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False vacuum decay—the transition from a metastable quantum state to 
a true vacuum state—plays an important role in quantum field theory and 
non-equilibrium phenomena such as phase transitions and dynamical 
metastability. The non-perturbative nature of false vacuum decay and 
the limited experimental access to this process make it challenging to 
study, leaving several open questions regarding how true vacuum bubbles 
form, move and interact. Here we observe quantized bubble formation 
in real time, a key feature of false vacuum decay dynamics, using a 
quantum annealer with 5 ,5 64 s up erconducting flux qubits. We develop an 
effective model that captures both initial bubble creation and subsequent 
interactions, and remains accurate under dissipation. The annealer 
reveals coherent scaling laws in the driven many-body dynamics for more 
than 1,000 intrinsic qubit time units. This work provides a method for 
investigating false vacuum dynamics of large quantum systems in  
quantum annealers.

Nearly half a century ago, Coleman proposed the idea that our Universe 
may have cooled down into a metastable ‘false vacuum’ state after the 
Big Bang, and the time of tunnelling to the ground state or ‘true vacuum’ 
was estimated to be comparable to the lifetime of the Universe1. The 
idea was then further applied to various cosmological scenarios2–8, with 
ongoing attempts to observe the signatures of false vacuum decay in 
gravitational waves9.

The dynamics of false vacuum decay are believed to consist of 
‘bubbles’ of true vacuum forming in the background of false vacuum, 
where the size of a bubble is determined by balancing the energy gain 
proportional to the bubble volume and energy loss proportional to 
the bubble surface. Bubbles are typically assumed to undergo iso-
lated quantum tunnelling events and then growing classically at a 

model-dependent speed9. The quantum process is difficult to study 
due to the non-perturbative nature of the dynamics. To circumvent this 
issue, early works have explored the possibility of directly creating new 
universes in a laboratory setting10 or in condensed-matter systems11. 
With advances in ultracold atomic gases, certain aspects of the false 
vacuum decay can now be studied in tabletop experiments12.

Recently, there has been a flurry of interest in simulating quantum 
field theories using synthetic platforms of ultracold atoms, supercon-
ducting circuits, trapped ions and Rydberg atoms13–15, with different 
proposals specifically addressing false vacuum decay16–22. Two main 
approaches involve either using digital quantum computers to directly 
emulate the quantum field theory in question or setting up an analo-
gous system that can be initialized in the false vacuum via a controllable 
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a large quantized bubble cannot spread in isolation, which is also the 
case in the semiclassical regime due to Bloch oscillations36. It is only 
through the interaction of two neighbouring bubbles that one bubble 
can enlarge itself by reducing the size of the other. Once reduced to the 
smallest size of one lattice site, the bubble can then move freely along 
the system. These results imply that false vacuum dynamics can be 
viewed as a heterogeneous gas of bubbles, where the smallest ‘light’ 
bubbles bounce around in the background of larger ‘heavy’ bubbles 
that directly interact with each other.

Quantum simulation of false vacuum decay
We study the ferromagnetic quantum Ising model in transverse and 
longitudinal fields on a ring with N sites:

̂H = −J
N
∑
j=1

σ̂zj σ̂
z
j+1 − hx

N
∑
j=1

σ̂ x
j − hz

N
∑
j=1

σ̂zj , (1)

where σ̂ α are the Pauli matrices; J > 0 is the ferromagnetic interaction 
between the nearest-neighbour spins; and hx and hz are the transverse 
and longitudinal fields, respectively. We apply periodic boundary con-
ditions by identifying spin σ̂zN+1 ≡ σ̂z1 . The field hx drives the quantum 
dynamics of the system, whereas hz imposes an energy bias between 
the states |↑〉 and |↓〉.

first-order phase transition. In this paper, we take the latter approach 
and set up a quantum annealer with 5,564 superconducting flux qubits, 
which had previously been used to study the spin glass transition23 
and the Kibble–Zurek mechanism24–26. We arrange the qubits in a ring, 
realizing the ferromagnetic quantum Ising model. By tuning the uni-
form longitudinal field, we initialize the system in the metastable false 
vacuum state and observe the decay into the true vacuum. The discrete 
nature of the qubit lattice gives us a direct window into quantized 
bubble creation, in which a cascade of bubble sizes is seen to emerge 
by tuning the longitudinal field. Moreover, the longitudinal field in 
the quantum annealer exhibits intrinsic modulation throughout the 
decay, driving the dynamics and extending the regime in which we 
observe the same scaling laws as in coherent quantum dynamics up 
to 1,000 qubit time units.

Quench dynamics of the Ising chain have recently attracted much 
interest due to the confinement effect imposed by the longitudinal 
field27–31. The latter has direct implications for false vacuum decay, 
enabling analytic predictions of the decay rate32–34. Our simulation 
targets a different regime in which quantized bubbles dominate the 
out-of-equilibrium dynamics, originally proposed in the context of 
the generalized Kibble–Zurek effect35. This enables us to access false 
vacuum decay dynamics beyond the initial bubble creation and into 
the previously unexplored regime of interacting bubbles. We find that 
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Fig. 1 | Realizing false vacuum decay on a quantum annealer. a, Semiclassical 
energy landscape V as a function of magnetization M of a ferromagnetic Ising 
chain in transverse (hx) and longitudinal (hz) fields. The landscape exhibits a local 
metastable minimum dubbed as the false vacuum, represented by the polarized 
|↑↑…↑〉 state. The global minimum or true vacuum is the other polarized 
|↓↓…↓〉 state. The false vacuum decay unfolds via the creation of quantized true 
vacuum bubbles of size n, determined by the energy balance between the surface 
(4J) and volume (2hzn) energy contributions. b, False vacuum decay observation 
protocol. We initialize all the qubits in the |↑↑…↑〉 state by setting hz > 0 and 
adiabatically switch hx from 0 to a small value (hx ≪ J) over time t1 = 10 μs. Then, we 
flip the sign of hz, swapping the true and false vacuum states, and observing the 
dynamics for time t ≡ t2 – t1. Finally, we turn hx back to 0 as fast as possible 
(t3 – t2 ≳ 0.18 μs) and measure the spin configuration in the σ̂z  basis. This protocol 
is repeated 1,000 times for each value of t. c, Embedding of a 5,564-qubit ring on 
the Pegasus graph of the 5,614-qubit device D-Wave Advantage_system5.4, 
located in Jülich, Germany. The Pegasus graph contains 15 × 15 × 3 eight-qubit 
Chimera cells with complete bipartite connectivity (coloured crosses) that are 
coupled by additional external and odd couplers (grey lines)57, such that each 

qubit is, on average, connected to 15 other qubits. Qubits within the eight-qubit 
cells are connected along randomly sampled one-dimensional chains (inset).  
d, Spin configurations measured in our quantum simulation. The inner ring 
shows the initial false vacuum state comprising 5,564 spins (for clarity, only 1,000 
out of 5,564 spins in a single configuration are shown). The outer three rings show 
configurations measured at hz = –0.1, –0.5 and –2 with hz decreasing radially. An 
example of a large n = 306 quantized bubble shown in purple highlights the 
extent of the observed bubble sizes. e, Magnetization M heat profile versus time  
t and longitudinal-field magnitude hz at transverse-field strength of hx = 0.002. 
The colour scheme is split into two separate linear scales, a larger scale from –1 to 
0.999 (bottom half) and a smaller scale from 0.999 to 1 (top half). The adiabatic 
dynamics and the n = 1-bubble resonance are easily observed on the larger scale, 
whereas the n = 2-bubble resonance can only be resolved in the fourth decimal of 
M due to the decrease in the rate of dynamics by an order of magnitude. The 
apparent resonance at hz = –4 is identified with adiabatic dynamics rather than 
bubble creation, in which the system follows an instantaneous ground state 
during the evolution.

http://www.nature.com/naturephysics
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In the regime 0 ≤ hx ≪ J and hz = 0, there are two degenerate ground 
states |↑…↑〉 and |↓…↓〉. When hz > 0, the |↑…↑〉 state becomes the 
ground or true vacuum state and |↓…↓〉, a metastable or false vacuum 
state (Fig. 1a). By first setting hz > 0 and adiabatically turning on hx ≪ J, 
we initialize the system in the |↑…↑〉 state. Then, we induce a first-order 
phase transition by flipping the sign of hz, swapping the true and false 
vacuas, and observe the dynamics for time t. Finally, we turn hx back to 
zero as fast as possible and measure the spin configuration in the σ̂z  
basis. Figure 1b illustrates the described protocol, and Fig. 1c shows 
the embedding of the spin chain in a qubit array used in our quantum 
simulations. We note here that hz(t) was experimentally determined 
through single-qubit measurements and exhibits large modulation 
around the final target value after the flip. This modulation extends up 
to t ≈ 0.75 μs in the evolution time and it plays an important role in the 
interpretation of our data.

Our quantum simulations are performed in the small hx ≪ J regime, 
where we can apply semiclassical intuition based on the diagonal part 
of the Hamiltonian in the z basis. In this case, possible configurations 
of the system can be approximately organized into sectors with the 
same value of magnetization, M = ⟨∑iσ̂

z
i /N ⟩, separated by energy gaps 

determined by hz. For general values of hz, the initial |↑…↑〉 state stays 
an eigenstate in its own M sector after the hz sign flip and no dynamics 
of M are observed. This is due to the large energy separation between 
different M sectors that cannot be hybridized by a small hx. However, 
for specific values of hz = –2J/n, where n > 0 is an integer, the surface 
energy cost for flipping a domain of n spins, 4J, is exactly balanced out 
by the volume energy gain, 2hzn (ref. 35). Hence, an arbitrarily small hx 
is sufficient to hybridize the classical computational basis states into 
eigenstates consisting of a superposition of the |↑…↑〉 state and 
so-called n-bubbles, that is, domain walls in the background of |↑…↑〉. 
For example, |↑↑↑↓↓↓↑↑↑〉 is a state with a single 3-bubble. Figure 1d 
shows the spin configurations measured in our quantum simulations 
with bubble sizes up to 306 spins, which is consistent with the theoreti-
cal prediction in which we can form increasingly larger bubbles by 
decreasing hz according to hz = –2J/n. For these discrete values of hz, 
the initial state is no longer an eigenstate and undergoes non-trivial 
quantum dynamics, resulting in large changes in M. Figure 1e shows 
the observed n = 1 and n = 2 resonances, where large changes in M  
can be seen at hz = –2J and hz = –J, respectively, in contrast to other  
values of hz.

Strong changes in M can also be observed (Fig. 1e) at values of 
hz ≈ – 4J, where no dynamical resonances are expected. Such a large hz 
leads to thermally assisted adiabatic dynamics37, where the system can 
follow the instantaneous ground state during time evolution. The 

adiabatic theorem is applicable if the timescale of Hamiltonian changes 
is slower than or comparable to ta ∝ Δ−2min, where Δmin is the minimum 
gap between the instantaneous ground state and the first excited state. 
In the case of ∣hz∣ ≫ J, hx, the gap becomes large enough for the timescale 
of hz(t) to match ta. Therefore, no bubble creation takes place and the 
spins turn simultaneously and in accordance with hz(t), changing the 
initial state from fully polarized and triggering more complex resonant 
processes (Supplementary Section 2).

Observation of quantized bubbles and dynamical 
scaling laws
To ascertain which bubbles are involved in magnetization changes, we 
measured the n-bubble density λn = (1/N )∑N

i=1⟨ ̂P
↑
i [∏

n
j=1

̂P
↓
i+j] ̂P

↑
i+n+1⟩ , 

where ̂P
σ
= |σ⟩ ⟨σ|  is a projector on the local σ = {↑, ↓} spin state. 

Figure 2a–d shows the detected 1-, 2-, 3-, 4-, 5- and 6-bubble resonances. 
We observe a strong suppression of all the other bubble sizes, except 
for the expected ones. According to the theoretical analysis presented 
in Methods, the leading-order effective Hamiltonian describing an 
n-bubble resonance is proportional to hn

x. If we assume hx < J, 1-bubbles 
are the fastest followed by 2-bubbles and so on, arbitrarily slowing 
down the dynamics as n increases. Figure 2a–d shows that we need to 
increase hx by at least two orders of magnitude to begin to observe 
hints of higher resonances through low-density bubble formation, 
which is consistent with the theoretical prediction.

In a two-level approximation35, tunnelling events to different 
n-bubbles can be thought of as Landau–Zener transitions, where the 
metastable state |↑…↑〉 and an n-bubble state at the appropriate reso-
nant conditions are the two states involved in the anticrossing. Accord-
ing to the Landau–Zener theory, it follows that the n-bubble density 
λn ∝ τQhn

x  should be proportional to the product of the time it takes 
for the Hamiltonian to traverse the anticrossing τQ, determined by hz(t) 
in our case, and the nth power of hx. Using our single-qubit measure-
ments, we show that the time it takes for hz(t) to reach zero during its 
sign flip is proportional to the square of its magnitude (τQ ∝ ∣hz∣2; Sup-
plementary Section 3). This means that λn(t) curves measured at dif-
ferent pause times between the initialization and measurement ramp 
t should collapse onto a single curve if we multiply t by h2z. Figure 3a 
shows that the λ2 curves indeed exhibit a collapse according to this law.

Nevertheless, to fully understand the dynamics in our quantum 
annealer, it is necessary to account for all the dominant processes and 
not only the creation of bubbles. We will focus on the dynamics from 
the initial state |↑…↑〉, for which the creation of n-bubbles happens 
at hz = –2J/n. For each resonance, we have derived the corresponding 
effective model using the Schrieffer–Wolff transformation38 and we 
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Fig. 2 | Observation of quantized bubbles. a–d, Bubble density measurements 
at J = 1 and different hz magnitudes, with hx = 0.002 and t = 2 μs (a and b), hx = 0.05 
and t = 1 μs (c) and hx = 0.1 and t = 1 μs (d). The bubble sizes of n = 1, 2…6 are seen 
to be dominant around their respective resonances hz = –2J/n, indicated by the 
vertical dotted lines. The times shown in b–d were chosen to allow the number 
of bubbles to grow and limit the impact of thermal effects, whereas the data in a 
were intentionally sampled at a time after the hz(t) modulation stops, marking 
the onset of thermalization. The non-monotonic 1-bubble density curve is due 
to faster thermalization at the resonance compared with the surrounding hz 
values. The chosen values of hx represent the cases in which we observed the 

most prominent resonant peaks and showcase the point that an increase of two 
orders of magnitude in hx is required to observe higher-n resonances. In b and 
c, we probably see more than one resonance at a time due to hz(t) going through 
multiple n-bubble resonances (hz = –2J/n) as it goes from a positive value to a 
specific resonance. This means that if we are probing the 3-bubble resonance, for 
example, we are also crossing the 4-, 5- and 6-bubble resonances beforehand. If 
we take into account additional thermalization and bubble interaction effects, 
there is a high likelihood of observing a few higher resonances (n = 4, 5 and 6), 
alongside n = 3 (for example, in c). The error bars across the entire figure come 
from counting errors on the annealer and are smaller than the size of the symbols.
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present the effective Hamiltonians at leading orders in Methods. The 
effective Hamiltonian describing the dynamics at the 2-bubble reso-
nance at hz = –J is proportional to h2x. Figure 3b shows the magnetiza-
tion measurements taken at this resonance using the quantum 
annealer and how the M(t) curves collapse when scaling the time axis 
with h2x. We have compared this result with the Bloch–Redfield numeri-
cal emulation of the quantum annealer (Fig. 3c). In contrast to the 
Lindblad formalism, Bloch–Redfield emulation is designed to incor-
porate thermalization effects and it suggests that the h2x scaling law is 
the same as that in coherent quantum dynamics. We note that Fig. 3b 
shows only the initial behaviour of M(t), which follows the hz(t) modula-
tion at later times; however, after hz(t) modulation stops, an h3x scaling 
law emerges as a consequence of thermalization combined with a 
relatively slow quantum simulation measurement ramp (Supplemen-
tary Sections 6–9).

Bubble interactions
Bubble interactions play a crucial role in the dynamics at higher n > 1 
resonances, with hz = –2J/n. This can be understood intuitively from 
the hopping processes allowed by the energetics (Fig. 4) and more 
rigorously from the effective description of the dynamics presented 

in Methods. At the n = 1 resonance, 1-bubbles are initially created at 
rate ∝hx, and then hop along the chain at rate ∝ h2x/J . However, due to 
the conservation of the number of bubbles (dictated by the conserva-
tion of energy), 1-bubbles cannot merge with each other to create larger 
bubbles. At n > 1 resonances, bubbles contain n spins and are created 
at rate ∝ hn

x/Jn−1. Once these n-bubbles are created, they cannot hop 
around. However, they can exchange ↓ spins with neighbouring bub-
bles, allowing them to change size at rate ∝ h2x/J . This can lead to 
n-bubbles shrinking down to 1-bubbles. These then hop along the chain, 
restoring the flow of information. Figure 4 illustrates the stark differ-
ence between n = 1 and n > 1 in terms of allowed dynamical processes.

The measured dynamics of different bubble sizes at hz = – 2J reso-
nance (Fig. 5a) is indeed consistent with the picture that 1-bubbles 
remain approximately quantized and do not grow with time. On the 
quantum annealer, this persists until thermalization kicks in and 
1-bubbles start to transform into 3- and 5-bubbles, with 2- and 4-bubbles 
remaining suppressed throughout the time evolution. The explora-
tion of this peculiar thermalization effect is beyond the scope of this 
work, as thermalization and bubble interaction effects cannot be easily 
separated from each other in our quantum annealer due to decoher-
ence effects.
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Fig. 3 | Scaling laws for bubble dynamics. a, 2-bubble density at hx = 0.002 as a 
function of time at various hz magnitudes (colour bar). The inset shows the 
collapse of different curves when time is rescaled by h2z  in accordance with the 
Landau–Zener theory35. b,c, Magnetization at hz = –J resonance as a function of 
rescaled time h2xt, for different values of hx indicated on the colour bar. Both the 
measured magnetization curves in b and the three-spin Bloch–Redfield 
numerical simulations in c follow the same h2x  scaling law, suggesting that the 

effective Hamiltonian governing the dynamics is proportional to h2x. The inset in 
b shows the raw data obtained on the quantum annealer without rescaling. The 
unscaled results of the numerical simulations are shown in the inset of c, where 
the black curves show the magnetization in the effective model describing the 
hz = –J resonance (Methods). The error bars in a and b come from counting errors 
on the annealer and are smaller than the size of the symbols.

a b c d

Fig. 4 | Schematic of bubble dynamics. a,b, Second-order processes for bubble 
hopping and interactions. The amplitude of each contributing path is shown in 
units of κ = h2x/(2hz) = −nh2x/(4J). The rate of the process is given by the sum of 
all the paths. a, 1-bubbles can always hop to neighbouring sites via a second-order 
process. For n = 1, the lower path cannot be used (crossed out) as it is resonant 
and is, therefore, already accounted for by first-order processes. For n > 1, the two 
paths do not cancel out since one changes the number of domain walls and the 
other does not. b, In the case of larger bubbles, the two paths preserve the 
number of domain walls (top). Their respective amplitudes only depend on the 
change in the number of ↓ spins, making them opposite in sign and cancelling 
each other out, meaning that larger bubbles cannot directly hop. However, when 
next to each other, n-bubbles can exchange ↓ spins. The interface between them 

is a single ↓ spin and one of the two paths changes the number of domain walls, 
leading to a different amplitude (bottom). This type of spin exchange is not 
possible for 1-bubbles since no bubble can get smaller. For n > 1, these 
interactions lead to bubbles of size other than n. Through multiple consecutive 
exchanges, even 1-bubbles can emerge, which are then able to hop. c, Bubble 
dynamics at the n = 1 resonance. 1-bubbles are created, which then hop around 
the system; furthermore, no larger bubbles can be produced. d, Bubble dynamics 
at the n = 2 resonance, which is representative of all n > 1. 2-bubbles are created 
and cannot move, after which neighbouring 2-bubbles create 1- and 3-bubbles 
through interaction effects. Larger bubbles cannot move, whereas 1-bubbles can 
hop around the system. The colours of the spins in c and d correspond to the size 
of the bubble as in Fig. 2.
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This impossibility for 1-bubbles to grow at the n = 1 resonance 
dictates that there can never be two ↓ spins next to each other in this 
regime. The system, therefore, experiences an emergent kinetic con-
straint, reminiscent of the Rydberg blockade phenomenon39. We  

quantify the blockade by measuring the operator Q̂B = (1/N)∑j
̂P
↓
j ̂P

↓
j+1, 

which counts the density of neighbouring ↓ spins. We expect ⟨Q̂B⟩ to 
be strongly suppressed at around hz = –2J, rising towards 0.5 in other 
dynamical settings. Figure 5b shows a good match between these 
predictions and quantum simulation data. Meanwhile, the total  
magnetization strongly deviates from the initial value of 1, showing 
that the lack of neighbouring excitations is not trivially due to  
frozen dynamics.

Our theoretical predictions imply that in a quantum simulation 
tuned to an n > 1 resonance, the size of the bubbles is not limited to 
n, even if the system is perfectly isolated from the environment. This 
can be seen in a fully coherent matrix-product state (MPS) simulation 
of a system with N = 100 spins at n = 2 resonance (Fig. 5c). Although 
2-bubbles dominate, 1- and 3-bubbles are also visible. This is expected 
as they are produced by the interactions of 2-bubbles. A qualita-
tively similar behaviour is also seen in the quantum simulation data  
(Fig. 5d).

The data in Fig. 5c,d also highlights another important property 
for n > 1: the number of 2-bubbles changes abruptly at some times and 
stays approximately constant during the rest of the simulation. The 
timings of abrupt changes coincide exactly with hz(t), hitting the appro-
priate resonant value, whereas the rest of the time, the system is slightly 
away from resonance. This highlights the sensitivity to detuning, 
δ = hz + 2J/n, which competes with hn

x/Jn−1. As hx/J ≪ 1, even a small δ is 
enough to overpower the bubble creation terms for n > 1. As the 

detuning is a diagonal contribution, it leads to the suppression of all 
dynamical processes, including bubble creation. This pattern of sudden 
changes due to fluctuation in hz is clearly captured in the numerical 
simulation shown in Fig. 5c, but it is also visible in the annealer data 
shown in Fig. 5d. We note that this sensitivity to detuning is expected 
to be less strong for n = 1, as in that case, δ only competes with hx.

To further highlight the importance of bubble interactions, we 
have studied a closed system with two large bubbles next to each other, 
essentially occupying the entire system (Fig. 5e). This setup allows us 
to study a single boundary as the other boundaries are too far to play 
a role during the simulation time and there is no room for new bubbles 
to appear; hence, the only active process is the exchange between the 
two bubbles. We can then track the interface between them by measur-
ing ̂P

↓
j−1 ̂P

↑
j ̂P

↓
j+1, which is plotted on a log scale in Fig. 5e at the hz = –J reso-

nance. Although the interface density is 1 at a single location at time 
t = 0 and zero everywhere else, as time goes on, the interface steadily 
delocalizes due to the bubbles exchanging ↓ spins and consequently 
changing their sizes. We expect similar behaviour to hold at other n > 1 
resonances.

Discussion and outlook
We have performed a quantum simulation of the false vacuum decay 
and identified its underlying mechanism—the formation of quantized 
bubbles of true vacuum. These results are consistent with the standard 
scenario in which the size of the formed bubble is determined by the 
competition between the volume energy gain and surface energy loss. 
Our central finding is that interactions between bubbles are the key 
next-order effect after bubble creation. The understanding of bubble 
interactions is, therefore, crucial for a comprehensive description of 
false vacuum decay, not only in microscopic models such as the one 
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Fig. 5 | Bubble interactions. a, Time series measurements of the bubble density 
at the 1-bubble resonance (hz = –2J and hx = 0.002). During the initial hz(t) 
modulation, the profile of which is shown by the black curve on the right axis, the 
1-bubble density (colour bar) governs the dynamics. After about ~0.75 μs (dashed 
line), thermalization effects take over by transforming 1-bubbles into 3- and 
5-bubbles. b, Measurement of the emergent blockade QB and magnetization M 
(right axis) at hx = 0.002 and t = 0.38 μs, plotted as a function of hz magnitude. 
The blockade condition is violated (deviates from 0) only at hz values significantly 
off the 1-bubble resonance (hz ≤ – 3.5), accompanied by large changes in M. Near 
resonance (hz ≈ – 2), even though large changes in M occur, the blockade 
condition is respected. c,d, Dynamics at the resonance hz = –J with fixed 
hx = 0.0203 (c) and hx = 0.002 (d). MPS simulation with 100 qubits in c captures 
some of the key aspects of the data obtained on the quantum annealer in d. Panel 
c shows the sudden change in the number of 2-bubbles when hz(t) is exactly at the 

resonance point (dashed horizontal line). The inset magnifies the low-density 
regime, where only 1- and 3-bubbles can be seen. The increase in 1- and 3-bubbles 
is probably due to 2-bubbles interacting. The quantum simulation using 
hx = 0.002 in d shows good agreement with the theoretical prediction in c. For all 
the measured data, the error bars come from counting errors on the annealer and 
are smaller than the symbol size. e, MPS simulation of the dynamics after an 
instantaneous quench from a product state shown at the bottom, containing two 
large bubbles (n1 = 23 and n2 = 24 spins) next to each other in a system with a total 
of 50 spins. The system undergoes coherent evolution with fixed hz = –1 and 
hx = 0.02, and the colour bar shows the ‘bubble interface density’, ⟨ ̂P

↓
j−1 ̂P

↑
j ̂P

↓
j+1⟩,  

on a log scale and for all sites j. The moving front corresponds to the two bubbles 
exchanging ↓ spins and changing their sizes. The final state at the end of the 
evolution is a quantum superposition, with one of the classical configurations 
shown at the top.
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studied here but also in quantum field theory and cosmological models 
of the Big Bang.

Previous studies32,33 have explored a different parameter regime 
in which hx is not small and the energy spectrum forms a continuum. 
Although the possibility of resonances was pointed out as a subleading 
effect32, these analytical considerations still assume a dilute bubble 
picture, neglecting interactions between bubbles. The experimental 
study12 corroborated these predictions in a bosonic gas of 23Na atoms. 
Although this system is believed to exhibit the same critical behaviour 
as the Ising model, its microscopic continuum nature is markedly dif-
ferent from our lattice realization. Moreover, the experiment12 probed 
a different regime of large hx ≲ J, where the main observable signature is 
the exponential decay rate of the metastable false vacuum, in contrast 
to our small hx ≪ J regime that allows for the in situ monitoring of bubble 
formation and growth.

Our work showcases the usefulness of current quantum annealing 
devices in probing complex many-body dynamics. This is demon-
strated here through the observation of large bubbles of up to 300 spins 
embedded in a 5,564-qubit system, with their dynamics monitored 
over 1,000 individual qubit time units, even without the fast anneal-
ing capability25,26. The essential aspects of small bubble formation 
and interactions in one dimension were successfully captured by our 
tensor network simulations and effective models, providing a proof 
of principle that quantum annealers can be used to study such com-
plex many-body phenomena. With recent advances in fast annealing, 
quantum annealers have been argued to outperform classical simula-
tions on certain problems40; thus, they could provide a powerful tool 
for the exploration of false vacuum decay in higher dimensions and 
various lattice topologies, potentially reaching classically intractable 
computational complexity.

Last, let us mention a few examples of other non-equilibrium phe-
nomena that can be accessed in the platform established here. False 
vacuum decay, as a specific instance of a first-order quantum phase 
transition, allows to probe generalizations of the Kibble–Zurek scaling 
laws11,41–43 in such transitions. Quantum metastability—the cornerstone 
of the false vacuum decay phenomenon—also underlies the reaction 
rate theory44–49, allowing the use of quantum simulation for estimating 
the transition rate of decay processes from a metastable minimum to a 
lower-energy state in the presence of temperature, which is challenging 
to compute otherwise. In the regime of stronger longitudinal fields, 
confinement effects are expected to become important, possibly local-
izing bubbles in space and giving rise to an emergent prethermaliza-
tion regime50. Finally, at the 1-bubble resonance, our model displays 
an emergent kinetic constraint that maps exactly to the so-called PXP 
model51,52 (Methods), which hosts quantum many-body scars39,53,54, 
and possibly other types of ergodicity breaking, such as Hilbert-space 
fragmentation and many-body localization55,56. This opens the way to 
probe non-ergodic phenomena in large systems in the presence of 
dissipation and potentially new types of scar in constrained models 
at other n > 1 resonances.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-024-02765-w.

References
1. Coleman, S. Fate of the false vacuum: semiclassical theory. Phys. 

Rev. D 15, 2929 (1977). erratum 16, 1248 (1977).
2. Kobsarev, I., Okun, L. B. & Voloshin, M. V. Bubbles in metastable 

vacuum. Yad. Fiz. 20, 1229–1234 (1974).
3. Linde, A. Fate of the false vacuum at finite temperature: theory 

and applications. Phys. Lett. B 100, 37–40 (1981).

4. Guth, A. H. Inflationary Universe: a possible solution to the 
horizon and flatness problems. Phys. Rev. D 23, 347 (1981).

5. Hawking, S. & Moss, I. Supercooled phase transitions in the very 
Early Universe. Phys. Lett. B 110, 35–38 (1982).

6. Abdalla, E. et al. Cosmology intertwined: a review of the particle 
physics, astrophysics, and cosmology associated with the 
cosmological tensions and anomalies. J. High Energy Astrophys. 
34, 49–211 (2022).

7. Isidori, G., Ridolfi, G. & Strumia, A. On the metastability of the 
Standard Model vacuum. Nucl. Phys. B 609, 387–409 (2001).

8. Degrassi, G. et al. Higgs mass and vacuum stability in the 
standard model at NNLO. J. High Energy Phys. 2012, 98 (2012).

9. Caprini, C. et al. Detecting gravitational waves from cosmological 
phase transitions with LISA: an update. J. Cosmol. Astropart. Phys. 
2020, 024 (2020).

10. Farhi, E., Guth, A. H. & Guven, J. Is it possible to create a universe 
in the laboratory by quantum tunneling? Nucl. Phys. B 339, 
417–490 (1990).

11. Zurek, W. H. Cosmological experiments in condensed matter 
systems. Phys. Rep. 276, 177–221 (1996).

12. Zenesini, A. et al. False vacuum decay via bubble formation in 
ferromagnetic superfluids. Nat. Phys. 20, 558–563 (2024).

13. Bañuls, M. C. et al. Simulating lattice gauge theories within 
quantum technologies. Eur. Phys. J. D 74, 165 (2020).

14. Bauer, C. W. et al. Quantum simulation for high-energy physics. 
PRX Quantum 4, 027001 (2023).

15. Halimeh, J. C., Aidelsburger, M., Grusdt, F., Hauke, P. & Yang, B., 
Cold-atom quantum simulators of gauge theories. Preprint at 
https://arxiv.org/abs/2310.12201 (2023).

16. Billam, T. P., Gregory, R., Michel, F. & Moss, I. G. Simulating seeded 
vacuum decay in a cold atom system. Phys. Rev. D 100, 065016 (2019).

17. Billam, T. P., Brown, K. & Moss, I. G. Simulating cosmological 
supercooling with a cold-atom system. Phys. Rev. A 102, 043324 
(2020).

18. Abel, S. & Spannowsky, M. Quantum-field-theoretic simulation 
platform for observing the fate of the false vacuum. PRX Quantum 
2, 010349 (2021).

19. Ng, K. L., Opanchuk, B., Thenabadu, M., Reid, M. & Drummond, 
P. D. Fate of the false vacuum: finite temperature, entropy, and 
topological phase in quantum simulations of the Early Universe. 
PRX Quantum 2, 010350 (2021).

20. Milsted, A., Liu, J., Preskill, J. & Vidal, G. Collisions of false-vacuum 
bubble walls in a quantum spin chain. PRX Quantum 3, 020316 
(2022).

21. Darbha, S. et al. False vacuum decay and nucleation dynamics in 
neutral atom systems. Phys. Rev. B 110, 155103 (2024).

22. Darbha, S. et al. Long-lived oscillations of metastable states in 
neutral atom systems. Phys. Rev. B 110, 155114 (2024).

23. Harris, R. et al. Phase transitions in a programmable quantum spin 
glass simulator. Science 361, 162–165 (2018).

24. Bando, Y. et al. Probing the universality of topological defect 
formation in a quantum annealer: Kibble-Zurek mechanism and 
beyond. Phys. Rev. Res. 2, 033369 (2020).

25. King, A. D. et al. Coherent quantum annealing in a programmable 
2,000 qubit Ising chain. Nat. Phys. 18, 1324–1328 (2022).

26. King, A. D. et al. Quantum critical dynamics in a 5,000-qubit 
programmable spin glass. Nature 617, 61–66 (2023).

27. Kormos, M., Collura, M., Takács, G. & Calabrese, P. Real-time 
confinement following a quantum quench to a non-integrable 
model. Nat. Phys. 13, 246–249 (2017).

28. Liu, F. et al. Confined quasiparticle dynamics in long-range 
interacting quantum spin chains. Phys. Rev. Lett. 122, 150601 
(2019).

29. Tan, W. L. et al. Domain-wall confinement and dynamics in a 
quantum simulator. Nat. Phys. 17, 742–747 (2021).

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-024-02765-w
https://arxiv.org/abs/2310.12201


Nature Physics | Volume 21 | March 2025 | 386–392 392

Article https://doi.org/10.1038/s41567-024-02765-w

30. Vovrosh, J. & Knolle, J. Confinement and entanglement dynamics 
on a digital quantum computer. Sci. Rep. 11, 11577 (2021).

31. Lagnese, G., Surace, F. M., Morampudi, S. & Wilczek, F. Detecting 
a long lived false vacuum with quantum quenches. Phys. Rev. Lett. 
133, 240402 (2024).

32. Rutkevich, S. B. Decay of the metastable phase in d = 1 and d = 2 
Ising models. Phys. Rev. B 60, 14525 (1999).

33. Lagnese, G., Surace, F. M., Kormos, M. & Calabrese, P. False 
vacuum decay in quantum spin chains. Phys. Rev. B 104,  
L201106 (2021).

34. Lencsés, M., Mussardo, G. & Takács, G. Variations on vacuum 
decay: the scaling Ising and tricritical Ising field theories. Phys. 
Rev. D 106, 105003 (2022).

35. Sinha, A., Chanda, T. & Dziarmaga, J. Nonadiabatic dynamics 
across a first-order quantum phase transition: quantized bubble 
nucleation. Phys. Rev. B 103, L220302 (2021).

36. Pomponio, O., Werner, M. A., Zarand, G. & Takacs, G. Bloch 
oscillations and the lack of the decay of the false vacuum in a 
one-dimensional quantum spin chain. SciPost Phys 12, 061  
(2022).

37. Amin, M. H. S., Love, P. J. & Truncik, C. J. S. Thermally assisted 
adiabatic quantum computation. Phys. Rev. Lett. 100, 060503 
(2008).

38. Bravyi, S., DiVincenzo, D. P. & Loss, D. Schrieffer–Wolff 
transformation for quantum many-body systems. Ann. Phys. 326, 
2793–2826 (2011).

39. Bernien, H. et al. Probing many-body dynamics on a 51-atom 
quantum simulator. Nature 551, 579–584 (2017).

40. King, A. D. et al. Computational supremacy in quantum 
simulation. Preprint at https://arxiv.org/abs/2403.00910  
(2024).

41. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. 
Colloquium: nonequilibrium dynamics of closed interacting 
quantum systems. Rev. Mod. Phys. 83, 863 (2011).

42. Kibble, T. W. Topology of cosmic domains and strings. J. Phys. A 9, 
1387 (1976).

43. Dziarmaga, J. Dynamics of a quantum phase transition: exact 
solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 
(2005).

44. Langer, J. S. Statistical theory of the decay of metastable states. 
Ann. Phys. 54, 258–275 (1969).

45. Affleck, I. Quantum-statistical metastability. Phys. Rev. Lett. 46, 
388 (1981).

46. Caldeira, A. O. & Leggett, A. J. Influence of dissipation on 
quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 
211 (1981).

47. Leggett, A. J. Quantum tunneling in the presence of an arbitrary 
linear dissipation mechanism. Phys. Rev. B 30, 1208 (1984).

48. Leggett, A. J. et al. Dynamics of the dissipative two-state system. 
Rev. Mod. Phys. 59, 1 (1987); erratum 67, 725 (1995).

49. Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty 
years after Kramers. Rev. Mod. Phys. 62, 251 (1990).

50. Birnkammer, S., Bastianello, A. & Knap, M. Prethermalization in 
one-dimensional quantum many-body systems with confinement. 
Nat. Commun. 13, 7663 (2022).

51. Fendley, P., Sengupta, K. & Sachdev, S. Competing density-wave 
orders in a one-dimensional hard-boson model. Phys. Rev. B 69, 
075106 (2004).

52. Lesanovsky, I. & Katsura, H. Interacting Fibonacci anyons in a 
Rydberg gas. Phys. Rev. A 86, 041601(R) (2012).

53. Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. 
Weak ergodicity breaking from quantum many-body scars. Nat. 
Phys. 14, 745–749 (2018).

54. Su, G.-X. et al. Observation of many-body scarring in a Bose- 
Hubbard quantum simulator. Phys. Rev. Res. 5, 023010 (2023).

55. Balducci, F., Gambassi, A., Lerose, A., Scardicchio, A. & Vanoni, 
C. Localization and melting of interfaces in the two-dimensional 
quantum Ising model. Phys. Rev. Lett. 129, 120601 (2022).

56. Hart, O. & Nandkishore, R. Hilbert space shattering and dynamical 
freezing in the quantum Ising model. Phys. Rev. B 106, 214426 
(2022).

57. Technical Description of the D-Wave Quantum Processing Unit 
Report No. 09-1109A-V (D-Wave Systems, 2020).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

http://www.nature.com/naturephysics
https://arxiv.org/abs/2403.00910
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Physics

Article https://doi.org/10.1038/s41567-024-02765-w

Methods
Quantum simulation on D-Wave’s quantum annealer
Our quantum simulations utilized D-Wave’s quantum annealing device 
Advantage_system5.4, located in Jülich, Germany, which features 
Nq = 5,614 qubits and is kept at a cryostat temperature of 16.4 ± 0.1 mK. 
The annealer implements the Hamiltonian

̂HDW = −A(s)
2 (

Nq

∑
i=1

σ̂ x
i ) +

B(s)
2 (g(t)

Nq

∑
i=1

hiσ̂zi +
Nq

∑
i<j

Jijσ̂zi σ̂
z
j ) , (2)

where σ̂ x,z
i  are the Pauli matrices for the ith qubit, hi is the longitudinal 

external field at qubit i and Jij are the couplings between qubits i and j, 
which are non-zero and user-tunable only if they are physically con-
nected in the quantum processing unit (Fig. 1c). A(s) and B(s) represent 
the energy scales of their respective terms and are driven in time by 
the annealing schedule s(t), which is linearly interpolated from a series 
of user-specified points [(ti, si)]. Similarly, g(t) is used in combination 
with hi to manipulate the external longitudinal field in time by specify-
ing a series of points [(ti, gi)].

Finding a ring embedding in a given graph is an instance of an 
NP-complete Hamiltonian circuit problem58. We generate our ring 
embedding on 5,564 qubits of the Advantage_system5.4 graph by 
first connecting all eight-qubit Chimera cells in the Pegasus topol-
ogy (Fig. 1c). We start in the top-left corner and proceed horizontally, 
changing the horizontal direction at the end of every row, until we reach 
the bottom-right corner. The chain of qubits within each eight-qubit 
Chimera cell is chosen along a random suitable path (Fig. 1c, inset). The 
ring is closed by proceeding along the outer qubits at the right and top 
edge of the graph (Fig. 1c, black part of the chain). This procedure yields 
a ring of 5,446 qubits. We then iteratively add qubits to the chain from 
the set of omitted remaining qubits by adding detours into the ring 
until we obtain the final 5,564-qubit closed chain. We note that a few of 
the qubits and couplers in the full Pegasus graph are not present on the 
device due to fabrication defects; these are accounted for individually.

We are interested in probing the dynamics of ̂H  in equation (1) at 
a certain value of hx. We choose uniform hi = h, Jij = –1 and instantaneous 
values of the fields are determined from hx = A(s)/B(s) and hz = –g(t)h. 
At the beginning of the annealing schedule (s(0) = 1), we specify the 
initial state for all the qubits as the product state |↑…↑〉. Then, within 
the initial ramp time t1, we bring the system to the desired hx value, 
which drives the dynamics we are interested in, and keep it constant 
for time t ≡ t2 – t1. Finally, we bring hx to 0 within time t3 – t2, which 
constitutes a measurement. Only after hx is brought back to 0, it is pos-
sible to read out the state of the qubits in the computational or σ̂z basis. 
In summary, our annealing schedule is specified according to 
[(0, 1), (t1, shx ), (t2, shx ), (t3, 1)] , where shx  is obtained from the relation 
hx = A(shx )/B(shx ). Typical timescales that we used on the D-Wave device 
are t1 = 10 μs, t3 – t2 = 272 ns and t ranging from 0 to 2 μs. After the 
initial-state preparation, the system remains in the |↑…↑〉 state due to 
the small values of hx compared with hz. During the entire time evolu-
tion, which lasts for time t3, the system is subject to open-system 
dynamics, governed by two main effects: measurement by the environ-
ment and thermalization. Our single-spin measurements show that 
measurement by the environment is dominant whenever the system 
is being driven by the longitudinal external field hz. Whenever hz 
becomes constant, thermalization effects become more evident and 
are heavily dependent on the value of hx, which drives the quantum 
dynamics of the system (Supplementary Sections 7 and 9).

Simulations of thermalization dynamics
To capture the thermalization effects on the system’s dynamics, we 
employed the Bloch–Redfield master equation59

d
dt

ρab(t) = −iωabρab(t) +
sec
∑
cd

Rabcdρcd, (3)

where ρ̂ is the density matrix of the system and ωab ≡ ωa – ωb, with 
ωa = Ea/ℏ and Ea being the eigenenergies of the system. sec denotes the 
secular approximation, which states that we can neglect all fast-rotating 
terms in the sum, and Rabcd is the Bloch–Redfield tensor59

Rabcd = − 1
2ℏ2

∑α,β {δbd∑n A
α
anA

β
ncSαβ(ωcn) − Aα

acA
β
dbSαβ(ωca)

+δac∑n A
α
dnA

β
nbSαβ(ωdn) − Aα

acA
β
dbSαβ(ωdb)} ,

(4)

where Aα
ab are the matrix elements in the system’s eigenbasis of the 

operator Aα that couples bilinearly to the bath. Here we choose Aα = σzα, 
where α runs through all the spins of the system. Sαβ(ω) = ηωθ(ω)
exp(ω/ωc) is the noise power spectrum of the bath, chosen to be ohmic 
in our case, where θ(ω) is the Heaviside step function, η is the coupling 
strength of the system-bath coupling that ranges from 0.1 to 0.2 in our 
case and ωc is the cutoff frequency higher than any other relevant 
energy scale.

The numerical simulations shown in Fig. 5c,e were performed 
under the assumption of a closed system using the MPS formalism60. 
For efficiency, the simulated system has open-boundary conditions, 
but we discard the boundary sites when computing observable expecta-
tion values to minimize the boundary effects. To reach the long times 
required for the simulation, a fourth-order time-evolving block decima-
tion was used61,62. For Fig. 5c, the time step is δt = 0.01 and the maximum 
MPS bond dimension is χ = 128, which was never saturated during the 
simulation. For Fig. 5e, the time step is t = 0.05 and the maximum bond 
dimension is χ = 200.

Effective models at different resonances
To fully understand the dynamics beyond bubble creation in the vicinity 
of resonances, we have derived the corresponding effective Hamilto-
nians using the Schrieffer–Wolff transformation38. We quote the main 
results here, and the derivation and detailed analysis of the models are 
provided in Supplementary Section 5. For n = 1, in the sector containing 
the state |↑…↑〉, the combined effective Hamiltonian at the first and 
second order reads

̂H
(1,2)
eff,n=1 = −hx

N
∑
j=1

̂P
↑
j−1σ̂ x

j
̂P
↑
j+1 − δ

N
∑
j=1

σ̂zj

+ h2x
4J
[

N
∑
j=1

̂P
↑
j−1 (σ̂+j σ̂

−
j+1 + σ̂−j σ̂

+
j+1) ̂P

↑
j+2 + 2

N
∑
j=1

̂P
↓
j −

3
2

N
∑
j=1

̂P
↓
j−1 ̂P

↓
j+1] ,

(5)

where δ = hz + 2J is the (weak) detuning away from the n = 1 resonance, 
σ̂± = (σ̂x ± iσ̂ y)/2 are the standard spin-raising and spin-lowering opera-
tors, and ̂P

↓
= |↓⟩ ⟨↓| , ̂P

↑
= |↑⟩ ⟨↑| are local spin projectors.

The dynamics generated by the Hamiltonian in equation (5) can 
be understood as follows. The ̂P

↑
σ̂x ̂P

↑
 term allows the creation of 

single-site bubbles (that is, single ↓ spins in a background of ↑ spins), 
whereas the ̂P

↑
(σ̂+σ̂− + σ̂−σ̂+) ̂P

↑
 allows these bubbles to hop around. A 

sequence of allowed processes is illustrated in Fig. 4c. Importantly, 
due to the projectors, the bubbles cannot merge to form larger ones. 
This is also impossible to do using higher-order processes. A simple 
argument is that there are no states with larger bubbles at the same 
classical energy (that is, the energy contribution of the σ̂z  terms) as 
the |↑↑↑⋯〉 state; therefore, it is impossible to reach these states 
resonantly.

In the main text, we have demonstrated that one measurable con-
sequence of the effective Hamiltonian in equation (5) is a robust emer-
gent kinetic constraint reminiscent of the Rydberg blockade39. The 
quality of this emergent blockade can be assessed using the operator 
Q̂B introduced in the main text, which measures the density of neigh-
bouring ↓ spins and can be equivalently expressed in the spin language 
as Q̂B = 1/4 + (1/(4N ))∑jσ̂

z
j σ̂

z
j+1 − (1/(2N ))∑jσ̂

z
j .
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For n > 1 resonances, the bubble creation term is no longer  
dominant as it happens at order n according to

̂Heff,n = cn
hn
x

Jn−1
N
∑
j=1

̂P
↑
j (

n
∏
k=1

σ̂−j+k) ̂P
↑
j+n+1 + h.c., (6)

where cn is a coefficient that depends on the multiple subproc-
esses involved, for example, we have c2 = –1 and c3 = –81/64. Instead, 
regardless of n, there are always other terms at order one and two 
that read

̂H
(1,2)
eff,n=2 = −δ

N
∑
j=1

σ̂zj +
h2xn
4J

N
∑
j=1
(

̂P
↓
j−1 σ̂zj ̂P

↓
j+1

n+1
+ ̂P

↑
j−1σ̂zj ̂P

↓
j+1 + ̂P

↓
j−1σ̂zj ̂P

↑
j+1 −

̂P
↑
j−1 σ̂zj ̂P

↑
j+1

n−1
)

+ h2xn2

4J(n−1)

N
∑
j=1

̂P
↑
j−1 (σ̂+j σ̂

−
j+1 + σ̂−j σ̂

+
j+1) ̂P

↑
j+2 −

h2xn2

4J(n+1)

N
∑
j=1

̂P
↓
j−1 (σ̂+j σ̂

−
j+1 + σ̂−j σ̂

+
j+1) ̂P

↓
j+2.

(7)

The terms on the second line create dynamics: the first term leads 
to 1-bubbles hopping (similar to n = 1), whereas the second one allows 
larger bubbles to exchange ↓ spins and consequently grow or shrink. The 
latter process allows, for example, two bubbles of order n to modify their 
size via (n, n)→(n – 1, n + 1), even if the two bubbles cannot move on their 
own. In the extreme case, this includes the possibility of a large bubble 
shrinking all the way down to a 1-bubble, which is then free to move on 
its own. A sequence of these allowed processes is illustrated in Fig. 4d for 
n = 2, with higher n values displaying qualitatively similar behaviours. 
As a result of the processes in equation (7), bubbles of different sizes 
(≤n) coexist in the regime we probe; in particular, we do not observe an 
‘avalanche’ effect that would result in a preponderance of 1-bubbles.

Two comments are in order. First, the dynamics at n > 1 resonances 
are clearly much richer than at n = 1. Indeed, although the bubble interac-
tion term should also be present for n = 1, it cannot act between two 
1-bubbles. This would require one of them to shrink to 0, which is not reso-
nant. Thus, in the sector of the |↑…↑〉 state in which only 1-bubbles appear, 
the bubble interaction term vanishes. Second, it is worth noting that the 
first term of the effective Hamiltonian at the n = 1 resonance (equation 
(5)), up to a global spin flip, is identical to the PXP model used to describe 
chains of Rydberg atoms51,52. The second term can then be recast as 
−2δ∑j

̂P
↓
j  up to an irrelevant constant, and then becomes the chemical 

potential for the effective PXP model. On the other hand, to the best of 
our knowledge, the effective Hamiltonians for n > 1 resonances (equation 
(7)) do not map to the models previously studied in the literature.
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