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A B S T R A C T

Automatic analysis of colonoscopy images has been an active field of research motivated by the importance
of early detection of precancerous polyps. However, detecting polyps during the live examination can be
challenging due to various factors such as variation of skills and experience among the endoscopists, lack of
attentiveness, and fatigue leading to a high polyp miss-rate. Therefore, there is a need for an automated system
that can flag missed polyps during the examination and improve patient care. Deep learning has emerged as a
promising solution to this challenge as it can assist endoscopists in detecting and classifying overlooked polyps
and abnormalities in real time, improving the accuracy of diagnosis and enhancing treatment. In addition to
the algorithm’s accuracy, transparency and interpretability are crucial to explaining the whys and hows of the
algorithm’s prediction. Further, conclusions based on incorrect decisions may be fatal, especially in medicine.
Despite these pitfalls, most algorithms are developed in private data, closed source, or proprietary software, and
methods lack reproducibility. Therefore, to promote the development of efficient and transparent methods, we
have organized the ‘‘Medico automatic polyp segmentation (Medico 2020)’’ and ‘‘MedAI: Transparency in Medical
Image Segmentation (MedAI 2021)" competitions. The Medico 2020 challenge received submissions from 17
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teams, while the MedAI 2021 challenge also gathered submissions from another 17 distinct teams in the
following year. We present a comprehensive summary and analyze each contribution, highlight the strength of
the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
Our analysis revealed that the participants improved dice coefficient metrics from 0.8607 in 2020 to 0.8993
in 2021 despite adding diverse and challenging frames (containing irregular, smaller, sessile, or flat polyps),
which are frequently missed during a routine clinical examination. For the instrument segmentation task,
the best team obtained a mean Intersection over union metric of 0.9364. For the transparency task, a multi-
disciplinary team, including expert gastroenterologists, accessed each submission and evaluated the team based
on open-source practices, failure case analysis, ablation studies, usability and understandability of evaluations
to gain a deeper understanding of the models’ credibility for clinical deployment. The best team obtained a final
transparency score of 21 out of 25. Through the comprehensive analysis of the challenge, we not only highlight
the advancements in polyp and surgical instrument segmentation but also encourage subjective evaluation for
building more transparent and understandable AI-based colonoscopy systems. Moreover, we discuss the need
for multi-center and out-of-distribution testing to address the current limitations of the methods to reduce the
cancer burden and improve patient care.
1. Introduction

Gastrointestinal (GI) cancer is a very important global health prob-
lem and the second most common cause of mortality in the United
States. According to the recent 2023 estimates, there will be approx-
imately 1,958,310 new cancer incidences and 609,820 cancer deaths
in the United States (Siegel et al., 2023). Among various types of
cancer, the highest number of deaths occur from lung, prostate, and
colorectum in men and lung, breast, and colorectum cancer in women.
As colorectal cancer is prevalent among both men and women, it is the
second leading cause of cancer related death overall. One of the key
indicators of colon cancer is the development of polyps in the colon and
rectum. The 5-year survival rate for colon cancer is 68%, and 44% for
stomach cancer (Asplund et al., 2018). If colorectal polyps are detected
and removed early, the survival is close to 100. Levin et al. (2008).
Thus, regular screening is crucial for early detection of these polyps, as
it allows for earlier diagnosis and prompt treatment.

Endoscopic procedures, such as colonoscopy, are considered the
gold standard for detecting and treating mucosal abnormalities in the
GI tract (such as polyps) and cancer (Moriyama et al., 2015). How-
ever, manual screening for polyps is susceptible to error and is also
time-consuming. This has driven the development of Computer Aided
Detection (CADe) and Computer-Aided Diagnosis (CADx) systems that
can be integrated into the clinical workflow (Riegler et al., 2016)
and potentially contribute to the prevention of colorectal cancer. In
the past, traditional machine learning-based CADx systems (Ballesteros
et al., 2017; Hwang et al., 2007b) were popular. With the recent
advancement in the hardware capabilities, such as powerful GPUs and
the emergence of deep learning (LeCun et al., 2015), the research has
shifted towards deep learning-based CADx systems (Fan et al., 2020;
Jha et al., 2019). These algorithms have shown superior performance
compared to traditional CADx solutions.

However, despite their superior performance, deep learning-based
CADx systems are still considered a ‘‘black box’’, meaning their inner
workings are not fully understood or there is a lack of transparency
in understanding the predictions made by the model. Because of the
complexity of multiple layers and interconnected nodes in the Con-
volutional Neural Network (CNN), it is challenging to interpret the
decision or understand the features contributing to the outcome. For
these systems to be widely adopted in clinical settings, they must be
rigorously evaluated on benchmark datasets. They must demonstrate
the ability to handle patient and recording device variability, provide
explainability and robustness and process data in real-time. Only by
carefully evaluating these systems, we can ensure the reliability and
effectiveness of detecting and diagnosing cancer and its precursors
(such as polyps) in a clinical setting.

In this paper, we present a comprehensive analysis of the re-
sults of the two prominent challenges in the field of automatic polyp
segmentation, namely, ‘‘Medico automatic polyp segmentation (Medico
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2 
2020)1’’ challenge and the ‘‘MedAI: Transparency in Medical Image
Segmentation (MedAI 2021)’’2 challenge. These challenges aimed to
explore the potential of CADx solutions on the same shared datasets,
focusing on developing novel state-of-the-art (SOTA) methods in terms
of high-performance metrics, efficiency, transparency, and explainabil-
ity, aiming to evaluate the relevance of such algorithms in clinical
workflows. The challenges posed four distinct tasks:

• Accurate polyp segmentation task to develop novel algorithms
to enhance the early detection and treatment of colon cancer
(Medico 2020, MedAI 2021).

• Algorithm efficiency task to develop efficient methods with
the highest frames-per-second (FPS) on predetermined hardware
(Medico 2020).

• Surgical instruments segmentation task to enable tracking and
localization of essential tools in endoscopy and help to improve
targeted biopsies and surgeries in complex GI tract organs (MedAI
2021).

• Transparency task to evaluate different models from a trans-
parency perspective, focusing on explanations of the training pro-
cedure, failure analysis, and (model’s predictions interpretation
by interdisciplinary team (MedAI 2021).

These tasks were focused on the development of SOTA algorithms
for polyp and instrument segmentation in a variety of settings, in-
cluding performance evaluation, resource utilization (efficiency), and
transparency. By analyzing the results of these challenges, we can
better understand the field’s current state, identify the strength and
weaknesses of different methods and find the most effective method for
our problem. It is also useful to identify the research gap and areas for
future innovation in the field of polyp, instrument and medical image
segmentation. Fig. 1 provides an overview of both challenges along
with the total number of images used for training and testing in each
task. Ground truth samples with their corresponding original images
are also presented for the segmentation tasks. In addition, task-specific
metrics are presented (for example, FPS for ‘‘Algorithm efficiency’’).

In short, the main contributions are the following: (i) We present
a comprehensive and detailed analysis of all participant results; (ii)
we provide an overview and comparative analysis of the developed
methods; (iii) we obtain and discuss new insights into the current
state of AI in the field of GI endoscopy including open challenges and
future directions; and (iv) finally, we provide a detailed discussion of
issues such as trust, safety, interpretability, transparency, generalizabil-
ity issues and multi-center in context to current limitations of CADx
systems.

1 https://multimediaeval.github.io/editions/2020/tasks/medico/
2 https://github.com/Nordic-Machine-Intelligence/MedAI-Transparency-

n-Medical-Image-Segmentation

https://multimediaeval.github.io/editions/2020/tasks/medico/
https://github.com/Nordic-Machine-Intelligence/MedAI-Transparency-in-Medical-Image-Segmentation
https://github.com/Nordic-Machine-Intelligence/MedAI-Transparency-in-Medical-Image-Segmentation
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Fig. 1. The overview of the ‘‘Medico 2020 Polyp‘‘ and ‘‘MedAI 2021 Transparency ’’ challenges. We describe each task along with the number of training and testing datasets
and the evaluation metrics used in the tasks.
2. Challenge description

2.1. Medico 2020 automatic polyp segmentation challenge

The ‘‘Medico Automatic Polyp Segmentation Challenge’’ was an
international benchmarking challenge hosted through the MediaEval
platform (Multimedia Evaluation Workshop). Medico 2020 is the fourth
iteration of the Medico Multimedia Tasks series, following the pattern
established in previous years. This challenge aimed to benchmark
automated polyp segmentation algorithms using the same dataset and
develop methods to detect difficult-to-detect polyps (such as flat, ses-
sile, and small or diminutive polyps). Researchers from medical image
analysis, machine learning, multimedia, and computer vision were
invited to submit their results for this challenge, which included two
tasks. The members from the organizer’s institute were allowed to
participate but were ineligible for receiving any recognition certificates.
Participants could use any method, focusing on creating automated
solutions. Below, we provide the task description of each sub-task.

(a) Automatic Polyp Segmentation Task: In this task, the par-
ticipants were asked to develop innovative algorithms for segmenting
polyps in colonoscopic images. The focus was on developing efficient
systems that could accurately segment the maximum polyp area in a
frame while being fast enough for practical use in a clinical setting. This
task addresses the need for robust CADx solutions for colonoscopy.

To participate in the challenge, participants were required to train
their segmentation models on an available training dataset. Once the
test dataset was released, participants could test their models and
submit their predicted segmentation maps to the organizers in a zip
file with the name of each segmentation map image matching the
colonoscopy image in the test dataset.

(b) Algorithmic Efficiency Task: CADx systems for polyp seg-
mentation that operate in real-time can provide valuable feedback
to clinicians during colonoscopy examinations, potentially reducing
the risk of missing polyps and incomplete removal. However, real-
time deep learning-based CADx solutions often have fewer parameters
and may therefore have lower segmentation accuracy compared to
more computationally intensive CADx solutions. In order to address
3 
this trade-off between accuracy and speed, the efficiency task of the
challenge was designed to encourage the development of lightweight
segmentation models that are both accurate and fast.

To participate in this task, participants were asked to submit docker
images of their proposed algorithms. These algorithms were then eval-
uated on a dedicated Nvidia GeForce GTX 1080 graphics card, and
the results were used to rank the teams. A mean Intersection over
union (mIoU) threshold was set for considering a solution to be a valid
efficient segmentation solution, and teams were ranked according to
their Frames per second (FPS). By focusing on developing efficient CAD
solutions, this task aimed to foster the creation of real-time systems
that can provide valuable feedback to clinicians while maintaining high
accuracy. A detailed description of the challenge, tasks, and evaluation
metrics can be found in Jha et al. (2020a). In the supplementary
material, we have provided information about the organizers for both
challenges, as well as the schedule, award criteria, and publication
policy.

2.2. MedAI: Transparency in medical image segmentation challenge

MedAI: Transparency in Medical Image Segmentation challenge
(MedAI 2021) was held for the first time at the Nordic AI Meet3

2021 (Nordic young researchers symposium) that focused on medical
image segmentation and transparency in Machine Learning (ML) based
CADx systems. This challenge proposed three tasks to address specific
endoscopic GI image segmentation challenges, including two separate
segmentation scenarios and one scenario on transparent ML systems.
The latter task emphasized the need for explainable and interpretable
ML algorithms in the field of medical image analysis. Similar to the
other challenge, participants were granted the flexibility to use any
method, focusing on developing automated solutions. The members
from the organizer’s institute were permitted to participate but were
not considered for awards.

To participate in this challenge, participants were given a training
dataset to use for their ML models. These models were then tested

3 https://nordicaimeet.com

https://nordicaimeet.com
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Table 1
Overview of GI image analysis challenges with a specific focus on polyp detection, segmentation, localization, and WCE lesion detection and
segmentation between 2015 and 2021. Here, WL = White Light Endoscopy, NBI = Narrow Band Imaging & WCE = Wireless Capsule Endoscopy.
The total number of images and videos offered at different tasks are summed and presented in the ‘Size’ class.

Challenge name Organ Modality Findings Size Dataset Availability

Automatic Polyp
Detection in
Colonoscopy videos
2015 (Bernal et al.,
2017)

Colon WL Polyps 808 images & 38
videos

By request

GIANA 2017 (Bernal
and Aymeric, 2017)

Colon WL Polyps &
angiodysplasia

3,462 images
& 38 videos

By request

GIANA 2018
(Angermann et al.,
2017; Bernal et al.,
2018)

Colon WL, WCE Polyps & small
bowel lesions

8,262 images
& 38 videos

By request

EndoCV 2021 (Ali
et al., 2022a,b)

Colon NBI, WL Polyps 3,446 images Open academic

Medico 2020 (Jha
et al., 2020a) (Ours)

Colon WL Polyps 160 images (test) &
1000 images (train)

Open academic

MedAI Transparency
challenge 2021
(Hicks et al., 2021)
(Ours)

Colon, bladder WL Polyps,
Instrument,
Normal frames

600 images (test) &
(1000 +590) images
(train)

Open academic
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on a concealed test dataset, allowing participants to evaluate their
performance. The focus on transparency underscores the importance of
developing ML algorithms that provide not only accurate and efficient
results but also provide interpretable and explainable predictions. By
addressing these specific challenges, this challenge aimed to foster
the development of innovative and effective CADx solutions for GI
endoscopy. Below, we present each challenge sub-task.

(a) Automatic Polyp Segmentation Task: In this task, participants
ere invited to submit segmentation masks of polyps from colonoscopic

mages of the large bowel. They were provided with a training dataset
o develop their models, and a hidden test dataset was later released
o them without the ground truth segmentation masks. Participants
ere required to submit a zip file containing their predicted masks in

he same resolution as the input images, with the filenames of each
ask matching the corresponding input image and using the ‘‘.png’’

ile format. The objective of this task was similar to Medico 2020. By
sing a hidden test dataset, the results of this task were reliable and
rovided a valuable benchmark for the field.
(b) Automatic Instrument Segmentation Task: The instrument

egmentation task required the development of algorithms that could
enerate segmentation masks for GI accessory instruments such as
iopsy forceps or polyp snares used during live endoscopy procedures.
his task aimed to create segmentation models that enable tracking and

ocalization of essential tools in endoscopy that could aid endoscopists
uring interventions (such as polypectomies) by providing a precise
nd dense map of the instrument. Like the polyp segmentation task,
articipants were given a training dataset to develop their models.
he submission procedure for this task was similar to that of the
olyp segmentation task, with participants required to submit zip files
ontaining their predicted masks in the same resolution as the input
mages and with filenames matching the corresponding input images.
(c) Transparency Task: The transparency task focused on the im-

ortance of transparent research in medical artificial intelligence (AI).
he main goal of this task was to evaluate systems from a transparency
erspective, which included detailing the training procedure of the al-
orithms, the dataset used for training, the interpretation of the model’s
redictions, the use of explainable AI methods, etc. To participate in
his task, researchers were encouraged to perform ablation studies,
onduct a thorough failure analysis, and share their code in a GitHub
epository with clear steps for reproducing the results. We allowed the
articipants to submit, considering the transparency and left them to
ecide what to deliver for the task.

In addition, participants were required to submit a one-page doc-
ment summarizing their findings from the transparency task. We
 i

4 
ncouraged the participants to list package dependencies and architec-
ure code (with instruction for building, compiling, and training) and
hare trained model weights in a standardized format. Additionally,
e encouraged participants to include the code for model evalua-

ion and provide repository licensing information to enable others
o use the code and the trained model responsibly. Moreover, we
uggested that the participants explain model predictions using inter-
ediate heatmaps, statistical analysis and alternatives, such as SHapley
dditive exPlanations (Lundberg and Lee, 2017). By promoting trans-
arency in AI research, this task aimed to foster the development of
eliable, interpretable, and trustworthy algorithms for use in medical
mage segmentation. A detailed description of the challenge can also
e found in Hicks et al. (2021).

. Related work

Polyp detection and segmentation using ML has been an active field
f research for over a decade but have been previously limited by
and-crafted features (Bernal et al., 2012; Hwang et al., 2007a). Pre-
ious methods had limitations in sub-optimal performance, poor gen-
ralization to unseen images, and complexity that limited real-world
pplicability. However, in the recent 5–6 years, with the success of
NNs, the polyp segmentation task has seen a tremendous performance
oost, including the winning model in the MICCAI challenge (Bernal
t al., 2017). The widespread use of CNNs, particularly the U-Net (Ron-
eberger et al., 2015) and its variants, have been successfully applied
n several polyp segmentation datasets and discussed in challenge
eports. In addition, recent advances in CNN architectures for polyp
egmentation have focused on improving convolution operations (Alam
t al., 2020), adding attention blocks (Jha et al., 2019; Oktay et al.,
018), incorporating feature aggregation blocks( Mahmud et al., 2021)
nd using self-supervised learning techniques (Bhattacharya et al.,
021b). These modifications and learning strategies have proven effec-
ive in improving the accuracy and reliability of polyp segmentation
sing CNNs. Apart from the contributions of individual research groups,
everal challenges (Bernal et al., 2017; Ali et al., 2021) have been
rganized to improve the detection and classification of mucosal ab-
ormalities in the GI tract from either single image frames or videos.
owever, the dataset provided in the challenge and the details of the
roposed algorithms are often not publicly available, making it difficult
o reproduce and build upon them. Hence, there is a need for open-
ccess benchmarking datasets and reproducible algorithms to facilitate
rogress in this field.

Table 1 provides an overview of GI image analysis challenges held

n the past eight years. The challenge was conducted using images
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Fig. 2. Example of the test datasets from the Medico 2020 and MedAI 2021 datasets.
from different modalities with a specific focus on polyp segmentation,
detection, localization and wireless capsule endoscopy lesion detection
and localization. In 2015, Bernal et al. (2017) organized the ‘‘Automatic
Polyp Detection in colonoscopy videos’’ challenge. Likewise, they orga-
nized the GIANA challenge in 2017 and 20184 focused on colonoscopy
data and included tasks such as detection of lesions in Video capsule
Endoscopy (VCE), polyp detection, and polyp segmentation. Recent
challenges attempted to address generalizability in polyp detection
and segmentation (Ali et al., 2022a) with single frames and sequence
colonoscopy datasets. They demonstrated how variability in images
can affect algorithm performances. Altogether, these challenges have
led to many algorithmic innovations in detecting and classifying GI
abnormalities (especially polyp segmentation and detection).

Additionally, past challenges have not emphasized on the explain-
ability and reliability of deep learning model predictions. Most chal-
lenges also do not focus on open source codes for research and devel-
opment, making it difficult for proposed algorithms to be adopted in
clinical settings due to a lack of transparency. Moreover, the reported
methods are not reproducible, which hinders further algorithmic ad-
vancement. Thus, we lose track of what are best practices and where
we are heading in this field. Through our challenges in Medico 2020
and MedAI 2021, we address reproducibility and open science which
are the two most important aspects that can enable experienced and
new ML scientists to build upon and advance the field.

4. Challenge datasets and evaluation metrics

4.1. Medico 2020 dataset

The training dataset contains 1000 polyp images and their corre-
sponding ground truth mask taken from Kvasir-SEG (Jha et al., 2020b).
Kvasir-SEG consists of diverse images varying in appearance, such as
sizes (for example, diminutive, regular or large), colors (same color
as mucosa, or different colors such as reddish), textures (smooth or
granular), locations (anywhere in large intestine such as left colon,
sigmoid colon or rectum), numbers of polyp per images (for example,

4 https://giana.grand-challenge.org/
5 
one or many), image quality (illumination, artifacts) and shapes (flat,
pedunculated, and sessile). The variation ensures that the algorithms
trained on this dataset can handle real-world variations in clinical
settings. Some samples are shown in Fig. 2(a).

The datasets were acquired from real routine clinical examinations
at Vestre Viken Health Trust (VV) in Norway by a team of expert
gastroenterologists. The VV is the collaboration of the four hospitals
that provide healthcare services to 470,000 people. The resolution of
images varies from 332 × 487 to 1920 × 1072 pixels. Some images
contain green thumbnails in the lower-left corner of the images show-
ing the position marking from the ScopeGuide (Olympus). After data
acquisition, our team categorized the dataset into a polyp class. To
extend the dataset to the segmentation class, a team of one experienced
engineer, a medical doctor, and an expert gastroenterologist annotated
the polyp images using the label box tool. After annotation, we extract
the corresponding ground truth and bounding box information. Once
the ground truth was created, the images and ground truths were
combined to facilitate the review process. These images were sent to a
team of expert gastroenterologists for validation through a web-based
interface. After validation, we compiled them into training and test
datasets. The data proportion for each set followed the general split
ratio used in the literature.

The training dataset has been made publicly available as open
access and is widely available at.5 The test dataset contains unique
polyp images encompassing a wide range of diverse clinical scenarios
with different polyp characteristics, varying lighting conditions and
image resolution, low-quality images, as well as complex polyp images
(for example, with instruments and residual stool) that the model has
never encountered before. Only the organizers had access to the test
case labels. Currently, the test data can be downloaded from.6

4.2. MedAI transparency challenge 2021 dataset

We utilize our Kvasir-SEG (Jha et al., 2020b) as the development
dataset for the polyp segmentation task. Similarly, Kvasir-Instrument

5 https://datasets.simula.no/kvasir-seg/
6 https://drive.google.com/file/d/1uP2W2g0iCCS3T6Cf7TPmNdSX4gayOrv
2

https://giana.grand-challenge.org/
https://datasets.simula.no/kvasir-seg/
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Fig. 3. Data distribution details of train and test sets used in Medico 2020 and MedAI 2021 challenges. Large, medium, and small represent the distribution information of regions
of interest in the data samples.
(Jha et al., 2021) was used as the training dataset for the instrument
segmentation task. It can be downloaded from.7 We followed the same
data acquisition and annotation protocol for test dataset creation as the
Medico 2020 challenge. Some sample images for polyp segmentation
and instrument segmentation tasks are presented in Fig. 2(a) and
Fig. 2(b). Fig. 3 shows the data distribution of the train and test datasets
used in Medico 2020 and MedAI 2021. We have categorized the images
into ‘‘small’’, ‘‘medium’’ and ‘‘large’’ according to the size of regions
of interest using a randomly selected threshold of 0.3 and 0.1 and
plotted the normalized height versus normalized width of each data
point. This is to visualize the dimension of each data point and observe
the diversity and complexity of the dataset used in the study. The
information about the size categories and the dataset’s dimensions is
crucial for assessing the performance and robustness of the proposed
algorithms.

4.3. Metrics for polyp and instrument segmentation tasks

We used mean Intersection over Union (mIoU) as a primary eval-
uation metric for the polyp and instrument segmentation tasks. If the

7 https://datasets.simula.no/kvasir-instrument/
6 
teams achieved the same mIoU values, their ranking was further eval-
uated based on the higher value of the Dice coefficient (DSC). We also
recommend calculating other important standard evaluation metrics
that hold significant relevance in clinical settings such as Accuracy
(Acc), Recall (Rec), Precision (Pre), F-2 score, and Frames per second
(FPS) to ensure a detailed evaluation.

4.4. Metrics for efficiency tasks

Efficiency is crucial in colonoscopy as it directly impacts the mod-
els’ feasibility and practicality in real-world scenarios. Endoscopists
often need to analyze numerous frames in real-time during routine
colonoscopy, and lag (latency) in the analysis could lead to suboptimal
results. Our approach to FPS calculation was based on the time taken
to process a single image, averaged over the entire dataset, and then
extrapolated to a per-second rate. Therefore, we strongly recommend
calculating processing speed in terms of FPS.

4.5. Metrics for transparency tasks

The transparency task aimed to assess the transparency and un-
derstandability of algorithms for medical AI by utilizing a qualitative

https://datasets.simula.no/kvasir-instrument/
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Table 2
Summary information of participating teams in Medico 2020. Here, ‘

√

’ = Team
participated, ‘–’ = No participation, Task 1 = Polyp segmentation task and Task 2
= Algorithm efficiency task.

Chal. Team name Task 1 Task 2

Medico 2020

FAST-NU-DS
√ √

AI-TCE
√

–
ML-MMIVSARUAR

√

–
UiO-Zero

√

–
HBKU_UNITN_SIMULA

√

–
AI-JMU

√ √

SBS
√ √

AMI Lab
√ √

UNITRK
√ √

MedSeg_JU
√

–
IIAI-Med

√

–
HGV-HCMUS

√ √

GeorgeBatch
√ √

PRML2020GU
√ √

VT
√

–
IRIS-NSYSU

√

–
NKT

√ √

approach in the evaluation metrics. We evaluated transparency tasks
using a more quantitative approach than polyp and instrument seg-
mentation. A multi-disciplinary team assessed each submission and
evaluated the transparency and understandability of the proposed so-
lutions. Each team was scored based on the three criteria: open source
code, model evaluation and clinical evaluation. The open source code
was evaluated based on the presence of a publicly available repository,
code quality and quality of the readme file. The model evaluation
included failure analysis, ablation study, explainability of the method,
and metrics used. Evaluation by clinical experts considered the use-
fulness of the technique and its understandability. With these three
criteria, we aimed to measure the transparency of the provided solu-
tions. A detailed score distribution under different criteria is shown in
Table 10, which was part of our Task 3. Ultimately, this task aimed
to promote the development of more transparent and interpretable AI
systems.

5. Participating research teams

5.1. Methods used in Medico 2020

Table 2 summarizes all the teams participating in the ‘‘Medico
2020’’ challenge. It can be seen from Table 2 that all 17 teams
participated in Task 1, whereas only 9 teams participated in Task 2.

FAST-NU-DS: Team FAST-NU-DS (Ali et al., 2020a) explored the
advantage of using depth-wise separable convolution in the atrous con-
volution of the ResUNet++(Jha et al., 2019) architecture. Modifications
were made to get the lightweight image segmentation. Deep atrous
spatial pyramid pooling was also implemented on the ResUNet++
architecture. The purpose of this architectural design was to provide
good performance on the image segmentation evaluation metrics and
inference time. To get the lightweight model architecture, changes were
made to the atrous bridge in ResUNet++ architecture. The convolution
layer in the atrous bridge was replaced with depthwise separable
convolution. Depth-wise separable convolution first applies channel-
wise filters, followed by a 1 × 1 pointwise convolution, to maintain
performance while streamlining computations. The implementation of
depth-wise separable convolution resulted in less number of parameters
and giga-floating point operations (GFLOPs).

AI-TCE: Team AI-TCE (Nathan and Ramamoorthy, 2020) proposed
an efficient supervision network that uses EfficientNet (Tan and Le,
2019a) and an attention Unit. The proposed network had the prop-
erties of an encoder–decoder structure with supervision layers. An
EfficientNet-B4 was used as a pre-trained architecture in the encoder

block. The decoder block combined dense block and Concurrent Spatial m

7 
and Channel Attention block. Both the encoder and decoder were
connected by Convolution Block Attention Module (CBAM). All the
outputs of the decoder layer were supervised, i.e., individual decoder
output was taken and upsampled with the output layer and supervised
by the loss function. Also, all upsampled outputs were concatenated
and fed into CBAM. In the upsampling, the convolution transpose layer
was used.

ML-MMIV SARUAR: Team ML-MMIV SARUAR (Alam et al., 2020)
used the U-Net with pre-trained ResNet50 on the ImageNet dataset as
the encoder for the polyp segmentation task. The use of a pre-trained
encoder helped the model to converge easily. The input image was
fed into the pre-trained ResNet50 encoder, consisting of a series of
residual blocks as their main component. These residual blocks helped
the encoder extract the important features from the input image, which
were then passed to the decoder. Skip connections between the encoder
and decoder branch help the model to get all the low-level semantic
information from the encoder, which allowed the decoder to generate
the desired feature maps.

UiO-Zero: Team UiO-Zero (Ahmed and Ali, 2020) used the genera-
tive adversarial networks (GAN) framework for solving the automatic
segmentation problem. Perceiving the problem as an image-to-image
translation task, conditional GANs were utilized to generate masks con-
ditioned by the images as inputs. The polyp segmentation GAN-based
model consists of two networks, namely a generator and discriminator,
that were based on convolution neural networks. A generator takes
the images as input and tries to produce realistic-looking masks condi-
tioned by this input and a discriminator, which was basically a classifier
that had access to the ground truth masks and tried to classify whether
the generated masks was real or not. To stabilize the training, the
images were concatenated with the masks (generated or real) before
being fed to the discriminator.

HGV-HCMUS: The HGV-HCMUS (Trinh et al., 2020) team proposed
methods combining the Residual module, Inception module, Adaptive
CNN with U-Net (Ronneberger et al., 2015) model, and PraNet (Fan
et al., 2020) for semantic segmentation of various types of polyps in
endoscopic images. The team submitted five different runs considering
five different solutions. In the first approach, a simple U-Net archi-
tecture was adopted to parse masks of polyps. Second, the regular
ReLU was replaced with Leaky ReLU to deal with dead neurons. Third,
to further boost the result, an Inception module was introduced to
extract better features. Fourth, a pre-trained model with the ResNet-50
backbone was used to build ResUNet, yielding better obtained results.
Last, PraNet was employed for polyp segmentation in colonoscopy
images. This solution provided the best outcome and was used to
generate the results.

AI-JMU: Team AI-JMU (Krenzer and Puppe, 2020) explored var-
ious image segmentation models, specifically the Cascade Mask R-
CNN (Cai and Vasconcelos, 2019) and Mask R-CNN (He et al., 2017)
with ResNet (He et al., 2016) as well as the ResNeSt (Zhang et al.,
2022) architectures was used as the backbone. Additionally, the team
investigated the effect of varying the depth of both the ResNet and
ResNeSt architectures. Depths of 50, 101, and 200 were evaluated for
the ResNeSt model, and depths of 50 and 101 for the ResNet model.
They reported that the best outcome was obtained using ResNeSt-101
when combined with Cascade Mask R-CNN.

SBS: Team SBS (Shrestha et al., 2020) exploited ResNet 34 (He et al.,
016) and EfficientNet-B2 (Tan and Le, 2019a) backbones in the U-Net.
he team introduced two different models: Single Model and Ensemble
odel. The ResNet-34 was used in the single model. The weights saved

fter the training phase was loaded in the network, and test data
ere fed to get the predicted polyp masks. However, in the case of

he ensemble model, both ResNet-34 and EfficientNetB2 were used to
redict the masks. Then the individual prediction was ensembled using
itwise multiplication between the two predicted masks. The ensemble
odel provided better evaluation results as compared to the single

odel, as when multiple algorithms were ensembled predictive power
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Fig. 4. Overview of the winning solution for the Polyp segmentation task (Task 1) from Team PRML2020GU . The architecture utilizes pre-trained weights from EfficientNet in
the encoder. Additionally, it uses dense skip connections, deep supervision and channel-spatial attention for fast convergence and better performance.
increases and error rate decreases. Hence, the final results are reported
using the ensemble model using ResNet-34 and EffiecientNetB2 as
backbones in the U-Net architecture.

AMI Lab: Team AMI Lab (Kang and Gwak, 2020) utilized the
knowledge distillation technique to improve ResUNet++ (Jha et al.,
2019), which performs well on automatic polyp segmentation. First,
the data augmentation module was used to generate augmented images
for the input. Second, the obtained augmented images were fed to both
the student model and the teacher model. Third, the distillation loss
between the outputs of student and teacher models was calculated.
Similarly, the loss between the output of the student model and the
ground truth label was computed to train the student model.

UNITRK: Team UNITRK (Khadka, 2020) employed the UNet model
pre-trained on the brain MRI dataset. The notion of knowledge transfer
has been the key motivating factor to choose a simple pre-trained
model. The model was fine-tuned with the polyp dataset. The fine-
tuning of the pre-trained model helped to converge faster without the
requirement of a large number of training examples. The additive soft
attention mechanism was integrated with the pre-trained UNet archi-
tecture. The key benefit of this attention UNet structure in comparison
to multi-stage CNNs was that it does not require training of multiple
models to deal with object localization and thus reduces the number
of model parameters. It helps to focus on relevant regions in the input
images.

MedSeg_JU: Team MedSeg_JU (Banik and Bhattacharjee, 2020) pro-
posed an approach for polyp segmentation based on deep conditional
adversarial learning. The proposed framework consists of two interde-
pendent modules: a generator network and a discriminator network.
The generator was an encoder–decoder network responsible to predict
the polyp mask while the discriminator enforces the segmentation
to be as similar to the ground truth segmented mask. The training
process of the network alternates between training the generator and
the discriminator, with the generator trained to produce a predicted
synthetic mask by freezing the discriminator and the discriminator
trained while freezing the generator.

IIAI-Med: Team IIAI-Med team (Ji et al., 2020) presented a novel
deep neural network, called the Parallel Reverse Attention Network
(PraNet) (Fan et al., 2020), for the task of automatic polyp segmen-
tation at MediaEval 2020. The network first aggregated features in
high-level layers using a parallel partial decoder (PPD). This combined
feature was then used to generate a global map as the initial guidance
area for the following components. Additionally, the network mines
boundary cues using a reverse attention (RA) module which establishes
the relationship between areas and boundary cues. Thanks to the
recurrent cooperation mechanism between areas and boundaries, the
PraNet was able to calibrate misaligned predictions, improving seg-
mentation accuracy and achieving real-time efficiency (nearly 30fps).
The code and results are available at https://github.com/GewelsJI/
MediaEval2020-IIAI-Med.
8 
HBKU_UNITN_SIMULA Team HBKU_UNITN_SIMULA (Nguyen et al.,
2020) proposed two different approaches leveraging the advantages
of either ResUNet++ or PraNet model to efficiently segment polyps
in colonoscopy images, with modifications on the network structure,
parameters, and training strategies to tackle various observed charac-
teristics of the given dataset. For the first approach, PraNet was used,
which is a parallel reverse attention network that helps to analyze and
use the relationship between areas and boundary cues for accurate
polyp segmentation. The PraNet with Training Signal Annealing strat-
egy was used to improve segmentation accuracy and effectively train
from scratch on the given small dataset. For the second approach, Re-
sUNet++ was used, which takes advantage of residual blocks, squeeze
and excitation blocks, atrous spatial pyramid pooling, and attention
blocks. The input path was modified and integrates a guided mask
layer to the original structure for better segmentation accuracy. They
used the two approaches to experiment with different runs. The best
polyp segmentation outcome was achieved when the results from three
PraNet and five ResUNet++ models, trained on different train-val
dataset splits, were averaged.

GeorgeBatch: Team GeorgeBatch (Batchkala and Ali, 2020) used
the standard U-Net architecture for the binary segmentation task, and
experiments were conducted using the intersection-over-union loss (IoU
loss) instead of the commonly used binary cross-entropy (BCE) loss.
They also experiment with a combination of both losses in the training
process. The motivation behind this approach was to strike a bal-
ance between accuracy and speed for using automated systems during
colon cancer surveillance and surgical removal of polyps. This balance
is considered while experimenting with other parameters like loss
function and data augmentation to boost performance. The reported
outcomes show that using IoU loss results in enhanced segmentation
performance, with a nearly 3% improvement on the DSC metric while
maintaining real-time performance (close to 200 FPS). The code and
results are available at https://github.com/GeorgeBatch/kvasir-seg.

PRML2020GU: An overview of the approach proposed by team
PRML2020GU (Poudel and Lee, 2020) is shown in Fig. 4. The team
employed an EfficientNetB3 as an encoder backbone with a U-Net
decoder and leveraged the concept of U-Net++ of redesigning the skip
connections to use multi-scale semantic details. The densely connected
skip connections to the decoder side enable flexible multi-scale feature
fusion both horizontally and vertically at the same resolution. Besides,
the proposed method is powered by deep supervision, where all the
outputs after deep supervision is averaged, and the final mask is gen-
erated. Further, channel-spatial attention enables significantly better
performance and fast convergence. Moreover, integrating the channel
and spatial attention modules restrains irrelevant features and allows
only useful spatial details.

VT: Team VT (Thambawita et al., 2020) proposed a simple but
efficient idea of using an augmentation method called pyramid focus-
augmentation (PYRA) that uses grids in a pyramid-like manner (large
to small) for polyp segmentation. The method has two main steps:

https://github.com/GewelsJI/MediaEval2020-IIAI-Med
https://github.com/GewelsJI/MediaEval2020-IIAI-Med
https://github.com/GewelsJI/MediaEval2020-IIAI-Med
https://github.com/GeorgeBatch/kvasir-seg
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Table 3
Summary of the participating teams algorithm for Medico 2020. Here, ‘‘Aug.’’ = augmentation used, ‘‘SGD’’ = Stochastic gradient descent, ‘‘GAN’’ = generative adversarial network,
‘‘ASPP’’ = Atrous Spatial Pyramid Pooling, and ‘‘AP’’ = Average precision.

Team name Algorithm Backbone Nature Choice basis Aug. Loss Optimizer

FAST-NU-DS (Ali et al., 2020a) Depth-wise separable
convolution and ASPP

ResUNet++ Cascade of depth-wise
separable convolutions

mIoU and DSC Yes IoU Adam

AI-TCE (Nathan and Ramamoorthy, 2020) Multi-Supervision Net EfficientNetB4 Encoder-Multi
Supervision Decoder

Acc and DSC Yes Categorical
cross-entropy +
Dice loss

Adam

ML-MMIV SARUAR (Alam et al., 2020) Encoder–decoder based
architecture based on
ResNet50

ResNet50 Cascade of residual
blocks

mIoU and DSC Yes Cross-entropy Adam

UiO-Zero (Ahmed and Ali, 2020) GAN None GAN with CNN based
generator and
discriminator

Image-to-image
translation

No Standard
conditional GAN
adversarial loss

Adam

HBKU UNITN SIMULA (Nguyen et al., 2020) Residual module,
Inception module,
Adaptive CNN with
U-Net and PraNet

U-Net and
ResNet-50

Cascade of residual
blocks and inception
module

mIoU and DSC Yes Bce + Dsc loss Adam

AI-JMU (Krenzer and Puppe, 2020) Cascade Mask R-CNN ResNeSt
backbone,
Cascade
Architecture

Deep CNN DSC and mIoU Yes Binary
cross-entropy

SGD

SSB (Shrestha et al., 2020) U-Net ResNet-34,
EfficientNet-B2

Ensemble DSC and mIoU Yes Tversky loss Adam

AMI LAB (Kang and Gwak, 2020) Knowledge distillation
on ResUNet++

ResUNet++ Ensemble mIoU and DSC Yes Distillation loss Adam

UNITRK (Khadka, 2020) Knowledge transfer
using UNet

Pre-trained
U-Net model

Encoder–decoder mIoU and DSC Yes Compound loss
of DSC and BCE

Adam

MedSeg_JU (Banik and Bhattacharjee, 2020) Conditional GAN
(cGAN)

None Encoder–decoder mIoU and DSC Yes Weighted loss of
MSE and BCE

Adam

IIAI-Med (Ji et al., 2020) PraNet Res2Net Encoder–decoder mIoU, DSC and
FPS

No Weighted IoU
loss + BCE loss

Adam

HGV-HCMUS (Trinh et al., 2020) PraNet and ResUNet++
with triple path

ResUNet++ Encoder–decoder mIoU Yes Categorical
crossentropy

Adam

GeorgeBatch (Batchkala and Ali, 2020) U-Net None Encoder–decoder Acc and Speed Yes Non-Binarized
IoU

Adam

PRML20202GU (Poudel and Lee, 2020) Efficient-UNet
+Channel-Spatial
Attention + Deep
Supervision

Variants of
EfficientNet

Encoder–decoder mIoU and DSC Yes BCE + DSC loss Adam

VT (Thambawita et al., 2020) U-Net coupled with
PYRA

None Encoder–decoder mIoU and DSC Yes BCEWithLogits
Loss

RMSprop

IRISNSYSU (Maxwell Hwang et al., 2020) Temporal–Spatial
Attention Model

Faster-RCNN Hybrid attention
interface

AP Yes Cross entropy Adam

NTK (Tomar, 2021) Residual blocks
combined with SE
network

None Encoder–decoder DSC, mIoU and
FPS

No BCE + DSC loss Adam
data augmentation with PYRA using pre-defined grid sizes followed by
training of a DL model with the resulting augmented data. PYRA can
be used to improve the performance of segmentation tasks when there
is a small dataset to train the DL models or if the number of positive
findings is small. The method shows a large benefit in the medical
diagnosis use case by focusing the clinician’s attention on regions with
findings step-by-step.

IRISNSYSU: Team IRISNSYSU (Maxwell Hwang et al., 2020) pro-
posed a local region model with attentive temporal–spatial pathways
for automatically learning various target structures. The attentive spa-
tial pathway highlights the salient region to generate bounding boxes
and ignores irrelevant regions in an input image. The proposed at-
tention mechanism allows efficient object localization, and the overall
predictive performance is increased because there are fewer false pos-
itives for the object detection task for medical images with manual
annotations.

NKT: Team NKT (Tomar, 2021) proposed a full convolution network
following an encoder–decoder approach. It combines the strength of
residual learning and the attention mechanism of the squeeze and
9 
excitation (SE) network. The encoding network consists of 4 encoder
blocks with 32, 64, 128, and 256 filters. The decoding network also
consists of 4 decoder blocks with 128, 64, 32, and 16 filters. Both the
encoder and decoder block consist of a residual block as their core
component. The residual block helps in building deep neural networks
by solving the vanishing gradient and exploding gradient problem.

Additionally, in Table 3, we provide an elaborate summary of all
the research teams who participated in the ‘‘Medico 2020’’ challenge.
It gives a detailed overview of the algorithms, backbone, nature, choice
basis, data augmentation used, loss function, and optimizer used by
each participating teams.

5.2. Methods used in MedAI 2021

In this subsection, we briefly summarize the methods used by the
participating teams in the MedAI 2021 challenge. In Table 4, we present
the research teams who have participated in each of these three tasks.
It can be seen from this table that most of the teams participated in
all three tasks except for three teams, which participated in either one
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Table 4
Summary information of participating teams in MedAI 2021. Here, ‘

√

’ = Team
participated, ‘–’ = No participation, Task 1 = Polyp segmentation task, Task 2
= Instrument segmentation task, and Task 3 = Transparency task. A total of 16
teams participated in polyp segmentation and instrument segmentation and 14 teams
participated in the Transparency tasks in the challenge.

Chal. Team name Task 1 Task 2 Task 3

MedAI 2021

The Segmentors
√ √ √

The Arctic
√ √ √

mTEC
√ √ √

MedSeg_JU –
√

–
MAHUNM

√ √ √

IIAI-CV&Med
√ √ √

NYCity
√ √ √

PRML
√ √ √

leen
√ √ √

CV&Med IIAI
√ √ √

Polypixel
√ √ √

agaldran
√ √ √

TeamAIKitchen
√ √ √

CamAI
√ √ √

OXGastroVision
√ √ √

Vyobotics
√

– –
NAAMII

√ √

–

or two of the sub-tasks. All participating teams have used the same
architecture in their submission for polyp segmentation and instrument
segmentation subtasks. However, two teams, namely Vyobotics (Rauni-
ar et al., 2021) and MedSeg_JU (Banik et al., 2021) have participated
n only one of the subtasks. The team Vyobotics (Rauniyar et al.,
021) has participated in the polyp segmentation task whereas the
eam MedSeg_JU (Banik et al., 2021) has participated in the surgical
nstrument segmentation task.
The Segmentors: Team Segmentors (Mirza and Rajak, 2021) pro-

osed solution is a UNet-based algorithm designed for segmenting
olyps in images taken from endoscopies. The primary focus of this
pproach was to achieve high segmentation metrics on the supplied
est dataset, which was a crucial requirement for accurate and reliable
olyp segmentation. To this end, they experimented with data aug-
entation and model tuning to achieve satisfactory results on the test

ets.
The Arctic: Team Arctic (Somani et al., 2021) utilized a unique hy-

rid optimization technique that combined the power of DeepLabV3+
Chen et al., 2018) and ResNet101 (He et al., 2016) to address the
pecific challenges of GI image segmentation effectively. In order to
nsure the accuracy of their results, the team employed a 5-fold cross-
alidation approach, with a learning rate of 0.0001 and a batch size
f 12. Additionally, towards transparency, they proposed a method
f rendering feature attention maps to visualize the attention of the
etwork on individual pixels within the image.
mTEC: Team mTEC (Bhattacharya et al., 2021a) introduced a

ew architecture called Dual Parallel Reverse Attention Edge Network
DPRA-EdgeNet) for joint segmentation of polyp masks and polyp
dge masks. This architecture utilizes the reverse attention module
rom PraNet (Fan et al., 2020) to perform the segmentation tasks.
he team implemented two parallel decoder blocks, with one focused
n extracting features for polyp segmentation and the other focused
n extracting features for polyp edge segmentation. The polyp mask
ecoder leverages the features from the edge decoder block to improve
he accuracy of the segmentation. Additionally, the team employed
eep supervision of both edge and polyp features to stabilize the
ptimization process of the model.
MedSeg_JU: Team MedSeg_JU (Banik et al., 2021) proposed EM-

et, encoder–decoder-based architecture inspired by the M-Net (Mehta
nd Sivaswamy, 2017) architecture. In their approach, the encoder
ranch of the network utilized EfficientNet-B3 (Tan and Le, 2019b) as
ts backbone. The network also employed a multi-scale input method,

here the input image was downsampled at rates of 2, 4, and 8 at each v

10 
evel of the encoder branch, providing a multi-level receptive field. The
ecoder branch was a mirror structure of the encoder, where upsam-
ling was used to increase the size of the feature maps at each level.
kip connections were used to enhance the flow of spatial information
ost during downsampling. The final feature maps underwent point-
ise convolution and sigmoid activation and were then upsampled to
rovide deep supervision and a local pixel-level prediction map for each
cale of the input image. These maps were then fused to generate the
inal segmentation mask.
MAHUNM: Team MAHUNM (Haithami et al., 2021) presented an

pproach for enhancing the segmentation capabilities of DeeplabV3
y incorporating Gated Recurrent Neural Network (GRU). In their
pproach, the team replaced the 1-by-1 convolution in DeeplabV3 with
RU after the ASSP layer to combine input feature maps. While the
onvolution and GRU had sharable parameters, the latter had gates that
nabled or disabled the contribution of each input feature map. The
xperimental evaluation conducted on unseen test sets demonstrated
hat using GRU instead of convolution produced better segmentation
esults.
IIAI-CV&Med: Team IIAI-CV&Med (Dong et al., 2021b) developed

n ensemble of three sub-models, namely Polyp-PVT (Dong et al.,
021a), Sinv2-PVT, and Transfuse-PVT. The official Polyp-PVT, as de-
igned for polyp segmentation, was adopted without modification and
chieved state-of-the-art segmentation capability and generalization
erformance. Transfuse, also designed for polyp segmentation, was
mproved by replacing the transformer part with the pyramid vision
ransformer (PVT) (Wang et al., 2022) to enhance its performance. The
fficial Sinv2 (Fan et al., 2021), which proposes an end-to-end network
or searching and recognizing concealed objects, was employed and
ts original backbone of Res2Net was replaced with a stronger PVT
ransformer (Wang et al., 2022) to extract more meaningful features.
NYCity: Team NYCity (Chen et al., 2021) presented a novel multi-

odel ensemble framework. The team first collected a set of SOTA
odels in this field and further improved them through a series of

efinements. These models include TransFuse (Zhang et al., 2021) and
arDNet-MSEG (Huang et al., 2021). They improvised TransFuse by

eplacing its backbone with HarDNet-85 (Chao et al., 2019) and placing
n additional BiFuse layer. They further modified HarDNet-MSEG by
sing HarDNet-85 and ResNet-101 (He et al., 2016) as the backbone.
dditionally, they made modifications to the decoder and adopted
ifferent receptive fields. By integrating those fine-tuned models into
more powerful ensemble framework, they were able to achieve

mproved performance.
PRML: Team PRML (Poudel and Lee, 2021) introduced Ef-UNet, a

egmentation model that is composed of two main components. First,
U-Net encoder that utilizes EfficientNet (Tan and Le, 2019b) as a

ackbone, which allows the generation of different semantic details in
ultiple stages. Second, a decoder integrates spatial information from
ifferent stages to generate a final precise segmentation mask. Using
fficientNet as the encoder backbone provides Ef-UNet with the ability
o efficiently extract high-level features from the input images while
he decoder component effectively integrates these features to produce
ccurate segmentation results.
leen: Team leen (Ahmed and Ali, 2021) utilized the GANs frame-

ork to produce corresponding masks that locate the polyps or instru-
ents on GI polyp images. To ensure transparency and explainability of

heir models, the team leen adopted the layer-wise relevance propaga-
ion (LRP) approach (Bach et al., 2015), which is one of the most widely
sed methods in explainable artificial intelligence. This approach gen-
rated relevant maps that display the contribution of each pixel of the
nput image in the final decision of the model.
CV&Med IIAI: Team CV&Med IIAI (Chou, 2021) proposed a novel

ual model filtering (DMF) strategy, which effectively removed false
ositive predictions in negative samples through the use of a metrics-
ased threshold setting. To better adapt to high-resolution input with

arious distributions, the PVTv2 (Wang et al., 2022) backbone was
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Table 5
Summary of the participating teams algorithm for MedAI 2021.

Team name Segmentation
task

Algorithm Backbone Nature Choice basis Augmentation Loss Optimizer

The Segmentors (Mirza and Rajak, 2021) Polyp,
Instrument

U-Net None Encoder–decoder DSC and mIoU Yes DSC Adam

The Arctic (Somani et al., 2021) Polyp,
Instrument

DeeplabV3plus +
ResNet101

None Hybrid DSC Yes Cross-entropy Adam

mTEC (Bhattacharya et al., 2021a) Polyp,
Instrument

DPRA-EdgeNet HarDNet Cascade DSC and mIoU No (Dice + BCE)
loss

Adam

MedSeg_JU (Banik et al., 2021) Instrument EM-Net EfficientNet-B3 Encoder–decoder DSC Yes DSC Adam
MAHUNM (Haithami et al., 2021) Polyp,

Instrument
DeeplabV3 with
GRU

ResNet-
50/ResNet-101

Sequential DSC and mIoU No BCE With
Logits Loss

Adam

IIAI-CV&Med (Dong et al., 2021b) Polyp,
Instrument

Polyp-PVT,
Sinv2-PVT and
Transfuse-PVT

Transformer Ensemble Majority voting No IoU Adam

NYCity (Chen et al., 2021) Polyp,
Instrument

HarDNet-85,
ResNet-101

Transformer Ensemble Accuracy Yes IoU Gradient
centralization

PRML (Poudel and Lee, 2021) Polyp,
Instrument

Ef-UNet EfficientNet Encoder–decoder DSC and mIoU No DSC Loss Adam

leen (Ahmed and Ali, 2021) Polyp,
Instrument

GAN None Encoder–decoder DSC and mIoU No BCE and L1
loss

Adam

CV&Med IIAI (Chou, 2021) Polyp,
Instrument

SINetv2 PVT v2 Encoder–decoder mIoU No Pixel
position-
aware
loss

Adam

Polypixel (Tzavara and Singstad, 2021) Polyp,
Instrument

Transfer learning
using
EfficientNet B1

None CNN DSC and mIoU Yes IoU Adam

agaldran (Galdran, 2021) Polyp,
Instrument

Double
Encoder–Decoder
with temperature
scaling Feature

Pyramid
Network as
Decoder and
Resnext101 as
pretrained
decoder

Sequential DSC Yes DSC Sharpness-
aware
minimization
(SAM) +
Adam

TeamAIKitchen (Keprate and Pandey, 2021) Polyp,
Instrument

U-Net None Encoder–decoder DSC Yes DSC Adam

CamAI (Yeung, 2021) Polyp,
Instrument

Transfer learning
(Attention
U-Net)

ResNet-152 Ensemble Accuracy Yes Unified focal
loss

SGD

OXGastroVision (Ali and Tomar, 2021) Polyp,
Instrument

DDANet +
FANet

None Encoder–decoder DSC No BCE and DSC
loss

Adam

Vyobotics (Rauniyar et al., 2021) Polyp DDANet None Encoder–decoder DSC and mIoU Yes BCE and DSC
loss

Adam

NAAMII (Rauniyar et al., 2021) Polyp,
Instrument

U2Net None Encoder–decoder mIoU Yes Mean
Squared
Error,
Cross-entropy

Adam
p

embedded into the SINetV2 (Fan et al., 2021) framework. The SINetV2
framework with camouflaged object detection was used for better
identification ability, as polyp segmentation is a downstream task.
Additionally, extensive experiments have been conducted to study the
effectiveness of DMF, and it was found that the method performs well
under different data distributions, making it a favorable solution for
problems where the training dataset had a different distribution of
negative samples compared to the testing dataset.

Polypixel: Team Polypixel (Tzavara and Singstad, 2021) presented
a study in which they used both pretrained and non-pretrained seg-
mentation models for the polyp and instrument segmentation task. The
team trained and validated both models on the dataset. The model ar-
chitectures were retrieved from a Python library, ‘‘Segmentation Mod-
els’’ https://github.com/qubvel/segmentation_models, that contained
different CNN architectures. This library offered models with both
untrained and pre-trained weights, which were trained on the ImageNet
dataset. To find the optimal fit for their datasets, they experimented and
tested their results using EfficientNet, MobileNet, SE-ResNet, Inception,
ResNet, and VGG. They achieved the best results with EfficientNetB1
for the polyp segmentation task.

agaldran: Team agaldran (Galdran, 2021) utilized a double
encoder–decoder structure for polyp and instrument segmentation,
which consists of two U-Net like structures arranged sequentially as
shown in Fig. 5. The first encoder–decoder network processes the orig-
inal image and produces output fed into the second encoder–decoder
 p
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network. According to the authors, this setup allows the first network
to highlight the important features of the image for segmentation,
while the second network further improves the predictions of the first
network. For the architectural design of a double encoder–decoder
network, they incorporate Feature Pyramid Network (FPN) (Lin et al.,
2017) architecture as the decoder mechanism, along with Resnext101
that serves as the pretrained decoder (Kolesnikov et al., 2020). This is
done to optimize the feature extraction. To further refine the model’s
optimization process, they used Sharpness-Aware Minimization (SAM)
along with the ADAM optimizer (Foret et al., 2020). The team em-
ployed a 4-fold cross-validation approach to train their models, training
with four separate models and using temperature sharpening across the
ensemble model to produce the final segmentation maps.

TeamAIKitchen: Team TeamAIKitchen (Keprate and Pandey, 2021)
presented a methodology for developing, fine-tuning, and analyzing a
U-Net-based model for generating segmentation masks for the polyp
segmentation task. They modified the original U-Net architecture to
extend it to work with less training samples and to generate the output
mask of the same size as the input. ReLU activation function was used
in the hidden layers. They further experimented with different batch
sizes and selected 8 as the best. Same architecture was used for polyp
and instrument segmentation with early stopping criteria.

CamAI: Team CamAI (Yeung, 2021) presented a deep learning
ipeline that is specifically developed to accurately segment colorectal
olyps and various instruments used during endoscopic procedures. To

https://github.com/qubvel/segmentation_models
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Table 6
Performance comparison on Polyp segmentation task (Medico 2020). ‘Bold’ refers to the best score
and ‘red’ color refers to the second best score. We follow this consistently in all the Tables. ↑

indicates a higher value is better.
Team name mIoU ↑ DSC ↑ Recall ↑ Precision ↑ F2 ↑

PRML2020GU 0.78975 0.86076 0.90312 0.86731 0.87481
HBKU_UNITN_SIMULA 0.77736 0.84768 0.85034 0.88971 0.84483
AI-TCE 0.77733 0.85030 0.91646 0.83897 0.87901
HGV-HCMUS 0.76597 0.84050 0.89439 0.84455 0.85768
IIAI-Med 0.76195 0.83854 0.83049 0.90121 0.82837
SBS 0.75503 0.83162 0.83168 0.88513 0.82490
ML-MMIVSaruar 0.75168 0.82289 0.83908 0.88228 0.82492
AI-JMU 0.73742 0.81437 0.82661 0.87432 0.81038
MedSeg_JU 0.71330 0.80195 0.83542 0.82864 0.81240
VT 0.70578 0.79264 0.88353 0.78784 0.82368
NKT 0.68473 0.78012 0.80771 0.81264 0.78546
UNITRK 0.64379 0.72878 0.70989 0.85726 0.71312
GeorgeBatch 0.63511 0.73276 0.75003 0.82294 0.73615
AMI Lab 0.61958 0.70889 0.72865 0.79140 0.71226
IRIS-NSYSU 0.50353 0.64173 0.87915 0.58498 0.75089
UiO-Zero 0.43814 0.56185 0.69721 0.55587 0.61102
FAST-NU-DS 0.18344 0.26691 0.27447 0.29184 0.26762
Fig. 5. Overview of winning solution of MedAI 2021 proposed by Team agaldran. A
double encoder–decoder network was used to segment polyps and surgical instruments.

improve transparency and interpretability, the pipeline leveraged the
Attention U-Net architecture, which enables visualization of the atten-
tion coefficients to identify the most salient regions of the input images.
This allowed for a better understanding of the model’s decision-making
process and facilitated the identification of potential errors. To further
improve performance, the pipeline incorporated transfer learning using
a pre-trained encoder. Additionally, test-time augmentation, softmax
averaging, softmax thresholding and connected component labeling
were used to further refine predictions and boost performance.

OXGastroVision: Team OXGastroVision (Ali and Tomar, 2021) pre-
sented a novel solution that utilizes two state-of-the-art deep learning
models, namely the iterative FANet (Tomar et al., 2022) architecture
and DDANet (Tomar et al., 2021). The FANet is based on a feedback at-
tention network that allows rectifying predictions iteratively. It consists
of four encoder and four decoder layers. Similarly, DDANet is based
on a dual decoder attention network with one shared encoder at each
layer. While the iterative mechanism in the full FANet architecture
can lead to larger computational time, DDANet has real-time perfor-
mance (70 FPS) but sub-optimal output. To overcome these limitations,
12 
the team proposes to use the segmentation maps from the DDANet
output as input for the FANet iterative network for pruning. This
approach aims to achieve a balance between computational efficiency
and segmentation accuracy.

Vyobotics: Team Vyobotics (Rauniyar et al., 2021) presented a
solution based on dual decoder attention network (DDANet) (Tomar
et al., 2021), a deep learning model that has been specifically designed
to achieve decent performance and real-time speed. The team per-
formed data augmentation and trained a smaller network. This smaller
network has a lower number of trainable parameters, which resulted
in lower GPU training time. The ultimate goal of this approach was
to achieve decent evaluation metrics while maintaining a decent FPS
speed, which is crucial for real-time applications.

NAAMII: The team participated in polyp and instrument segmenta-
tion tasks. They employed 𝑈2𝑁𝑒𝑡 (Qin et al., 2020) as the base network.
They added a separate learnable CNN network on the decoder part of
the U2Net to regress the HoG features of the input images. The output
from each decoder block was fed into the HoG regressor and learned the
parameters to predict the HoG correctly. They jointly minimized Mean
Squared Error (MSE) loss for HoG features and CrossEntropy loss for
Segmentation. However, they only submitted their method description
to the organizer and did not publish it as a research paper.

6. Results

In this section, we present a summary of the evaluated results
obtained on the test dataset by all the participating teams in the two
challenges: ‘‘Medico 2020’’ and ‘‘MedAI 2021’’. Each challenge consists
of tasks with a specific focus and evaluation metrics. There were two
tasks for the Medico 2020 challenge, namely polyp segmentation and
algorithm efficiency tasks. In the MedAI 2021, there were three tasks,
namely polyp segmentation, endoscopic accessory instrument segmentation
and transparency task. The teams were evaluated based on standard
evaluation metrics such as mIoU, DSC, Rec, Pre, Acc, F1, F2, and FPS.
We emphasized mIoU, DSC, and FPS more, whereas we also acknowl-
edge the importance of recall and precision as they are useful metrics
in clinical settings. We have highlighted the best and the second-best
scores in boldface and red color, respectively, for all the tasks in the
two challenges.

6.1. Medico 2020 results

6.1.1. Polyp segmentation task
In Table 6, we provide the results for the polyp segmentation task.

It can be observed that Team ‘‘PRML2020GU’’ outperforms other par-
ticipating teams in the polyp segmentation task. It achieves a mIoU
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Table 7
Algorithm efficiency task for polyp segmentation (Medico 2020). Note that some teams provided the same
solution for this task as used in Task 1, whereas others designed different architecture specifically for the
efficiency task (Task 2). ↑ indicates a higher value is better.

Team name mIoU ↑ DSC ↑ Recall ↑ Precision ↑ F2 ↑ FPS ↑

GeorgeBatch 0.6351 0.7327 0.7500 0.8229 0.7361 196.79
UNITRK 0.6437 0.7287 0.7098 0.8572 0.7131 116.79
NKT 0.6847 0.7801 0.8077 0.8126 0.7854 80.60
HBKU_UNITN_SIMULA 0.7364 0.8074 0.8164 0.8646 0.8067 33.27
SBS 0.7341 0.8148 0.8764 0.8145 0.8354 26.66
AMI Lab 0.6195 0.7088 0.7286 0.7914 0.7122 107.87
FAST-NU-DS 0.6582 0.7556 0.8982 0.7171 0.8109 67.51
AI-JMU 0.7213 0.8017 0.8359 0.8495 0.8056 3.36
PRML2020GU 0.5083 0.6265 0.6003 0.7870 0.6029 2.25
of 0.7897, DSC of 0.8607, recall of 0.9031, precision of 0.8673, and
F2 of 0.8748. Team ‘‘HBKU_UNITN_SIMULA’’ was the second best
performing team with mIoU of 0.7773. Similarly, ‘‘AI-TCE’’ was the
third best performing team with mIoU of 0.7773. The best-performing
team, ‘‘PRML2020GU’’, used an encoder–decoder structure with Effi-
cientNet as the backbone and a U-Net decoder with channel-spatial
attention and deep supervision. This architecture had an improvement
of 1.23% and 1.30% over the mIoU and DSC achieved by the Team
‘‘HBKU_UNITN_SIMULA’’, which used an average of three PraNet and
five ResUNet++ trained on different training and validation datasets.

6.1.2. Algorithm efficiency task
To compute the ranking in the efficiency task, we used both mIoU

and FPS, as the aim of the task was to develop lightweight models
that are both accurate and fast. We calculated the average scores for
normalized FPS and mIoU. Then, we calculated the difference between
each team’s normalized FPS score and mIoU with their corresponding
average scores. Lastly, we added the two differences, and the team with
the lowest difference was declared first, and in a similar way, other
ranks were calculated. As in Table 7, team ‘‘PRML2020GU’’ has poor
speed performance with a processing speed of only 2.25 fps, which is
not desirable for a real-time efficient model. An interesting observation
is that Team ‘‘GeorgeBatch’’ outperforms other participating teams in
the algorithm efficiency task with a processing speed of 196.79 fps, as
seen from Table 7. However, it is worth noting that the team obtained
a low mIoU of 0.6351 for the polyp segmentation task, even though we
are considering it as the winner in this task. Team ‘‘UNITRK‘‘ obtained
a second-best fps of 116.79 and a decent mIoU of 0.6437. Similarly,
team ‘‘NKT’’ obtained a balanced mIoU of 0.6847 and a high speed of
80.60 fps, and was ranked third for this task. Despite the two teams,
‘‘UNITRK’’ and ‘‘GeorgeBatch’’, achieving the highest evaluation fps
values, there is a trade-off between speed and mIoU. Low FPS cannot
be used for real-time medical processing applications, and low overlap
evaluation metrics cannot generate precise segmentation masks. To
provide further insight, we have included the qualitative results of all
the teams participating in the Medico 2020 challenge in Fig. 6. We
can see that none of the teams came close to the ground truth mask.
Achieving a balance between these metrics is crucial for developing an
efficient polyp segmentation model.

6.2. MedAI 2021 challenge results

6.2.1. Polyp segmentation task
In Table 8, we tabulated the evaluation results of all the partici-

pating teams in MedAI 2021 for polyp segmentation task. It can be
observed that team ‘‘agaldran’’ outperforms other teams in the polyp
segmentation task with mIoU of 0.8522, and DSC of 0.8965. Team
‘‘CV&Med IIAI’’ also showed good performance and was ranked 2nd
in the polyp segmentation task with a mIoU of 0.8484, a very small
difference from the best-performing team. In Fig. 7, we present the
qualitative results of the participating teams for the polyp segmen-

tation task of MedAI 2021. None of the methods performed well on
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Table 8
Performance evaluation for the participating teams for the polyp segmentation
task in MedAI 2021 Challenge. ↑ indicates a higher value is better..

Team name mIoU ↑ DSC ↑ Recall ↑ Precision ↑

agaldran 0.8522 0.8965 0.9009 0.9242
CV&Med IIAI 0.8484 0.8993 0.9186 0.9100
NYCity 0.8418 0.8885 0.8794 0.9319
IIAI-CV&Med 0.8361 0.8927 0.9195 0.8963
mTEC 0.8334 0.8892 0.9010 0.9096
PRML 0.8116 0.8669 0.8852 0.8922
CamAI 0.8083 0.8701 0.8702 0.9052
The Arctic 0.8022 0.8533 0.8604 0.8821
Polypixel 0.7997 0.8567 0.8868 0.8659
MAHUNM 0.7495 0.8189 0.8397 0.8568
OXGastroVision 0.7334 0.7966 0.8158 0.8374
Vyobotics 0.7220 0.7967 0.8214 0.8359
NAAMII 0.6041 0.6940 0.7499 0.7334
leen 0.4595 0.5531 0.6389 0.5860
The Segmentors 0.3789 0.4205 0.4178 0.4640
TeamAIKitchen 0.2904 0.4100 0.7152 0.4910

Table 9
Performance of participating teams for instrument segmentation task of MedAI 2021
Challenge. ↑ indicates a higher value is better..

Team name mIoU ↑ DSC ↑ Recall ↑ Precision ↑

agaldran 0.9364 0.9635 0.9692 0.9632
NYCity 0.9326 0.9586 0.9712 0.9516
mTEC 0.9245 0.9553 0.9687 0.9490
PRML 0.9178 0.9528 0.9687 0.9441
IIAI-CV&Med 0.9148 0.9490 0.9612 0.9473
CV&Med IIAI 0.9136 0.9512 0.9605 0.9500
Polypixel 0.9114 0.9478 0.9591 0.9438
CamAI 0.9085 0.9437 0.9454 0.9514
The Arctic 0.9078 0.9448 0.9735 0.9231
OXGastroVision 0.8692 0.9073 0.9236 0.9096
MAHUNM 0.8523 0.9080 0.9535 0.8864
MedSeg_JU 0.8205 0.8632 0.9005 0.8464
TeamAIKitchen 0.7257 0.7980 0.7955 0.8510
leen 0.6991 0.7845 0.7963 0.8232
NAAMII 0.6857 0.7741 0.8321 0.7669
The Segmentors 0.3668 0.3971 0.3985 0.4040

this challenging image, emphasizing the need for more robust polyp
segmentation methods. However, in the overall test set, the predicted
segmentation masks from most of the team performed well on regular
polyps (see Supplementary materials Figure). Overall, the qualitative
masks produced by teams ‘‘agaldran’’ and ‘‘CV&Med IIAI’’ were better
than the other teams.

6.2.2. Instrument segmentation task
From Table 9, it can be observed that the same team, ‘‘agaldran’’

also outperforms other participating teams in the instrument segmen-
tation task with a high mIoU of 0.9364 and DSC of 0.9635. Team
‘‘NYCity’’ was ranked 2nd in this task with a mIoU of 0.9326 and
DSC of 0.9586. However, Team ‘‘NYCity’’ obtained the highest recall
of 0.9712, which signifies it has low false negative (FN) regions in the
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Fig. 6. The figure shows the qualitative results of participating teams for the polyp segmentation task in the Medico 2020 Challenge on challenging scenarios. When each team’s
predicted mask is compared with its corresponding ground truth, we observe that none of the teams obtained results that fit well with the ground truth.

Fig. 7. Qualitative results of all the methods participating in polyps segmentation challenge in MedAI2021.
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Fig. 8. Qualitative results of all the methods participating in surgical instrument segmentation challenge in MedAI2021.
Table 10
Evaluation of the ‘Transparency tasks’ for MedAI 2021 Challenge. For this task, a team of experts accessed the submission based on several criteria and provided a score
based on the availability and quality of the source code (for e.g., open access, public availability, and documentation for reproducibility), model evaluation (for e.g.,
failure analysis, ablation study, explainability, and metrics used) and qualitative evaluation from clinical experts (e.g., usefulness and understandability of the results).
Here, ‘0’ refers to no submissions for the transparency task. Doctor evaluation was only calculated for the team which manuscript were accepted.

Open source Model evaluation Doctor evaluation

Team name Publicly
available
(0 or 1)

Code
quality
(0-3)

Readme
(0-3)

Failure
Analysis
(0-3)

Ablation
Study
(0-3)

Explainability
(0-3)

Metrics
Used
(0 or 1)

Usefulness
(0-3)

Understandable
(0-5)

Final Score

agaldran 1 2 3 3 3 3 1 2 3 21
mTEC 1 1 3 3 1 0 1 3 4 17
CamAI 1 1 1 2 1 2 1 2 5 16
The Arctic 1 2 1 1 0 3 1 1 3 13
IIAI-CV&Med 1 1 2 0 0 0 1 1 4 10
Polypixel 1 1 2 0 0 0 1 0 0 5
leen 0 1 0 0 0 2 1 0 0 4
MAHUNM 1 1 0 0 0 0 1 0 0 3
OXGastroVision 0 2 0 0 0 0 1 0 0 3
CV&Med IIAI 0 1 0 1 0 0 1 0 0 3
PRML 0 1 0 0 0 0 1 0 0 2
TeamAIKitchen 0 1 0 0 0 0 1 0 0 2
The Segmentors 0 0 0 0 0 0 1 0 0 1
NYCity 0 0 0 0 0 0 1 0 0 1
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redicted segmentation mask compared to team ‘‘agaldran’’. Another
nteresting observation is the team ‘‘agaldran’’ also achieved higher
etric values for the instrument segmentation task as compared to

he polyp segmentation task, as instrument segmentation is relatively
asier than polyp extraction due to the greater variability of the latter
egarding color and appearance. In Fig. 8, we also present the qualita-
ive results of the research teams who participated in the instrument
egmentation challenge of MedAI2021. From the qualitative results,
t can be observed that the ground truth prediction made by team
‘agaldran’’ is also superior to the other team. Therefore, it can be
oncluded from the obtained evaluation metrics for the two tasks that
eam ‘‘agaldran’’ proposed a more robust algorithm and was accurately
ble to segment polyp and instrument at high accuracy.

.2.3. Transparency task
We present the transparency results in Table 10. Team ‘‘agaldran’’

utperformed other competitors with a final score of 21 out of 25.
imilarly, ‘‘mTEC’’ obtained a score of 17 out of 25 and was ranked

nd. Likewise, team ‘‘CamAI’’ obtained a score of 16 out of 25 and o
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as ranked third in the transparency task. There were also efforts
rom teams such as ‘‘The Arctic’’, which obtained a score of 13, and
‘IIAI-CV&Med’’, which obtained a score of 10. These scores show their
ffort to provide a transparent solution to the polyp and instrument
egmentation tasks. We provide the final ranking and task-wise scores
n Fig. 9. Notably, team ‘‘agaldran’’ outperformed others in all three
asks and overall challenge and emerged as the winner of the MedAI
021 challenge. Overall, ‘‘mTec’’ secured the second position. Follow-
ng closely behind, ‘‘CamAI’’ showcased the third-best solution. The
verall rank was computed by combining the mIoU scores of polyp and
nstrument segmentation tasks and the Transparency score.

Fig. 10(a) illustrates the plot of mIoU reported by each team in
heir submissions in the two challenges with three different tasks. It
an be observed that the polyp segmentation task from 2020 to 2021
ained improvement with a larger number of submissions achieving a
IoU of more than 0.80 and the best-performing team with a mIoU of

round 0.85. Similar progress can be observed in Fig. 10(b) where an
verall mIoU increased by 4.93% when an average score is computed

ver all participating teams’ individual best mIoU in the 2021 polyp
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Fig. 9. Task-wise scores achieved by participating teams of MedAI 2021 challenge.
Team rankings are decided on the basis of overall scores in all three tasks. Here, we
plot the mIoU of Task1 and Task 2, and we have normalized the transparency score
to calculate the overall score.

segmentation challenge. We further compared all segmentation metrics,
including DSC, recall, precision, mIoU score, accuracy, and F2 score, as
shown in Fig. 10(c). Notably, the different evaluation metrics scores are
consistent with instrument segmentation tasks in the MedAI challenge.
However, there is a high variation in the mIoU between the different
teams in the polyp segmentation tasks of Medico 2020 and MedAI 2021
challenges.

These values pertain to the best score corresponding to a particular
metric the individual team obtained in different executions. It is to
be noted that each team was given the opportunity to submit five
different submissions, and the best results for the best submission
are reported in the Tables here. From here, it can be observed that
most teams in the MedAI 2021 challenge reported overall high scores
in terms of various segmentation metrics when compared to Medico
2020 outcomes, thus highlighting the improved performance trends in
automated systems over time. Furthermore, it can also be visualized
that unlike the high variations shown by teams’ scores in the polyp
segmentation task, better performance and smaller deviations in scores
are reported in the instrument segmentation task. The high variations
in the polyp segmentation results also show that polyp segmentation
is more challenging because of the presence of variations in the size,
structure and appearance of the polyps, and the presence of the artifacts
and lighting conditions deteriorate the algorithm’s performance.

7. Discussions

The rapid advancement in the AI-based techniques that support
CADe and CADx systems has resulted in the introduction of numer-
ous algorithms in the domain of medical image analysis, including
colonoscopy. To assess the performance of these algorithms, it is im-
portant to benchmark on the particular set of datasets. It enables
the comparison and analysis of different techniques and assists in
identifying challenging cases that need to be targeted using improved
methodologies. This also includes cases that are misled by the presence
of artifacts and occlusion by surgical instruments (Ali et al., 2020b).
Besides developing and analyzing AI-based algorithms, it is crucial to
include explainability and interpretability to infuse trust and reliance
when adopting automated systems in clinical settings. Therefore, the
challenges discussed in this paper not only focus on lesion and instru-
ment segmentation but also emphasize the importance of transparency
in medical image analysis. This section covers the findings, limita-
tions, analysis of failing cases, trust, safety, and interpretability of the
methods, and future steps and strategies for Medico 2020 and MedAI
2021.
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7.1. Medico 2020 challenge methods

Most of the methods reported in the Medico 2020 challenge focus
on encoder–decoder architecture (for example, U-Net, ResUNet++,
PraNet, Efficient UNet, etc.). Other networks used include conditional
GAN and Faster R-CNN. The overview of the methods is provided
in Table 3. For more detailed architectural information, we have
also included the backbone and algorithm used by each team. Fur-
ther, we also report the nature of the algorithm and the choice basis
of evaluation, such as mIoU, DSC or FPS. Additionally, we provide
information about the augmentation and hyperparameters, such as
loss function and optimizers. It is noteworthy that all the top three
teams ‘‘PRML2020GU‘‘, ‘‘HBKU_UNITN_SIMULA’’ and ‘‘AI-TCE’’ used
the encoder–decoder architecture. Out of 17 participating teams, only
three teams adopted some other architectures. Comparative analysis
shows that the highest-scoring encoder–decoder network outperforms
the GAN-based approach by a significant margin of 0.3517 in mIoU and
0.2989 in DSC score. Similarly, compared to the R-CNN-inspired net-
works (team ‘‘IRIS-NSYSU’’), the best approach (team ‘‘PRML2020GU’’)
achieves an improvement of 0.2863 in mIoU and 0.2191 DSC. Medico
2020 challenges provide valuable insight and trends for the polyp
segmentation and biomedical image analysis challenges. Most deep
learning frameworks submitted for the challenge used the Adam op-
timizer to optimize their network. However, a handful of teams used
other optimizers, such as SGD or RMSProp. Additionally, most of
the teams used data augmentation to boost the number of training
samples prior to training their frameworks to improve the performance
of their architecture. There have been different preferences in loss
function where most of the team used ‘‘BCE + DSC loss‘‘, ‘‘binary cross-
entropy’’, IoU loss, etc. However, from the results of the top three
teams, it can be concluded that ‘‘BCE + DSC loss’’ is best for this
dataset. Similarly, in terms of the backbone for the model architecture,
the EfficientNet variant (selected by PRML2020GU) or EfficientNetB4
(selected by AI-TCE) were most favorable.

7.2. MedAI 2021 challenge methods

The summary of the different approaches adopted by the partic-
ipating teams of the MedAI2021 Challenge is presented in Table 5.
To provide a brief overview of the general techniques adopted by
the different teams, they can be categorized based on the nature of
the approach followed, such as ensemble models, encoder–decoder
based architectures, CNN, and hybrid CNN models. Almost all the
teams presented the same model for both the tasks proposed in the
challenge. Most teams explored ensemble modeling, encoder–decoder
networks, or a combination of both in the polyp segmentation task.
Another criterion of categorization could be CNN or transformed-based
approaches. It is observed that the top-ranked team ‘‘agaldran’’ utilized
two encoder–decoder networks and reported a mIoU score of 0.8522.
Similarly, ‘‘CV&Med IIAI’’ was ranked second, and Team ‘‘NYCity‘‘
was ranked third in the polyp segmentation task with a competi-
tive mIoU value of 0.8484 and 0.8418, respectively. Similar to the
Medico 2020 polyp segmentation challenge, where GAN-based methods
were adopted by teams (for example, Team ‘‘leen’’) failed to perform
well in this challenge for polyp and instrument segmentation tasks.
It is to be noted that the winning team, ‘‘agaldran’’ used a double
encoder–decoder structure with two U-Net, where they incorporated
FPN and Resnext101 as the pretrained decoder. They also use SAM and
Adam optimizer to optimize the model further. The other competitive
team ‘‘CV&Med IIAI’’ used the SINetv2 algorithm with PVTv2 as the
backbone, and NYCity used the combination of HarDNet-85 ResNet101.

In the MedAI2021 instrument challenge, participants mainly fo-
cused on either ensemble models or encoder–decoder networks similar
to the polyp segmentation task. As the majority of the teams utilized
the same model that they proposed for the polyp segmentation problem
in this task, the categorization of overall methods remains the same



D. Jha et al. Medical Image Analysis 99 (2025) 103307 
Fig. 10. (a) Violin plots with overlaid swarm plots depicting statistics of submissions received for different tasks for the two challenges, (b) mIoU score comparison of different teams
in three tasks of Medico 2020 (polyp segmentation) and MedAI 2021 (Task 1: polyp segmentation and Task 2: instrument segmentation), and (c) Strip plots for all segmentation
metrics (Dice score, recall, precision, mIoU score, accuracy, F1 score, and F2 score) reported by different teams in both challenges for all test data samples.
as that of the first task described above. The top rank is secured
by Team ‘‘agaldran’’, with encoder–decoder architecture, pyramid net-
work as the decoder, and Resnext101 as the pre-trained decoder. The
second-ranked model by Team ‘‘NYCity’’ is the CNN and transformer
based ensemble model, which achieved only a slight difference in
the scores from the leading model. mTec was ranked third in the
challenge, which used dual parallel reverse attention edge network
(DPRA-EdgeNet) (Bhattacharya et al., 2021a). The architecture used
HardNet (Chao et al., 2019) as the backbone. The challenge shows
that most of the teams were reluctant to share their method (refer to
Table 10). From the table, it can be seen that only five teams were
qualified for the doctor evaluation. Additionally, the quality of the code
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submitted by most of the team was not satisfactory. Most of the partic-
ipants did not put much effort into the readme file. Additionally, most
teams neglected the failure analysis, ablation study and explainability
in their submission. Moreover, based on the doctor’s evaluation, only
the solution provided by a few teams (for example, ‘‘agaldran’’, ‘‘mTEC’’
‘‘CamAI’’, ‘‘The Arctic’’, and ‘‘IIAI-CV&Med’’) was considered useful and
understandable.

7.3. Analysis of the failed cases

We have analyzed the regular and failing cases in polyp and surgical
tool segmentation to highlight the limitations of the current methods
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so that these cases can be considered during further algorithm develop-
ment. Fig. 6 and Fig. 7 show examples of instances where the models
fail for most cases. From the results on the test dataset, it was observed
that most of the algorithms failed on diminutive and flat polyps located
in the left colon. These are the challenging classes in the colon and
require effective detection and diagnosis systems. Similarly, although
most of the methods performed well on the diagnostic and therapeutic
surgical tool, there were issues with the images having caps and for-
ceps. Additionally, the algorithms showed difficulties with challenging
cases for polyps on rare cases such as sessile polyps, even though it
performed well on overall quantitative metrics (see Fig. 6, 7, 8 and
Figures in the supplementary material). Therefore, investigating the
cause for misclassification for such polyp and instrument samples in the
dataset, along with the failure analysis, will be critical to focus on for
future research. This can include evaluating generalization performance
on unseen test data from different hospitals. Such investigations can
reduce the chances of underperformance on rare cases.

7.4. Trust, safety, and interpretability of methods

Integrating CADe or CADx in clinical settings necessitates address-
ing factors such as trust, safety, and interpretability to ensure its
adoption. The high variations and potential bias in the curated datasets
used to train such models and the actual scenarios in which they are
adopted create a high chance of biases, impacting the generalizability
of the method. Such bias ultimately makes it challenging to infuse
trust while adopting CADe or CADx tools and questions the safety of
patients. To tackle this issue, we introduced a transparency task in the
MedAI2021 challenge that underscores the need for interpretability,
reproducibility, and explainability in medical AI research, including
polyp and instrument segmentation.

Our initiative aimed to light the potential risk that can arise from
wrong decisions based on model and algorithmic bias. Our dataset con-
tained polyp cases with varied appearances in terms of shapes, sizes, the
presence of artifacts, lightning conditions, textures, and the different
numbers of polyps per image that are encountered in real-world clinical
settings. Additionally, we have included frames containing surgical
instruments to support the cases of occluded endoluminal elements or
polyps that could arise in general. Some of the methods adopted by the
participating teams include the submission of intermediate heatmaps
using approaches like layer-wise relevance propagation that showed
visual explanation and highlighted the model decision-making process.
Team ‘‘agaldran’’ provided detailed ablation studies in support of the
predictions obtained. By promoting transparency through subjective
analysis and addressing potential biases, the MedAI challenge aimed
to foster trust in the presented solution and ensure safety in adopting
such methods in the clinic.

7.5. Limitation of the Medico 2020 and MedAI 2021

In our study, we aimed to standardize the challenge of polyp and
instrument segmentation by providing the same test sets and evaluation
metrics to all participants. To achieve this, we introduced variable
polyp cases, including polyps with different sizes, noisy frames with
artifacts, blurry images, and occlusion. We also added regular frames to
the test set to ensure that participants drew the ground truth manually
and did not cheat. However, our study has some limitations. Although
we used datasets collected from four medical centers in Norway, these
images are from a single country, limiting the ethnicity variance though
there is very limited differences if any in the mucosal appearance
between ethnicities. Nevertheless, there is a need for a more diverse
dataset that includes multiple ethnicities and countries also because
the prevalence of various diseases varies between regions. Moreover,
the current models should be tested on multi-center datasets to assess

their generalization ability.
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There was no online leaderboard in our challenge due to the Medi-
aeval policy. Therefore, we manually calculated the predictions submit-
ted by each team. Each team had limitations of 5 submissions for each
task, which restricted further optimization opportunities. Although we
have also introduced normal findings from the GI tract to trick the
participants and models, our challenge only used still frames and did
not incorporate video sequence datasets. Even when the best perform-
ing algorithms are tested on a temporal video sequence dataset, it
is possible that the performance can drop. Most of the images are
only from white light imaging. Although our dataset was annotated by
one annotator and checked by two gastroenterologists, there is still a
possibility of bias in the labels. In the accessory instrument challenge,
we had more images from the stomach class than accessory instruments
such as biopsy forceps or snares due to the lack of availability of
datasets. Finally, despite including diverse cases in the polyp and
instrument segmentation challenge, we still had limited flat and sessile
polyps, frequently missed during routine colonoscopy examinations. In-
corporating multi-center data and video sequences data and addressing
label biases will lead to more comprehensive and reliable evaluations
of AI-based colonoscopy systems.

7.6. Future steps and strategies

In our study, we aimed to promote transparency and interpretability
in machine learning models for the GI tract setting. However, more
work is needed to understand how decisions are made and identify
potential biases or errors in a quantitative manner to build trust in
such systems in a clinical setting. To achieve this, we plan to test
the best-performing algorithms on large-scale datasets to observe their
scalability. We will consider using more quantitative metrics, such
as statistical mixed models, bootstrapping analysis and estimate con-
fidence intervals. Additionally, we will also include metrics such as
Hausdorff distance and normalized surface distance.

We will emphasize more transparent decision-making methods and
visualize interpretability results while focusing on clinical relevance
rated by expert clinicians instead of just one objective metric. To
achieve this, we have already started collecting large-scale datasets and
plan to build a tool if the algorithms are robust enough and verified
by our gastroenterologists. Next, we will propose a challenge to polyp
video sequences analysis. We will explore the integration of state space
models, such as Video Vision Mamba-based framework (Yang et al.,
2024), to capture the temporal information in video sequences that
affect the efficiency and accuracy of segmentation tasks. It is worth
noting that there has been innovation within hardware (colonoscope)
for safer medical colonoscopy devices, such as developing fully flexible
automated colonoscopes to offer expanded fields of view rather than
120-170◦ visualization, which can capture dead spots, improving the
lesions’ miss-rate. These scopes are currently in the final stage of
development. This hardware would require high processing speed to
locate potential lesions in real time for a smooth workflow. We believe
these solutions from our challenge could help address the complexities
with the improved hardware and improved image quality.

8. Conclusion

Our study aimed to provide a comprehensive analysis of the meth-
ods used by participants in the Medico 2020 and MedAI 2021 com-
petitions for different medical image analysis tasks. We designed the
tasks and datasets to demonstrate that the best-performing approaches
were relatively robust and efficient for automatic polyp and instrument
segmentation. We evaluated the challenge based on several standard
metrics. In MedAI 2021, we also used a quantitative approach, where
a multi-disciplinary team, including gastroenterologists, accessed each
submission and evaluated the usefulness and understandability of their
results. Through the qualitative results, we found that even the best-

performing method underperforms in rare cases. This highlights the
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need for further investigation to understand the cause of misclassi-
fication. During the ‘‘performance task’’ and ‘‘algorithm efficiency’’
tasks, we observed a trade-off between mIoU and inference time when
tested across unseen still frames. For the instrument segmentation
challenge, we observed that almost all teams performed relatively well,
as segmenting instruments is easier than polyp segmentation. From
the transparency task, we observed that more effort is required from
the community to enhance the transparency of the proposed model.
Overall, we also observed that several teams demonstrated the use
of data augmentation and optimization techniques to improve perfor-
mance on specific tasks. Our study highlights the need for multi-center
dataset collection from larger and more diverse populations, including
experts from various clinics worldwide. More competitions should be
held on polyp video sequences to observe the efficiency difference in
still frames and video sequences. Further research should investigate
multiple polyp classes that typically fail in clinical settings, multi-center
clinical trials, and the emphasis on real-time systems. Additionally,
research on transparency and interpretability should be emphasized as
it could help build clinically relevant and trustworthy systems.
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