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A B S T R A C T

Augmented reality for laparoscopic liver resection is a visualisation mode that allows a surgeon to localise
tumours and vessels embedded within the liver by projecting them on top of a laparoscopic image. Preoperative
3D models extracted from Computed Tomography (CT) or Magnetic Resonance (MR) imaging data are
registered to the intraoperative laparoscopic images during this process. Regarding 3D–2D fusion, most
algorithms use anatomical landmarks to guide registration, such as the liver’s inferior ridge, the falciform
ligament, and the occluding contours. These are usually marked by hand in both the laparoscopic image
and the 3D model, which is time-consuming and prone to error. Therefore, there is a need to automate this
process so that augmented reality can be used effectively in the operating room. We present the Preoperative-
to-Intraoperative Laparoscopic Fusion challenge (P2ILF), held during the Medical Image Computing and
Computer Assisted Intervention (MICCAI 2022) conference, which investigates the possibilities of detecting
these landmarks automatically and using them in registration. The challenge was divided into two tasks:
(1) A 2D and 3D landmark segmentation task and (2) a 3D–2D registration task. The teams were provided
with training data consisting of 167 laparoscopic images and 9 preoperative 3D models from 9 patients, with
the corresponding 2D and 3D landmark annotations. A total of 6 teams from 4 countries participated in the
challenge, whose results were assessed for each task independently. All the teams proposed deep learning-based
methods for the 2D and 3D landmark segmentation tasks and differentiable rendering-based methods for the
registration task. The proposed methods were evaluated on 16 test images and 2 preoperative 3D models from
2 patients. In Task 1, the teams were able to segment most of the 2D landmarks, while the 3D landmarks
showed to be more challenging to segment. In Task 2, only one team obtained acceptable qualitative and
quantitative registration results. Based on the experimental outcomes, we propose three key hypotheses that

determine current limitations and future directions for research in this domain.
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Fig. 1. Laparoscopic image fusion with preoperative 3D CT or MR scans. A preoperative 3D scan is first used to reconstruct the liver boundaries, tumours and major vessels
critical for a safe surgery. During the laparoscopic procedure we overlay the reconstructed model using image registration, in this case 3D meshes, to the 2D liver view. The idea
is to project 3D mesh points onto the liver boundaries that can enable understanding of the spatial location of the tumours and vessels along with the matched liver boundaries
in the acquired 3D model. Such an augmented reality technique helps surgeons to locate the tumour and important landmarks during surgery. The above results were obtained
with the semi-automatic method from Koo et al. (2017).
1. Introduction

Laparoscopic liver resection (LLR) is a minimally invasive procedure
used in the removal of benign or malignant tumours. It has become
increasingly popular in the last two decades owing to the reduced
trauma to the patient and the shorter hospitalisation times. However,
it remains a challenging technique due to the reduced intra-abdominal
space and the lack of tactile feedback. This makes it difficult to find
intraparenchymal structures like tumours and vessels, which increases
the risk of wrong resections. Augmented Reality (AR) could mitigate
this issue by overlaying a 3D model reconstructed from Computed
Tomography (CT) or Magnetic Resonance (MR) imaging onto the la-
paroscopic views, as shown in Fig. 1. Only one of both modalities is
required to reconstruct the 3D models, provided the desired structures
are clearly visible. As depicted, the surgeons can then see the inner
structures, and perform tumour resection accordingly. Owing to the
liver’s substantial flexibility, a deformable registration should be done
to fit the preoperative 3D model with the intraoperative data effec-
tively. Once the registration is computed, the fusion can be realised.
In terms of registration accuracy and according to Zhong et al. (2017),
a margin of healthy tissue around the tumour of at least 1 cm should be
kept for Hepatocellular Carcinoma (HCC) resections. Therefore, an AR
system can be considered to be effective if its target registration error
(TRE) is lower than 1 cm.

1.1. Registration for augmented reality

Existing methods register the 3D preoperative data into 3D or 2D
intraoperative data. Most of these methods use liver anatomical land-
marks to constrain registration and help the preoperative model to fit in
the intraoperative data. For the 3D–3D registration case, some examples
are found in Robu et al. (2018) and Modrzejewski et al. (2019), where
the landmarks are marked manually on both the preoperative and
intraoperative 3D shapes. The main problem of the 3D–3D registration
methods is that they reconstruct the intraoperative data from stereo-
scopic cameras, which are not always available in surgery rooms. They
may also use 3D reconstruction algorithms like Structure-from-Motion
(SfM) or Simultaneous Localisation and Mapping (SLAM), which only
work in rigid scenes and generally fail for the non-rigid liver. For the
3D–2D registration case, some examples are found in Adagolodjo et al.
(2017), Koo et al. (2017), Espinel et al. (2022), Koo et al. (2022)
and Labrunie et al. (2022), where the landmarks are marked in the
2 
intraoperative images either manually or automatically, but always
marked manually on the preoperative 3D models. In this work, we
focus on the 3D preoperative to 2D laparoscopic image registration
problem, which aligns the preoperative 3D models to one or several
intraoperative 2D images.

According to Koo et al. (2017) and Espinel et al. (2022), some of
the landmarks that can be used in 3D preoperative to 2D laparoscopic
image registration are the liver’s lifted ridge, the falciform ligament, and
the silhouette, as shown in Fig. 2. The ridge landmark corresponds to
the pronounced curve located at the bottom-anterior part of the liver.
It is the most distinguishable landmark among the three and covers
both the left and right lobes of the liver. The falciform ligament is
the thin, fibrous tissue that connects the anterior part of the liver to
the abdominal wall. It is usually cut during a laparoscopic procedure
to facilitate the manipulation of the liver. The remnant of this tissue
on the liver’s surface is what we use as a landmark. The silhouette
landmark corresponds to the boundary of the liver at a given image and,
thus, does not have a direct correspondence in the 3D model. The 3D
correspondences are usually found during registration using algorithms
like the Iterative Closest Point (ICP). In order to accurately fit the 3D
model to the images, a good correspondence between the landmarks
in the laparoscopic image and the preoperative 3D model should be
found. However, as the marking is usually done by hand, it will greatly
depend on the user’s understanding of the scene, which can be a source
of inaccuracies. Moreover, the time required to manually mark these
landmarks, usually several minutes, makes it difficult to integrate AR
within the surgical workflow. Some of the existing methods segment
the landmarks on the images automatically like the works in Labrunie
et al. (2022) and Koo et al. (2022), where the 2D liver landmarks are
segmented using deep learning, but the 3D landmarks are still marked
manually. Due to the limitations above of manual marking in terms of
accuracy and time, there is a need for automating the segmentation
of these landmarks in the image and the preoperative 3D models, as
well as accurately finding the correspondences between them for the
3D preoperative to 2D laparoscopic image registration.

1.2. Presentation of the challenge

The Preoperative-to-Intraoperative Laparoscopic Fusion (P2ILF)
challenge addresses the problem of finding the liver’s anatomical land-
marks in both the laparoscopic images and the preoperative 3D model,
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Fig. 2. Depiction of the 2D and 3D anatomical landmarks. Anatomical liver landmark
ground-truth annotations in the preoperative 3D model (left), and in the laparoscopic
2D image (right).

and of using them for 3D preoperative to 2D laparoscopic image reg-
istration (Ali et al., 2022a). This challenge was deployed on the Grand
Challenge platform (Ali et al., 2022b), where the teams could register,
download the training data, upload their algorithms, and run them on
the test data. The challenge was divided into two phases (Ali et al.,
2022a). In phase I of the challenge, the participants had to segment the
visible 2D landmarks in the laparoscopic images, and then segment the
corresponding 3D landmarks in the preoperative 3D model. In phase
II of the challenge, the participants had to perform 3D preoperative
to 2D laparoscopic image registration. For phase II, the participants
were suggested to use the 3D and 2D landmarks segmented in phase
I. However, this was not mandatory, and they could perform either a
rigid or a deformable registration. For this challenge, surgical data was
collected and annotated for 11 patients, including their corresponding
preoperative 3D models, the intraoperative laparoscopic images, and
the intrinsic camera parameters. The provided data presents two main
challenges: the drastic change in shape and appearance of the liver
between patients and the limited amount of data. A total of six teams
from four countries participated in the challenge. We describe the
algorithm developed by each team and the results obtained on the test
set.

In this paper, we first present the related work, the details on the
newly curated dataset for AR in LLR, the design and setup of the
challenge in more detail, the methods proposed by the participating
teams, results and insights regarding the limitations of each approach,
and finally we conclude with the discussions presenting empirical and
experimental hypotheses and future work.

2. Related work

2.1. Existing datasets for AR

Currently, there is a lack of publicly available datasets for AR,
and most of the existing AR methods use non-publicly available data,
dealing only with the 2D landmark automatic segmentation problem.
For example, Koo et al. (2022) used a private dataset of 133 images
coming from two patients to segment the anatomical landmarks of the
liver (including the ridge and the silhouette). The method heavily relied
on synthetic data generation. Labrunie et al. (2022) used a dataset
of 1415 laparoscopic images coming from 68 patients to segment the
liver landmarks, but their dataset is not publicly available either. There
are some available datasets containing endoscopic liver videos like the
Cholec80 dataset (Twinanda et al., 2017), HeiChole dataset (Wagner
et al., 2023), and the Dresden Surgical Anatomy Dataset (Carstens et al.,
2023), but they do not contain the preoperative data and the intrinsic
camera parameters required to work with AR.

Registration for AR in LLR has been an active field of research over
the last decade, with the existing methods using either monocular endo-
scopes, stereo endoscopes, and external devices like optical trackers and
intraoperative CT scanners. These methods can be globally classified
into 3D–2D and 3D–3D registration methods, if the preoperative 3D
model is registered to an intraoperative 2D image or an intraoperative
3D model.
3 
2.2. 3D-2D registration methods

A single-view monocular method is presented by Koo et al. (2017),
which we use as basis and motivation of our work. In this work, the
authors combined the ridge, falciform ligament, and silhouette landmarks
with a biomechanical model to perform registration. Prior to registra-
tion, the landmarks are manually marked in both the 2D image and
the preoperative 3D model. It uses a Gauss–Seidel iterative algorithm
to solve the landmark and biomechanical constraints. Other monocular
3D–2D registration methods use one or multiple images simultaneously.
For example, a set of silhouette landmarks were manually marked in the
image and combined with a biomechanical model to drive registration
by Adagolodjo et al. (2017). These constraints were solved using a
Gauss–Seidel iterative optimisation approach. A set of methods that
perform 3D preoperative to 2D laparoscopic image registration on mul-
tiple laparoscopic images is presented by Espinel et al. (2022), where
the anatomical landmarks from all the images are combined to deal
with the partial visibility problem and improve registration accuracy.
In this case, the landmarks should be manually marked on each image
separately, which increases the total registration time. In an attempt
to reduce the risk of wrong annotations and the registration time, the
method by Koo et al. (2022) segments the anatomical landmarks in the
images automatically. To achieve this, a CASENet CNN was trained
with a small dataset of 133 patient images, along with a synthetic
dataset consisting of 100,000 images. However, the 3D landmarks were
still marked manually in the 3D model. The proposed rigid registration
starts by computing a canonical liver pose, assuming that the camera
is inserted close to the belly button. Then, a set of transformations was
generated by randomly rotating the model about the three axes. For
each of the transformations, the closest points between the 3D and
2D landmarks are found, and an optimal transformation is estimated
using Perspective-𝑛-Point (P𝑛P) with RANSAC. In the end, the best
transformation is chosen based on the minimum Hausdorff distance
between the 3D and 2D landmarks. Similarly, another approach that
segments the landmarks automatically was proposed by Labrunie et al.
(2022), where an off-the-shelf UNet was trained with 1415 laparoscopic
images from 68 patients. Again, the 3D model landmarks were still
annotated manually before surgery. The main goal of this work was to
perform an initial rigid registration to serve as the basis for subsequent
deformation stages. The registration approach used a RANSAC-based
P𝑛P strategy that iteratively recomputed the correspondences between
the 2D and 3D landmarks.

2.3. 3D-3D registration methods

Some monocular methods may perform 3D–3D registration like
the one presented by Modrzejewski et al. (2019), where the shape
of the liver was reconstructed using SfM during the intraoperative
procedure. This shape was then combined with a set of landmarks
and a biomechanical model to perform deformable registration. The
registration process follows a rigid-to-deformable energy minimisation
strategy, which runs until the convergence threshold is reached. An-
other method that uses SfM is presented by Cheema et al. (2019),
where an intraoperative shape also serves as a target for registration.
In this case, correspondences between the preoperative and the intra-
operative shapes were combined with shading cues to align and deform
the intraoperative shape. Similarly, Espinel et al. (2022) combined
the reconstructed camera poses with the anatomical landmarks and
the biomechanical parameters for registration. However, Espinel et al.
(2022) suggested that applying SfM in liver scenes is difficult due to
the constant deformations and the limited range of camera movements.
Methods that use stereoscopic cameras or other external devices usually
perform 3D–3D registration. In particular, the methods by Haouchine
et al. (2013), Soler et al. (2014), Thompson et al. (2015), Bernhardt
et al. (2016), Robu et al. (2018) and Luo et al. (2020) reconstruct
an intraoperative 3D model of the visible liver using stereoscopic
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Fig. 3. P2ILF dataset: Training and test data samples with original laparoscopic images, annotated anatomical landmarks (silhouette in yellow, ridge in red and falciform ligament
in blue), and the corresponding 3D anatomical annotations (rigde in red and falciform ligament in blue) in manually aligned 3D liver models are provided. The dataset contains a
total of 11 patients, divided in 9 patients for training and 2 patients for testing.
techniques. In these cases, the intraoperative 3D model is used as a
target to register the preoperative 3D models. Some of the methods
perform rigid registration (Soler et al., 2014; Thompson et al., 2015;
Bernhardt et al., 2016; Robu et al., 2018; Luo et al., 2020), while the
method by Haouchine et al. (2013) is the only work that performs
deformable registration. In addition to a stereo endoscope, the method
from Thompson et al. (2015) also uses an optical tracker to locate and
merge multiple stereoscopically reconstructed patches of the intraoper-
ative liver. A major limitation of these methods is the requirement of
stereo endoscopes and external tracking devices that are not commonly
available in surgery rooms.

In this work, we aim to find registration methods that only use the
available preoperative models and a monocular endoscopic setting in
the surgery room. Such methods should automatically find the liver
anatomical landmarks that can then lead to computing 3D preoperative
to 2D laparoscopic image registration automatically. We attempt to
motivate the usage of data-driven approaches, which is still uncommon
in this problem, as well as to reduce both the user interactions and the
registration times. Given the high number of existing methods and a
lack of unified comparison, this challenge is the first one to provide
an objective comparison between registration methods for AR in LLR,
which is a requirement to continue advancing in the field.

3. The P2ILF challenge

3.1. General aspects of the dataset

The training dataset is composed of 9 patients with 167 laparo-
scopic images, their corresponding 2D and 3D anatomical landmarks,
their respective preoperative 3D models, and the intrinsic camera
parameters. The test dataset is composed of 2 patients and includes
16 selected images (8 images per patient) with their correspond-
ing preoperative 3D models and the intrinsic camera parameters. A
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quantitative description of the whole dataset is given in Table 1. It
includes the number of images per patient, the type of preoperative
images (CT/MR) used to reconstruct the preoperative 3D models, and
the liver condition (cirrhotic/non-cirrhotic). The training dataset was
provided to the participants, who were allowed to freely split the data
for training and validation. However, for the test phase, an online
platform was used in a way that prohibited the teams from accessing
the test samples directly. For the algorithmic testing reported in this
paper, each algorithm was evaluated through the deployment of Docker
containers.

Fig. 3 illustrates the training and test samples for the 11 patients
(with one sample per patient), including the original laparoscopic
images at the top, the ground-truth anatomical landmarks in the middle
(with the silhouette, ridge and falciform ligament in yellow, red, and blue,
respectively), and the preoperative 3D models with their corresponding
3D landmarks for the ridge (in red) and the falciform ligament (in blue).
It can be observed that the appearance of the liver varies greatly across
patients. Moreover, some of the patients have a visible ultrasound
probe, which is common in laparoscopy as it may be used to identify
key vessels and tumour locations during surgery. To better evaluate
the generalisation of the proposed methods, we used one patient with
cirrhotic liver and one patient with non-cirrhotic liver in the test
dataset.

3.2. Ethical and privacy aspects of the data

The preoperative and intraoperative data of this dataset were col-
lected from the University Hospital of Clermont-Ferrand, France. The
data collection was supported by an ethical approval with ID
IRB00008526-2019-CE58 issued by CPP Sud-Est VI in Clermont-
Ferrand, France. Patient consent to record data was obtained before
each intervention. The intraoperative video streams were captured us-
ing laparoscopic cameras. All the collected data were fully anonymised
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Table 1
Quantitative description of the generated patient dataset for the P2ILF challenge.

Patient # Preoperative
imaging type

# Intraop.
images

Liver
condition

Data
type

1 CT 22 C TR
2 CT 25 C TR
3 CT 20 NC TR
4 MR 8 C TS
5 CT 15 NC TR
6 CT 22 NC TR
7 MR 25 NC TR
8 CT 8 NC TR
9 MR 21 NC TR
10 CT 9 NC TR
11 CT 8 NC TS

Total: 8 CT,
3 MR

183 3 C, 8 NC 9 TR,
2 TS

Intraop.: Intraoperative; CT: Computed Tomography; MR: Magnetic Resonance; C:
Cirrhotic; NC: Non-cirrhotic; TR: Training; TS: Testing.

before publication. In other words, no meta information (name, birth
date, gender, etc.) was passed to the participating teams. During the
challenge, all participants were required to sign a data privacy state-
ment. Redistribution or transfer of the data was strictly prohibited. The
data upon public release will be free to use (under licence CC-by-NC-SA
4.0) after the publication.

3.3. Video collection and dataset construction

The dataset for the P2ILF challenge consists of two types of data:
preoperative 3D liver models and intraoperative 2D laparoscopic im-
ages. The data were collected by the following procedure:

• Several days before the liver surgery, 3D CT/MR images of the
patients were obtained. The liver, the tumours and the vena
cava were manually segmented in the CT/MR images by an
experienced hepatobiliary surgeon using MITK (German Cancer
Research Center (DKFZ), 2008). The surgeon first segmented the
liver in every slice using a combination of a region-growing
tool with a manual selection tool. Then, they segmented the
tumours and the vena cava using the manual selection tool. The
brightness and contrast of the images were varied in some cases to
improve the visibility of the structures. After the structures were
segmented, a 3D interpolation was made between the 2D masks
of each structure to generate the 3D models.

• During each surgery, an exploration of the intra-abdominal scene
was done in such a way that the liver was visible to the camera.
A video was captured during the exploration. To estimate the
intrinsic camera parameters, a video of a moving checkerboard
pattern was also captured with the laparoscope.

• To estimate the camera intrinsic parameters, images were first
extracted from the checkerboard video at a rate of 5 frames
per second, ensuring a sufficient movement of the checkerboard
between images. From this frame set, 30 to 40 images where
the checkerboard is sharp enough were selected, meaning the
corners and edges were distinguishable. Finally, the images were
imported into the Metashape software (Agisoft LLC, 2023) and the
intrinsic camera parameters were estimated. These parameters
included the camera’s focal length, the principal point, and the
lens distortion.

From the raw laparoscopic videos, the laparoscopic images were
selected based on two criteria:

• Noticeable viewpoint change between the images: To ensure a
sufficient camera displacement, images were extracted from the
laparoscopic videos at a rate of 5 frames per second.
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• Clear sharpness in terms of focusing and blur: To ensure a good
image quality, images with a clear separation between the liver
and the surrounding structures were selected from the previously
extracted set. This was done visually by the challenge organisers,
with the assistance of an expert surgeon.

3.4. Annotation strategies and quality assurance

Due to a lack of available LLR datasets with annotated 2D/3D
anatomical landmarks, there was a need to annotate the landmarks in
multiple images and preoperative 3D models. To achieve this, three
of the challenge organisers, guided by the indications given by two
hepatobiliary surgeons with over 10 years practicing experience and
one computer scientist with over 5 years experience in working in
AR for LLR, proceeded to annotate the 2D landmarks in the 183
laparoscopic images and the corresponding 3D landmarks in the 11
preoperative 3D models. All the annotators have worked extensively
in artificial intelligence for surgical image analysis for over 5 years.
Each annotator labelled a specific set of images, with every image
being annotated only once. The annotations were first reviewed by the
scientists and then reviewed together with the surgeons. The labels
were corrected where necessary, according to the feedback from the
surgeons. It is to be noted that preoperative 3D model annotations were
one by the scientist together with the surgeons, due to the complexity

in identifying the landmarks.
The annotators were required to annotate the ridge, the silhouette,

the falciform ligament, and the liver surface in every image. The tol-
erance error of annotation was 5 pixels. If the distance between the
annotation and the actual landmark exceeded this tolerance range,
it was rejected in a later review. All the annotations were done via
LabelBox, an open-source collaborative web-based tool. For the anno-
tations to be as precise as possible, the annotators were advised to use
annotation tablets to perform their tasks. Some important protocols that
were agreed upon and communicated for the annotation process were:

• The falciform ligament is on the liver surface and should divide
the right and left lobes

• The ridge is the curvy area located at the bottom of the liver’s
posterior part

• The silhouette is the occluding boundary of the liver, usually
located at the upper part of the liver

• The silhouette should not go inward the falciform ligament margin,
but rather go over it

• The landmarks occluded by blood, neighbouring organs, or surgi-
cal tools should not be considered

3.5. Challenge tasks and setup

We evaluated the teams on the following two tasks - (a) Task
1: We requested the teams to perform 2D landmark segmentation
on the laparoscopic images and 3D landmark segmentation on the
reoperative 3D models as two sub-tasks. Landmark segmentation in
he 2D laparoscopic images and the 3D preoperative models are tackled
nder the same task since the 2D and 3D landmarks should eventually
rovide correspondences for later registration. Hence, it is important
o allow both modalities to be segmented jointly in order for the
egmentation to embody the notion of corresponding landmarks. For
he 2D case, the teams were asked to segment the ridge, the silhouette

and the falciform ligament landmarks. For the 3D case, they were asked
to segment the ridge and the falciform ligament landmarks, according to
the previously segmented 2D landmarks. We provided the teams with
the 167 laparoscopic images, the camera calibration parameters for
each patient, the 9 preoperative 3D models, and the corresponding 3D–
2D landmark annotations from the 9 training patients. We kept the 2

test patients undisclosed and used their 3D–2D landmark annotations as
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Fig. 4. Submission procedure of the P2ILF Teamchallenge: A Docker container system
for submission was established on the Grand Challenge platform. Each liver model
and corresponding images together with intrinsic camera parameters were provided to
the challenge participants. The algorithmic submission required different inputs for the
prediction of 2D liver landmarks, 3D liver landmarks, and the use of these landmarks
and camera intrinsic parameters for registration of the 3D model to the laparoscopic
images. Finally, the outputs from each team’s algorithm were evaluated using different
metrics (see the section Evaluation Metrics for more details).

ground truth to assess the predictions done by the teams. However, as
the proposed methods by the teams segment the 2D and 3D landmarks
ndependently so, for clarity within task 1, we have referred them as

two sub-tasks.
(b) Task 2: We requested the teams to register the preoperative 3D

odels into the intraoperative laparoscopic images, preferably by using
the previously predicted 2D and 3D landmarks. This 3D preoperative to
2D laparoscopic image registration could be either rigid or deformable.
We used the 2D ridge, the falciform ligament, and the silhouette land-
marks from the 2 test patients as groundtruth to assess the registrations
done by the teams.

The input and output data to be used in each of the tasks are
shown in Fig. 4. The teams were required to run their methods in a

ocker-based deployment framework, hosted in the Grand Challenge
platform (Radboud University Medical Center, 2023). The test data

as not accessible by the teams. Another Docker-based container was
eveloped to assess the predictions and generate the evaluation metrics
utomatically.

4. Team methods

We describe the methods proposed by each participating team
(also see Fig. 5). We explain how every method deals with each of
he two tasks, namely the landmark segmentation task and the 3D
reoperative to 2D laparoscopic image registration task. At the end of
he section, we provide in Table 2 a summary of the 2D–3D landmark
egmentation strategies proposed for Task 1 and in Table 3 the 3D
6 
preoperative to 2D laparoscopic image registration strategies proposed
or Task 2. The participating teams in the challenge were the BHL team

from Fudan University (China), the UCL team from University College
ondon (United Kingdom), the GRASP team from the University of
ennsylvania (United States), the VOR team from the University of
cience and Technology of China (China), the NCT team from the
ational Center for Tumour Diseases in Dresden (Germany), and the
IP team from the Hong Kong University of Science and Technology

(China).

4.1. Team 1 (BHL team)

The BHL team has proposed an automatic way of segmenting the
D and 3D landmarks using deep learning methods for the first task

and a classical semi-automatic rigid registration approach that uses the
segmented landmarks for the second task.

4.1.1. Task 1: (a) Segmentation of 2D landmarks
Preprocessing: A Fast Fourier Transform was first applied on the

original images. Then, an Inverse Fourier Transform was applied on the
high-frequency components to obtain contour-enhanced images (Yang
and Soatto, 2020). The team found that this contour enhancement
improved segmentation of the silhouette and the falciform ligament land-

arks, but not of the ridge landmark. The images were resized to
56 × 512 pixels for GPU acceleration purposes. The ground truth
abels were extended by three pixels using an adjacent pixel strategy.

Data augmentation: Photometric and geometric transformations were
pplied to the training dataset, namely variations in brightness, con-

trast, random noise, scaling, cropping, clipping, and rotation.

Algorithm: Two separate ResUnet (Zhang et al., 2018) were used. The
first one segmented the ridge landmark from the original image, and
the second one segmented the silhouette and the falciform ligament land-
marks from the contour-enhanced image. The resulting segmentations
were dilated by three pixels.

Loss function: A Dice loss and a cross-entropy loss were used to train
each of the ResUNet models. A single L1 loss 𝐿𝐵 was introduced at the
end to improve the consistency of the two models:

𝐿𝐵 = |𝑚1 − 𝑚2|, (1)

where {𝑚1, 𝑚2} are the output maps of the first and second Res-UNet,
respectively.

Pretraining: No pretraining was done.

4.1.2. Task 1: (b) Segmentation of 3D landmarks
Preprocessing: To deal with the class imbalance problem in the mesh
ata, the groundtruth landmarks were dilated twice using a distance
hreshold of 20 mm. The vertices in each mesh were then normalised
s follows:

(𝑥, 𝑦, 𝑧) =
(

𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

,
𝑦𝑖 − 𝑦𝑚𝑒𝑎𝑛
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

,
𝑧𝑖 − 𝑧𝑚𝑒𝑎𝑛
𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

)

, (2)

where 𝑚𝑒𝑎𝑛 is the average coordinates of all vertices, 𝑚𝑎𝑥 and 𝑚𝑖𝑛 are
the maximum and minimum coordinates, respectively.

Data augmentation: The mesh dataset was augmented by applying
random rotations and scales (0.75 to 1.25 times) to mimic the liver’s
size and orientation changes.

Algorithm: A PointNet++ network (Qi et al., 2017) was used to
segment the ridge and the falciform ligament landmarks.

Loss function: A cross-entropy loss function was used to train the
PointNet++ network.

Pretraining: No pretraining was done on the PointNet++ network.
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Table 2
Summary of the participating teams in Task 1 of the P2ILF Challenge (2D–3D landmark segmentation).

Team Algorithm Loss function Preprocessing Data aug. Pretraining

2D 3D 2D 3D 2D 3D 2D 3D 2D 3D

BHL ResUnet PointNet++ DSC+CE
+𝑙1

CE FFT, IFT,
dilation

Mesh
norm.

Yes R/S No No

NCT nnUNet MeshCNN CE+DSC CE Dilation Label merge,
Mesh norm.

No ST No No

UCL UNet++ PointNet++ DSC
+Hfd

Hfd
+NLL

No No ST SP ST No

VIP Att. UNet No CE + IoU0 No Resizing No Yes No No No

VOR Various GCN CE CE No Mesh
norm.

No VM No No

Various: UNet + YOLOv5 + DINO + DeepLabV3; Att.: Attention; CE: Cross-Entropy; FFT: Fast Fourier Transform; IFT: Inverse Fourier Transform; Hfd: Hausdorff distance; DSC:
ice similarity coefficient; IoU: Intersection over union; norm.: normalisation; S: scaling, R: rotation; ST: synthetic data; ST: synthetic data; SP: Spectral augmentation; VM: Vertex
asking.
Table 3
Summary of the participating teams in Task 2 of the P2ILF Challenge (3D preoperative to 2D laparoscopic image registration).

Team Algorithm Initialisation Registration
constraints

Loss function Type

BHL Iterative P𝑛P None 3D–2D Ridge 2D reprojection error Rigid

GRASP Iterative Diff.
Render.

Average pose
estimation

2D Silhouette 2D reprojection error Rigid

NCT Iterative Diff.
Render.

Constrained random
initialisation

3D–2D Ridge +
Ligament

2D reprojection error Rigid

UCL Iterative Diff.
Render.

Fixed initialisation 3D–2D Ridge +
Ligament
+ 2D Silhouette

2D image similarity
+ 2D Chamfer loss

Rigid

VOR Multi-staged spatial
transformers +
Diff. Render.

None Visible liver surface 2D image similarity
+ 3D shape-based
regularisation

Rigid

P𝑛P: Perspective-n-Point; Diff. Render.: Differential rendering.
p

2
u
a

r

4.1.3. Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: The team did a random initialisation.

Algorithm: The team used the iterative P𝑛P algorithm from the
OpenCV library, along with the intrinsic camera parameters. The ob-
tained rigid transformation, described by a rotation 𝑅 ∈ 𝑆 𝑂(3) and a
translation 𝑡 ∈ R3, was used to register the 3D model into the image.

Registration constraints: The 2D and 3D ridge landmarks were used
as constraints. The segmented landmarks were manually sampled to
have the same number of points. These point correspondences served
as input to the P𝑛P algorithm.

Loss function: The iterative P𝑛P algorithm uses reprojection errors to
stimate the transformation parameters.

GPU usage: The team used an NVIDIA GeForce RTX 3080 for training
their model in Task 1 (21 h for training time on the 2D segmentation
sub-task and 19 h on the 3D segmentation sub-task), while no GPU was
used for Task 2.

4.2. Team 2 (UCL team)

4.2.1. Task 1: (a) Segmentation of 2D landmarks
Preprocessing: No preprocessing of the training dataset was done.

Data augmentation: A set of synthetic liver images was generated
sing Unity and Blender to complement the provided training dataset.
00,000 images were generated using 3D liver models and textures
urchased from the Unity Asset Store (Unity Technologies, 2023), and
extures taken from freely available sources. For every image, random

values were uniformly sampled for texture, camera position, lighting
effects, motion blur and lens distortion. For each of the 9 patients in
7 
the training set, 1000 extra images were simulated in Blender using the
atient-specific liver models.

Algorithm: A UNet++ (Zhou et al., 2018) was used to segment the
D anatomical landmarks. After pretraining, the model was fine-tuned
sing the patient data for 10 epochs with an ADAM optimiser and an
daptive learning rate starting from 10−6.

Loss function: A combination of Dice loss and Hausdorff distance was
used for training.

Pretraining: The UNet++ was pretrained using the synthetic data for
10 epochs.

4.2.2. Task 1: (b) Segmentation of 3D landmarks
Preprocessing: No preprocessing of the training dataset was done.

Data augmentation: Spectral augmentation (Foti et al., 2020) was
performed to produce a broader collection of 3D models. In addition
to the 9 preoperative 3D models provided in the challenge, the team
also used the phantom model from (Espinel et al., 2022). For 9 of
these models, 199 augmentations were generated, giving a total of 1800
models for training. The remaining patient was also augmented with
199 extra models, giving a total of 200 models for validation.

Algorithm: Geometric deep learning was used to segment the 3D
landmarks through PyTorch Geometric and PointNet++. Training was
conducted over 1000 epochs with an ADAM optimiser, using a learning
ate of 10−3.

Loss function: A global loss combining Hausdorff distance and Nega-
tive Loss Likelihood (NLL) was used for training.

Pretraining: No pretraining was done on the PointNet++ network.
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Fig. 5. General pipeline of the six team methods. Team BHL: The input 2D image and 3D model are first processed and augmented. Two ResUNets are used to segment the 2D
andmarks in the images, and one PointNet++ is used to segment the 3D landmarks in the preoperative 3D model. To perform 3D preoperative mesh to 2D laparoscopic image
egistration, the correspondences are fed to the P𝑛P algorithm and a transformation matrix is obtained. Team GRASP: Mask-RCNN is used to generate a 2D mask of the liver,
hich is then used to perform 3D preoperative mesh to 2D laparoscopic image registration by minimising a silhouette reprojection error through differentiable rendering. Team
CT: nnUNet and MeshCNN are used to segment the 2D and 3D landmarks, respectively. Differential rendering is then used to perform preoperative 3D mesh to 2D laparoscopic

mage registration by minimising a reprojection error of the previously segmented landmarks. Team UCL: UNet++ is used to segment the 2D landmarks, while PointNet++ is
sed to segment the 3D landmarks. This team also used differential rendering to perform image registration. Team VOR: The 2D case is treated as a pixel segmentation task and
he 3D case as a vertex classification task. Differentiable rendering is then used to perform 3D preoperative to 2D laparoscopic image registration by generating 2D images from
he affine transformations computed by the localisation networks. The shape regularisation terms provide extra supervision to avoid undesired mesh deformations. Team VIP: The
eam only participated in task 1. Attention UNet was used for the pixel segmentation task of the anatomical liver landmarks in the laparoscopic images.
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4.2.3. Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: The team used a fixed initialisation for which the po-
sition of the liver model was initialised with 𝑅 = [0, 0, 0] and 𝑇 =
[0, 0, 500].

Algorithm: The team proposes a differential rendering pipeline using
PyTorch3D. The pipeline iteratively renders the silhouette of the preop-
erative liver model 𝑀 . The position of the liver model is initialised with
a rotation 𝑅 = 𝐼3, where 𝐼3 is a 3 × 3 identity matrix, and a translation
𝑡 = [0, 0, 500]. An initial registration process is carried out over 100
iterations, where every iteration is performed in five steps. First, the 3D
liver model is rendered based on the current 𝑅 and 𝑡. Then, the silhouette
is extracted by sweeping every column of the image and setting the first
non-zero pixel to one while making the other pixels to zero. Second, an
image loss is computed between the rendered 3D silhouette and the 2D
silhouette landmark segmented with the method proposed in Task 1.
Third, all the points of the 3D ridge and falciform ligament landmarks
segmented in the first task are projected in 2D. Fourth, a Chamfer loss is
computed between the projected 3D landmarks and the corresponding
2D landmarks. Fifth, the image and Chamfer losses are backpropagated
through the network to update 𝑅 and 𝑡. After the first 100 iterations,
a rough initial alignment is achieved, which is used to identify point
correspondences between the 3D and 2D landmarks extracted from the
first task. After this, another 25 iterations are carried out, with the
difference that only the 3D point correspondences found in the initial
alignment are used.

Registration constraints: The 2D and 3D ridge, falciform ligament, and
silhouette landmarks were used to constrain registration.

Loss function: An image similarity loss and a Chamfer loss were used
to estimate the transformation parameters.

4.3. Team 3 (GRASP team)
8 
4.3.1. Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: The optimisation process began by initialising the mesh
o a canonical pose of the organ with respect to the camera. The
anonical pose was calculated by manually registering meshes to 15

images and taking an average of the ground truth poses.

Algorithm: First, a Mask R-CNN network was used to segment the liver
region. Then, A differentiable rendering approach is used to rigidly
register the preoperative 3D model to the laparoscopic image. A trans-
formation 𝑇 registers the preoperative 3D model 𝑀 using a rotation 𝑅
nd a translation 𝑡. The registration process begins by initialising the
esh to the canonical pose. Using Pytorch3D’s differentiable rendering

module, for each optimisation step 𝑗 a silhouette image is rendered using
the 3D model transformed by 𝑇𝑗 . By back-propagating the loss between
the rendered silhouette and the predicted silhouette from Task 1, a new
pose 𝑇𝑗+1 is computed. The 3D model is then registered in the next step
using this new pose.

Registration constraints: The silhouettes of the projected 3D liver
model and the segmented 2D liver are used to constrain registration.

Loss function: The optimal transformation 𝑇 ∗ is computed for every
mage by minimising a reprojection error:

𝑇 ∗ = arg min
𝑇

𝐸(𝑇 , 𝑀 , 𝑆), (3)

where 𝐸(𝑇 , 𝑀 , 𝑆) = 𝐿𝜖(𝐷(𝑇 (𝑀)) −𝑆) is the reprojection error function,
𝜆 is a weighting term, 𝐿𝜖 is the smooth 𝐿1 loss, 𝐷 is the differential
rendering function (Ravi et al., 2020), and 𝑆 is the predicted liver mask.

GPU usage: The team used an NVIDIA Tesla P100 for training their
odel with 20 min training time.

4.4. Team 4 (VOR team)
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4.4.1. Task 1: (a) Segmentation of 2D landmarks
Preprocessing: No preprocessing was done on the training dataset.

Data augmentation: No augmentation of the training dataset was
done.

Algorithm: The team proposed a multi-staged network for each type of
natomical landmark, incorporating a UNet pre-trained on the provided
ataset (Ronneberger et al., 2015) to perform an initial segmentation,
long with a YOLOv5 (Redmon et al., 2016) as region proposal module.
he anatomical segmentation from the UNet is first converted to a
ox-shaped segmentation mask. This mask is then combined with the

results from the YOLOv5 to form a region-of-interest (ROI) from where
epresentative features are learned for the final segmentation. Then,

this ROI mask is multiplied with the original RGB image, and the
resulting patch is downsampled from 1920 × 1080 pixels to 960 × 540
pixels. A DINO transformer (Caron et al., 2021) is used to generate
feature representations from the previously generated patches. Lastly,
a DeepLabV3 network (Chen et al., 2017) is implemented to segment
the final anatomical landmarks.

Loss function: The DeepLabV3 network uses cross-entropy loss to
erform semantic segmentation.

Pretraining: The team did not use models pre-trained on other
datasets.

4.4.2. Task 1: (b) Segmentation of 3D landmarks
Preprocessing: The 3D models were normalised, i.e. converted into
nit space, to improve training stability.

Data augmentation: Random vertex masking was used to augment the
3D models.

Algorithm: A Graph Convolutional Network (GCN) (Kipf and Welling,
2016) is used to segment the mesh vertices. The dataset is split on a
er-patient basis in 80% for training and 20% for validation purposes.
he team verified that all the images of each patient were contained in
ither the training or the validation set.

Loss function: The GCN network uses a cross-entropy loss to perform
semantic segmentation.

Pretraining: No pretraining of the GCN network was done.

4.4.3. Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: Random initialisation was used.

Algorithm: Sampling-based localisation networks are used to perform
egistration. The approach is designed to deal with two main problems.
irst, correlating the 2D image with the 3D mesh and, second, preserv-
ng the mesh topology and volume during registration. The localisation

networks are inspired by the Spatial Transformer network (Jaderberg
et al., 2015). They learn a parameterised affine transformation 𝑇 at
every stage, which is then applied to the preoperative liver model 𝑀 .
Then, a sampling module projects the visible vertices onto the images
and associates the projected vertices with colours. A Soft Rasterizer (Liu
t al., 2019) generates an image from the projected vertices in order
o compute an image similarity loss. In addition, the team observed
hat decoupling the transformation prevents the model to generate
nsuitable affine transformations.

Registration constraints: The shape of the projected 3D liver model
is used as constraint by comparing it to the liver in the laparoscopic
mage.

Loss function: A 2D image similarity loss is combined with a 3D shape
regularisation term for training. The 2D loss exerts the major super-
vision when learning the optimal transformation 𝑇 ∗ for registration.

his dimensional reduction inevitably loses the control of 3D shape
9 
properties. To compensate the impact of such reduction, two shape-
based regularisation terms were added: a Laplacian loss that quantifies
he smoothness of the local surface around each vertex, and an edge
ength loss that penalises significant changes in the edge lengths, avoid-
ng undesired deformations in the mesh such as flattening, erosion, or
ilation.

GPU usage: The team did not provide any insight in the GPU usage.

4.5. Team 5 (NCT team)

4.5.1. Task 1: (a) Segmentation of 2D landmarks
Preprocessing: To capture more information during training, the
ground-truth labels were dilated by 10 pixels.

Data augmentation: No augmentation of the training dataset was
done.

Algorithm: An nnUNet network (Isensee et al., 2021) was used to
perform semantic segmentation. Training is performed using a five-fold
cross-validation scheme, which results in five sets of network weights.
Since each of the networks generate under-segmented results, they are
ombined as the union of all the predicted falciform ligament, silhouette
nd ridge landmarks.

Loss function: nnUnet uses a combination of Dice loss and cross-
entropy loss for training.

Pretraining: No pretraining was done on the nnUnet network.

4.5.2. Task 1: (b) Segmentation of 3D landmarks
Preprocessing: The per-view landmark annotations are merged into a
single ridge and falciform ligament landmark for each of the patients.
The 3D models are also downsampled to improve performance.

Data augmentation: The provided dataset was augmented by deform-
ing the 3D models using finite element simulations. A total of 8208
models with the corresponding labels were obtained, which composed
the training dataset. The original undeformed models were used as
validation dataset.

Algorithm: Two MeshCNN networks (Hanocka et al., 2019) were used
to segment the ridge and falciform ligament landmarks independently.

eshCNN operates directly on the triangular meshes, extracting local
edge features to make predictions that are invariant to rotation, trans-
lation, and scale of the input data. Therefore, two sets of weights are
used to predict the two classes independently. The union of the two
predictions completes the final landmark segmentation. Once the edges
have been segmented, each vertex is assigned the class of the edges it is
a part of. Prior to any operation, MeshCNN normalises edge lengths by
their mean and standard deviation in the dataset. For the normalisation
step during inference on unseen test samples, the mean and standard
deviation of the original patient data is used.

Loss function: In order to tackle the class imbalance problem, the
etworks were trained using a cross-entropy loss, with the highest
eight assigned to the falciform ligament class.

Pretraining: No pretraining was done on the MesCNN networks.

4.5.3. Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: The initial pose of the liver is selected at a random
osition in front of the camera around the positive 𝑍-axis. The initial
otation is set up with liver’s anterior side facing the camera, and then a
andom rotation of less than 90◦ is applied over each axis. The camera
s kept fixed at the origin throughout the whole procedure and only the
iver is translated and rotated. The liver scale is also kept fixed.

Algorithm: An optimisation scheme based on differentiable rendering
is used. The system renders the liver mesh, the segmented ridge and



S. Ali et al.

o
t
G
n

u

o

3

t

g

a
i
a
s
t
s
s
i

p
D
t
t
t
(

Medical Image Analysis 99 (2025) 103371 
falciform ligament landmarks using a virtual camera. The rendered
3D landmarks are then compared with the segmented 2D landmarks
to obtain a 2D reprojection error. This error is back-propagated and
gradients of rotation and translation are calculated. The gradients are
then used to update the rotation 𝑅 and translation 𝑡 of the preoperative
liver model 𝑀 . Finally, a new render of the registered model 𝑀
is made. This process is repeated for 150 iterations, resulting in an
iterative 3D pose-optimisation scheme using only 2D pixel-level losses.
After the first render is done and to speed up convergence, the position
of the rendered 3D falciform ligament is compared to the position of
the segmented 2D ligament. The 3D liver is then translated parallel
to the camera plane until the two falciform ligaments overlap in the
rendered image. This process is repeated for 30 different random pose
initialisations to increase robustness against bad initial alignments. To
speed up the process, the laparoscopic and the rendered images were
scaled to one fifth of their original size.

Registration constraints: The 3D and 2D ridge and falciform ligament
landmarks are used to constrain the optimisation process.

Loss function: A pixel-level mean squared error is measured between
the rendered 3D landmarks and the image landmarks.

GPU usage: The team used an NVIDIA V100 for training their model
n task 1 sub-task 2D segmentation (18 h for each fold, 5 folds were
rained). For sub-task 3D segmentation the team used one NVIDIA
eForce RTX2080 and trained for 140 h 21 min, while no training was
eeded for task 2.

4.6. Team 6 (VIP team)

4.6.1. Task 1: (a) Segmentation of 2D landmarks
Preprocessing: In order to reduce the computation time, images were
resized to 272 × 480 pixels.

Data augmentation: The provided dataset was augmented by applying
random flipping, Gaussian noise, Gaussian blur, and light adjustment.

Algorithm: Attention UNet (Oktay et al., 2018) was used to segment
the anatomical landmarks. This network integrates Attention Gates
(AG) to UNet to reduce false-positive predictions in irrelevant struc-
tures. The dataset was randomly split into training and validation
sets with a ratio of 4:1. A cross-validation strategy was followed to
select the best checkpoint for inference. Images in each mini-batch
were randomly sampled from different patients to ensure diversity.
Following Oktay et al. (2018), the gating parameters were initialised
so that the attention gates pass through feature vectors at all spatial
locations. The network was trained from scratch for 50 epochs with an
initial learning rate of 10−4 and a batch size of 16. The learning rate
was then decreased by 0.9 after every 5 epochs.

Loss function: A cross-entropy loss combined with an IoU loss was
sed to train the Attention UNet.

Pretraining: No pretraining was done on the Attention UNet.

GPU usage: The team used one NVIDIA GeForce RTX 2080 for training
their model in task 1 (1 h training time on 2D segmentation sub-task)

5. Results

5.1. Evaluation metrics

The metrics used to evaluate the tasks vary according to the nature
f the problem to be solved. Task 1 uses Precision Dice Coefficient,

and Symmetric Distance (François et al., 2020) to assess the predicted
2D landmarks, along with 3D Chamfer Distance to assess the predicted
D landmarks. Task 2 uses the 2D Hausdorff Distance to measure the

accuracy of 3D preoperative to 2D laparoscopic image registration.
10 
5.1.1. Task 1: Metrics for assessing the 2D and 3D landmark segmentation
asks
5.1.1.1. Precision. We use precision 𝑃 to measure the quality of the
predicted 2D landmarks at a pixel level. It corresponds to the number of
true positives over the total number of predicted pixels (true positives
and false positives). Precision is a commonly used metric in semantic
segmentation to evaluate the quality of the predictions (Taha et al.,
2014):

𝑃 =
|𝑇 𝑃 |

|𝑇 𝑃 | + |𝐹 𝑃 | , (4)

where 𝑇 𝑃 are the true positives and 𝐹 𝑃 are the false positives.

5.1.1.2. Dice coefficient. We use Dice coefficient 𝐷 𝑆 𝐶 to measure the
similarity between the predicted and the ground-truth landmarks. It
corresponds to the intersection of the pixels in the predicted and
ground-truth landmarks, over the total number of pixels in both land-
marks. Dice coefficient is also a commonly used metric in semantic
segmentation to evaluate the accuracy of the predictions (Müller et al.,
2022):

𝐷 𝑆 𝐶 =
2 |
|

𝐵𝐼 ∩ 𝐶𝐼
|

|

|

|

𝐵𝐼
|

|

+ |

|

𝐶𝐼
|

|

, (5)

where 𝐵𝐼 is the set of predicted image landmarks and 𝐶𝐼 is the set of
round-truth image landmarks.

5.1.1.3. Symmetric distance. We use the Symmetric Distance score pro-
posed by François et al. (2020) to assess the similarity of the predicted
nd ground-truth landmarks. This score takes five performance criteria
nto account. First, the ground-truth landmarks should not be missed
nd there should be no spurious predictions. Second, the predictions
hould be close to the ground-truth landmarks. Third, each ground-
ruth landmark should only produce a single prediction. Fourth, the
core should be invariant to the image resolution. Fifth, the score
hould be invariant to the amount of ground-truth landmarks. The score
s thus defined as:

𝐺 = 1
2|𝐶𝐼 |𝑑𝑚𝑎𝑥

(

∑

𝑏𝐼∩𝑄
𝑑𝑆 (𝑏𝐼 , 𝑐𝐼 ⧵ 𝐹 𝑁) +

∑

𝑐𝐼 ⧵𝐹 𝑁
𝑑𝑆 (𝑐𝐼 , 𝑏𝐼 ∩𝑄)

)

+
|𝐹 𝑃 |

|𝐼| − 2|𝐶𝐼 |𝑑𝑚𝑎𝑥
+

|𝐹 𝑁|

|𝐶𝐼 |
, (6)

where 𝐺 is the symmetric distance score, 𝑑𝑚𝑎𝑥 is a tolerance distance
that defines if a predicted landmark is spurious or not, 𝑏𝐼 ∈ 𝐵𝐼 is
a landmark in the set of predicted image landmarks 𝐵𝐼 , 𝑐𝐼 ∈ 𝐶𝐼 is
a landmark in the set of ground-truth image landmarks 𝐶𝐼 , 𝑄 is the
tolerance region around the ground-truth image landmarks defined
by 𝑑𝑚𝑎𝑥, 𝐹 𝑃 and 𝐹 𝑁 are the false positive and the false negative
predictions, respectively, and 𝑑𝑆 () is a symmetric distance function.

5.1.1.4. 3D chamfer distance. We measure the similarity between the
redicted and ground-truth 3D landmarks by means of a 3D Chamfer
istance. It corresponds to the sum of the squared distances between

he nearest neighbour correspondences of the predicted and ground-
ruth landmarks. The 3D Chamfer Distance 𝑑𝐶 is a standard metric used
o measure the similarity and completion between two point clouds
Wu et al., 2021):

𝑑𝐶 (𝑣, 𝑤) =
∑

𝑣 min𝑤 ‖𝑣 −𝑤‖

2

|𝑣|
+

∑

𝑤 min𝑣 ‖𝑣 −𝑤‖

2

|𝑤|

, (7)

where 𝑣 ∈ 𝑏𝑀 are the points in a predicted model landmark 𝑏𝑀 ,
and 𝑤 ∈ 𝑐𝑀 are the points in the corresponding ground-truth model
landmark 𝑐𝑀 . |.| denotes the cardinality of a set.

We use the average Chamfer distance 𝐹 between the predicted and
ground-truth landmarks as the evaluation metric:

𝐹 = 1
|𝐵𝑀 |

∑

𝑏𝑀

𝑑𝐶 (𝑏𝑀 , 𝑐𝑀 ), (8)

where 𝐵 is the set of predicted model landmarks.
𝑀
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Table 4
Evaluation of 2D segmentation of landmarks using region-based metrics: Precision and dice coefficient scores (DSC) are provided for 16 images from the 2 test cases (patients 4
and 11). Each evaluation metric includes values for the ridge, the falciform ligament, and the silhouette landmarks. The higher the precision and DSC values the better. The best
results are in bold, the second best are underlined.

Test BHL NCT UCL VIP VOR

image Precision DSC Precision DSC Precision DSC Precision DSC Precision DSC

4_3 0.14/0.44/0.53 0.01/0.42/0.63 0.31/0.51/0.47 0.04/0.05/0.61 0.16/0.22/0.51 0.02/0.3/0.55 0.06/0.32/0.25 0.0/0.4/0.38 0.05/0.1/0.23 0.01/0.15/0.36
4_4 0.41/0.47/0.55 0.02/0.4/0.65 0.22/0.0/0.53 0.03/0.0/0.67 0.13/0.16/0.49 0.01/0.23/0.56 0.27/0.33/0.24 0.02/0.41/0.37 0.24/0.14/0.23 0.03/0.19/0.37
4_7 0.27/0.5/0.61 0.01/0.44/0.72 0.07/0.0/0.45 0.02/0.0/0.6 0.05/0.2/0.49 0.01/0.25/0.54 0.06/0.26/0.22 0.01/0.31/0.35 0.17/0.18/0.21 0.03/0.25/0.34
4_11 0.16/0.59/0.56 0.01/0.54/0.54 0.12/0.0/0.3 0.02/0.0/0.42 0.05/0.56/0.5 0.01/0.54/0.55 0.35/0.37/0.24 0.03/0.43/0.37 0.32/0.08/0.21 0.04/0.14/0.35
4_17 0.0/0.0/0.57 0.0/0.0/0.59 0.43/0.0/0.35 0.06/0.0/0.51 0.02/0.14/0.62 0.01/0.22/0.59 0.37/0.0/0.23 0.05/0.0/0.34 0.17/0.0/0.19 0.02/0.0/0.31
4_20 0.3/0.34/0.29 0.02/0.46/0.36 0.27/0.57/0.33 0.03/0.31/0.43 0.18/0.21/0.25 0.03/0.29/0.28 0.0/0.0/0.23 0.0/0.0/0.36 0.22/0.22/0.21 0.03/0.35/0.35
4_21 0.51/NA/0.47 0.06/NA/0.52 0.27/NA/0.5 0.06/NA/0.57 0.02/NA/0.36 0.01/NA/0.4 0.0/NA/0.25 0.0/NA/0.38 0.43/NA/0.2 0.06/NA/0.32
4_22 0.0/NA/0.47 0.0/NA/0.39 0.17/NA/0.31 0.04/NA/0.23 0.0/NA/0.33 0.0/NA/0.31 0.25/NA/0.22 0.05/NA/0.3 0.14/NA/0.17 0.04/NA/0.26
11_2 0.48/0.41/0.46 0.03/0.56/0.46 0.18/0.42/0.46 0.04/0.53/0.57 0.15/0.34/0.32 0.03/0.47/0.34 0.14/0.24/0.14 0.01/0.38/0.21 0.05/0.16/0.1 0.01/0.28/0.16
11_3 0.27/0.41/0.46 0.01/0.49/0.5 0.47/0.44/0.41 0.07/0.59/0.53 0.21/0.26/0.33 0.04/0.37/0.37 0.1/0.25/0.14 0.01/0.4/0.22 0.18/0.15/0.1 0.02/0.26/0.16
11_4 0.43/0.44/0.42 0.02/0.57/0.44 0.36/0.4/0.43 0.04/0.5/0.55 0.19/0.64/0.33 0.03/0.66/0.33 0.08/0.23/0.16 0.01/0.36/0.24 0.05/0.18/0.1 0.01/0.3/0.17
11_5 0.37/0.39/0.41 0.02/0.49/0.43 0.16/0.45/0.42 0.03/0.55/0.54 0.18/0.7/0.33 0.04/0.72/0.34 0.07/0.26/0.17 0.01/0.39/0.25 0.25/0.18/0.1 0.01/0.3/0.16
11_6 0.22/0.38/0.43 0.01/0.46/0.47 0.14/0.52/0.39 0.02/0.53/0.52 0.16/0.68/0.33 0.05/0.7/0.34 0.02/0.24/0.14 0.0/0.37/0.21 0.0/0.17/0.12 0.0/0.27/0.18
11_7 0.41/0.38/0.47 0.03/0.36/0.51 0.16/0.34/0.48 0.04/0.39/0.62 0.12/0.55/0.35 0.01/0.58/0.37 0.04/0.23/0.18 0.01/0.37/0.27 0.0/0.16/0.12 0.0/0.26/0.2
11_8 0.4/0.4/0.4 0.01/0.39/0.41 0.13/0.33/0.37 0.04/0.43/0.46 0.18/0.66/0.31 0.01/0.68/0.31 0.14/0.23/0.14 0.02/0.36/0.21 0.05/0.17/0.09 0.01/0.27/0.14
11_9 0.0/0.6/0.32 0.0/0.45/0.34 0.12/0.4/0.37 0.03/0.55/0.46 0.01/0.7/0.25 0.0/0.72/0.26 0.0/0.24/0.13 0.0/0.38/0.2 0.0/0.19/0.11 0.0/0.32/0.17

Mean 0.27/0.41/0.46 0.02/0.43/0.50 0.22/0.31/0.41 0.04/0.32/0.52 0.11/0.43/0.38 0.02/0.48/0.40 0.12/0.23/0.19 0.01/0.33/0.29 0.15/0.15/0.16 0.02/0.24/0.25

Total
mean

0.38 0.32 0.31 0.30 0.31 0.30 0.18 0.21 0.15 0.17
c

h
t
T

Table 5
Segmentation of 2D landmarks using distance metric: The symmetric distance score 𝐺
is provided for 16 images from the 2 test cases (patients 4 and 11). Each evaluation
metric includes values for the ridge, the falciform ligament, and the silhouette landmarks.
The lower the symmetric distance score, the better. The best results are in bold, and
the second best are underlined. Mean values for each landmark �̄� and for the combined
verall mean for all landmarks �̄�𝑟𝑙 𝑠 are also provided.
Test BHL NCT UCL VIP VOR
data

4_3 0.67/0.5/0.14 0.33/0.87/0.3 0.61/1.0/0.21 0.77/0.51/0.71 0.65/1.0/0.87
4_4 0.56/0.6/0.14 0.65/1.0/0.08 0.62/1.0/0.34 0.57/0.47/0.73 0.43/1.0/0.79
4_7 0.77/0.45/0.08 0.69/0.84/0.35 0.62/1.0/0.22 0.74/0.71/0.9 0.67/1.0/1.0
4_11 0.76/0.37/0.34 0.7/1.0/0.99 0.72/0.28/0.18 0.58/0.44/0.74 0.59/1.0/1.0
4_17 1.0/1.0/0.35 0.4/1.0/0.85 1.0/1.0/0.37 0.44/1.0/0.89 0.68/1.0/1.0
4_20 0.48/0.77/0.39 0.58/0.43/0.26 0.61/1.0/0.4 1.0/1.0/1.0 0.54/0.88/1.0
4_21 0.36/NA/0.34 0.34/NA/0.33 0.81/NA/0.45 1.0/NA/0.75 0.39/NA/1.0
4_22 1.0/NA/0.57 0.4/NA/0.81 1.0/NA/0.53 0.28/NA/1.0 0.29/NA/1.0
11_2 0.5/0.19/0.5 0.43/0.22/0.31 0.53/1.0/0.63 0.59/0.66/1.0 0.76/1.0/1.0
11_3 0.63/0.19/0.41 0.37/0.16/0.24 0.46/1.0/0.49 0.58/0.65/1.0 0.61/1.0/1.0
11_4 0.63/0.13/0.36 0.44/0.27/0.26 0.6/0.07/0.46 0.68/0.73/1.0 0.85/1.0/1.0
11_5 0.59/0.3/0.38 0.53/0.27/0.32 0.55/0.05/0.46 0.7/0.6/1.0 0.79/1/1
11_6 0.79/0.3/0.38 0.54/0.39/0.51 0.61/0.04/0.47 0.81/0.8/1.0 1.0/1.0/1.0
11_7 0.65/0.58/0.27 0.56/0.46/0.13 0.79/0.11/0.32 0.84/1.0/1.0 1.0/1.0/1.0
11_8 0.81/0.56/0.5 0.63/0.36/0.46 0.81/0.05/0.57 0.65/1.0/1.0 0.76/1/1
11_9 0.82/0.53/0.51 0.46/0.26/0.45 1.0/0.06/0.57 1.0/0.79/1.0 1.0/1.0/1.0

�̄� 0.69/0.46/0.35 0.50/0.54/0.42 0.71/0.55/0.42 0.70/0.74/0.92 0.69/0.99/0.98

�̄�𝑟𝑙 𝑠 0.50 0.49 0.56 0.79 0.87

5.1.2. Task 2: Metric for assessing the registration task
We measure the accuracy of the 3D preoperative mesh to 2D laparo-

scopic image registration done by the participating teams by computing
the 2D Hausdorff Distance between the ground-truth 2D landmarks
and the 2D projections of the registered ground-truth 3D landmarks.
It corresponds to the greatest of all the distances from a point in a
ground-truth 3D landmark projected in 2D, to the closest point in the
corresponding ground-truth 2D landmark. This metric has became the
standard way to measure the similarity and the distance between two
curves (Rueda et al., 2014):

𝑑𝐻 (𝑣, 𝑤) = max{max
𝑣

{min
𝑤

‖𝑣 −𝑤‖},max
𝑤

{min
𝑣

‖𝑣 −𝑤‖}}, (9)

where 𝑑𝐻 is the Hausdorff distance. The final 2D Hausdorff distance
lso representing reprojection error in this case (rpe) is measured for
oth the ridge and the falciform ligament landmarks:

rpe = 1
|𝐶𝑀 |

∑

𝑐𝑀

𝑑𝐻 (𝛱(𝑐𝑀 ), 𝑐𝐼 ), (10)

where 𝐶𝑀 is the set of ground-truth model landmarks and 𝛱(.) is the
3D–2D projection function. It should be noted that, while measuring
arget registration errors is the standard way to quantify the registra-

tion accuracy, obtaining such groundtruth data on patients is highly
omplex. This is because it requires using non-standard devices in the

operating room and a rigorous ethical approval process. Thus, we have
chosen to use reprojection error as a metric to evaluate the accuracy of
the proposed methods.
 t
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Table 6
Segmentation of 3D landmarks: 3D Chamfer distances for the ridge ‘r’ (ch_r), and
the falciform ligament ‘l’ (ch_l) landmarks are provided for 16 images of the 2 test
cases (patients 4 and 11). The ground-truth 3D vertex locations are compared with the
predicted 3D vertex locations for the ridge and the falciform ligament. NA refers to the
cases where the landmark is not annotated. The best results are in bold, the second
best are underlined. Mean values are computed for all the images except for the failed
cases shown in red. The overall mean is computed as an average of ch_r and ch_l for
each team. All the distances are given in millimeters.

Test BHL NCT UCL VOR

data ch_r ch_l ch_r ch_l ch_r ch_l ch_r ch_l

4_3 98.02 69.98 20.14 37.95 7.68 14.45 28.86 22.88
4_4 102.83 61.08 17.82 38.96 16.69 10.92 33.41 24.19
4_7 84.99 55.15 24.59 39.3 10.2 11.95 26.23 20.82
4_11 101.65 52.19 19.46 40.27 15.07 17.21 34.12 22.35
4_17 105.7 78.52 20.76 37.77 7.61 16.43 34.21 30.46
4_20 108.05 78.91 20.55 39.68 17.42 11.91 31.62 18.46
4_21 156.74 NA 36.83 NA 13.17 NA 40.39 NA
4_22 148.92 NA 33.8 NA 38.05 NA 35.5 NA
11_2 146.26 57.72 30.16 33.67 37.49 24.24 29.92 36.62
11_3 136.32 63.43 30.63 35.55 45.13 31.49 28.29 33.54
11_4 145.55 63.31 30.97 37.04 52.76 34.68 37.42 33.88
11_5 152.12 57.72 31.61 32.92 15.28 36.89 32.52 35.13
11_6 143.85 57.86 30.77 33.32 14.23 28.07 30.39 37.64
11_7 145.3 58.32 32.15 34.95 70.82 43.51 33.19 37.59
11_8 152.87 53.45 33.3 34.59 68.01 18.17 37.18 33.31
11_9 172.22 60.76 37.8 33.41 13.23 42.62 43.22 35.15

Mean 128.27 62.02 27.19 36.38 27.97 24.47 32.90 30.14

Overall
mean

95.14 31.78 26.22 31.52

5.2. Quantitative results

5.2.1. Performance comparison for the 2D and 3D segmentation task
For the 2D segmentation step, the quantitative results for the pre-

ision and the Dice coefficient (DSC) scores are presented in Table 4.
Images 4_21 and 4_22 do not have a visible falciform ligament land-
mark. Therefore, the precision and DSC scores are marked as NA (not
available) for these two images and the average scores for the falciform
ligament are computed over 14 images instead of 16. BHL team has the
ighest overall mean precision of 0.38, and the highest mean values for
he ridge and the silhouette landmarks, with 0.27 and 0.46, respectively.
hey also obtained the second highest mean precision for the falciform
ligament landmark (0.41). The second best results are for the NCT and
UCL teams, with an overall mean precision of 0.31. The NCT team has
the second highest scores for the ridge and the silhouette landmarks, with
0.22 and 0.41, respectively. The UCL team has the highest score for the
ridge landmark (0.43). For DSC, a similar trend can be observed, with
the BHL team having the best overall mean score of 0.32. However,
he UCL team obtained the highest score for the falciform ligament
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Table 7
3D preoperative mesh to 2D laparoscopic image registration: Reprojection errors in pixels are provided for 16 samples from the two test patients. These errors are computed for
he ridge (rpe_r) and the falciform ligament (rpe_l) between the projected 3D ground-truth landmark vertices in the registered model w.r.t. the 2D ground-truth pixel locations. NA
efers to the not available cases. Mean values are computed for all registrations except for the failed cases shown in red. The overall mean is computed as an average of rpe_r
nd rpe_l for each team. The best results are in bold, the second best are underlined.
Test #1 BHL NCT UCL VOR GRASP

rpe_r rpe_l rpe_r rpe_l rpe_r rpe_l rpe_r rpe_l rpe_r rpe_l

4_3 515.89 702.65 401.36 257.95 525.82 708.6 936.33 499.04 446.93 661.98
4_4 744.36 1050.4 494.53 368.75 732.54 466.69 1035.62 567.85 521.31 762.17
4_7 431.06 398.92 115.73 170.76 656.34 366.39 869.04 480.69 474.44 558.58
4_11 857.2 901.19 360.19 329.4 340.81 479.25 979.86 669.47 443.22 682.49
4_17 500.09 3182.76 323.6 458.22 250.71 442.19 1142.3 853.63 405.36 444.67
4_20 664.21 946.64 183.58 393.21 707.26 300.48 992.22 762 495.07 652.99
4_21 448.63 NA 159.3 NA 799.6 NA 976.17 NA 451.3 NA
4_22 465.4 NA 212.36 NA 604.88 NA 965.59 NA 504.12 NA
11_2 839.91 2019.02 1008.61 356.36 910.76 473.38 1293.85 1194.77 873.09 452.32
11_3 520.78 3115.51 842.67 177.02 613.39 492.87 1253.12 1170.4 794.59 473.93
11_4 508 659.02 720.35 185.74 974.13 697.18 1278.17 574.81 792.05 542.79
11_5 403 688.8 788.44 311.52 825.24 669.36 1281.08 583.92 767.99 608.84
11_6 509.56 710.12 807.11 543.89 936.63 662.15 1283.26 531.75 1107.94 463.24
11_7 489.7 670.1 360.03 408.01 1058.9 816.27 1248.58 511.68 1291.6 1587.21
11_8 388.29 522.38 329.8 237.32 1174.43 824.16 1279.16 472.45 781.51 627.21
11_9 247.95 369.42 361.25 270.65 925.53 679.32 1250.07 746.84 753.88 643.11

Mean 533.38 1138.35 466.80 319.20 752.31 577.02 1129.02 687.09 681.52 654.39

Overall
mean

835.86 393 664.66 908.05 667.95
landmark, with 0.48. The VIP and VOR team performed poorly on both
etrics. Contrary to the precision and the DSC, the lower the symmetric
istance score, the better. These results are shown in Table 5. The
CT team has marginally the best overall mean symmetric distance

core compared to BHL, with 0.49. They have the lowest mean score
for the ridge landmark of 0.50, and the second lowest mean scores
for the falciform ligament and the silhouette landmarks, with 0.54 and
.42, respectively. While the BHL team has obtained the lowest scores
or the falciform ligament and the silhouette landmarks, with 0.46 and
.35, respectively. In general, we can observe that the falciform ligament
nd the silhouette landmarks have the best prediction performances,
ollowed by the ridge landmark, which has the worst segmentation
erformance by all teams.

For the 3D segmentation sub-task, the quantitative results are pre-
sented in Table 6. The UCL team had the best overall scores, with the
lowest distance for the falciform ligament landmark at 24.47 mm and the
second lowest distance for the ridge landmark at 27.97 mm. The NCT had
he lowest distance for the ridge landmark at 27.19 mm. The VOR team

had the second lowest distance for the falciform ligament landmark at
30.14 mm.

5.2.2. Performance comparison for the 3D preoperative mesh to 2D laparo-
scopic image registration task

The quantitative results for the five teams participating in the 3D
reoperative to 2D laparoscopic image registration task are presented
n Table 7. Reprojection errors are computed for the ridge and the
falciform ligament landmarks. We analyse the mean reprojection errors
of both landmarks (where available) as doing it separately does not
rovide enough information on the accuracy of the registered models.
t is worth noting that the camera calibration of the 2 test patients
ave mean reprojection errors of 0.36 pixels for patient 4 and 0.64
ixels for patient 11. Given the low calibration errors, they are not
aken into account to evaluate the registration performance of the
eams. Because images 4_21 and 4_22 do not have a visible falciform
igament, the corresponding reprojection errors are marked as NA and
he average scores for the falciform ligament are computed over 14
mages instead of 16. The registration method of team NCT has the best
ean reprojection error with 393 pixels. The team UCL has the second

est mean error, with 664.66 pixels. Following closely, the GRASP team
as the third best mean error with 667.95 pixels. The VIP team did not
articipate in this task.
 a
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5.2.3. Run time on test data
All the methods except the one from the GRASP team were eval-

uated using the provided Docker container on an NVIDIA GeForce
1080Ti 11 GB GPU. It was observed that NCT had the longest runtime
with nearly 197 s, divided in 54 s for Task 1 (a), 11 s for Task 1 (b),
and 132 s for Task 2. All other methods took less than a minute, with
the UCL team having the lowest time with 16 s and the BHL team
the second lowest with 25 s. Due to the compilation difficulties found
for the GRASP team, we used a Google Colab T4 GPU whose overall
average registration time was 26 s.

5.3. Qualitative results

We present a visual representation of the results obtained by the
teams in both tasks. For Task 1, we show a side-by-side comparison of
the predicted and the ground-truth 2D and 3D landmarks. For Task 2,
we overlay the registered 3D models on top of the laparoscopic images
of the two test patients.

5.3.1. Segmentation of 2D landmarks
Fig. 6 shows the ground-truth and predicted 2D landmarks for

three images of the two test patients. The images correspond, from
the left most column to the right most column, to the cases 4_7, 4_11,
4_17, 11_3, 11_6, and 11_7 of Table 4. In general, all the teams were
able to segment the ridge, the falciform ligament, and the silhouette
landmarks in the laparoscopic images. Visually speaking, the quality of
the predictions correspond to the scores reported in Table 4, with the
BHL and NCT teams having less spurious predictions compared to the
other teams. The silhouette landmark is the one with the best predictions
across all the teams, with more continuous curves and less missing
parts. The falciform ligament landmark also has good results with con-
tinuous curves and low spurious responses. The ridge landmark is the
most challenging case, with lots of missing parts and a considerable
amount of spurious predictions.

5.3.2. Segmentation of 3D landmarks
Fig. 7 shows the ground-truth and predicted 3D landmarks for

the same set of images presented in Fig. 6. The landmarks shown
correspond to the ridge and the falciform ligament. The BHL team was
not able to clearly segment the landmarks, segmenting vertices that
re far from the ground-truth locations and covering large areas of the
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Fig. 6. Qualitative results of the 2D landmark segmentation task: The ground-truth (GT) landmarks for the two test patients are shown in the first row, while the teams’ predictions
are shown in the consecutive rows. The ridge landmarks are shown in red, the falciform ligament landmarks in blue, and the silhouette landmarks in yellow.
liver surface. The NCT team was able to segment the ridge landmarks
successfully, while the falciform ligament landmarks present some spuri-
ous responses. The team has segmented the landmarks in the whole 3D
model, rather than in a per-image basis, which was the original goal of
the task. The UCL team has segmented the ridge landmarks successfully
for patient 4, with some spurious responses for the falciform ligament
landmarks. For patient 11, the ridge landmarks are not consistent and
the falciform ligament landmarks are not clearly defined. Although the
team segments the landmarks in the whole 3D model and not on a per-
view basis, their method gives different responses when run multiple
times on the same model. The VOR team was not able to successfully
segment the ridge landmarks, while the falciform ligament landmarks are
far from the ground-truth ones and present some spurious responses.
The team has also segmented the landmarks in the whole liver, having
the same responses at every running instance.

5.3.3. 3D preoperative mesh to 2D laparoscopic image registration
Fig. 8 shows a fusion of the registered 3D models with the la-

paroscopic images of Fig. 6. Matching the results of Table 7, the NCT
team has the best visual results, with the registered models having a
similar pose to the intraoperative livers. However, the models do not
exactly fit the boundaries of the intraoperative livers, which means
that using them for AR purposes would be inaccurate. The rest of the
methods did not provide visually successful results, with the registered
models having different poses or being far from the intraoperative
livers. Results for the VOR team are not shown due to their registered
models falling out of the laparoscopic images.

5.3.4. Comparison of AR images
From the registration results of Task 2, AR images are generated

using inner structures like tumours and veins, as shown in Fig. 9. The
AR images were only generated for NCT as it was the only team that
obtained results that were close to reality. Their images are qualita-
tively compared to an ICP rigid registration method and the baseline
method from Koo et al. (2017) that reports a TRE of less than 10 mm.
In the left image of patient 4, the rigid registration method shows the
left tumour shifted towards the left compared to the baseline method,
while the NCT method shows both tumours inside the field of view
13 
and closer to each other compared to the baseline method. For the
NCT case, the difference is due to the registered liver being shifted
to the right of the real liver, and slightly rotated towards the left. In
the middle image of patient 4, the baseline method shows that the left
tumour is at the border of the liver, and the right tumour is at the
left of the vein. For the rigid case, the left tumour is outside of the
liver’s parenchyma. For the NCT team, the left tumour is outside of the
liver and the right tumour is in front of the vein. This is because the
registered liver is closer to the camera and slightly rotated to the right
compared to the real liver. In the right image of patient 4, the baseline
method shows that the left tumour is near the border of the liver and
the right tumour is above the vein. For the rigid case, the tumour in the
middle is slightly shifted to the right and the vein is shifted upwards
compared to the baseline method. For the NCT team, the left tumour is
right behind the right tumour and the vein is rotated towards the left.
This is because the registered liver is rotated towards the left compared
to the real liver. For the 3 images of patient 11, both the baseline and
the rigid methods show the tumour and the vein approximately at the
same locations. In the left image of patient 11, the baseline method
shows that the tumour is in front of the vein. For the NCT team, the
tumour looks more extensive, and the vein has a slightly different pose.
This is because the registered liver is closer to the camera and slightly
rotated upwards compared to the real liver. In the middle image of
patient 11, the baseline method shows the tumour being deformed
somewhat towards the bottom, due to the ultrasound probe pushing
the liver downwards. For the NCT team, the tumour is at the top-left of
the vein, while the vein is closer to the bottom border of the liver. This
is because the registered liver is rotated upwards compared to the real
liver. In the right image of patient 11, the tumour is more deformed
than the previous two images, as the probe continues to push the liver
downwards. For the NCT team, the tumour and the vein are parallel to
each other, with the tumour being located more to the left compared
to the baseline method. This is because the registered liver is rotated
slightly to the left compared to the real liver. These results confirm
that the NCT method does not follow the movements of the camera
and the liver consistently and that, even if the camera is fixed and the
liver remains stable, their method can produce different registration
solutions. For the rigid method, even if the internal structures seem
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Fig. 7. Qualitative results of the 3D landmark segmentation task: The ground-truth (GT) landmarks for the two test patients are shown in the first row, while the teams’ predictions
are shown in the consecutive rows. The ridge landmarks are shown in red and the falciform ligament landmarks in blue.
Fig. 8. Qualitative results of the 3D preoperative mesh to 2D laparoscopic image registration task: Registration results on some of the images are shown for 4 of the participating
teams. The original images are shown in the first row, with the results for BHL, GRASP, NCT, and UCL shown in the consecutive rows. Results for VOR are not shown due to the
models being out of the field of view. It can be seen that NCT obtained the best results, with the registered models being close to the liver in the images.
to be close to the ones shown by the baseline method despite the
lack of deformation, their little displacements in the AR image usually
mean real world displacements of several millimeters, translating into
a wrong guidance to the surgeon.

5.4. Ranking

We conducted an aggregate and rank strategy for 2D and 3D land-
marks separately, which was then combined based on the ranking
consensus across Task1 (Wiesenfarth et al., 2021). It can be observed
in Fig. 10 that even though team BHL ranked first in the 2D landmark
(higher is better in this case), the mean performance is close to that
of team NCT, with team UCL only marginally lower. However, for
the 3D landmark segmentation, for which lower is better, team UCL
outperformed all the other teams, while team BHL had the worst
performance. As a result, team UCL’s aggregated value in the 2D and
14 
3D landmark segmentation led them to be first in the ranking, with
team NCT in second place.

Similarly, on the Task 2 of the competition and as shown in Fig. 11,
team NCT outperformed all teams, recording the least registration
for most cases with the lowest mean for both the reprojection errors
(compared with ridge and with falciform ligament). However, the UCL
team ranked third and BHL ranked fourth. These rankings were based
on consensus (Wiesenfarth et al., 2021) across reprojection error for
ridge and ligament (rpe_r and rpe_l). It is to be noted that in the ranking,
we have not taken inference time into account as this challenge is
exploratory and requires advancing the registration methods before
competing on time requirements.

6. Discussion

Through this challenge, we aim to release the first comprehensive
dataset with carefully annotated anatomical landmarks in both the
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Fig. 9. Comparison of AR against a baseline method: AR is generated from the registration results of Task 2 and compared against a baseline method from Koo et al. (2017). We
only compare with the NCT team due to the coherent results they obtained, as shown in Fig. 8. Tumours are shown in yellow and inferior vena-cava in blue.
Fig. 10. Team ranking for Task 1: Dice similarity coefficient and precision are used to perform the ranking of the 2D landmark segmentation task. For the 3D landmark segmentation
task, we used the average 3D Chamfer distances between the ridge and falciform ligament (where available). We followed the aggregate and rank strategy for both sub-tasks. At
the bottom, we provide a ranking for the proportion of test cases for each team.
laparoscopic images and the preoperative 3D models. The 2D land-
marks consist of the silhouette, the ridge and the falciform ligament (often
persisted as a potential anatomical landmark by surgeons), while the 3D
landmarks consist of the falciform ligament and the ridge. An important
limitation of the preoperative to intraoperative registration problem is
the validation of techniques, as there is no standard validation strategy.
We argue that measuring the reprojection error between 2D and 3D
landmarks is a valid strategy, although it carries an ambiguity prob-
lem as different registrations can lead to similar reprojection errors.
Therefore, it does not fully replace a proper target registration error
measurement using reliable 3D landmarks.

Most participating teams developed methods for both the landmark
segmentation and the 3D preoperative mesh to 2D laparoscopic image
registration tasks. In terms of 2D landmark segmentation, the major-
ity of teams explored various encoder–decoder UNet-based variants
(e.g., Attention UNet, UNet++, nnUNet) either alone or in combination
with other models and backbones. In the reports submitted to the chal-
lenge organisers, the teams mentioned that using the UNet architecture
alone was not enough to have good predictions. For example, the NCT
team used 5 fold cross-validation technique using nnUNet and dilation
as preprocessing, which encouraged false positives, i.e., penalising
precision (second-best score of 0.31 compared to 0.38 from BHL).
However, this favoured the team in terms of the symmetric distance
score with the best score of 0.49. Similarly, the UCL team used UNet++
15 
with heavy data augmentation, generating 100,000 synthetic images
for training. The BHL team used two ResUNet, one to predict the ridge
from the original images, and the other to predict the falciform ligament
and the silhouette from contour-enhanced images. In this way, the team
achieved the best precision in all three landmarks, putting them at the
top of the ranking for 2D segmentation (Fig. 10). Hypothesis I: Based
on the experimental results, segmenting anatomical landmarks in the liver is
extremely challenging. Our exploration concluded that using complex model
designs or ensemble of models can provide a higher precision, as shown by
the BHL team. Using synthetic data for training can improve performance,
as shown by the UCL team.

In the context of the segmentation of 3D anatomical landmarks, all
the teams performed a global 3D landmark segmentation instead of
a per-view approach, i.e., none of the participating teams utilised the
provided 2D laparoscopic view for a given 3D model. Two of the teams
(BHL and UCL) utilised PointNet++, the NCT team used MeshCNN,
and the VOR team used a graph CNN-based approach. However, since
the ratio of the number of annotated vertices to the total number of
vertices is very small, teams using off-the-shelf methods without much
modification did not succeed in achieving acceptable results (e.g., BHL
and VOR). It can be observed that the teams that used simulation
techniques to add synthetic meshes for training (team UCL and team
NCT) obtained improved 3D landmark segmentation (Table 6). As an
aggregate, UCL team ranked first in the 3D segmentation (Fig. 10). This
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Fig. 11. Team ranking for Task 2: Reprojection errors (RPE) for 3D–2D registration quantification are used separately - (a) with respect to the ridges and (b) with respect to the
alciform ligament. We followed the aggregate then rank strategy for each. At the bottom, we provide a ranking for the proportion of test cases for each team.
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is also evident in the qualitative results shown in Fig. 7. Hypothesis II:
From the experimental results, it can be concluded that the segmentation
of 3D landmarks requires data augmentation to tackle the class imbalance
problem. Also, fusing the landmarks from all the views to obtain global ridge
and falciform ligament landmarks might help to improve the segmentation
performance in 3D models.

With respect to the 3D preoperative mesh to 2D laparoscopic image
registration problem, most of the teams used differentiable rendering
s a way to optimise the liver pose. The main difference between
hem was the registration constraints used during the optimisation.
he results from the three teams (BHL, NCT and UCL) on the 2D

andmark segmentation and two teams (UCL and NCT) on 3D landmark
egmentation are competitive (see Fig. 10). However, upon observing

the qualitative results for 3D–2D registration (see Fig. 8), it can be
concluded that only the NCT team’s approach provided acceptable
registration results. Among these approaches, team NCT obtained the
best results both quantitatively (Table 7) and qualitatively (Fig. 8),
and the only team that had visually satisfactory results. This can be
explained by the two distinct approaches they took: (1) The team used
an initialisation step, in which the preoperative 3D model is set at a
random location in front of the camera, with a rotation such that the
liver’s anterior side faces the camera and (2) They further constrained
their registration using an edge-detection filter in the vertical direction
on the projected liver for identifying the silhouette (in addition to
the already segmented ridge and falciform ligament), which was not
done by other teams. The BHL team was the only one to use a PnP-
based approach to perform registration. Apart from the NCT team,
the 3D poses obtained by the other teams were far from the liver in
the laparoscopic images. Although the reported reprojection errors do
not offer a complete overview of the clinical usability of the methods,
they do serve as a basis to make an initial assessment, especially for a
challenging problem such as LLR. For example, from the quantitative
and qualitative results shown in Table 7 and Figs. 8 and 9, we can
deduce that none of the proposed registration methods will have a
successful clinical outcome. Even the best method proposed by team
NCT did not show a fully aligned preoperative 3D model and took an
16 
average of over 3 min. Therefore, conducting a clinical study using the
proposed methods would not lead to a successful outcome. Hypothesis
III: From the methods used by the participating teams, it can be deduced
that a good initialisation is required to obtain a successful result. This means
hat the optimisation should start with a pose of the preoperative 3D model
lose to one of the livers in the image. Otherwise, the methods will converge
nto a wrong result. Similarly, given the fact that the proposed methods
nly performed rigid registration, it can be concluded that the methods are
ot ready for usage in AR, as the deformations between the preoperative
nd intraoperative stages are not compensated, which also reduces the
egistration accuracy.

7. Conclusion and future directions

The P2ILF challenge is the first challenge that focuses on both the
2D/3D landmark segmentation and the registration problems for AR
in laparoscopy. The participating teams understood the importance of
the problem and proposed relevant solutions. Although the proposed
idea was to segment the 3D landmarks according to the visible 2D
landmarks in a laparoscopic image, the teams treated the 2D and 3D
segmentation as separate problems. They achieved this by merging
the per-image annotated 3D landmarks for all the views of a patient,
generating global 3D landmark annotations. Even if it is possible to
combine these global 3D landmarks with visible 2D landmarks for
registration, using only the per-view visible 3D landmarks may improve
registration accuracy. Given the acceptable results for the 2D landmark
segmentation and the less accurate 3D segmentation, we can conclude
that the 3D segmentation problem is more complex than the 2D seg-
mentation one and requires deeper research. This can be due to the
small number of 3D models, 9 for the training set, compared to the
number of laparoscopic images, 167 for the training set. Regarding the
registration task, using differentiable rendering in combination with
the predicted landmarks can provide coherent results, given a good
initial pose of the preoperative 3D model. However, the preoperative-
to-intraoperative deformations should be taken into account for future

approaches to be used in the operating room. According to these results,



S. Ali et al.

t
i
i

d

m

c
i

(

B

Medical Image Analysis 99 (2025) 103371 
a dataset with a larger amount of annotated 2D and 3D data is necessary
o improve landmark segmentation. This dataset should be labelled
n a way that multiple annotators annotate all the data. Then, an
ntra- and inter-observer analysis should be done to guarantee the

quality of the annotations. Even though methods that used ensemble
eep learning techniques and larger iterations performed well, a low

inference time is required for clinical adoption. To summarise, a better
landmark segmentation combined with preoperative-to-intraoperative
deformations should improve the registration of a 3D preoperative
mesh into a 2D laparoscopic image, which is important to have an
accurate AR.
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