKC hypothesis is because of the well documented extent of deforesta-
tion that has occurred (Williams, 2003, 2008). Historically, human ac-
tivity has played a crucial role in reshaping the forest landscape for at
least 6000 years, with timber being used as a coforforpolre input for
economic development (Williams, 2008). Recently, the FAO (2021) re-
ports that the world is still experiencing net forest loss, although at a
declining rate. In contrast, Song et al. (2018) using satellite data found
since 1982 that total forest cover has increased, as the decline in tropical
forest cover has been outweighed by the gain in forest cover in boreal,
subtropical, and temperate regions. This growth in forest cover is
described in the literature as the forest transition (Mather, 1992; Wolf-
ersberger et al., 2015; Barbier et al., 2017; Benedek and Ferto, 2020). It
can occur at the country or region level and indicates a change from net
forest area loss to net gain. Over the same period economic growth has
been relatively constant and Caravaggio (2020b) argues this is poten-
tially evidence for the presence of the EKCf. In addition, over the last 20
years, carbon dioxide emissions from land-use, land-use change, and
forestry have shown a slight decrease (Friedlingstein et al., 2021).

Importantly, when investigating the EKCf, only a few studies have
tried to account for the spatial dimension of deforestation that is
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inherent in the data (McPherson and Nieswiadomy, 2005; Mills and
Waite, 2009; Mills Busa, 2013).1 The need to consider the spatial aspects
of the data stem from the simple observation that many countries in
close proximity to each other may well have similar forest resources
management strategies, uses based on common social norms and types
of forest. As such there is good reason to assume that we need to at
minimum take account of spatial dependence in country level data sets.
This observation is supported by the findings reported inMills andWaite
(2009) and Mills Busa (2013).

Our paper, makes two contributions to the literature. First, we
examine the EKCf by robustly accounting for spatial correlation using
Eigenvector Spatial Filtering (ESF) (Griffith, 2000, 2003). This approach
means that we can avoid possible mis-specification of the spatial parts of
the model as we no longer need to generate a weighting matrix prior to
model estimation. To implement ESF we select the relevant subset of
eigenvectors using Morans’ i Lasso (Mi-Lasso) that is proposed by Barde
et al. (2023). The Mi-Lasso spatial filtering procedure and importantly,
the statistical properties of the model estimator and the assumptions
necessary for consistent eigenvector selection are known.

Second, due to the availability of forest data from the FAO (2021)
global forest resource assessment, we consider four time periods:
1990–2000; 2000–2010; 2010–2015; and 2015–2020. GDP and the
controls are all taken from the starting year, i.e., 1900, 2000, 2010 and
2015. This allows us to see the effect that initial income has on the
annual deforestation rate over each of the time periods. Importantly, it
means that we estimate the EKCf at different points in time. This is a
departure from much of the existing literature that typically reports key
model results such as turning points for the EKC/EKCf over the entire
time period of a sample using time series or panel data methods. There
are exceptions in the literature including Chow and Li (2014) and Ber-
nard et al. (2015). As explained by Chow and Li (2014) they estimate a
series of cross-section model specifications to avoid the econometric
issues that emerge when employing time series data and/or panel data.
For example, issues with regard to spurious correlation among the re-
gressors can exist as a result of unit roots in the data. Furthermore, given
that many of the data series examined in the literature are at least 30 or
40 years long there is good reason to assume that the shape and
behaviour of the EKCf may change over time. Within the wider literature
it has been noted by Apergis (2016) that the EKC relationship is not time
invariant. Similar results have been reported by Mikayilov et al. (2018)
who employ time varying coefficient cointegration to take account of
this issue. They also note that if model parameters are time varying but
are assumed to be fixed that regression models will yield spurious re-
sults. This data issue also relates to the possibility of there being struc-
tural breaks in data series which if ignored can mean that many of the
time series tests employed in model development to establish if data are
stationary will be biased.

Our approach effectively treats each period as structurally different
(in parameters) and not just evolving with some time-dependence which
is the underlying rationale for dynamic panels that employ time lags. In
addition, we also avoid the problem that a one period lag may be
different at different points in time (i.e., non-stationarity). For the
econometric approach we have implemented our results indicate that
the likely turning point of the EKCf is not stable such that the level of
GDP required before a country experiences an increase in forest cover
changes over time which supports the findings reported by Apergis
(2016) and Mikayilov et al. (2018).

The rest of the paper is outlined as follows, Section 2 briefly reviews
the antecedent literature, Section 3 then reviews the existing econo-
metric approaches to dealing with spatial dependence and details the
method we employ in this paper. Section 4 then describes the data used
and Section 5 presents our results. Finally, Section 7 offers our

concluding remarks.

2. Literature review

2.1. EKCf antecedent literature

In terms of empirical research on the EKCf, Bandyopadhyay (1992)
were the first to examine forests as an environmental indicator for 77
countries over the period 1961 to 1988, finding minimal support for the
EKCf hypothesis. Subsequently the EKCf was examined by Cropper and
Griffiths (1994), using panel data for 64 tropical countries identifying
for Latin American and African countries evidence of the EKCf, but not
for Asian countries. Many other studies have followed including Koop
and Tole (1999); Bhattarai and Hammig (2001a); Ehrhardt-Martinez
et al. (2002); Araujo et al. (2009); Oliveira and Almeida (2011); Damette
and Delacote (2012); Polomé and Trotignon (2016); Leblois et al.
(2017); Wang et al. (2019); Caravaggio (2020b); Murshed (2020); Aja-
naku and Collins (2021); Farooq and Dar (2022); Pablo-Romero et al.
(2023). These studies have employed various types of data including
country level panel data sets as well as within country data. There are
also a varied collection of econometric methods that have been
employed to take account of data structure and associated econometric
and modelling requirements (Ajanaku and Collins, 2021).

Another issue that has attracted a great deal of interest in the liter-
ature is the selection of control variables to employ in model specifi-
cations. Pablo-Romero et al. (2023) provides a useful summary of
control variables used in studies examining the EKCf. Typical variables
employed include: demographic variables such as population variables;
political institutions; measures of institutional quality; energy use; direct
foreign investment; trade openness; and agricultural land use. The
rational for why specific variables are included or excluded is frequently
ad hoc in that the choices do not have no theoretical justification. In
addition, how a specific variable is measured has been examined in
detail. There are discussion regarding the appropriate choice of the
dependent variable as well as examples of which way to measure a
control variable (e.g., trade openness (Tameko, 2024)).

In terms of findings reported in the literature, Choumert et al. (2013)
provides an excellent meta-analysis of the EKCf. They consider 69 cross-
country and country-specific studies between 1992 and 2012, and find
that more recent studies with better data, and applying newer econo-
metric techniques tend not to find the hypothesised inverted U-shape.
However, and in contrast, Caravaggio (2020b), reviews more recent
literature and conducts cross-country analysis, finding evidence sup-
porting the EKCf hypothesis. Thus, much of the EKCf literature provides
mixed results when looking for the presence of the EKCf, such that the
existence of the EKCf remains an open research question (Ajanaku and
Collins, 2021). These mixed findings reflect the wider EKC literature as
noted by Bernard et al. (2015).

2.2. EKCf and spatial correlation

A standard core assumption placed on cross-sectional units in
econometric analysis is independence. If this assumption is violated, i.e.,
the cross-sectional units are dependent, then the estimates will be biased
and/or inconsistent. In cross-country or regional analysis such as that
being conducted for the EKCf, it is hard to justify that the cross-sectional
units (countries or regions) are independent.

In general, the standard approach to spatial modelling in economics
requires the researcher to define a spatial weighting matrix (SWM) that
explicitly defines the the pair-wise spatial interactions and which parts

1 A larger number of papers have estimated spatial models when looking at
other environmental indicators (Jeetoo and Chinyanga, 2023).
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of the model are spatially correlated.2 In this paper, we employ a
different approach to dealing with the spatial dependence, given, we
view the spatial parameters in the underlying model as nuisance pa-
rameters, as we are only interested in the direct effects, i.e., the co-
efficients on income per capita, controlling for any possible spatial
effects. Therefore, rather than trying to explicitly specify a structural
spatial model and then estimating the corresponding spatial parameters,
we instead employ ESF (Griffith, 2000, 2003). The ESF methodology
approximates the spatially correlated parts of the underlying model
using a subset of eigenvectors from the SWM as regressors in a linear
regression framework. ESF has an additional advantage, as demon-
strated in simulations by Cherodian (2023), that the procedure is robust
to mis-specification of the SWM. To select the relevant subset of eigen-
vectors, we use the Morans’ i Lasso (Mi-Lasso) proposed in Barde et al.
(2023).

In terms of the ECKf Mills and Waite (2009) and Mills Busa (2013)
account for the spatial correlation using an approach called principal
coordinate of neighbour matrices (PCNM) spatial filtering (Borcard and
Legendre, 2002). This approach accounts for the spatial correlation in a
model in an agnostic way. PCNM uses principal coordinates (i.e., ei-
genvectors) from a singular value decomposition of a truncated
Euclidean distance matrix. The truncation is implemented through a
distance threshold, whereby distances exceeding this threshold are
assigned an arbitrarily large value, they propose 4(α) where α repre-
senting the threshold. The number of candidate eigenvectors is sensitive
to the threshold and coordinates with negative eigenvalues cannot be
used as they are complex. Both Mills and Waite (2009) and Mills Busa
(2013) only use two eigenvectors without discussing how the eigen-
vectors were selected or what threshold was used for truncation in their
analysis. Mills and Waite (2009) estimate a panel quantile regression
model with and without the two eigenvectors. They find the eigenvec-
tors are significant but do not qualitatively change the results. Mills Busa
(2013), also estimate a panel quantile regression model, finding both
eigenvectors are significant but do not discuss or present results without
the eigenvector. How these eigenvectors are selected and under what
conditions consistent selection is achieved in the procedure used is
unclear.

Another strand of the EKC and EKCf literatures also considers spatial
dependence but refers to it as cross-sectional dependence (e.g., Apergis
(2016); Erdogan (2024); Tameko (2024)). This part of the literature
generally employs panel data specifications and undertakes various
statistical tests of time series properties of the data as well as tests for
cross-sectional dependence such as the Pesaran CD test proposed by
Pesaran (2021). Both Apergis (2016) and Tameko (2024) report evi-
dence of cross-sectional dependence in their data but it is then less clear
how exactly they deal with this in the resulting models that are esti-
mated. For example, Tameko (2024) reports a large set of results
generated by an array of different model specifications that yield sig-
nificant variation with regard to the turning point of the EKCf. However,
the fact that cross-sectional dependence is being identified supports our
use of econometric model estimators that explicitly take account of this
data property.

3. Method

3.1. Model overview

In general, initial empirical investigations into the EKCf typically
estimate the following reduced-form regression specification:

f = β1y+ β2y2 + β3y3 +Xζ + ε (1)

where f is an n× 1 vector of forest cover, y is an n× 1 vector of GDP, X is
an n× q matrix of controls and ε is an n× 1 error vector. Importantly,
this is a reduced form equation where the control variables included
vary significantly in the literature. A useful summary of recent examples
in the EKCf literature is provided by Pablo-Romero et al. (2023).

The classic EKCf inverted u-shape requires a positive β1 coefficient, a
negative β2 coefficient, and a zero β3 coefficient. This would indicate
that the forest cover falls (deforestation rate increases) initially with y
until a point and then rises (falls) as y increases further. The majority of
studies testing ECKf hypotheses adopt this type of model specification
and estimate the model using conventional statistical techniques.
However, we note, that Caravaggio (2020a) has argued that a second
turning point can occur as a result of forest recovery at the point of
maximum reforestation.

Only a limited number of papers have endeavored to consider spatial
(cross-sectional) dependence in the examination of either the EKC or the
ECKf. As noted, spatial modelling in economics typically requires the
researcher to pre-define two key components:

1. An n× n SWM where the elements define the pair-wise spatial in-
teractions, i.e., the spatial structure; and

2. Which parts of the structural model are spatially correlated, i.e. a
spatial economic model.

Some commonly used spatial economic models are, the first-order
spatial autoregressive (SAR(1)) model and the spatial error model
(SEM).3 A problem with pre-specifying spatial models like the SAR(1) or
SEM is that there is no guarantee the chosen model is the correct spec-
ification. A standard robustness check that is applied in spatial eco-
nomics is assessing the sensitivity of the parameter estimates to different
SWMs. If model estimates prove sensitive to the choice of SWM, re-
searchers often attribute this to the choice of SWM. However, as
demonstrated by LeSage and Pace (2014), as long as the SWMs are
reasonably well correlated, results should not be overly sensitive to the
exact SWM employed. Instead the observed sensitivity may stem from
the misspecification of the spatial economic model rather than the
choice of SWM. As such LeSage and Pace (2014) argue that researchers
should prioritise specifying the spatial model over finding the ‘ideal’
SWM.

Earlier EKC research incorporating spatial dependence such as
Maddison (2006), and Wang and Ye (2017), estimated SAR(1) model
specifications. In contrast, Hao et al. (2016) employed a model a spatial
lag of the dependent variable and exogenous variables, to examine coal
consumption, and Chang et al. (2021) estimated a dynamic panel with
fixed effects and a spatial lag of the dependent variable using General-
ised Method of Moments.

3.2. Underlying model specification

Our underlying model is:

Δf =
∑3

i=1
βiyi +Xζ + g(W,Δf,X,y)+u (2)

where Δf is the change in forest cover, and g(W,Δf ,X, y) is some linear
in parameter function of the spatial weights matrix W and possibly Δf ,
X, and y which can include not just first-order spatial lags but also
higher-order spatial lags (powers). This type of model specification has

2 An alternative name used to describe spatial correlation is cross-sectional
dependence which is widely used in econometrics and within the global vec-
tor autoregressive (GVAR) literature the weighting matrix is referred to as the
connectivity matrix (Elhorst et al., 2021).

3 A SAR(1)is model with a first order spatial lag of the dependent variable
and a SEM is a model where the errors follow a pure spatially autoregressive
process.
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generally been employed in much of the earlier EKCf literature.
Turing to the SWMWwe employ a specification similar to Csereklyei

and Stern (2015). We use a binary connectivity matrix where pairs of
countries get a one if they are neighbours and zero otherwise. Our
definition of neighbour is if they share a land border (this includes
lakes), and for countries with no land borders, we judge their nearest
neighbour. For example, New Zealand’s nearest neighbour is Australia
and Australia closest neighbour is Indonesia, thus New Zealand and
Australia has one and two neighbour, respectively. The matrix is sym-
metric, and the diagonal elements are set equal to zero.4

3.3. Moran’s i based lasso

With our underlying model shown in eq. (2), there is substantial
uncertainty over which parts of the model exhibit spatial correlation, i.e.
the functional form of g(W,Δf ,X, y). However, as we have already
noted, we are not explicitly interested in estimating any corresponding
spatial parameters, the coefficients of interest are the βi’s. Thus, rather
than explicitly specifying which parts of the models are spatially
correlated and estimating a standard spatial economic model like the
SAR(1) or SEM, we approximate g(W,Δf,X,y) using a subset of eigen-
vectors from the SWM rather than eigenvectors from a lower triangular
distance matrix like the filtering procedure of (Borcard and Legendre,
2002). See Appendix C for a technical explanation of how eigenvectors
of the SWM can be used to approximate the spatial terms in a general
spatial economics model.

With Eigenvector Spatial Filtering (ESF), the idea of using eigen-
vectors from the SWM as explanatory variables to control/proxy for any
spatially correlated omitted variables i.e. g(W,Δf,X,y), was proposed
by Griffith (2000, 2003). A spectral decomposition of W is defined as
W = EDEʹ where E is an n× nmatrix of eigenvectors and D is a diagonal
matrix of eigenvectors. If the full set of eigenvectors are used this
approach then yields the high-dimensional ESF reduced form model:

Δf =
∑3

i=1
βiyi +Xζ +Eγ +u (3)

where γ is a vector of unknown constants. We view Eγ as a first order
approximation of g(W,Δf,X,y). It is important to note that eq. (3) is a
high-dimensional linear equation as there are more parameters (3+ k+
n) than observations (n). Thus, estimation by OLS is infeasible. How-
ever, Griffith (2000, 2003) argue each of the eigenvectors can be viewed
as a distinct spatial pattern and only a specific subset of these patterns
(eigenvectors) will be related to the dependent variable Δf and will thus
have non-zero coefficients, i.e., the parameter vector γ is sparse. OLS
estimation is possible if just the subset of relevant eigenvectors is used.
However, as the relevant subset is unknown, a selection procedure is
required. To solve this selection problem, we use the Lasso-based pro-
cedure proposed in Barde et al. (2023).

Selection via Lasso was first proposed by Seya et al. (2015), with the
objective function:

[β̂, ζ̂ , γ̂] ∈ min
⎧
⎨
⎩

⃦⃦
⃦⃦
⃦Δf −

∑3

i=1
βiyi − Xζ − Eγ

⃦⃦
⃦⃦
⃦

2

2
+ θ‖γ‖1

⎫
⎬
⎭ (4)

where β = [β1, β2, β3 ]́ and θ is the Lasso tuning parameter. It is important
to note here that the choice of θ determines the number of selected ei-
genvectors. With this model specification the selection problem can now
be considered a tuning parameter calibration problem. Seya et al. (2015)
proposed using k-fold cross-validation prediction accuracy to estimate θ.
However, as the aim of ESF is to eliminate patterns of spatial correlation,
there is no guarantee the target of prediction accuracy will achieve this.

Additionally, when the Lasso tuning parameter is derived by cross-
validation, the existing results on theoretical error bounds require the
assumptions of random/independent observations to hold (Chetverikov
et al., 2021). Given the eigenvectors are derived from a matrix that
describes the dependence relationship between the observations, these
bounds are unlikely to hold within the ESF framework.

Instead, we propose using the more intuitive Moran’s i based Lasso of
(Mi-Lasso) proposed by Barde et al. (2023), where the Lasso tuning
parameter is calibrated from the standardised Moran’s i (z) of the OLS
residuals of (1).Specifically they replace θ in (4) with θ = z−2. The
intuition behind using the squared inverse transformation is based in
assumption that when the level of spatial correlation (z) is low/small
only a small set of eigenvectors necessary, which requires a large value
of θ and vice versa high levels of spatial correlation, the squared inverse
transformation achieves this Additionally, squaring z insures θ is posi-
tive which is necessary for Lasso to have a unique solution (Hastie et al.,
2015). Barde et al. (2023) also shows the conditions necessary for
consistent eigenvector selection and derives a finite sample performance
bound for the Lasso-based procedure. We estimate the model by post
Lasso i.e. OLS estimation with the selected eigenvectors of Mi-Lasso
included. We also take account of heteroscedasticity by employing
robust standard errors.

4. Data

In this paper, we are working with several cross-sections of country
level data between 1990 and 2020. The cross-sections we employ vary in
size from 124 countries up to 146. Our forest data is drawn from the FAO
(2021) global forest resource assessment. This data was first published at
10-year intervals, and subsequently at 5-year intervals. In our analysis
we use data for the years 1990, 2000, 2010, 2015 and 2020.

Table 1 presents the variables, along with descriptive statistics, we
employ in our analysis. Our preferred dependent variable following
Hyde (2012) is the annual rate of deforestation. In addition, we have
employed a measure of the annual change in forest cover as an alter-
native dependent variable as a means to assess robustness of our model
results. The formula used to derive these variables are shown in ap-
pendix section B. We also note, that the annual change in forest cover
over the four periods is small but negative.

The variable, we use to measure income is real Gross Domestic
Product per capita (GDPpc) at chained purchasing power parity in 2017
dollars ($1000) taken from the Penn World Tables (PWT) Version 10.01
(Feenstra et al., 2015) for each of the sampling years..5 In our model,
GDPpc serves as a proxy for economic development. We observe that the
distribution of GDPpc has become more skewed over time.

Turning to our control variables, the existing EKCf literature has a
somewhat eclectic set of reduced form model specifications that employ
a varied set of control variables. We employ several controls in our
model specification that are taken from the FAO (2021) which is in
keeping with the antecedent literature (Pablo-Romero et al., 2023).
First, we have a measure of forest area (Fora). This variable has been
used in previous research by Culas (2012). This measure appears to stay
relatively constant over the time periods considered in our study at the
aggregate level but this does not reveal the changes occurring at the
country level. Second, we have a measure of the annual ratio of agri-
cultural land area divided by total land area (ALg). This measure is
frequently employed within the EKCf literature (Pablo-Romero et al.,
2023). Third, We employ a measure of population density (Popd).
Finally, following Bhattarai and Hammig (2001b), Wehkamp et al.
(2018) and Murshed (2022), we additively combine measures of civil
liberties (CL) and political freedoms (PR) variation as a proxy for in-
stitutions and democracy (PRCL). It has been reported in the EKCf

4 The SWM used is provided in the data appendix.
5 The PWT data is available here: https://www.rug.

nl/ggdc/productivity/pwt/?lang=en
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literature that differences in institutional and governance between
countries do have different effects on forest cover. These data are ob-
tained from Freedom House (Freedom-House, 2024) with each index
measured on a declining scale of 1–7.67

A visual examination of the raw data is presented in Fig. 1, which
shows a scatter plot of the average deforestation rate against initial real
GDP per capita for the four periods considered. The curvature of the
solid line is obtained through the application of a non-parametric
Locally Weighted Scatterplot Smoothing (LOWESS) (Cleveland and
Devlin, 1988),8 estimator, offering preliminary evidence of a non-linear
relationship between the the deforestation rate and country level
GDPpc.

5. Results

We now present our first set of model results in Table 2 where we
compare the Mi-Lasso estimated (filtered - including the selected ei-
genvectors - columns 2, 4, 6, and 8) results with the (unfiltered - columns
1, 3, 5, and 7) OLS results for the four periods considered. Columns 1 and
2 are for 1990–2000, columns 3 and 4 are for 2000–2010, columns 5 and
6 are for 2010–2015 and columns 7 and 8 show the years 2015–2020.

Table 2 shows the filtered and unfiltered results for the four time
periods considered without any controls included.9 The unfiltered OLS
results (columns 1, 3, 5, and 7) indicate a complex cubic relationship
between the rate of deforestation and income for three out of four time
periods examined. Similarly, when we examine the filtered Mi-Lasso
estimates, we also find that for three out of four time periods that we
observe a cubic relationship. The time period for which the EKCf re-
lationships appears to disappear is 2010–2015.

Importantly, when the selected eigenvectors are included, the
magnitude of the estimated coefficients and associated standard errors
shrink, and the EKCf relationship changes somewhat. Also, the inclusion
of the eigenvectors is further justified by the improvement in the fit of
the filtered models (adjusted R2) and given that the partial F-test on the
Mi-Lasso selected eigenvectors is statistically significant at the 1 % level
for three periods and at the 10 % level for the fourth. This shows that the
underlying spatial process explains a substantial part of a countries
deforestation rate, and by correctly accounting for this process, we can
get a very good model using just a simple model set-up.

Next, we consider model results once the controls are included.
The results in Table 3 show the unfiltered (OLS - columns 9, 11, 13

and 15) and the filtered (Mi-Lasso - columns 10, 12, 14 and 16) model
specifications. The controls we have employed are frequently found to
be statistically insignificant except for the ratio of agricultural land area
divided by total land area (ALg) for the earlier time period 2000–2010
and in 2015–2020 for several of the controls. The impact of the inclusion
of the controls is seen by the adjusted R2 being lower than in the cor-
responding columns in Table 2. However, the impact of the inclusion of
the eigenvectors (filtering) remains significant. The adjusted R2 for the
filtered models is significantly higher and the partial F-test on the
selected eigenvectors is always significant at the one or 10 % level for all
four periods considered. We can also see that the income coefficients are
similar to the model specifications without the inclusion of the controls
(i.e., Table 2) in that the absolute magnitude of the coefficients as well as
their standard errors are generally equal or smaller compared to the

Table 1
Descriptive statistics and definitions.
Variable Definition Countries Mean St.

Dev.
Min Max

Period: 1990–2000
Δf Annual change

in forest cover
146 −0.07 1.06 −4.23 5.55

Df Annual rate of
deforestation

146 −0.01 1.12 −3.51 7.16

y Real GDP pc
($1000)

146 10.77 15.36 0.71 144.84

Fora Forest area
(1000 ha)

124 33.08 99.27 0.03 808.95

ALg Annual ratio of
agricultural
land to total
land area

124 0.21 1.45 −6.1 9.19

Popd Populations
density

124 0.86 1.13 0.01 7.93

PRCL Political
freedoms +

124 7.85 4.08 2.00 14.00

Civil liberties
Period: 2000–2010

Δf Annual change
in forest cover

146 −0.06 0.76 −2.51 2.82

Df Annual rate of
deforestation

146 −0.04 0.76 −2.24 3.21

y Real GDP pc
($1000)

146 12.51 16.28 0.54 111.00

Fora Forest area
(1000 ha)

142 28.68 91.74 0.03 809.27

ALg Annual ratio of
agricultural
land to total
land area

142 0.1 1.05 −2.83 3.99

Popd Populations
density

142 0.95 1.23 0.02 9.81

PRCL Political
freedoms +

142 7.26 3.87 2.00 14.00

Civil liberties
Period: 2010–2015

Δf Annual change
in forest cover

146 −0.11 1.11 −5.90 7.59

Df Annual rate of
deforestation

146 0.08 1.14 −5.25 8.84

y Real GDP pc
($1000)

146 17.20 17.73 0.71 83.52

Fora Forest area
(1000 ha)

143 28.12 90.53 0.03 815.14

ALg Annual ratio of
agricultural
land to total
land area

143 0.11 1.4 −10.96 3.2

Popd Populations
density

143 1.08 1.39 0.02 11.34

PRCL Political
freedoms +

143 6.93 3.85 2.00 14.00

Civil liberties
Period: 2015–2020

Δf Annual change
in forest cover

146 −0.23 0.74 −3.56 1.13

Df Annual rate of
deforestation

146 −0.21 0.72 −3.32 1.16

y Real GDP pc
($1000)

146 18.17 18.16 0.85 82.38

Fora Forest area
(1000 ha)

143 27.97 90.34 0.03 814.93

ALg Annual ratio of
agricultural
land to total
land area

143 0.06 0.81 −2.87 4.21

Popd Populations
density

143 1.15 1.50 0.02 12.00

PRCL Political
freedoms +

143 7.03 3.97 2.00 14.00

Civil liberties

6 The data from Freedom House that we use is available at
https://freedomhouse.org/report/freedom-world
7 We did consider trade openness as a control variable (Gräbner et al., 2021).

We used the trade share ratio and found that it seriously reduced model per-
formance and was therefore not included in our final model specification.
8 LOWESS function splits the data into subsets and then fits a low degree

polynomial to each of the subsets using weights least squares.
9 The estimates of the eigenvector coefficients for all model specifications are

available upon request.
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Fig. 1. Annual deforestation rate and GDP per capita.
The solid line is a LOWESS (locally weighted scatterplot smoothing) function. Each plot includes 146 countries.

Table 2
Results excluding controls - dependent variable annual deforestation rate.

Dependent variable:
Df
(1) (2) (3) (4) (5) (6) (7) (8)

y 0.103*** 0.034** 0.078*** 0.027*** 0.049 0.059* 0.077*** 0.051***
(0.024) (0.016) (0.016) (0.008) (0.041) (0.030) (0.017) (0.010)

y2 −0.003*** −0.001** −0.002*** −0.001*** −0.001 −0.001 −0.002*** −0.001***
(0.001) (0.0004) (0.0005) (0.0002) (0.001) (0.001) (0.001) (0.0003)

y3 0.00001*** 0.00001** 0.00001*** 0.00001*** 0.00001 0.00001 0.00002*** 0.00001***
(0.00000) (0.00000) (0.00000) (0.00000) (0.00001) (0.00001) (0.00000) (0.00000)

Constant −0.581*** −0.059 −0.465*** −0.162** −0.507 −0.581** −0.787*** −0.667***
(0.149) (0.123) (0.097) (0.065) (0.325) (0.245) (0.141) (0.081)

Period 1990–2000 1990–2000 2000–2010 2000–2010 2010–2015 2010–2015 2015–2020 2015–2020
Estimator OLS Mi-Lasso OLS Mi-Lasso OLS Mi-Lasso OLS Mi-Lasso
Adjusted R2 0.129 0.748 0.116 0.842 0.029 0.237 0.141 0.791
Partial F-statistic – 19.05*** – 30.28*** – 3.36* – 15.74***

*p<0.1; **p<0.05; ***p<0.01. Figures in parenthesis are robust standard errors. OLS is a regression with no eigenvectors included and Mi-Lasso is a regression which
includes the selected eigenvectors from Mi-Lasso (Barde et al., 2023). The ‘Partial F-statistic’ is for an F-test on the included eigenvectors. All regressions include 146
countries.
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unfiltered OLS estimates for three of the time periods. The exception is
2010–2015, models 13 and 14 for which we now see that the quadratic
term on income is marginally statistically significant for the filtered
model specification (14).

Turning to Table 4 this shows the number of selected eigenvectors
and their significance for the filtered models estimated. This table re-
ports the number of eigenvectors that are statistically significant at the
1, 5 and 10% levels for all models. What we observe is that once we
include controls in our model specifications far fewer eigenvectors are
selected. This result varies by time period and generally the reduction in
eigenvectors selected positively correlates with a reduction in the
adjusted R2. The likely reason for this occurring is that controls not only
do not improve model fit but are likely introducing noise that impairs
the performance of the Mi-Lasso estimator.

The meaning of our model results in regard to the EKCf, Figs. 2 and 3
show model predictions for non-parametric LOWESS functions of the
fitted values from the regressions presented in Tables 2 and 3 against
initial levels of GDPpc in the four periods examined. For each of the time
periods, we identify the initial turning points that allow us to compare
differences that occur between model estimates and across the four time
periods.

The first thing to note, is that there are marginal differences between
the Mi-Lasso and OLS results in terms of the turning points when we
include and exclude the controls. Concentrating on the predicted model
results that include the controls (Fig. 3) for the period 1990–2000 (Fig. 3
(a)), the turning point for GDPpc is the quite similar for the Mi-Lasso and

OLS estimates. However, in stark contrast, for the period 2000–2010
(Fig. 3(b)) the turning point is now significantly higher for the OLS
specification. Also, the Mi-Lasso turning point is much lower for
2000–2010 compared to 1990–2000 indicating that the turning point
can change location over time. We also note that for these two periods
that the shape of the LOWESS estimator results are significantly different
for high values of GDPpc. This result likely occurs because of some
outliers in the data which can be seen in Fig. 1.

Next, if we examine Fig. 3(c) and (d), the turning points are much
higher for the period 2010–2015 than any other periods and again the
OLS turning point is somewhat larger than the Mi-Lasso equivalent.
Interestingly, when we examine the turning point for 2015–2020, we see
a significant decrease in the point estimates which again suggests that
the EKCf is not stationary. Also, like the earlier periods the shape of the
LOWESS estimator functions varies significantly across the time periods.

Finally, we graphically summarise the predicted average in defor-
estation and GDPpc in Fig. 4. This figure illustrates the revealed level of
variation in the estimated quadratic turning point for the four time pe-
riods examined. The variation that is revealed is striking and it suggests
that the EKCf relationship varies across time and that the variation is not
monotonic.

6. Discussion

Overall, our results confirm that after accounting for spatial corre-
lation, there is a non-linear relationship between the average

Table 3
Results including controls - dependent variable annual deforestation rate.

Dependent variable:
Df
(9) (10) (11) (12) (13) (14) (15) (16)

y 0.106*** 0.091*** 0.075*** 0.048*** 0.061* 0.063** 0.073*** 0.073***
(0.027) (0.029) (0.018) (0.011) (0.034) (0.030) (0.018) (0.017)

y2 −0.003*** −0.002*** −0.002*** −0.001*** −0.001 −0.002* −0.002*** −0.002***
(0.001) (0.001) (0.001) (0.0003) (0.001) (0.001) (0.001) (0.001)

y3 0.00001*** 0.00001*** 0.00001*** 0.00001*** 0.00001 0.00001 0.00002*** 0.00001***
(0.00000) (0.00000) (0.00000) (0.00000) (0.00001) (0.00001) (0.00000) (0.00000)

For a −0.001 −0.001 −0.0004 −0.001*** −0.0002 −0.0002 0.0001 0.0001
(0.001) (0.001) (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

ALg 0.036 0.040 −0.107* −0.111*** 0.001 0.013 −0.230* −0.192**
(0.100) (0.102) (0.059) (0.042) (0.030) (0.034) (0.123) (0.090)

Popd 0.019 −0.012 0.029 −0.003 0.134 0.089 0.048 0.061**
(0.080) (0.066) (0.033) (0.022) (0.088) (0.061) (0.030) (0.029)

PRCL −0.008 0.003 0.035* 0.007 −0.002 −0.026 0.013 0.029*
(0.040) (0.034) (0.021) (0.010) (0.023) (0.024) (0.014) (0.015)

Period 1990–2000 1990–2000 2000–2010 2000–2010 2010–2015 2010–2015 2015–2020 2015–2020
Estimator OLS Mi-Lasso OLS Mi-Lasso OLS Mi-Lasso OLS Mi-Lasso
Adjusted R2 0.104 0.306 0.151 0.652 0.029 0.239 0.191 0.329
Partial F-statistic – 2.14 – 28.853*** – 3.38* – 5.67***
Countries 124 124 142 142 143 143 143 143

*p<0.1; **p<0.05; ***p<0.01. Figures in parenthesis are robust standard errors. OLS is a regression with no eigenvectors included and Mi-Lasso is a regression which
includes the selected eigenvectors from Mi-Lasso (Barde et al. (2023)). The ‘Partial F-statistic’ is for an F-test on the included eigenvectors. The number of countries
varies due to missing covariate data, this is especially acute for 1990, as many of the countries were part of the USSR then.

Table 4
Number and significance of selected eigenvectors - dependent variable annual deforestation rate.

(2) (10) (4) (12) (6) (14) (8) (16)
No of Eigenvectors 32 3 55 22 1 1 51 3
Significant at 1% level 25 0 50 18 0 0 43 2
Significant at 5% level 5 3 3 4 0 0 4 1
Significant at 10% level 1 0 1 0 1 1 2 0
Not significant 1 0 1 0 0 0 2 0
Period 1990–2000 1990–2000 2000–2010 2000–2010 2010–2015 2010–2015 2015–2020 2015–2020
Controls excluded included excluded included excluded included excluded included

Column number correspond to the equivalent columns in Table 2 and 3.
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deforestation rate and GDPpc. However, this relationship appears to be
changing with time and there is no obvious increase or decrease of the
key turning point which varies significantly across the four periods
examined. Like Mills and Waite (2009); Mills Busa (2013), we find the
inclusion of eigenvectors significant, but unlike Mills and Waite (2009);
Mills Busa (2013), we find their inclusion changes the parameter esti-
mates of GDPpc which in turn has an influence on the predicted turning
point of the relationship.

For many of themodel specifications examined, we find evidence of a
non-linear relationship that is changing with over time. We have iden-
tified this feature of the EKCf because we have estimated a series of
cross-sectional models. This approach to model estimation is in keeping
with that employed by Chow and Li (2014) and Bernard et al. (2015)
who argue that econometric limitations associated with panel data
estimation are frequently overlooked inmuch of the empirical literature.
Importantly, by taking this approach, we observe a more complicated
relationship in some periods than others and we also find evidence that
the inverse-U shape postulated by the EKCf is potentially too simplistic.
Our results also indicate that the turning point for the average change in
forest cover appears to be unstable over time.

There are also differences in our estimates between the Mi-Lasso and
OLS model specifications as well when we included or exclude control
variables. The impact of different estimators on key model results has

previously been observed in the literature (e.g., Tameko (2024)). In
particular, our results indicate that the identification of a unique and
stable turning point for the EKCf is unlikely. This may not be surprising
given that the institutional and policy environment that shapes the use
of forest resources is changing and as such the incentives facing eco-
nomic agents are changing. In this context trying to empirically model
and capture all of the potential influences on forests is infeasible. Re-
searchers may well be better advised, if they wish to continue estimating
EKCmodel specifications, to indirectly capture the many possible spatial
influences using the Mi-Lasso estimator employed here.

In terms of the Mi-Lasso estimator employed in this analysis it is clear
that its performance is significantly influenced by the inclusion of
additional explanatory variables. Indeed, the introduction of several
standard and typical control variables used in the literature had a
detrimental impact on model performance. This finding raises an
interesting question about how best to model a reduced form EKCf
relationship. In principle, as opposed to employing a set of ad hoc
controls that are not theoretically justified, researchers may well be
better served to extract information from the latent spatial dependence
in the data that is implicitly taking account of many of the relationships
that the control variables are attempting to proxy for. Indeed, with such
an atheoretical model there could be a philosophical justification for
employing the Mi-Lasso estimator as opposed to control variables. This

Fig. 2. Predicted deforestation rate and GDP per capita - without controls.
D̂f are the fitted values from the regression results presented in Table D.1 and the blue and red lines are a LOWESS (locally weighted scatterplot smoothing) function,
and the dotted lines show the turning points.

R. Cherodian and I. Fraser Forest Policy and Economics 168 (2024) 103304 

8 



specific issue warrants further investigation. At the same, we also note
that Stern (2017) is somewhat critical of the empirical literature
examining the EKC and that new econometric models specification are
required that are derived from economic theory that examines the
conditions required for the EKC to exist (Shibayama and Fraser, 2014;
Alonso-Carrera et al., 2019).

Another econometric issue that is raised by this analysis relates to the
structure and form of the SWM. As noted, in the antecedent literature
researchers attempt to specify this part of the model and frequently
discuss issues with model fit in terms of poor SWM form. With the Mi-
Lasso estimator the SWM is recovered indirectly and from the results
presented here it does appear to change over time. Thus, assuming that
spatial dependence or at least the important parts of the spatial structure
is fixed and not random is another limitation of the standard approach
taken to dealing with spatial dependence.

Finally, there are some limitations with the research presented as
well as scope for further developments. First, the ESF and the use of a Mi-
Lasso estimator to select the relevant subset of eigenvectors is currently
limited to cross-sectional data sets. Clearly being able to extend this
methodology to panel data would enable a far richer set of model
comparisons. This modelling extensions remains an option for future
research. Second, the data used in the current study has made significant
use of the FAO (2021) global forest resource assessment. There are

extensive discussions within the literature regarding limitations of this
data. This has resulted in researchers considering alternative data
sources. For example, Tameko (2024) considers several alternative data
sources that are available and that offer the potential to improve our
understanding of the EKCf (e.g., Hansen et al. (2013); CCI (2017); Liu
et al. (2020). Examining these data with the econometric methodology
we have presented here would be an interesting extension.

7. Conclusions

In this paper, we have employed the Mi-Lasso estimator to take ac-
count of spatial dependence for the EKCf. The approach we have
employed is new to the EKCf literature and it overcomes issues with how
spatial dependence has previously been accounted for using the SWM. In
particular, by employing the Mi-Lasso estimator procedure, we take
account of the spatial dependence of an unobserved functional form plus
avoiding issues of model mis-specification that can arise from the chosen
form of the SWM.

To illustrate the utility of this method, we have employed data drawn
from the (FAO, 2021) global forest resource assessment between 1990
and 2020 for a sample of 146 countries. This data has been used to re-
investigate the relationship between a country’s GDP per capita and
the rate of deforestation. Overall, our results confirm that after

Fig. 3. Predicted deforestation rate and GDP per capita - with controls.
D̂f are the fitted values from the regression results presented in Table 3 and the blue and red lines are a LOWESS (locally weighted scatterplot smoothing) function,
and the dotted lines show the turning points.
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accounting for spatial correlation, there is a non-linear relationship
between the deforestation rate and GDPpc. This results is keeping with
many of the earlier studies that have examined this issue. Importantly, if
researchers ignore spatial correlation and report OLS estimates of the
GDPpc turning point these have been shown to exhibit a tendency to be
larger whilst the Mi-Lasso yields higher levels of model fit. Another
important finding of our research, given that we have estimated a series
of cross-sectional models, is that EKCf turning point appears to be
changing over time. Importantly, there is no obvious trend increase or
decrease of the turning point which varies significantly across the four
periods examined. We also observe that the turning points differ be-
tween the econometric specifications employed across the four time
periods. Taken together, our results indicate that identification of the
EKCf at the country level must take account of spatial dependence and
that the turning point is likely to be time varying.
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Appendix A. Countries used in analysis

Albania, Algeria, Angola, Argentina, Australia, Austria, Bangladesh, Belgium, Benin, Bolivia (Plurinational State of), Brazil, Bulgaria, Cameroon,
Canada, Chile, Colombia, Congo, Costa Rica, Côte d’Ivoire, Cuba, Cyprus, Democratic Republic of the Congo, Denmark, Dominican Republic, Ecuador,
Egypt, El Salvador, Finland, France, Gabon, Ghana, Greece, Guatemala, Haiti, Honduras, Hungary, India, Indonesia, Iraq, Ireland, Iran (Islamic
Republic of), Israel, Italy, Jamaica, Japan, Jordan, Kenya, Republic of Korea, Lebanon, Luxembourg, Malaysia, Mexico, Morocco, Mozambique, Nepal,
Netherlands, New Zealand, Nicaragua, Nigeria, Norway, Pakistan, Panama, Paraguay, China, Peru, Philippines, Poland, Portugal, Romania, Senegal,
South Africa, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Syrian Arab Republic, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkey, United
Kingdom, tanzania, United States of America, Uruguay, Venezuela (Bolivarian Republic of), Viet Nam, Zambia, Zimbabwe, Afghanistan, Armenia,
Azerbaijan, Belarus, Belize, Bhutan, Bosnia and Herzegovina, Botswana, Brunei Darussalam, Burkina Faso, Burundi, Cambodia, Central African
Republic, Chad, Croatia, Czech Republic, Equatorial Guinea, Eritrea, Estonia, Ethiopia, Gambia, Georgia, Germany, Guinea, Guinea-Bissau, Guyana,
Kazakhstan, Kyrgyzstan, Lao People’s Democratic Republic, Latvia, Lesotho, Liberia, Libyan Arab Jamahiriya, Lithuania, Macedonia, Madagascar,
Malawi, Mali, Mauritania, Moldova/republic of, Mongolia, Montenegro, Namibia, Niger, Papua New Guinea, Russian Federation, Rwanda, Saudi
Arabia, Serbia, Sierra Leone, Slovakia, Slovenia, Somalia, Suriname, Tajikistan, Timor-Leste, Turkmenistan, Uganda, Ukraine, United Arab Emirates,
Uzbekistan, Yemen, French Guyana, Myanmar, Eswatini.

Fig. 4. Predicted deforestation rate and GDP per capita - Mi-Lasso comparison.
D̂f are the fitted values from the Mi-Lasso regression results presented in Table 3 and the lines are a LOWESS (locally weighted scatterplot smoothing) function, and
the dotted lines show the turning points.
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Appendix B. Data construction formula

This table provides details of the formula used to construct several variables employed in model estimation.

Table B.1: Variable formulas.

Annual change in forest cover (Δf)

Δf =

⎛
⎝
(
forest areay=2000
forest areay=1990

)1/10
− 1

⎞
⎠× 100

Annual rate of deforestation (Df)
Df =

((forest area2000 − forest area1990
forest area1990

)
× 100

)
÷ 10

Annual ratio of agricultural land to total land area (ALg)
agland =

(agri landyear
land areayear

)

ALg =

((agland2000 − agland1990
agland1990

)
× 100

)
÷ 10

Appendix C. ESF technical example

This appendix provides a technical example of how eigenvectors for a SWM can be used in a linear regression framework to approximate a general
spatial economic model. Consider a model with a pth order spatial lags of the dependent variable and first order spatial lags of the exogenous variables;

y =
∑p

i=1
Wiyρi + Xβ +WXψ + v

=W
(∑p

i=2
Wiyρi + Xψ

)
+ Xβ + v

(5)

Where W is a symmetric weights matrix and v is a disturbance term fulfilling the usual assumptions of the linear regression model. A spectral
decomposition of W gives
W = EDEʹ (6)

where E is a n× n matrix of mutually orthogonal eigenvectors and D is a corresponding n× n diagonal matrix of eigenvalues.
Let ME = I− E(E’E)−1Eʹ be an orthogonal projection matrix where I is an n× n identity matrix.
Now substituting (6) into (5) and pre-multiplying by ME,

MEy = MEEΔEʹ
(∑p

i=2
Wiyρi + Xψ

)
+MEXβ +MEv

MEy = MEXβ +MEv
(7)

By the Frisch–Waugh–Lovell (partial regression) theorem (7) is equivalent to
y = Xβ+Eγ+v (8)

where γ is a n× 1 vector of unknown constants.
It is important to note here that estimation of (8) by OLS is infeasible as it is a high-dimensional linear model. Griffith (2000, 2003) argued that only

a subset eigenvectors will have non-zero coefficients, i.e. γ is sparse. Under this sparsity assumption (8) can be reduced to
y = Xβ+E*γ* +v (9)

where E* is an n× s matrix with s < n− k and γ* is the corresponding s× 1 parameter vector of non-zero coefficients.
To estimate the relevant s eigenvectors E* we use the Moran’s i based Lasso procedure described in Section 3.3.
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Appendix D. Model results using change in forest cover

Fig. 5: Average change in forest cover and GDP per capita.
The solid line is a LOWESS (locally weighted scatterplot smoothing) function. Each plot includes 146 countries.
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Fig. 6: Predicted average change in forestry and GDP per capita without controls.
Δ̂f are the fitted values from the regression results presented in Table D.1 and the blue and red lines are a LOWESS (locally weighted scatterplot smoothing) function,
and the dotted lines show the turning points.

Table D.1: Results excluding controls - dependent variable change in forest cover.
Dependent variable:
Δf
(1) (2) (3) (4) (5) (6) (7) (8)

y 0.104*** 0.049*** 0.079*** 0.026*** 0.054 0.064** 0.079*** 0.055***
(0.022) (0.011) (0.016) (0.007) (0.037) (0.028) (0.017) (0.011)

y2 −0.003*** −0.001*** −0.002*** −0.001*** −0.001 −0.001 −0.002*** −0.001***
(0.001) (0.0003) (0.0005) (0.0002) (0.001) (0.001) (0.001) (0.0003)

y3 0.00001*** 0.00001*** 0.00001*** 0.00001*** 0.00001 0.00001 0.00002*** 0.00001***
(0.00000) (0.00000) (0.00000) (0.00000) (0.00001) (0.00001) (0.00001) (0.00000)

Constant −0.644*** −0.186** −0.497*** −0.175*** −0.571* −0.642*** −0.813*** −0.695***
(0.155) (0.085) (0.100) (0.065) (0.294) (0.228) (0.146) (0.084)

Period 1990–2000 1990–2000 2000–2010 2000–2010 2010–2015 2010–2015 2015–2020 2015–2020
Estimator OLS Mi-Lasso OLS Mi-Lasso OLS Mi-Lasso OLS Mi-Lasso
Adjusted R2 0.163 0.916 0.141 0.920 0.060 0.260 0.155 0.855
Partial F-statistic – 65.10*** – 33.54*** – 3.74* – 12.30***

*p<0.1; **p<0.05; ***p<0.01. Figures in parenthesis are robust standard errors. OLS is a regression with no eigenvectors included and Mi-Lasso is a regression which
includes the selected eigenvectors from Mi-Lasso (Barde et al., 2023). The ‘Partial F-statistic’ is for an F-test on the included eigenvectors. All regressions include 146
countries.
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Table D.2: Results including controls - dependent variable change in forest cover.
Dependent variable:
Δf
(9) (10) (11) (12) (13) (14) (15) (16)

y 0.110*** 0.106*** 0.076*** 0.041*** 0.064** 0.066** 0.074*** 0.076***
(0.026) (0.026) (0.018) (0.010) (0.032) (0.029) (0.019) (0.018)

y2 −0.003*** −0.003*** −0.002*** −0.001*** −0.001 −0.002* −0.002*** −0.002***
(0.001) (0.001) (0.0005) (0.0003) (0.001) (0.001) (0.001) (0.001)

y3 0.00001*** 0.00001*** 0.00001*** 0.00000*** 0.00001 0.00001* 0.00002*** 0.00001***
(0.00000) (0.00000) (0.00000) (0.00000) (0.00001) (0.00001) (0.00000) (0.00000)

Fora −0.001 −0.002*** −0.0003 −0.001*** −0.0001 −0.0002 0.0002 0.0001
(0.001) (0.001) (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

ALg 0.028 0.006 −0.109* −0.120*** −0.004 0.008 −0.242* −0.227**
(0.096) (0.081) (0.059) (0.041) (0.030) (0.033) (0.130) (0.114)

Popd 0.027 −0.051 0.032 −0.003 0.126 0.083 0.049 0.045
(0.074) (0.060) (0.033) (0.021) (0.079) (0.056) (0.032) (0.031)

PRCL −0.001 0.004 0.035* 0.004 −0.005 −0.028 0.013 0.024
(0.035) (0.028) (0.020) (0.010) (0.023) (0.025) (0.015) (0.015)

Period 1990–2000 1990–2000 2000–2010 2000–2010 2010–2015 2010–2015 2015–2020 2015–2020
Estimator OLS Mi-Lasso OLS Mi-Lasso OLS Mi-Lasso OLS Mi-Lasso
Adjusted R2 0.116 0.347 0.156 0.713 0.040 0.241 0.189 0.287
Partial F-statistic – 2.78** – 57.02*** – 3.77* – 4.45**
Countries 124 124 142 142 143 143 143 143

*p<0.1; **p<0.05; ***p<0.01. Figures in parenthesis are robust standard errors. OLS is a regression with no eigenvectors included and Mi-Lasso is a regression which
includes the selected eigenvectors from Mi-Lasso (Barde et al. (2023)). The ‘Partial F-statistic’ is for an F-test on the included eigenvectors. The number of countries
varies due to missing covariate data, this is especially acute for 1990, as many of the countries were part of the USSR then.

Table D.3: Number and significance of selected eigenvectors - dependent variable change in forest cover.
(2) (10) (4) (12) (6) (14) (8) (16)

No of Eigenvectors 57 6 59 28 1 1 48 2
Significant at 1% level 48 0 52 27 0 0 35 0
Significant at 5% level 7 5 4 1 0 1 10 2
Significant at 10% level 2 1 2 0 1 0 2 0
Not significant 0 0 1 0 0 0 1 0
Period 1990–2000 1990–2000 2000–2010 2000–2010 2010–2015 2010–2015 2015–2020 2015–2020
Controls excluded included excluded included excluded included excluded included

Column number correspond to the equivalent columns in Table D.1 and D.2.
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