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Abstract: The discrepancy between simulated and hardware experiments, the reality gap, is a 1

challenge in evolutionary robotics. While strategies have been proposed to address this gap in 2

fixed-body robots, they are not viable when dealing with populations and generations where the 3

body is in constant change. The continual evolution of body designs necessitates the manufacturing 4

of new robotic structures, a process that can be time-consuming if carried out manually. Moreover, the 5

increased manufacturing time not only prolongs hardware experimental durations but also disrupts 6

the synergy between hardware and simulated experiments. Failure to effectively manage these 7

challenges could impede the implementation of evolutionary robotics in real-life environments. The 8

Autonomous Robot Evolution project presents a framework to tackle these challenges through a 9

case study. This paper describes the main three contributions of this work: Firstly, it analyses the 10

different reality gap experienced by each different robot or the heterogenous reality gap. Secondly, 11

it emphasizes the importance of automation in robot manufacturing. And thirdly, it highlights the 12

necessity of a framework to orchestrate the synergy between simulated and hardware experiments. 13

In the long term, integrating these contributions into evolutionary robotics is envisioned to enable 14

the continuous production of robots in real-world environments. 15

Keywords: Evolutionary Robotics; Evolution of things; Automation; Software-hardware Synergy; 16

Reality Gap 17

1. Introduction 18

One of the ultimate goals of evolutionary robotics (ER) is the transition from evolu- 19

tionary computation, or digital evolution, to the evolution of things, or physical evolution [1]. 20

In physical evolution, entire robotic ecosystems will run autonomously with minimal human 21

intervention, and robots will evolve in real-time and real space adapted to their task and 22

surroundings. Over the last couple of decades, the ER field has made significant strides 23

towards this goal, from the early beginnings with the evolution of controllers in physical 24

robots [2–4] in the 90s, to the joint evolution of body designs and controllers, morpho- 25

evolution, of robots [5–7], and to recent years, where small populations of robots are 26

evolved in hardware [8–10]. Despite this progress, this paper highlights three challenges in 27

ER that need to be addressed before the transition to the continuous production of evolved 28

robots in real-world environments: the software-hardware synergy balance, the heterogenous 29

reality gap, and the continuous production of robots and the importance of automation. 30

The software-hardware synergy balance: Even though physical evolution can be powerful 31

by itself, this process can be further augmented with digital evolution. Firstly, due to the 32

rapid evaluation in digital evolution, a wider range of diverse robot designs and controllers 33
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can be explored [11]. Secondly, damaging physical components can be prevented when 34

the robots are firstly simulated [3,12]. Thirdly, waste of resources can be avoided when 35

fabricating sub-optimal robots [3,12]. In most of the work in the literature, the results from 36

the digital evolution are fabricated into physical robots [10,13–18], however, to close the 37

software-hardware feedback loop, information needs to be propagated back to the digital 38

evolution. Since these processes, digital and physical evolution, work at different time scales, 39

the question arises of when to synchronize them and how to design the robot selection 40

operator. The issue of long-time evaluations in physical evolution has been raised in previous 41

literature [1,19–21]. 42

The heterogenous reality gap: The resulting discrepancy between experiments in simu- 43

lation and experiments in hardware, or the reality gap, has been explored with solutions 44

proposed [20–23]. These solutions often assume that the designs of the robots are fixed 45

and will not change. However, this is not the case when digital and physical evolution are 46

integrated, in which case the body designs constantly change. The reality gap will change 47

for every single different robot design and behaviour that evolves [16], and if not han- 48

dled properly, this can impact the number of evaluations and the selection process during 49

evolution. The question arises of how to cope with this constant change in the reality gap. 50

The continuous production of robots: The process of manually fabricating robots can be 51

time-consuming and this impacts robot production throughput. In most of the experiments 52

with physical robots in ER, the robots are manually constructed, with a handful of excep- 53

tions [8,18,24]. In contrast to conventional manufacturing automation, where the same 54

product is produced repeatedly [25], in physical evolution, the product (in this case, robots) 55

is constantly changing, and the automation facility should be flexible enough to handle 56

the different robot designs evolved. Realistically, there will always be manufacturability 57

constraints, which will also affect the types of robots that can be manufactured, also known 58

as the viable phenotype space [26]. This then becomes a chicken-and-egg problem of how to 59

design an autonomous fabrication system for relatively diverse robots. 60

The previous three challenges are interconnected, with their outcomes influencing 61

one another, as shown in Figure 1. The selection and quantity of physical robots, along 62

with their body designs, impact the autonomous robot fabrication process, which in turn 63

determines the production throughput. This throughput affects the balance between the 64

number of robots evaluated in hardware and those evaluated in simulation. The constantly 65

shifting reality gap between robots will also impact the final score, which, in turn, affects 66

the robot selection process. 67

The Autonomous Robot Evolution project1 [24] is presented in this paper as a case 68

study to explore in more detail the previous three challenges. Preliminary strategies 69

to address these challenges are proposed along with initial results. Additionally, this 70

paper offers three novel key contributions. First, it presents the full implementation of an 71

autonomous robot fabrication process. Second, robots with different designs are physically 72

evaluated and compared to their digital counterparts to assess the reality gap. Finally, it 73

introduces the first implementation of an integrated digital and physical evolution system. 74

The structure of the paper is as follows. Section 2 describes the work in the literature 75

that addresses the previous challenges. Section 3 illuminates the importance of these 76

challenges and proposes some solutions to address them. Section 4 summarizes the work 77

in this paper and describes further work. 78

2. Related Work 79

This section will describe approaches to address the challenges introduced: the software- 80

hardware synergy balance, the heterogeneous reality gap, and the continuous production of robots. 81

1 https://www.york.ac.uk/robot-lab/are/
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Figure 1. This diagram illustrates a minimal framework that integrates both physical and virtual evolu-

tion. Robot selection occurs within the software-hardware block. Physical robots are autonomously

fabricated by a facility focused on minimizing fabrication time to maximize throughput. After fabri-

cation, the robots are evaluated, with the reality gap information fed back into the software-hardware

synergy for further optimization

2.1. The software-hardware synergy balance 82

The work in the literature regarding software-hardware synergy can be categorized 83

as simulation-only, sim-to-real, hardware-only and sim-and-hardware. Most of the work on 84

morpho-evolution in ER has been carried out as simulation-only, where robots are evolved 85

in a simulated environment and never tested in hardware. This is because digital evolution 86

offers the advantage of rapidly evaluating a wide range of diverse robot designs and con- 87

trollers without the risk of damaging physical components, and it avoids wasting resources 88

on fabricating suboptimal robots [3,11,12]. However, evaluating robots in hardware helps 89

validate simulation results, and this information can significantly impact the performance 90

of the algorithms. 91

Valuable feedback has been provided by hardware experiments conducted by au- 92

thors in the literature who constructed and evaluated resulting robots from simulation in 93

sim-to-real. The work by [13] is foundational, as it was the first instance where morpho- 94

logical evolution was conducted in simulation, followed by the fabrication, evaluation, 95

and comparison of the resulting population with their simulated counterparts. This work 96

highlighted discrepancies in behaviour, particularly differences in speed, which were at- 97

tributed to inaccuracies in the simulation’s friction model. Subsequently, authors such as 98

[16–18,27] highlighted that discrepancies in results were produced by inaccurate friction 99

coefficients. [14] suggested that, when conducting experiments, the actuation in simulation 100

should be high enough to ensure that the same actuation in the physical robot is able to 101

break the static friction, or the robot will be unable to move. Inappropriate modelling of 102

limb-to-limb collision is suggested as a source of the reality gap by [16]. [17] mentioned 103

morphological differences and inaccurate actuation between simulation and hardware, 104

while [18] noted that broken connections in hardware introduce behavioural differences. 105

All this prior knowledge could have been applied to evolve better robot designs, either by 106

adjusting parameters in the simulator, as done by the authors in [10] (see more in sim-to-real 107

below), or by modifying the selection operators in the evolutionary process (discussed 108

further in Section 4). 109

This feedback can be dismissed entirely when experiments are conducted as hardware- 110

only, where experiments are carried out in hardware with minimal contribution from 111

simulation. The trade-off is that these experiments are time-demanding [1,19–21]. [8] 112
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conducted experiments where a hundred robots were evolved across ten generations in 113

hardware. The results indicate an improvement in performance after each generation. 114

Nevertheless, the authors suggest that the combination of simulation and hardware will 115

help to produce better and more viable solutions in hardware. 116

As far as the authors are aware, there has been only one attempt to integrate morpho- 117

evolution in software and hardware (sim-and-hardware). [10] evolved robots with a pipeline 118

approach where robots were evolved first in simulation and then manually assembled the 119

best-performing robots. The performance of these robots was measured; this is referred 120

to as the first pass. Then, the constraints in the simulation were manually updated, the 121

initial population was reinitialized with the best-performing robots, and the robots were 122

evolved again in simulation. A selected group of robots was then assembled physically; 123

this is referred to as the second pass. The authors discovered that the behaviour of the 124

robots in simulation better matched the behaviour seen with the physical robots after the 125

second pass. 126

In conclusion, even though experiments in ER have been carried out in simulation and 127

hardware, there is a gap in how experiments from these two domains can be integrated to 128

exploit their benefits to create even better robot designs. This paper proposes an integration 129

method and shows preliminary results. 130

2.2. The heterogenous reality gap 131

The reality gap, or the discrepancy between simulation and hardware results, has been 132

a constant challenge, impacting robot performance and necessitating iterative adjustments 133

in both simulation and hardware to minimize this gap [22]. Numerous approaches have 134

been proposed in the literature to address the reality gap [20,21,23,28–31]. These approaches 135

typically assume a static robot design; however, this assumption does not hold true in ER, 136

where robot morphologies are constantly changing. The reality gap can be reduced by 137

improving the simulator’s fidelity. However, higher fidelity requires more computational 138

resources, resulting in longer evaluation times, which is suboptimal in evolutionary robotics, 139

where numerous evaluations are necessary for each process. Additionally, calibrating 140

a simulator to accommodate a wide range of robot designs, each interacting with the 141

environment in unique ways, becomes exponentially more challenging. 142

Experiments conducted in hardware within the ER domain, which involve evolving 143

morphologies, have highlighted the existing reality gap [13,14,16–18]. However, the expla- 144

nations provided by the authors do not clarify whether the reality gap is consistent across 145

all robots or varies with each evolved robot. [16] described how the reality gap varied 146

from robot to robot, possibly linked to both the morphology and behaviour of the robot. 147

For example, robots exhibiting dragging behaviours experienced a higher reality gap than 148

those performing gait behaviours. Another example is the collision between limbs, which 149

is also linked to morphology. The reality gap variation between evolved robots is referred 150

to in this paper as the heterogenous reality gap 151

A key distinction between the platforms described in [13,14,16–18,32] and the ARE 152

platform is that evolved robots can have various configurations of different components, 153

such as sensors, joints, and wheels. This is particularly important because it can amplify 154

the effects of the heterogeneous reality gap, as each evolved robot interacts with the 155

environment in unique ways. For example, some robots may walk, drag themselves, or roll 156

across the terrain. 157

[12] introduced a method to minimize the reality gap for robots with varying numbers 158

of limbs. In this approach, a repertoire of behaviours is generated in simulation. This 159

repertoire is then used to train a model, which is subsequently deployed in the physical 160

robot. The robot switches between behaviours to accommodate its current morphology. 161

In conclusion, evidence suggests that the reality gap varies between different robots 162

when evaluated in hardware due to differences in their designs and behaviours. It is crucial 163

to account for this varying reality gap when selecting robots for physical evolution, as it can 164
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significantly impact the evolutionary process, a topic that will be explored in more detail in 165

later sections of this paper. 166

2.3. The continuous production of robots 167

In physical evolution, relatively large numbers of robots will be produced, and manually 168

constructing these robots will be physically demanding. For this reason, the process of 169

fabricating evolved robots needs to be automated. Automation, or the use of technology to 170

perform tasks with minimal human intervention [25], has been widely deployed in industry 171

to perform repetitive actions. The philosophy of fixed and programmable automation is to 172

design the process around the product that is to be manufactured, changing the automation 173

process only when the product changes. However, in ER, the products, or robots, are in 174

constant change, and therefore flexible (soft) automation is required. Creating such a system 175

is challenging because the restrictions from the system will impact the evolutionary space, 176

and therefore the encodings should encapsulate this information, as discussed by [26]. This 177

might be one of the reasons that in most literature, evolved robots are manually constructed 178

[9,10,13,15–17,33]. 179

The work by [8,34] was the first to automate the process of fabricating evolved robots. 180

In this approach, a robotic arm assembles robots by performing handling operations such 181

as rotation and placement and connecting components using hot melt adhesive. The robotic 182

arm then places the robot in an arena where its fitness is computed using an overhead 183

camera to assess performance. However, the system lacks sensing capabilities, and the 184

fabrication process is relatively straightforward due to the modular component design. 185

The proof-of-concept of an autonomous fabricator of amorphous robots was shown 186

in [24] and this system was further expanded in [26]. In this system, the amorphous shape 187

of robots was 3D printed, and a robotic arm assembled all the components, including shape, 188

brain, wheels, sensors, and joints. Similar to the previous approach, one of the limitations 189

of this system is that there is no feedback during fabrication, and therefore errors during 190

production can occur. 191

Feedback was introduced by [18,35] in a system for fabricating modular robots. A 192

robotic arm assembles the body designs through magnetic connections. Each module is 193

labelled with a tag, and a visual tracking system provides necessary feedback, such as 194

distance and orientation errors, to perform assembly more accurately. 195

In conclusion, automation is crucial in ER, yet the number of approaches remains 196

limited. There is a lack of analysis regarding the production of robots and its impact on ER. 197

This paper examines the robot production throughput and its impact on ER in more detail. 198

2.4. Summary 199

Work shown in the literature has insinuated the existence of the three challenges 200

mentioned in this paper; however, it has not gone into detail. It is important to do so to 201

understand their impact and, with this understanding, propose appropriate solutions to 202

mitigate these challenges. 203

In addition, even though at first glance each challenge might seem independent, they 204

are closely linked. For instance, since the reality gap will change for each robot, this will 205

necessitate a higher number of robots to be evaluated and with this an increase in the 206

continuous production of robots, highlighting the importance of automation. Since one of 207

the goals is to minimize the reality gap in the population of robots, simulation must focus 208

on the regions of the most transferable robots. 209

3. Framework for the Hardware-Software integration in evolutionary robotics 210

The Autonomous Robot Evolution (ARE) project is used in this paper to explore and 211

illuminate the importance of the challenges mentioned in the previous sections. ARE 212

envisions the integration of digital evolution and physical evolution, combining the benefits 213

from both domains. 214
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Figure 2. Long-term vision for the ARE hardware-software integration. A population of robots is

first evolved in simulation and then a subset is selected to initialize a population in hardware. After

evolution in hardware is completed a subset of robots is selected to initialize a new population of

robots in simulation. This cycle repeats until the termination condition is met.

Ultimately, an optimal robot design will evolve to suit a given environment. If the 215

environment changes, evolution will adapt the design to meet the new conditions. The 216

ARE system is particularly relevant for remote, unknown locations and/or environments 217

hazardous to humans. 218

Physical robots will be autonomous and fabricated by a robot fabricator, RoboFab. 219

Details of each element will be described in more detail in the next sections. 220

3.1. The software-hardware synergy balance 221

The long-term term version of the software-hardware integration proposed by ARE 222

is similar to the one implemented by [10], where evaluations in software and hardware 223

are divided into stages. A budget is allocated to each stage, where the budget can be 224

time, number of evaluations, or resources. This multi-stage approach facilitates tracking 225

evolution progression with multiple checkpoints. This process is illustrated in Figure 2. 226

The ARE current implementation is illustrated in Figure 3. It works as an evolutionary 227

process with four stages reproduction, survival, evaluation, and selection. 228

The field of parallel Evolutionary Algorithms (pEA) [36] has demonstrated the ability 229

to increase solution diversity, accelerate optimization through parallelization, and enhance 230

generalization through migration. For these reasons, the decision was made to begin the 231

process by evolving a set of populations (islands) of robots in simulation. Ten independent 232

evolutionary processes (islands) in simulation are launched each beginning with a different 233

initial random population of 25 robots and a budget of 50 robots in total. The evolutionary 234

algorithm (EA) used is an asynchronous version of Morpho-Evolution with Learning using 235

Archive Inheritance (MELAI) [37]. This EA is a hierarchical optimization process consisting 236

of two nested processes. 237

The outer process is a non-generational, asynchronous, pEA that optimizes the design 238

of the robots. The inner process called the Novelty-based Increasing Population Evolution- 239

ary Strategy (NIP-ES), optimizes the controller. MELAI includes an archive that stores the 240

best controllers to bootstrap NIPES. This exploration stage aims to develop a variety of 241

high-fitness robots with diverse body designs and behaviours. 242

Once all islands have completed their evolution, 5 robots are selected from the 500 243

digital robots in the survival stage based on their fitness and body design novelty. These 244

robots are then built and tested in the real world. 245

The evaluation stage has three steps: 246
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Figure 3. The diagram illustrates the complete hardware evolutionary algorithm proposed in this

paper. The process begins with 10 independent evolutionary processes (islands) of digital evolution,

each generating 50 designs. From these, 5 robots are selected to be built and evaluated in hardware.

To bridge the reality gap, a 3-step process based on local random sampling (LRS) is used during

the evaluation phase. After evaluation, the 5 robots are ranked according to their fitness value and

evolvability score. This ranking determines which robots will initialise (seed) the next set of islands

in the digital evolution phase.

1. The physical robot is evaluated 10 times using the controller from its digital twin; this 247

is referred to as sim-to-real. 248

2. Next, 80 controllers are sampled locally around the controller from the digital twin, a 249

step known as local random sampling (LRS). LRS uses a multivariate normal distribu- 250

tion centred on the controller from the digital twin, with a variance of 0.1. 251

3. Finally, the best controller from the LRS is re-evaluated 10 times. The fitness of the 252

physical robot is the average fitness value of these 10 re-evaluations. 253

During the selection stage, the 5 physical twins are ranked based on two objectives: 254

fitness value and evolvability score. The evolvability score measures a genome’s ability 255

to produce a wide range of robotic designs through mutation. To compute this score, 256

each robot’s genome is mutated 100 times to generate 100 new designs. The average 257

distance between the original robot’s design and these 100 new designs is calculated based 258

on a morphological descriptor, a 3D matrix representing the placement of the robot’s 259

components. This average is the evolvability score. 260

In the reproduction stage, the robot with the highest rank initializes (seeds) the starting 261

population for 4 islands in simulation, the second highest initializes 3 islands, the third 2 262

islands, and the fourth 1 island. The robots comprising the population at each island are a 263

mutated version of the robot used to seed the island. 264

Given the relatively long time required to fabricate robots (more information in Sec- 265

tion 3.2) and the extended duration of evaluations, the hardware budget is smaller, resulting 266

in smaller robot populations. Because of this, this stage is exploitative, focusing on identi- 267

fying the most transferable robots—those that experience smaller reality gaps. After the 268

hardware budget is depleted, a selected group of best-performing robots is used to initialize 269

a new stage in simulation. 270

This approach combines the benefits of the explorative aspect of simulation with the 271

exploitative aspect of hardware, with the expectation that over time, the most diverse and 272

transferable robots will evolve. 273
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Figure 4. The environment used for physical experiments. The robot is shown in the starting location,

where it was replaced for each evaluation.

In the ARE project, a software-hardware experiment was conducted with four stages 274

in simulation and four stages in hardware. The environment used, shown in Figure 4, 275

consisted of square arena with sides of approximately two meters and divided by fixed 276

barriers into a cross shape, with the robot starting in one corner. The floor was made up of 277

64 equally sized titles. The uneven surface created by small gaps and ridges at the joins 278

between tiles sometimes made it difficult for robots with only wheels to explore effectively. 279

The robots themselves were made from the ARE hardware described previously [26]. The 280

task chosen was exploration, with the fitness function defined by the percentage of the floor 281

tiles visited at some point during the evaluation time. 282

The sim-to-real performance, or fitness from the physical twin without learning, for 283

the 4 generations in hardware are shown in Figure 5a. From generation 0 to generation 1, 284

there is a significant increase in fitness, but from generation 1 to generation 2, there is a 285

reduction in fitness. This may be because the simulation stage moves to a region of robots 286

that are not transferable. In addition, this region could be characterised by good learners. 287

The key takeaway is that when running software-hardware experiments, careful attention 288

must be paid to prevent this issue, which might be related to the selection process of the 289

robots (further details in Section 4) or the allocated budget. More experiments are needed 290

to confirm these observations. First, a larger number of generations is needed to better 291

analyse trends where evolution favours learnable robots. Second, it would be beneficial to 292

run experiments with a different task for comparison. 293

Despite the drop in fitness, there are indications that the overall quality of the evolved 294

robots is improving, as shown in Figure 5b. This figure illustrates the progression of fitness 295

over each generation for the sorted robots, from the lowest fitness (blue) to the highest 296

fitness (orange) in their respective generation. For each rank, there is an increasing trend 297

in fitness after each generation. This along with the work shown in [8,10] highlights the 298

importance of evaluating populations of physical robots to find better robots. 299

In conclusion, this section highlights the benefits of integrating evolution in both 300

software and hardware. Preliminary results suggest an improvement in performance with 301

each hardware generation; however, these results also reveal challenges associated with 302

this approach. Additional experiments with physical robots are needed to confirm these 303

findings. 304

3.2. Autonomous fabrication of robots 305

As mentioned in Section 2.3 for physical evolution, manually fabricating and assembling 306

the evolved robots is physically demanding. Therefore, a facility is required to carry out 307

this labour. However, the design of this facility has direct implications for the body shapes 308

that can be evolved and the robot throughput. 309

The ARE project introduced the autonomous robot fabricator (RoboFab), shown in 310

Figure 6 and described next. At the heart of RoboFab is a robotic arm that moves compo- 311

nents between various workstations and performs the main assembly process. Operating 312
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(a) (b)

Figure 5. Figure (a) on the left shows the performance of sim-to-real across each generation in

hardware. The performance improves from generation 0 to generation 1 but then decreases from

generation 1 to generation 2. Figure (b) on the right displays the sim-to-real performance for all five

robots across each generation. The bar plots are sorted based on the robots’ performance within each

generation: for example, blue bars represent robots with the lowest fitness in that generation, while

orange bars indicate robots with the highest fitness. Overall, there is a positive trend, as even the

robots with the lowest fitness show improvement across generations.

without a vision system or similar feedback, the robotic arm retrieves components from 313

predetermined positions and assembles the robot "blindly" based on its genome. To the 314

right and rear of RoboFab, two 3D printers produce custom body parts. On the left side, a 315

component bank stores all necessary parts for easy access by the robotic arm, with each 316

component held in a defined position for straightforward retrieval. The assembly fixture 317

secures the robot during construction and rotates it, giving the robotic arm access to the 318

correct attachment point for the next component. An example of an evolved robot can be 319

found in Figure 7. 320

A critical factor in the practicality of the autonomous fabrication of robots is the time 321

taken for each robot to be produced. Figure 8 illustrates the time taken for each robot’s 322

production, broken down into the key stages: 3D printing the skeleton, inserting the head 323

component into the main body, and attaching the remaining organs. While component 324

assembly takes between 3 and 6 minutes—comparable to the under 5-minute assembly 325

time reported by [18]—removing the skeleton from the printer requires around 25 minutes 326

to allow the print bed to cool. The overall construction time is primarily dominated by the 327

3D printing of the skeleton, which takes an average of 4 hours and 3 minutes and this is less 328

than the up to 20 hours reported in [13], this reduction in time is likely due to differences 329

in 3D printing settings, such as the larger nozzle size and increased layer height used in 330

the ARE platform, though this comes at the cost of reduced print quality. The difference in 331

print time is primarily influenced by the size of the body, with larger parts taking longer to 332

produce. Consequently, the design decision to allow evolution the option of creating an 333

amorphous robot directly impacts the time needed to fabricate a single robot. 334

Production time may well be the limiting factor in practice for evolving robots in 335

hardware, and these initial results allow for some extrapolation to assess the feasibility 336

of the system. In the kind of research lab setting expected for the RoboFab, it will likely 337

run during working hours and can be expected to produce approximately ten robots per 338

week. To give some idea of the time required to carry out meaningful evolution, an estimate 339

for the minimum number of individuals to be produced is needed, for which previous 340

examples can be used. [8] used a population size of ten for ten generations, giving a total of 341

100 individuals per run. For the experiments shown in Section 3.1, a total of 20 robots were 342

evolved. It is important to note that more complex tasks and/or repeated evolutionary runs 343

will require orders of magnitude more individuals. Table 1 summarizes the implications 344

of these approximate numbers by estimating the real-world time required for various 345

combinations of production capacity and individuals needed. It is crucial to highlight that 346
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Figure 6. The RoboFab (short for Robot Fabricator) autonomously manufactures evolved robots. The

main components are highlighted: two 3D printers produce body parts; the robotic arm assembles

the evolved robots; the component bank provides storage for the components until they are needed;

and the assembly fixture holds the new robot during the assembly process.

Figure 7. Example of an ARE robot.

if a relatively large number of robots, such as 1000, is required, it will take months or even 347

years, making it unfeasible in practice for lab-based experiments. Therefore, careful design 348

decisions for the robot fabricator need to be considered regarding the final application of 349

this facility. 350

The previous estimate in production times assumes that there are no errors during 351

production within the ARE system. However, similar to the system in [8], errors can occur 352

during production. The authors in [8] claim that 95% of assemblies were successful, with 353

some failures including connection failures and collisions during assembly. The errors of 354

assembly in the ARE platform are summarized in Table 2 and described next. 355

As mentioned before, RoboFab is an open system and has no external feedback 356

during assembly. Therefore, the majority of failures are related to failed attempts to grip 357

components (gripping fault) that were humanly misplaced in their location. The rest of the 358

errors were caused by inappropriate engineering design decisions such as the cables not 359

connecting properly into the sockets (cable fault) or message interruption between the PC 360

and gripper (communication fault). These reasons highlight the importance of feedback in 361

the autonomous construction of robots and the importance of human supervision at the 362

early stages of development. 363



Version October 24, 2024 submitted to Robotics 11 of 18

1203 1358 1457 1689 2062 2710 3134 4180 4340
Robot ID

0

50

100

150

200

250

300

350

400

Ti
m

e 
(m

in
ut

es
)

Printing
Head insert/bed cooling
Other organs and cables

Figure 8. Time taken to fabricate each robot is divided by the main stages of construction: 3D

printing the body, inserting the head into the body (which includes time for the print bed to cool),

and attaching the remaining organs, components, and cables.

Table 1. Estimated duration of a robot evolution process depending on the total number of individuals

and the (re)production capacity.

1 RoboFab 1 RoboFab 2 RoboFabs
1 3D printer 3 3D printer 3 3D printer

Robots per day 2 6 12
20 2 weeks 1 week 4 days

100 10 weeks 4 weeks 2 weeks
200 5 months 7 weeks 4 weeks

1000 23 months 9 months 4 months

In the approach proposed by [18], a camera mounted on the robot arm can detect 364

the tags on each module and thus provide an accurate estimation of the location of the 365

components. Additionally, the attraction of the magnets in the connections facilitates 366

alignment for attachment. The number of failures in the ARE and future platforms can be 367

reduced with external feedback. 368

Even when feedback is incorporated into the system, it cannot be left unattended, 369

at least in the early stages of development. Due to the sequential nature of the assembly 370

process, a single failure can lead to a cascade of sequential failures. Therefore, a human is 371

required to monitor the process. 372

In conclusion, even though the continuous autonomous fabrication of robots could 373

be a possible solution to the high number of physical robots needed for physical evolution, 374

there are two important aspects to consider. First, even with autonomous fabrication, the 375

time it takes to construct a single robot is long and if this time were to be reduced some 376

limitations would be introduced to the feasible evolutionary body design space [26]. A 377

single experiment involving a couple hundred physical robots could take from a few weeks 378

to half a year to complete, which could impact experimentation. Second, a fabrication 379

system cannot be left unattended, at least during the early stages of development and for 380

the near future a human needs to be part of the loop. 381

Table 2. Success and error frequency during assembly.

Success or error fault type Number of robots
Success 11/20
Cable fault 3/20
Gripping fault 4/20
Assembly fixture fault 1/20
Communication fault 1/20
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Figure 9. The heterogeneous reality gap. The fitness from the digital twin is shown with the blue

line (sim-fitness). The sim-to-real (STR) column illustrates the evaluation of the physical twin with the

controller from the digital twin where each dot represents an evaluation of the total 10 evaluations

and the median is shown as a dashed line. The local random sampling (LRS) columns show the 100

evaluations of different controllers. The best controller found by LRS is evaluated 10 times as shown

in the best LRS re-evaluated column.

3.3. The heterogeneous reality gap 382

Authors in [16] mentioned that the different shapes and behaviours of evolved robots 383

produce varying reality gaps between limbed robots. For instance, the length of the limbs 384

can lead to collisions, and robots with dragging behaviours experience a larger reality gap 385

than those with gaits. In this paper, the different reality gaps experienced by various robots 386

referred to as the heterogeneous reality gap, are further analyzed using a selection of evolved 387

robots. 388

A sample of six evolved robots with different combinations of components was se- 389

lected to illustrate the heterogeneity of the reality gap. These robots are shown in Figure 9. 390

The analysis is divided into three stages introduced in Section 3.1 and summarized next. 391

For each robot, the fitness from the digital twin is first shown as the blue line (sim- 392

fitness). Then, each physical twin is evaluated 10 times with the same controller used in the 393

digital twin. This stage is referred to as the sim-to-real (STR) experiment (left column). The 394

objective of this stage is to quantify the reality gap for each robot. In the second stage, a 395

local random sampling (LRS) method is used to generate 100 new controllers based on the 396

controller from the simulation (shown in the middle column). The best controller found in 397

LRS is re-evaluated 10 times in the last stage to validate the results (third column). 398

The first observation is that the fitness in simulation for these six robots is very similar, 399

ranging between 0.21 and 0.28 or between 14 and 18 tiles out of 64 tiles, despite their 400

different shapes and component configurations. This fitness equivalence corresponds to 401

the robot starting at the bottom-right corner of the arena and reaching one of the other 402

corners, as illustrated by the blue trajectories. Robots with wheels experience smoother 403

movement than robots with legs, as shown by the less noisy trajectories. 404

On average, robots with legs achieve higher fitness in STR than robots with wheels. A 405

common behaviour observed in robots with wheels is that they get trapped at the edges 406

of the tiles, altering their locomotion. This behaviour is replicable and is illustrated in 407

the distribution of the fitness values, which are clustered around the median. In contrast, 408
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robots with legs generally experience a lower reality gap because their behaviours are more 409

resilient to the environment. However, the behaviour of robots with legs is not as consistent 410

as that of robots with wheels, as indicated by the distribution of fitness values. 411

LRS effectively provides different controllers with varying fitness values, as illustrated 412

for each robot. The range of controllers is wide, and the best controller from LRS is selected 413

for re-evaluation. All the robots experience an increase in fitness after LRS, indicating 414

that learning is necessary for each robot and each reality gap they encounter. Robots with 415

wheels appear to improve their fitness the most. 416

The relatively large variability in fitness observed in STR and after LRS is due to 417

real-world testing, aligning with the findings of [8] where despite the use of elitism from 418

the authors in physical evolution, robots still exhibit high variability because of uncertainties 419

and the lack of perfect repeatability. 420

The most significant aspect of these results is their impact on the selection of the 421

next generation of robots in simulation and/or hardware. For instance, based on the 422

results shown in this section, it is likely that STR robots with legs will be selected for 423

the next generation. However, if robots are selected after learning, then robots with 424

wheels are more likely to be chosen. Each of these choices could drive the evolutionary 425

process in different directions, affecting the hardware-software integration discussed in 426

Section 3.1. The different possible metrics that can be used for the selection operator are 427

further discussed in Section 4. 428

In conclusion, each robot with different component configurations experiences a 429

different reality gap. This gap can be mitigated with a learning algorithm and each robot 430

needs to run its independent learning process. However, when selecting the next generation 431

of robots, the question arises of how to make the best selection. 432

4. Discussion 433

This paper identifies three major challenges in the transition from digital evolution to 434

physical evolution. Although these challenges have been suggested in previous literature, 435

they have not been comprehensively explored. Here, an more in-depth discussion of these 436

challenges is provided, supported by experiments conducted on the ARE platform. 437

4.1. Software-hardware synergy 438

Physical evolution offers many benefits, but it also comes with several disadvantages. 439

To balance these, it is crucial to integrate digital evolution into the system. However, this 440

integration is not straightforward, and key initial design decisions can significantly influ- 441

ence the evolutionary path and the bias in robots evolved. One of the most critical design 442

decisions is the selection operator, which determines which robots migrate between the 443

virtual and hardware domains, and vice versa. 444

Robots can be selected based on various metrics, including: 445

• Fitness in hardware score without learning: the same copy of the controller of the 446

digital twin is used with the physical twin and the fitness from the physical twin is 447

used as a score during selection. 448

• Transferability score: The difference between digital twin fitness and physical twin 449

fitness (or the reality gap) is used as a score. 450

• Fitness post-learning: the controller from the digital twin goes through a learning 451

process in the physical twin to adapt the controller to the physical environment. Then 452

the fitness post-learning is used as a score. 453

• Learnability score: The difference between the physical twin fitness pre-learning and 454

the physical fitness post-learning is used as a score. 455

Each of these metrics offers unique insights into the robot’s body design and controller, 456

and they are not necessarily correlated. For instance, a robot without sensors may be more 457

learnable due to the simplicity of its body design and open-loop controller. However, 458

robots with sensors and closed-loop controllers tend to be more transferable because their 459

behaviour can self-correct with the feedback from the environment. Some evidence of this 460
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was presented in Section 3.1. Additionally, the work in [38] demonstrated how learnability 461

leads to a different robot design space compared to when learnability is not considered in 462

digital evolution. 463

The choice of selection metrics affects not only the evolution of body designs but 464

also the time spent on fabricating and evaluating the robots. For example, if the focus 465

is on transferability, more time may be devoted to robot fabrication rather than physical 466

evaluation. Conversely, if the emphasis is on learnability, more time will likely be spent 467

evaluating physical robots. 468

Learnability is crucial in the evolutionary process. The authors in [38] demonstrated 469

through simulations that considering learnability can save evaluations. In addition, results 470

in Section 3.3 show that a simple learning method can enhance the performance of robots 471

with different designs. This raises questions about how learnability will influence the 472

dynamics of physical evolution and what future experiments might reveal. On one hand, 473

learnability can help reduce the number of robots fabricated. On the other hand, inheritance 474

can be used to bootstrap controllers in physical robots with similar features, thus saving on 475

evaluations. This approach is similar to what the authors did with an inheritance archive 476

[37,39] and Lamarckian learning [40,41]. 477

In conclusion, achieving an effective synergy between software and hardware in 478

physical evolution requires careful consideration of selection metrics. This choice not only 479

shapes the evolutionary trajectory but also influences the balance between digital and 480

physical evaluations. 481

4.2. Autonomous fabrication of robots 482

Population size is a crucial factor that significantly impacts the performance and 483

efficiency of ER. Smaller populations are generally sufficient for simpler, well-understood 484

problems, while larger populations are necessary for addressing more complex challenges. 485

In the context of physical evolution, determining the optimal population size is particularly 486

challenging due to the considerable time and resources required to fabricate and evaluate 487

each robot. 488

One of the primary motivations behind autonomous robot fabrication is to reduce 489

fabrication time, thereby enabling larger population sizes in physical evolution. However, 490

even with automation, fabrication time can remain substantial—often taking hours per 491

robot, depending on the platform [13,18,24]. As analyzed in Section 3.2, producing a few 492

hundred robots could take anywhere from weeks to months. This suggests that initial 493

populations in physical evolution are likely to be small and more focused on exploitation 494

rather than exploration [8]. 495

Fabrication time can be reduced in different ways including: 496

• Further parallelisation: experiments can be run on more platforms across different 497

institutions. 498

• Platform design: the robot platform can be redesigned; for example, by reducing the 499

robot’s size. 500

• Manufacturing process: while 3D printing is time-consuming, alternative manufac- 501

turing processes can reduce fabrication time, though each introduces trade-offs. For 502

instance, using a laser cutter increases the complexity of autonomous robot assembly. 503

Resin casting requires mould changes, and CNC machining generates more material 504

waste and limits design flexibility due to the constraints of cutting tools. 505

• Reused pre-printed parts: the main body of the robot can be 3D printed into multiple 506

parts instead of a single piece. If the same piece is needed for a second robot then this 507

piece can reused. 508

A long-term goal for physical evolution is achieving near-complete autonomy from 509

human intervention. However, as demonstrated in both the literature [8] and this paper, 510

this goal is not yet feasible due to the potential for fabrication faults. This paper also 511

emphasizes the importance of incorporating feedback mechanisms within autonomous 512

fabrication systems to minimize these faults. For example, the platform presented in [18] 513



Version October 24, 2024 submitted to Robotics 15 of 18

uses a camera to detect tags on each component, allowing for error correction when the 514

gripper handles different parts. The main drawback is that adapting this specific system to 515

work with amorphous robots, where there are no tags, would be challenging. In the event 516

of any serious faults during fabrication, the process, including 3D printing and assembly, 517

must be halted, and the issue reported to the operator for prompt resolution. 518

In conclusion, while autonomous fabrication can reduce manufacturing time, it re- 519

mains high and may not be suitable for certain experimental purposes and different and 520

new manufacturing technologies are required to reduce this time. Additionally, it is crucial 521

to consider potential manufacturing faults and implement strategies to minimize them, 522

while also accounting for any implications on the body design landscape. 523

4.3. The heterogeneous reality gap 524

When digital evolution and physical evolution are integrated into ER, the heterogenous 525

reality gap is unavoidable as shown in Section 3.3. This gap means that each evolved robot 526

will have a different degree of reality gap due to variations in body design and behaviour. 527

As a result, a reality gap treatment effective for one robot may not be suitable for another. 528

To address this, an independent controller learner is required for each robot, enabling 529

it to adapt its controller to its unique physical body and environment. The results presented 530

in this paper suggest that the performance of the learner will vary depending on the robot’s 531

body configuration. A promising area for future research in ER is the potential to model a 532

robot’s reality gap and incorporate this model into the robot itself. This would enable the 533

robot to not only learn about the discrepancies between simulation and hardware but also 534

to adapt and account for component wear over time. 535

Another challenge arises when a learner is used for each evolved physical robot, 536

leading to long evaluation times. Reducing this time would be advantageous. One approach 537

to achieving this is by bootstrapping physical robots with relatively well-performing 538

controllers, similar to the method used with simulated robots in [37]. Another approach is 539

to incorporate surrogate models to reduce the number of evaluations with physical robots. 540

It is also important to consider the design of controllers used in ER. Developing a 541

controller architecture that is effective across robots with different modes of locomotion, 542

such as wheels and legs, is particularly challenging. 543

In conclusion, the heterogenous reality gap is a challenge in ER which plays an important 544

role during the selection of robots for both virtual and physical evolution. Additionally, 545

the use of independent learners for each physical robot to address this gap could lead to 546

substantial time spent on evaluation. 547

5. Conclusions 548

One of the ultimate goals in Evolutionary Robotics is transitioning from digital evolution, 549

where robots are evolved in simulation, to physical evolution, where robots are evolved in 550

hardware. Recent work has made significant strides in this direction [8,10,24]. However, 551

this paper discusses three key challenges of this transition and their possible mutual 552

connections, analyzed using the Autonomous Robot Evolution platform. 553

1. Autonomous Fabrication of Robots: To increase the throughput of robot production, 554

autonomous fabrication is essential, as ER typically requires large robot populations. How- 555

ever, it is crucial to consider the time required for fabrication and the system’s ability to 556

reliably produce robots with diverse shapes, while minimizing faults during assembly. 557

2. Soft-Hardware synergy: Effective integration of software and hardware is vital to 558

leverage the advantages of both simulated and physical evolution. Careful consideration 559

must be given to parameter design, as selection parameters will significantly influence the 560

evolutionary process. Therefore, understanding and choosing the appropriate metrics is 561

critical. 562

3. The heterogenous reality gap: The reality gap—differences between simulated and 563

physical environments—will vary from robot to robot due to differences in body design 564

and behaviour. As a result, a learning mechanism is needed to adapt each robot’s controller 565
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to its new environment. The downside is that this will increase the number of evaluations 566

across populations, leading to longer overall evaluation times. 567

In summary, while substantial progress has been made in ER, addressing the chal- 568

lenges of software-hardware integration, managing the dynamic reality gap, and automat- 569

ing robot production is crucial to transition to the continuous production of evolved robots 570

in real-world environments. Future work will focus on refining these strategies to further 571

advance the field toward autonomous robotic ecosystems. 572
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19. Matarić, M.; Cliff, D. Challenges in evolving controllers for physical robots. Robotics and autonomous systems 1996, 19, 67–83. 622

20. Sofge, D.; Potter, M.A.; Bugajska, M.D.; Schultz, A.C. Challenges and opportunities of evolutionary robotics. arXiv preprint 623

arXiv:0706.0457 2007. 624

21. Silva, F.; Duarte, M.; Correia, L.; Oliveira, S.M.; Christensen, A.L. Open issues in evolutionary robotics. Evolutionary computation 625

2016, 24, 205–236. 626

22. Jakobi, N.; Husbands, P.; Harvey, I. Noise and the reality gap: The use of simulation in evolutionary robotics. In Proceedings 627

of the Advances in Artificial Life: Third European Conference on Artificial Life Granada, Spain, June 4–6, 1995 Proceedings 3. 628

Springer, 1995, pp. 704–720. 629

23. Mouret, J.B.; Chatzilygeroudis, K. 20 years of reality gap: a few thoughts about simulators in evolutionary robotics. In Proceedings 630

of the Proceedings of the genetic and evolutionary computation conference companion, 2017, pp. 1121–1124. 631

24. Hale, M.F.; Buchanan, E.; Winfield, A.F.; Timmis, J.; Hart, E.; Eiben, A.E.; Angus, M.; Veenstra, F.; Li, W.; Woolley, R.; et al. The are 632

robot fabricator: How to (re) produce robots that can evolve in the real world. In Proceedings of the Artificial Life Conference 633

Proceedings. MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2019, pp. 95–102. 634

25. Groover, M.P. Fundamentals of modern manufacturing: materials, processes, and systems; John Wiley & Sons, 2010. 635

26. Angus, M.; Buchanan, E.; Le Goff, L.K.; Hart, E.; Eiben, A.E.; De Carlo, M.; Winfield, A.F.; Hale, M.F.; Woolley, R.; Timmis, J.; et al. 636

Practical hardware for evolvable robots. Frontiers in Robotics and AI 2023, 10. 637

27. Sun, Y.; Zong, C.; Pancheri, F.; Chen, T.; Lueth, T.C. Design of topology optimized compliant legs for bio-inspired quadruped 638

robots. Scientific Reports 2023, 13, 4875. 639

28. Koos, S.; Mouret, J.B.; Doncieux, S. The transferability approach: Crossing the reality gap in evolutionary robotics. IEEE 640

Transactions on Evolutionary Computation 2012, 17, 122–145. 641

29. Glette, K.; Johnsen, A.L.; Samuelsen, E. Filling the reality gap: Using obstacles to promote robust gaits in evolutionary robotics. 642

In Proceedings of the 2014 IEEE International Conference on Evolvable Systems. IEEE, 2014, pp. 181–186. 643

30. Chebotar, Y.; Handa, A.; Makoviychuk, V.; Macklin, M.; Issac, J.; Ratliff, N.; Fox, D. Closing the sim-to-real loop: Adapting 644

simulation randomization with real world experience. In Proceedings of the 2019 International Conference on Robotics and 645

Automation (ICRA). IEEE, 2019, pp. 8973–8979. 646

31. Salvato, E.; Fenu, G.; Medvet, E.; Pellegrino, F.A. Crossing the reality gap: A survey on sim-to-real transferability of robot 647

controllers in reinforcement learning. IEEE Access 2021, 9, 153171–153187. 648

32. Cellucci, D.; MacCurdy, R.; Lipson, H.; Risi, S. 1D printing of recyclable robots. IEEE Robotics and Automation Letters 2017, 649

2, 1964–1971. 650

33. Liao, T.; Wang, G.; Yang, B.; Lee, R.; Pister, K.; Levine, S.; Calandra, R. Data-efficient learning of morphology and controller for a 651

microrobot. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 2488–2494. 652

34. Vujovic, V.; Rosendo, A.; Brodbeck, L.; Iida, F. Evolutionary developmental robotics: Improving morphology and control of 653

physical robots. Artificial life 2017, 23, 169–185. 654

35. Moreno, R.; Liu, C.; Faina, A.; Hernandez, H.; Gomez, J. The EMeRGE modular robot, an open platform for quick testing of 655

evolved robot morphologies. In Proceedings of the Proceedings of the Genetic and Evolutionary Computation Conference 656

Companion, 2017, pp. 71–72. 657

36. Alba, E.; Tomassini, M. Parallelism and evolutionary algorithms. IEEE transactions on evolutionary computation 2002, 6, 443–462. 658

37. Le Goff, L.K.; Buchanan, E.; Hart, E.; Eiben, A.E.; Li, W.; De Carlo, M.; Winfield, A.F.; Hale, M.F.; Woolley, R.; Angus, M.; et al. 659

Morpho evolution with learning using a controller archive as an inheritance mechanism. IEEE Transactions on Cognitive and 660

Developmental Systems 2022, 15, 507–517. 661

38. Luo, J.; Stuurman, A.C.; Tomczak, J.M.; Ellers, J.; Eiben, A.E. The effects of learning in morphologically evolving robot systems. 662

Frontiers in Robotics and AI 2022, 9, 797393. 663

39. Liu, S.; Yao, W.; Wang, H.; Peng, W.; Yang, Y. Rapidly evolving soft robots via action inheritance. IEEE Transactions on Evolutionary 664

Computation 2023. 665

40. Holzinger, A.; Blanchard, D.; Bloice, M.; Holzinger, K.; Palade, V.; Rabadan, R. Darwin, lamarck, or baldwin: Applying 666

evolutionary algorithms to machine learning techniques. In Proceedings of the 2014 IEEE/WIC/ACM International Joint 667

Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). IEEE, 2014, Vol. 2, pp. 449–453. 668

41. Harada, K.; Iba, H. Lamarckian Co-design of Soft Robots via Transfer Learning. In Proceedings of the Proceedings of the Genetic 669

and Evolutionary Computation Conference, 2024, pp. 832–840. 670



Version October 24, 2024 submitted to Robotics 18 of 18

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 671

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 672

people or property resulting from any ideas, methods, instructions or products referred to in the content. 673


	Introduction
	Related Work
	The software-hardware synergy balance
	The heterogenous reality gap
	The continuous production of robots
	Summary

	Framework for the Hardware-Software integration in evolutionary robotics 
	The software-hardware synergy balance
	Autonomous fabrication of robots 
	The heterogeneous reality gap 

	Discussion
	Software-hardware synergy
	Autonomous fabrication of robots
	The heterogeneous reality gap

	Conclusions
	References

