
This is a repository copy of On the value of distribution tail in the valuation of travel time 
variability.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/218796/

Version: Accepted Version

Article:

Zang, Z., Batley, R. orcid.org/0000-0002-2487-850X, Xu, X. et al. (1 more author) (2024) 
On the value of distribution tail in the valuation of travel time variability. Transportation 
Research Part E: Logistics and Transportation Review, 190. 103695. ISSN: 1366-5545

https://doi.org/10.1016/j.tre.2024.103695

© 2024, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/. This is an author produced 
version of an article published in Transportation Research Part E: Logistics and 
Transportation Review. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.tre.2024.103695
https://eprints.whiterose.ac.uk/id/eprint/218796/
https://eprints.whiterose.ac.uk/


 

1 

ON THE VALUE OF DISTRIBUTION TAIL IN THE VALUATION OF 

TRAVEL TIME VARIABILITY 

Zhaoqi Zang b, a, Richard Batley c, Xiangdong Xu a, , David Z.W. Wang b 
a College of Transportation Engineering, Tongji University, Shanghai, China 

b School of Civil and Environmental Engineering, Nanyang Technological University, 
Singapore 

c Institute for Transport Studies, University of Leeds, Leeds, United Kingdom 

ABSTRACT 

Extensive empirical studies show that the long distribution tail of travel time and the 
corresponding unexpected delay can have much more serious consequences than 
expected or moderate delay. However, the unexpected delay due to the distribution tail 
of travel time has received limited attention in recent studies of the valuation of travel 
time variability. As a complement to current valuation research, this paper proposes the 
concept of the value of travel time distribution tail, which quantifies the value that 
travelers place on reducing the unexpected delay for hedging against travel time 
variability. Methodologically, we define the summation of all unexpected delays as the 
unreliability area to quantify travel time distribution tail and show that it is a key 
element of two well-defined measures accounting for unreliable aspects of travel time. 
We then formally derive the value of distribution tail, show that it is distinct from the 
more established value of reliability (VOR), and combine it and the VOR in an overall 
value of travel time variability (VOV). We prove theoretically that the VOV exhibits 
diminishing marginal benefit in terms of the traveler’s punctuality requirements under 
a validity condition. This implies that it may be economically inefficient for travelers 
to blindly pursue a higher probability of not being late. We then proceed to develop the 
concept of the travel time variability ratio, which gives the implicit cost of the 
punctuality requirement imposed on any given trip. Numerical examples reveal that the 
cost of travel time distribution tail can account for more than 10% of the trip cost, such 
that its omission could introduce non-trivial bias into route choice models and 
transportation appraisal more generally. 
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1. INTRODUCTION 

In a road network, travel time can be variable due to the inherent supply-side (e.g., 
adverse weather conditions, and traffic incidents) and demand-side uncertainties (e.g., 
special events, and temporal factors) (van Lint et al., 2008; Chen and Zhou, 2010); this 
is the basis of the well-established concept of travel time variability. Empirical studies 
show that travelers value travel time variability almost as much as they value the mean 
travel time (Hollander, 2006; Asensio and Matas, 2008; Li et al., 2010; Carrion and 
Levinson, 2013; Khalili et al., 2022). To account for travel time variability within 
models of the road network, different variability costs may be assigned to different 
routes using different route choice criterion (e.g., Jackson and Jucker, 1982; Bell, 2000; 
Lo et al., 2006; Chen and Zhou, 2010; Nie, 2011; Xu et al., 2017, etc. See Zang et al. 

(2022b) for a summary), and these may affect travelers’ behavior. Moreover, the 
benefits of reduced travel time variability may be non-trivial in magnitude (Fosgerau, 
2017), such that there is a strong case for including them in the appraisal of publicly 
funded transportation project (de Jong and Bliemer, 2015; New Zealand Transport 
Agency, 2016; Organization for Economic Co-operation and Development (OECD), 
2016).  

 

The literature has developed a range of valuation methods to explicitly quantify the cost 

of travel time variability. However, it is arguably the case that this literature has focused 
on valuing travel times within the body of the distribution pertaining to high probability 
delays of moderate duration and devoted considerably less attention to travel times 
within the tail of the distribution pertaining to low probability delays of substantial 
duration. It is undoubtedly the case that these low probability events could have 
considerably more serious implications for travel times (and associated costs) (Odgaard 
et al., 2005; van Lint et al., 2008; Franklin and Karlström, 2009; Sikka and Hanley, 
2013). Section 1.1 to follow will use a verified behavioral assumption to formalize the 
distinction between these two types of events, referring to the former as reliable aspect 
of travel time emanating from “expected delays”, and the latter as unreliable aspect 
emanating from “unexpected delays”. On this basis, the contribution of this paper is to 
derive distinct valuations of both reliable aspect and unreliable aspects of travel time 
variability. 
 

1.1 Behavior Response to Travel Time Variability 

For travelers faced with travel time variability, a verified behavioral assumption is that 
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beyond the mean travel time μ, they will add a safety margin δ to mitigate for the 
probability of being late (Garver, 1968; Knight, 1974; Hall, 1983; Senna, 1994). In 
other words, the safety margin is a buffer time the traveler is willing to ‘pay’ (in time 
units) in excess of the mean travel time to ensure a specified trip reliability. Note that 
the summation of mean travel time and safety margin is also interpreted as travel time 
budget in Lo et al. (2006), which can conditionally correspond to percentile travel time 
(Wu and Nie, 2011; Nie, 2011). 
 

In this paper, that specified trip reliability will be referred to as the punctuality 
requirement τ of a trip, meaning that the confidence level of punctual (on-time) arrival 
of the trip is τ. Put differently, the punctuality requirement τ means that the probability 
of completing the trip should be no less than the predefined threshold τ. Hence, the 
safety margin is subjective on the part of the traveler and its value depends on the 
traveler’s τ. To illustrate this, we present Figure 1, in which the upper panel presents 
the probability density function (PDF) of a random travel time T, and the lower panel 
presents the cumulative distribution function (CDF) of T. In this paper, we define delay 
as the difference between actual travel time and mean travel time, i.e., delay = actual 
travel time − mean travel time1. Then, the safety margin δ can be interpreted as the 
maximum delay expected (or accepted) by the traveler, thus we use the term “expected 
delay” to depict the delay brought about by an actual trip travel time in between the 
mean travel time and μ+δ in the lower panel of Figure 1. In other words, the safety 
margin corresponds to the question “based on historical experience, how much would 
I expect the maximum delay to be for my trip?”. But note from Figure 1 that this leaves 
a small probability that the traveler will experience travel time in excess of μ+δ, and 
thus experience an actual delay longer than he/she expects. In the lower panel of Figure 
1, we use the term “unexpected delay” to depict the delay brought about by an actual 
trip travel time longer than μ+δ. Now, we are ready to present the following definition: 
for the traveler who is willing to pay a safety margin δ to mitigate for travel time 
variability, if the actual travel time of a trip is less than μ+δ, then the trip is considered 
reliable because the delay will be no longer than the traveler expects; by contrast, if the 
actual travel time of a trip exceeds μ+δ, then the trip is considered unreliable because 
the traveler could still experience an unexpected delay (i.e., the actual delay minus the 
expected delay δ). Against this background, the present paper will make a distinction 

 
1 In traffic flow theory and related studies concerned especially with congestion, delay may be defined as the 
difference between the actual travel time and the free-flow travel time. 
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between what we define as: 
• Reliable aspect of travel time: expected risk/duration of delay, as reflected by 

the safety margin planned by travelers to offset such reliability, and shown by 
the shaded area (horizontal grid lines) in the upper panel of Figure 1.  

• Unreliable aspect of travel time: unexpected risk/duration of delay, as 

reflected by the tail of the travel time distribution beyond the safety margin, and 
shown by the shaded area (vertical grid lines) in the upper panel of Figure 1. 

 

 

Figure 1. Illustration of reliable and unreliable aspects of travel time defined in this 
paper (modified from Xu et al. (2014)) 

 

Consequently, all travel time greater than μ+δ in the right-hand tail of Figure 1 (i.e., the 
right-hand part of the PDF separated by the vertical solid line) is unreliable, meaning 
that travelers will experience unexpected delay even if they have allowed a safety 
margin δ to absorb the expected delay. Such unexpected delay resulting from the long 
distribution tail of travel time has received limited attention in previous studies of the 

cost of travel time variability. Instead, these studies focus mainly on the willingness-
to-pay of travelers to improve travel time reliability (as opposed to unreliable aspect). 

Among these studies, the standard deviation and variance of travel time are the two 

most frequently used valuation measures (Hollander, 2006; Fosgerau and Karlström, 

2010; Fosgerau and Engelson, 2011; Jenelius et al., 2011; Jenelius, 2012; Uchida, 2014; 

Coulombel and de Palma, 2014; Fosgerau, 2017; Zhu et al., 2018), while some 

contributions also use percentiles or ranges between percentiles (e.g., Lam and Small, 

2001; Brownstone and Small, 2005; Small et al., 2005). Interested readers may refer to 

Bates et al. (2001), Li et al. (2010), Carrion and Levinson (2013), Shams et al. (2017), 
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and Zang et al. (2022b) for comprehensive reviews of theories and evidence. The 

standard deviation and variance may not however capture the distribution tail of travel 
time especially well, as they are measures of symmetric variables and can only quantify 
the extent of variation or dispersion from the mean value. Similarly, in considering the 

punctuality requirements τ, the percentiles tend to focus on the mass of the travel time 

distribution, but omits consideration of the tail (Lee et al., 2019). It should be noted that 
the value of reliability defined in Fosgerau and Karlström (2010) could inexplicitly 

consider the impact of distribution tail (i.e., a part of sources resulted in the defined 

value of reliability) as its expression has included the mean lateness factor which 

depends on the shape of the standardized travel time distribution. However, this paper 

explicitly considers the distribution tail and its impact on traveler’s departure time and 

then clearly quantifies the cost resulted from distribution tail only, to be introduced later.  

 

Although unreliable aspect of travel time (as just defined) is not explicitly considered 

in conventional valuation studies of travel time variability, considerable empirical 

evidence verifies the existence of highly-skewed travel time distributions with long/fat 

tails (van Lint and van Zuylen, 2005; Fosgerau and Fukuda, 2012; Susilawati et al., 

2013; Delhome et al., 2015; Kim and Mahmassani, 2015; Taylor, 2017; Zang et al., 

2018b; Li, 2019). This could represent a notable omission from valuation studies, since 

unexpected delays that travelers experience due to the distribution tail could have much 
more serious consequences than expected delays. For example, among drivers unlucky 
enough to experience delay when traveling on dense freeway corridors in the 
Netherlands, the delay that 5% of the “unluckiest drivers” incurred was almost five 
times that of 50% of the “unlucky drivers” (van Lint et al., 2008). To avoid unexpected 
delays, Sikka and Hanley (2013) found that travelers would be willing to pay nearly 
half of the cost of the usual travel time (i.e., the summation of the mean travel time and 
expected delay). Franklin and Karlström (2009) and Odgaard et al. (2005) suggested 
that unexpected delays should be included in project appraisals to account for these 
more substantially delayed trips. The effects of the above-described notion of 
unexpected delay, associated with the long tail of the travel time distribution, have 
previously been considered in studies of network performance assessment (Xu et al., 
2014, 2021), hazardous materials routing (Toumazis and Kwon, 2013, 2016; Su and 
Kwon, 2020), and route guidance systems (Lee et al., 2019). In summary, it is necessary 
to quantify and include the cost of travel time distribution tail in the valuation of travel 
time variability. 
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1.2 Main Contributions of This Paper 

To complement existing valuation studies of travel time variability, this paper proposes 
the concept of the value of travel time distribution tail to quantify in monetary terms 
the unreliable aspects (i.e., unexpected delays) due to the long tail of the travel time 
distribution. Specifically, we define the summation of all unexpected delays as the 
unreliability area to quantify the distribution tail and show that the unreliability area is 
a key element of two existing well-defined measures, namely the mean-excess travel 
time (Chen and Zhou, 2010) and the reliability premium (Batley, 2007). We prove 
theoretically that there exists a proportional relationship between these two measures 
and find that the only difference between these two measures is the “weight” attached 
to the unreliability area. We then derive formulations of both the value of distribution 
tail (VODT) and value of travel time reliability (VOR), associated with the scheduling 
of a trip under uncertainty in travel time (Noland and Small, 1995; Small, 1982). To 
fully capture both the reliable and unreliable aspects of travel time, the VODT and VOR 
are then aggregated into what we define as the value of travel time variability (VOV). 
The VOV can be interpreted as the value of the additional time (safety margin) a traveler 
pays for hedging against travel time variability. Furthermore, we prove theoretically 
that the VOV has a diminishing marginal effect under a validity condition as the 
punctuality requirements imposed by travelers become more stringent. Numerical 
examples show that this validity condition is relatively slack and can be easily satisfied 
by empirical datasets. The diminishing marginal effect means that it may be 
economically inefficient for travelers to blindly pursue a higher probability of not being 
late. To this end, we develop the concept of a travel time variability ratio, based on the 
diminishing marginal effect of the VOV, to help travelers understand the implicit cost 
of the punctuality requirements they impose. Numerical examples show that the travel 
time variability ratio can help travelers to improve the balance between trip reliability 
and trip cost. In particular, these examples reveal that the cost of travel time distribution 
tail can account for more than 10% of the trip cost, such that its omission could 
introduce non-trivial bias into route choice models and transportation appraisal more 
generally. 
 

In summary, the contributions of this paper are threefold. (1) To quantify the unexpected 
delays due to the long tail of the distribution (i.e., unreliable aspects) of travel time in 
monetary units, we propose the concept of VODT and derive its formulation. (2) We 
integrate the VODT and VOR into the VOV to fully quantify the costs of both the 
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reliable and unreliable aspects of travel time and then theoretically prove the 
diminishing marginal effect of the VOV. (3) Based on this diminishing marginal effect, 
we further develop the travel time variability ratio to reveal that travelers must accept 
the diminishing effect of the VOV in order to improve their trip reliability. Accordingly, 
the travel time variability ratio can help travelers to balance their punctuality 
requirements against trip cost. It should be noted that the purpose of this paper is not to 
claim that the proposed valuation method outperforms current methods of valuing 
reliability. Instead, the proposed method is presented as a complement to current 
valuation methods, through quantifying the value of travel time distribution tail that is 
additional to the value of reliability. 
 

The layout of this paper is as follows. The measures of quantifying reliable and 
unreliable aspect of travel time and derivations of the VODT, VOR, and VOV are 
introduced and discussed in Section 2. In Section 3, we illustrate the necessity of 
considering the unreliable aspect of travel time, test the feasibility of the validity 
condition in propositions, and illustrate how the travel time variability ratio works. 
Finally, Section 4 summarizes and concludes the work. Detailed derivations and proofs 
of most propositions and lemmas are given in the Appendixes. The notation used is 
listed at the end of the paper. 
 

2. METHODOLOGY 

In this section, we first introduce the scheduling model, followed by the measures used 
to include unreliable aspect of travel time within this model. Finally, we derive and 
discuss the VODT, VOR, VOV, and travel time variability ratio. 
 

2.1  The Schedule Delay Model and Unreliability Area 

In the (α, β, γ) scheduling model (Small, 1982; Noland and Small, 1995), the individual 
traveler holds a preference for being early or late relative to a preferred arrival time 
(PAT). Let A, D, and T denote the arrival time, departure time, and stochastic travel 
time, respectively. The utility of a trip for a PAT in terms of the step model is given by 

( ) ( ) ( ) ,U D T T PAT A A PAT  + += − + − + −  (1) 

where (.)+ denotes a function such that x+ = x if x > 0, and 0 otherwise; (PAT − A)+ is 
schedule delay early (SDE); and (A − PAT)+ is schedule delay late (SDL). The traveler’s 
preference parameters α, β, and γ are all positive, which represent the marginal utilities 
of mean travel time, SDE and SDL, respectively. Since the function as a whole is 
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negative, the traveler will maximize his/her utility by minimizing T, SDE and SDL.    

 

Without loss of generality, an individual’s PAT can be normalized to time zero, i.e., PAT 
= 0. Normalizing an individual's PAT to be zero, i.e., PAT = 0, is a trick developed by 
Fosgerau and Karlström (2010) to simplify mathematical deductions. Referring to the 
Eq. (1), we only focus on the difference between PAT and arrival time, regardless of the 
specified value of PAT. As a result, D < 0 because the travel time must be positive for a 
trip under certainty. Then, for a traveler, (a) if travel time T < − D, he/she will be early; 
(b) if T > − D, he/she will be late; and (c) if T = − D, he/she will arrive at exactly the 
PAT. On this basis, Eq. (1) can be simplified to Eq. (2) (see Appendix A for details).  

( ) ( ) ( ) ( ) 0
,

A
U D T T T D D    


= − − + + + −  (2) 

For a trip under travel time certainty, the utility of early and late arrivals is given by 

( )
( ) 
( ) ( ) ( ) 

, 0
,

, 0

T D A
U D T

T T D D A

  

    

− − − = 
− − + + + − 

 (3) 

However, more realistic is some level of travel time variability due to demand-side or 
supply-side factors. Then, for a trip under travel time uncertainty, the expected utility 
becomes (Fosgerau and Karlström, 2010; Zang et al., 2018a; Li, 2019) 

( ) ( ) ( ) ( ) ( ), DEU D T D x D f x dx


       


− −

  
= − − − + + + +   

  
  (4) 

where the standardized travel time X= (T − μ)/σ; and μ and σ represent the mean and 
standard deviation of T, respectively. Besides, X has a PDF f(x) and CDF F(x). Note 
that for a trip under uncertainty, D can be both negative and positive. 
 

To maximize the expected utility of a trip under uncertainty, the optimal departure time 
D* for travelers satisfies the first-order condition of Eq. (4): 

1*D F
 

 
−  

= − −  + 
 (5) 

As shown in Eq. (5), D* only considers the reliable aspect of travel time via a specified 
safety margin (i.e., σF−1(γ/(γ+β))). However, D* does not consider the unreliable aspect 
of travel time shown by the shaded area in Figure 2, i.e., any travel time in the 
distribution tail longer than μ+σF−1(τ), where τ = γ/(γ+β)2. Figure 2 presents the inverse 
CDF (i.e., percentile function) of travel time. The shaded area in Figure 2 is defined as 

 
2 Such a partition between reliability and unreliability is more naturally applicable to flexible services but can also 
be applied to public transport services. 
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the unreliability area Su, which includes all trips with a travel time longer than 
μ+σF−1(τ). Mathematically, the unreliability area is the summation of all unexpected 
delays (i.e., actual delays σF−1(x) in excess of the expected delay σF−1(τ)): 

( ) ( )( )1
1 1

u
S F x F dx


 − −= −  (6) 

 

As shown in Eq. (6) and Figure 2, the unreliability area is mainly determined by the 
upper tail of the travel time percentile function. Highly-skewed travel time distributions 
with long/fat tails have been verified in many empirical studies (van Lint and van 
Zuylen, 2005; FHWA, 2006; van Lint et al., 2008; Fosgerau and Fukuda, 2012; 
Susilawati et al., 2013; Delhome et al., 2015; Kim and Mahmassani, 2015; Zang et al., 
2018b; Li, 2019), thus highlighting the potential importance of unreliable aspect of 
travel time. To accommodate this unreliability in the arrival time, a risk-averse traveler 
must depart earlier than the original “optimal” departure time shown in Eq. (5), and this 
behavior has been verified by Xiao and Fukuda (2015) and Siu and Lo (2014). Using 
Stated Preference data, these authors found that risk-averse travelers are mostly 
pessimistic and tend to choose an earlier than optimal departure time. Whilst we cannot 
of course confirm as such, the fact that travelers’ chose in this manner could suggest 
that travelers’ base their preferences on both reliable and unreliable aspects of travel 
time3 . This exactly corresponds to what our paper represents: travelers maximize 
expected utility in the context of both reliable and unreliable aspects of travel time.  

 

 

Figure 2. The inverse cumulative distribution function (CDF, i.e., percentile 

 
3 It is worthwhile to note that earlier departure time may also benefit users as they can attend some pre-event 
activities before their events (Bao et al., 2023). 
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function) of travel time and unreliability area. 
Note that the present paper focuses only on risk-averse travelers unless otherwise 
specified, as the literature widely demonstrates the attitude of risk aversion toward 
travel time variability (e.g., Knight, 1974; Senna, 1994; Rietveld et al., 2001; Lo et al., 
2006; Shao et al., 2006; Batley, 2007; Chen and Zhou, 2010; Li et al., 2010; de Palma 
et al., 2012; Sikka and Hanley, 2013; Zhang and Homem-de-Mello, 2017; Alonso-
González et al., 2020, Li et al., 2022), and indeed the schedule delay model gives a 
linear-piecewise approximation to the concave utility function synonymous with risk 
aversion to travel time.  

 

In subsequent sections, we show that the unreliability area is a key element of two well-
defined measures accounting for unreliable aspects of travel time, namely the reliability 
premium (Batley, 2007) and the mean-excess travel time (Chen and Zhou, 2010). 
Specifically, we find that the “weight” attached to the unreliability area is the only 
difference between these two measures. 
 

2.2  Two Measures to Account for Travel Time Distribution Tail 

(1) Reliability premium  

Adapting the concept of the risk premium (Pratt, 1964), Batley (2007) proposed the 
reliability premium as a measure of the cost of eliminating travel time variability 
(including both reliable and unreliable aspects of travel time) for a given departure time. 
Specifically, Batley (2007) derived the reliability premium for accepting a delayed but 
certain arrival time based on the concept of the certainty equivalent. Definition 1 below 
formally defines the concept of the certainty equivalent. 
 

Definition 1. For the arrival time of a trip under uncertainty for a given departure time 
D with expected utility EU(D, A), its certainty equivalent, denoted by AC, is the arrival 
time of a trip under certainty with the same departure time that satisfies EU(D, A) = 
U(D, AC). 
 

Based on Definition 1, Batley (2007) defined the reliability premium as: the ‘reliability 
premium’ measures, for a given departure time, the delay in arrival time that the 
individual would be willing-to-pay in exchange for eliminating the variability. The 
reliability premium thus measures the costs borne by the traveler that arise specifically 
from variability in arrival time. 
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Accordingly, the reliability premium π defined by Batley (2007) can be calculated by 

EU(Dm, A) = U(Dm, AC) where AC = A + π. Nevertheless, Definition 1 restricts the 

certainty equivalent to delayed arrival time for a given departure time of a trip under 

certainty. However, when facing travel time variability, in addition to adjusting arrival 

time, an individual can also adjust departure time. The present paper focuses on such a 

scenario, and Definition 2 modifies the definitions of the certainty equivalent and 

reliability premium accordingly. Zang et al. (2022a) considered the above two scenarios 

as well as a more general scenario where both departure and arrival times are adjusted 

to eliminate the variability, which then defines the certainty equivalent and reliability 

premium more formally and fully on this basis than the present paper and Batley (2007). 
 

Definition 2. Certainty equivalent and reliability premium for a given arrival time. 
(i) For a trip under uncertainty with expected utility EU for a given arrived time A, 

the certainty equivalent, denoted by DC, is the outcome of a trip under certainty 
with utility U that satisfies the following condition: EU(D, A) = U(DC, A). 

(ii) To eliminate the travel time variability resulting from a given event (D, A), the 
reliability premium π is defined as the amount of early adjustment in the 
departure time D compared to the expected departure time that a traveler is 
willing to pay to eliminate the travel time variability. 

With Definition 2, the following Proposition 1 formally presents the statement of the 
reliability premium for the scenario of early adjustment of departure time. 
 

Proposition 1. To eliminate the travel time variability resulting from a given arrival 
time A, the reliability premium π is defined as the maximum amount of early adjustment 
to D, and its formulation is expressed as  

( ) ( )D x D f x dx


   




− −
 +

= + +  
 
  (7) 

Note that (β + γ) also appears in the expected utility function (4). The (β + γ) term is the 
sum of the marginal utilities of SDE and SDL, or alternatively the difference between 
the slopes of the linear piece-wise sections of the utility function before and after the 
PAT (Batley, 2007), giving rise to the slope of the corresponding expected utility 
function across the range of travel times. The term in the bracket on the right-hand-side 
of Eq. (7) is the integral of T－D (i.e., lateness) over the travel time distribution. α is 
the marginal utility of travel time, which serves to report the reliability premium in 
travel time units.  
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(2) Mean-excess travel time 

It can be shown that the optimal departure time Eq. (5) is exactly the travel time budget 
(TTB) defined in Lo et al. (2006) when τ = γ/(β + γ), i.e., pertaining to the reliability 
area in Figure 2. For a travel time distribution, the general definition of the TTB b(τ) 
can be given using the following chance-constraint model: 

( ) ( ) min | Pr min | Pr
T

b T T T T X
  


  − =   =    
   

 (8) 

where T is the travel time, X is the standardized travel time, and T  is the minimum 
travel time required to ensure the desired punctuality requirements τ (i.e. to satisfy the 
traveler’s required probability of being on time).  

 

For the continuous travel time distribution, the TTB is the τ-percentile of travel time: 

( ) ( ) ( )min 1 1
min TTM

T
F T F b F

         


− − −
=  = +  = + = + 

 
 (9) 

where σF−1(τ) is the travel time margin δTTM corresponding to τ, i.e., δTTM = σF−1(τ).  

 

From Eq. (9), we can see that the safety margin δ, which is added by travelers to hedge 
against uncertainty in travel time, is further specified as the travel time margin δTTM in 
the TTB model. Thus, we have TTB = mean travel time + travel time margin. However, 
as already noted in Section 2.1 and shown in Figure 2, the travel time margin (i.e., δTTM) 
in TTB considers only the reliable aspect of travel time variability, but does not reflect 
the unreliable aspect associated with trip times exceeding b(τ). To explicitly consider 
both the reliable and unreliable aspects of travel time, Chen and Zhou (2010) proposed 
the mean-excess travel time (METT), which can be defined as the summation of the 
expected excess delay (EED) and TTB, i.e., METT = TTB + EED. Note that the METT 
is an adaptation of the conditional value-at-risk (CVaR) concept from finance 
(Rockafellar and Uryasev, 2000, 2002) to the context of travel time variability. The 
mathematical expression of the EED, denoted by δEED, is  

( ) ( )
( ) ( )( )1

1 1

|
1

D DE EEE

F x F dx
E T b T b  


    



− −−
= −  =  =    −


 (10) 

where δEED is the product of the standard deviation σ and the EED scaling factor ζEED.  

 

Proposition 2. The relationship between the expected excess delay δEED in the METT 
and the unreliability area Su can be expressed as: δEED = Su/(1− τ). 
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Proof. One can easily find this relationship according to Eq. (6) and Eq. (10). 
 

Proposition 2 shows that, compared to the TTB, the METT considers the unreliable 
aspect of travel time by adding the EED, i.e., attaching a weight parameter to the 
unreliability area. Furthermore, the EED is actually the mean value of all unexpected 
delays and intuitively addresses the question of “how bad should I expect the unreliable 
aspect of travel time to be?”. As b(τ) = μ+ δTTM, the METT can be decomposed into 
three parts: mean travel time, travel time margin and EED, and can be rewritten as 

( ) ( ) EED TTM ETE TED
b       = + = + + = +

 
(11) 

where σζETT is the excess travel time (ETT) in the METT and is calculated by summing 

the travel time margin and EED, i.e., σζETT = δTTM + δEED. ζETT = ( )
1

1
F x dx

 

 


−

+

+
 . 

ζETT is interpreted as the ETT scaling factor because ETT is the product of σ and ζETT.  

 

Based on Eq. (11), Figure 3 illustrates how both the reliable and unreliable aspects of 
travel time are incorporated into the METT. Figure 3 clearly shows that the METT 
considers both reliable aspect through the travel time margin δTTM and unreliable aspect 
through the EED δEED. That said, the above decomposition of the METT is used simply 
for exposition, and it does not mean that the METT is determined segmentally or as a 
threshold-based measure. Instead, the METT is defined as a conditional expectation 
beyond the travel time budget, which is expressed as:  

( ) ( ) ( )
1 1

11 1

1 1
b x dx F x dx

 
   

 
−= = + 

− −   (12) 

It can thus be seen from Eq. (12) that the METT is a function of the probability τ.  
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Figure 3. The illustration of reliable and unreliable aspects considered by the 
METT. 

 

Proposition 3 below shows a proportional relationship between the expected excess 
delay and reliability premium if the departure time is the optimal departure time, i.e., D 
= D* = −b(τ) when τ = γ/(β + γ). 
 

Proposition 3. The expected excess delay δEED is α/β times the reliability premium π if 
D = −b(τ). Namely,  

EED

 


=  (13) 

An examination of Eqs. (B-3) and (B-4) reveals that the expressions for the EED and 
reliability premium differ only in terms of the “weight” assigned to the unreliability 
area Su. Therefore, we can establish a proportional relationship between the reliability 

premium and the EED as given by Proposition 3 and then use the EED to represent the 

reliability premium and vice versa. Given this proportional relationship between the 

EED and the reliability premium, the remainder of the paper will focus upon the 

implementation of EED within METT to quantify the distribution tail cost of travel time. 

Note that the METT has been widely used in the literature, in contexts as diverse as 

stochastic perception error (Chen et al., 2011; Xu et al., 2013), hazardous material 

routing on time-dependent networks (Toumazis and Kwon, 2013, 2016; Su and Kwon, 

2020), travel time robust reliability (Sun and Gao, 2012), strategy costs in schedule-

based transit networks (Rochau et al., 2012), risk-based transit schedule design (Zhao 

et al., 2013), network performance assessment (Xu et al., 2014, 2021), toll pricing 

(Feyzioğlu and Noyan, 2017), and speed limit evaluation (Xu et al., 2018).  
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2.3  Value of Travel Time Distribution Tail 

As just discussed, under the METT criterion, a traveler would consider both reliable 
and unreliable factors when choosing a departure time, and thus with reference to Eqs. 
(5), (9) and (11), the departure time is given as  

( )

METT

1
1 1 1

TTM EED
D

F F x F dx
 

  

     
    

− − −

+

= − − −

    +
= − − −  −    + +    


 (14) 

Then, based on Eq. (4), the expected utility of a trip under the METT criterion is 

( ) ( ) ( ) ( )( ) 
( ) ( ) ( )( ) 
( ) ( )

( )
( )( ) 1

1

,
ETT

ETT

ETT

METT ETT ETT

ETT ETT

ETT ETT ETT ETT
F

EU D T x f x dx

x f x dx

F x dx F







       

     

       





−

= − + + + + − − 

= − + + + − 

= − + + + − +







 (15) 

where ( )
1

1
ETT

F x dx
 

 


−

+

+
=  . 

Compared to the optimal departure time D* given by Eq. (5) (abbreviated as the TTB 
criterion since D* = −b(τ)) that considers only the reliable aspect of travel time, the 
EED under the METT criterion represents the amount by which departure time must be 
brought forward in order to fully mitigate for unreliable aspect of travel time. Intuitively, 
the rescheduling of the departure time imposes a cost on the traveler, since it interrupts 
whatever activity was previously conducted at that time. Proposition 4 uses the 
relationship between the expected trip utility under the METT criterion and the 
expected trip utility under the TTB criterion to assist in quantifying this rescheduling 
cost. 
 

Proposition 4. For trip utility under the METT criterion and TTB criterion, we have  

|EU(DMETT, T)| ≥ |EU(DTTB, T)| (16) 

 

Proposition 4 suggests that the trip cost under the METT criterion is always greater than 
or equal to that under the TTB criterion. Therefore, the difference, |EU(DMETT, T)| − 
|EU(DTTB, T)|, is the cost the traveler must pay to account for the distribution tail (i.e., 
unreliable aspect) of travel time when choosing the departure time. As the EED is used 
to quantify the distribution tail of travel time, the value of travel time distribution tail 
(VODT) can be defined as the ratio of the rescheduling cost to the EED thus 
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( ) ( ) ( ) ( )

( )
( ) ( )

( )

1
1

, , , ,

ETT

METT TTB METT TTB

METT TTB EED

ETT ETT ETT
F

EED

EU D T EU D T EU D T EU D T
VODT

D D

F F x dx




  
 



−

− −
= =

−

− +
= +


 (17) 

In other words, the cost of travel time distribution tail is the product of the VODT and 
the EED. The non-negativity of the VODT is guaranteed by Proposition 4, and therefore 

we have the condition l > 1, where ( )
( )

( )( )1
1 1

ETT
ETT ETT

F
l F x dx F


 −= − . Similarly, 

as δTTM is used to characterize the reliable aspect of travel time, we can obtain what we 
define as the value of travel time reliability (VOR) in the Introduction in terms of per 
unit of δTTM (rather than variance or standard deviation) as 

( ) ( )
( )

( ) ( )

( )( )
1

1

1

, , , ,

/

+
( )

TTB TTB

TTB TTM

EU D T U EU D T U
VOR

D

F p dp
F


 

 


  

 


 

+

−
−

− −
=

− −

=

− −

+

=


 (18) 

where U(−μ, μ) = −αμ is the utility at the certainty.  

 

Remark 1. Changing γ from a constant to be an increasing function with severity of 
delay is an alternative way to quantify the VODT, but a balance needs to be established 
between the relative costs of expected delay and unexpected delay – which does not 
seem straightforward. Even if γ is constant, the total penalty for late delay γSDL still 
increases with the severity of delay, which forces the traveler to depart earlier. Moreover, 
adjusting departure time via the METT criterion is very simple to take account of both 
expected and unexpected delays. Thus, this paper uses a constant γ for simplicity.  

 

By rearranging the terms in Eq. (15), we obtain 

( ) ( ) ( ) ( )
( )

1
1

( )
, ETTF

METT ETT ETT

ETT

F x dx
EU D T F

       


−  
  = − + − + + + +  

  
  


 (19) 

Recall that, in contrast to the travel time margin within TTB which captures the reliable 
aspect of travel time variability, the ETT within METT combines the travel time margin 
and the unreliability measure (i.e., EED) to capture the unreliable aspect of travel time 
variability. Hence, the value of travel time variability (VOV) in terms of per unit of 
ETT can be defined as 
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( ) ( )
( )

( ) ( )

( ) ( ) ( )
1

1

( )

, , , ,

ETT

ETT

METT METT

METT

ETT
F

ETT

EU D T U EU D T U
VOV

D

F F x dx


 
 

 

    


−

− −
= =

−

+
= − + + +

− −

−


 (20) 

By comparing Eqs. (17), (18) and (20), it is easy to see that the VOV arises from the 
weighted average of the VOR and VODT, i.e., VOV = (VOR·δTTM + VODT·δEED)/(δTTM 
+ δEED), thereby capturing the value of travel time variability in terms of both reliable 
and unreliable aspects.  

 

Proposition 5 below investigates the impact of the preference parameters on the VOV, 
and its corollary theoretically proves that the VOV exhibits a diminishing marginal 
effect under a validity condition. Before presenting Proposition 5, Lemma 1 gives the 
preliminaries used to derive this proposition. 
 

Lemma 1. The ETT scaling factor is a strictly non-increasing function of β and a strictly 
non-decreasing function of γ, namely  

0ETT







, and 0ETT








 (21) 

 

Proposition 5. For the VOV in terms of per unit of ETT, we have  

(1) 0
VOV







; and (2) 0
VOV







 if 1l  + , where ( )1
EED

F  −= . 

 

Recall that the probability of arriving on-time is given by τ = γ/(β + γ). Generally 
speaking, travelers increase τ by placing a larger penalty on the SDL, i.e., increasing γ. 
Under this assumption, Corollary 1 can be concluded according to Proposition 5. 
 

Corollary 1. The VOV is a strictly non-increasing function of the punctuality 

requirement, namely 0
VOV







 if 1l  + . 

Proof. 
( )2

0
 
  


= 
 +

. If 1l  + , then 

1
= 0

VOV VOV

 


 
 
 


 
(22) 

This completes the proof.                                                
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Remark 2. As 1l  +  (hereinafter we will refer to this as the validity condition) is 
required in Proposition 5 and Collary 1, it is important to investigate the meaning of l 
and 1 +  and the feasibility of the condition 1l  + . By rewriting the formulations 
of l and 1 + , we have: 

( )
( )

( )
( )

( ) ( )
 
 

1

1

1
1

1
1

1

1

1

1

ETT

EED ETT

TTM

F ETT

ETT TTM

F

F

F x dx E X
l

F E XF x dx





  
 

 
 



−

−

−

−

+
+ = =


= =

− 

−




 (23) 

Therefore, 1 +  is actually the ratio of the ETT scaling factor ζETT to the TTM scaling 
factor ζTTM, while l is the ratio of the mean value of all standardized travel time X beyond 
ζETT to the mean value of all X beyond ζTTM. For the feasibility of 1l  + , Appendix 

D theoretically proves that 1l  +  is true if ( ) ( )1 1 1

1
F x F x

x

− −  
−

 for x∈[τ, 1). 

Specifically, if F−1(x) is a concave function, 1l  +  must be true.                 

                  

The numerical examples in Section 3 of this paper demonstrate that 1l  +   is a 
relatively slack condition that can be easily satisfied by realistic travel time datasets. 
Therefore, Proposition 5 and the corresponding Corollary 1 indicate that with an 
increase in γ, the ETT added by a traveler to hedge against travel time variability 
increases while the VOV in terms of per unit of ETT decreases. This indicates a 
diminishing marginal return of an increase in the ETT. In other words, for risk-averse 
travelers, the VOV has a diminishing marginal effect. In a broader picture, the 
diminishing marginal effect has also been observed in other related scenarios. For 
instance, in terms of the value of travel time saving, Metz (2008) found that the 
additional benefit from further travel time savings tend to decline, which is a case of 
diminishing marginal effect in terms of travel time savings. In addition, for the reliable 
network design problem, both Chen et al. (2007) and Xu et al. (2014) found a 
diminishing marginal effect of network reliability performance improvement in terms 
of construction budget. The next section proposes the travel time variability ratio based 
on the diminishing marginal effect of VOV to provide insights for travelers in 
determining a reasonable punctuality requirement τ. 
 

2.4  Travel Time Variability Ratio 

Travelers may well understand that an increase in their punctuality requirements τ 
means that they are more risk averse towards travel time variability and must depart 
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earlier. Nonetheless, it is difficult for travelers to explicitly know the cost of any such 
increase in τ. Using the value of travel time (VOT) as a reference, we propose the travel 
time variability ratio based on the VOV as a means of representing this cost.  

 

The travel time variability ratio (TTVR) is defined as the ratio of the VOV to the VOT, 

( )
( )

1
1

( )
+ + ETTF

TTVR ETT

ETT

F x dxVOV
F

VOT

     
   

−
+ +

= = −


 (24) 

This definition is similar to that of the travel time reliability ratio (TTRR), firstly 
proposed by Jackson and Jucker (1981), and later elaborated upon by Fosgerau (2017) 
on the basis of important conceptual and theoretical developments of the VOR 
(Fosgerau and Karlström, 2010). As noted earlier, the travel time reliability ratio is 
defined as the ratio of the VOR (in terms of per unit standard deviation) to the VOT, 

namely 1
1( )

TTRR
F x dx

 

 


−

+

+
=   . The travel time reliability ratio is a typical 

valuation method used to include the VOR in route choice models and transportation 
scheme appraisal (Fosgerau, 2017; OECD, 2016; Taylor, 2017).  

 

Here, we make some observations on the travel time variability ratio. First, this 
dimensionless measure is intended to increase the intuitive comprehensibility of the 
VOV, through reference to the VOT. Second, as in Eq. (24), the computational 
challenges of calculating the travel time variability ratio are the same as those of 
calculating the travel time reliability ratio (Zang et al., 2018a), i.e., the complex integral 
term and the inverse CDF. The travel time variability ratio can be calculated efficiently 
and effectively, based on the analytical estimation method developed by Zang et al. 
(2018b) for TTRR. Finally, recall that l > 1 and the lower bound of the travel time 
variability ratio is  

( ) ( )( )+ + 1
TTVR ETT ETT

F F
       
   

+ +
 − − =  (25) 

Given this lower bound, the VOV is always greater than the value of the SDE, consistent 
with the assumption that γ > β for risk-averse travelers. 
 

Proposition 6 below explores the influence of the preference parameters on the travel 
time reliability ratio and the travel time variability ratio for risk-averse travelers. 
 

Proposition 6. For the travel time reliability ratio and travel time variability ratio, 
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(1) 0TTRR







 and 0TTVR








; 

(2) 0TTRR







 and 0TTVR








; 

(3) 0TTRR







 and 0TTVR








 if 1l  + . 

Proof. Li (2019) has provided a proof of the effects of the preference parameters on the 

travel time reliability ratio. The proof of these effects on the travel time variability ratio 

is mainly based on the proof of Proposition 5. Please refer to the proof in Appendix B. 
This completes the proof.                                               

 

As demonstrated by Proposition 6, α and β (i.e., the marginal utilities of travel time and 
SDE, respectively) affect the travel time reliability ratio and travel time variability ratio 
similarly, whereas γ (i.e. the marginal utility of SDL) affects these ratios differently. 
Specifically, the travel time reliability ratio is positively related to γ, whereas the travel 
time variability ratio is negatively related to γ under 1l  + . In other words, as the 
traveler increases excess travel time (ETT) to mitigate for unreliability aspect and 
thereby increase the probability of arriving on-time, the value of further reducing travel 
time variability diminishes. On this basis, the proposed travel time variability ratio can 
help travelers to understand the cost of improving their punctuality requirements and 
thereby achieve a better balance between on-time arrival and trip cost, to be illustrated 
in detail by the numerical example in Section 3.2.  

 

3. NUMERICAL EXAMPLES 

In this section, we use an illustrative network to demonstrate the importance of 
considering the cost of travel time distribution tail. Then, we use several datasets 
involving different road types and traffic states to test the degree of slackness of the 
validity condition in Propositions 5 and 6. Finally, we illustrate the application of the 
travel time variability ratio.  

 

3.1  Illustrative Example of Including the Cost of Travel Time Distribution Tail 

Note that this illustrative example is not used to prove or claim that our proposed 

method is better than the existing methods in the literature. Rather we use this example 

to highlight the importance of including the cost of distribution tail within the cost of 
travel time variability, because of the long distribution tail of travel time.  
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As shown in Figure 4, a hypothetical network in which a single origin–destination pair 
is connected by six parallel paths is used for this illustration. In this example, the 
punctuality requirement is assumed to be 80%, so as to be consistent with Small (1982), 
Fosgerau and Karlström (2010) and Taylor (2017), i.e., the probability of arriving on or 
before the PAT is given by τ = 0.8 and γ / (β + γ) = 0.8; but there is no practical 
constraint on what value τ should take. We also assume that the random travel times of 
the six paths follow the lognormal distribution Logn ( ,   ), which enables a good 
characterization of a right-skewed travel time distribution (Emam and Al-Deek, 2006; 

Kaparias et al., 2008; Rakha et al., 2010; Arezoumandi, 2011; Chen et al., 2014). For 
each route p, the lognormal distribution parameters p  and p  are given in Figure 4, 
and the PDF is visualized in Figure 5. From Path 1 to Path 6, the mean travel time 
decreases, and the skewness of the travel time distribution and the length of the 
distribution tail increase, thereby illustrating the effect of a longer or fatter distribution 
tail on the cost of distribution tail. 

Path 1: Logn (2.28, 0.20)

DO

Path 2: Logn (2.00, 0.39)

Path 3: Logn (1.77, 0.59)

Path 4: Logn (1.60, 0.70)

Path 5: Logn (1.50, 0.80)

Path 6: Logn (1.45, 0.90)  
Figure 4. Hypothetical network with one origin–destination pair, connected by six paths. 
 

To explore the impact of including reliable and unreliable aspects of travel time within 
the trip cost, the following three scenarios are considered.  

• Scenario 1: The traveler only wants to minimize their trip cost in terms of the mean 
travel time, and his/her trip cost includes only the cost of the certainty equivalent 
(hereinafter we refer to this more succinctly as the certainty cost).  

• Scenario 2: The traveler pays attention to reliable aspect of travel time and 
minimizes the trip cost in terms of TTB, and his/her trip cost includes the certainty 
cost and reliability cost.  

• Scenario 3: The traveler pays attention to both reliable and unreliable aspects of 
travel time and minimizes the trip cost in terms of METT, and his/her trip cost 
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includes the certainty cost, reliability cost and tail cost. 

 
Figure 5. Probability distribution functions of the six lognormal distributions. 

 

Table 1 gives the mathematical formulations used to calculate the three variants of trip 
costs, and Table 2 presents the derived trip costs of the six paths under the three 
scenarios. In the “Trip cost [TTB]” column of Table 2, trip cost is expressed as the 
summation of the certainty cost and reliability cost. Similarly, in the “Trip cost [METT]” 
column, trip cost is expressed as the summation of the certainty cost, reliability cost, 
and tail cost.  

 
Table 1. Mathematical formulations of trip costs under different scenarios.  

Scenario Mathematical formulation 

1: Trip cost [Mean] pc =   

2: Trip cost [TTB] p TTMc VOR = +   

3: Trip cost [METT] p TTM EEDc VOR VOU  = +  +   

 

Clearly, different considerations of the trip cost would yield different selections of the 
best and worst routes. For example, under Scenario 1, Path 5 would be the best choice 
for travelers, with the lowest cost of 12.36 as shown in Table 2. However, if travelers 
paid attention to travel time reliability, the trip cost [calculated in terms of TTB] would 
include both the certainty cost and reliability cost. Accordingly, a reliability cost of 7.01 
would need to be added to Path 5, and the resulting trip cost [TTB] would be greater 
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than that of Path 4. Therefore, Path 4 would be preferable under Scenario 2. Under 
Scenario 3, although Path 4 has the minimum trip cost [METT], the tail cost of this path 
(i.e., 1.60) is much larger than that of Path 1 (i.e., 0.39) or Path 2 (i.e., 0.80). As for Path 
1 and Path 6, Path 1 yields the highest trip cost [Mean], while the certainty cost of Path 
6 is only 0.64 times (i.e., 12.80/19.94) that of Path 1. However, when including both 
the reliability cost and tail cost, Path 6 yields the highest trip cost [METT]. 
 

Table 2. Coefficients of variation (CoV) and trip costs [calculated by the formulae in 
Table 1] under three scenarios for six paths. 

Path Scenario 1: 
Trip cost [Mean] 

Scenario 2: 
Trip cost [TTB] 

Scenario 3: 
Trip cost [METT] ID CoV 

1 0.20 19.94 22.35 (19.94+2.41) 22.74 (19.94+2.41+0.39) 
2 0.41 15.93 19.94 (15.93+4.01) 20.74 (15.93+4.01+0.80) 
3 0.64 13.93 19.51 (13.93+5.58) 20.84 (13.93+5.58+1.32) 
4 0.79 12.65 18.80 (12.65+6.15) 20.41 (12.65+6.15+1.60) 
5 0.94 12.36 19.37 (12.36+7.01) 21.35 (12.36+7.01+1.98) 
6 1.10 12.80 21.01 (12.80+8.21) 23.53 (12.80+8.21+2.51) 

Note: CoV shows the extent of travel time variability in relation to mean travel time 

 

To further explore the effects of including both the reliability cost and tail cost, the 
percent values of the certainty cost, reliability cost, and tail cost relative to the total trip 
cost for all six paths under Scenario 3 are presented in Figure 6. Recall that from Path 
1 to Path 6, the mean travel time decreases, while the skewness and tail length of the 
travel time distribution increase. As shown in Figure 6, the percent of certainty cost 
decreases monotonically with decreasing mean travel time, whereas the percent of 
reliability cost and percent of tail cost increase monotonically with increasing travel 
time distribution skewness. Specifically, from Path 1 to Path 6, the percent of reliability 
cost increases from 11% to 35%, and the percent of tail cost increases from 2% to 11%.  

 

In other words, for a more highly skewed travel time distribution with a longer tail, both 
the reliability cost and tail cost will play a more significant role in the total trip cost. 
We further verified this in 13 realistic datasets (Section 3.2), and the minimum and 
maximum percent of tail costs are 1.21% and 8.19%, respectively. Note that the 
literature documents extensive examples of right-skewed travel time distributions with 
long/fat tails, and the above findings indicate that ignoring the cost of travel time 
distribution tail may increase the risk of bias. Therefore, it is necessary to consider the 

cost of travel time distribution tail in modeling travelers’ departure time and route 
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choices, as well as in project appraisals. The concept and method of calculating the 

VODT proposed in this paper can support such requirements. 
 

 

Figure 6. Percent values of the certainty cost, reliability cost, and tail cost relative to 
the total trip cost [METT] for six paths (Table 1 presents the formulae of calculating 

these costs). 
 

3.2  The Feasibility of the Validity Condition in Propositions 5 and 6 

Due to τ = γ/(β + γ), there is an unknown parameter τ in the validity condition 1l  +  
in Propositions 5 and 6. Therefore, to explore the feasibility of the validity condition 

1l  +   in practical applications, we use empirical datasets to examine whether 
1l  +  is true for any τ between 0.5 and 1. Thirteen datasets involving different road 

types and traffic states were used. Eight datasets were obtained from the open Next 
Generation Simulation (NGSIM) dataset (NGSIM, 2005), and five were collected from 
the GPS records of the Tongji University School Bus. The thirteen datasets are 
described in Table 3 and the accompanying notes. We should point out that every record 
of route travel time in our data is directly obtained from the whole trajectory of one 
particular car or school bus along the whole route. This means that our route travel time 
datasets do not involve link segment combination, i.e., aggregating the travel time from 
the link level to the route level. For the methods for modelling route travel time 
distributions involving correlations between links, readers can refer to a recent review 
paper (Zang et al., 2022b). 
 

 

 



 

25 

Table 3. Detailed description of the 13 datasets. 

Dataset Road type 
Length  

(km) 
Mean 

(min) 
Standard  

deviation 
Skewness Kurtosis 

Campus 1 

Expressways 
and urban 
streets 

37.10 59.90 7.76 1.09 3.09 

Campus 2 37.10 57.80 7.16 1.47 2.70 

Campus 3 37.10 51.97 7.56 2.44 8.57 

Campus 4 37.10 65.71 11.13 1.21 2.78 

Campus 5 37.10 80.79 17.09 0.66 -0.49 

Dataset Road type 
Length  

(km) 
Mean 

 (s) 
Standard  

deviation 
Skewness Kurtosis 

Link 1 

Urban streets 

0.50 36.57 25.23 0.37 -0.78 

Link 2 0.50 15.24 9.93 2.80 10.86 

Link 3 0.50 15.85 13.45 1.67 1.76 

Path 1.50 84.60 28.11 0.30 0.04 

Dataset Road type 
Length  

(km) 
Mean 

 (s) 
Standard  

deviation 
Skewness Kurtosis 

101_1 

Freeway 

0.64 52.60 13.51 0.94 1.35 

101_2 0.64 68.42 21.79 0.40 -0.89 

101_3 0.64 80.84 18.88 -0.26 0.50 

101_4 0.64 65.23 21.38 0.52 -0.52 

 

a) School bus datasets. The GPS records of the school bus route from Jiading Campus 
to Siping Campus were collected between September 18, 2017 and January 17, 
2018. The route covers both urban streets and expressways, and has an approximate 
length of 37.10 km. The school bus departs according to a timetable, and the five 
datasets (i.e., Campus 1 to Campus 5 in Table 3) used in this paper correspond to 
departures of 12:15, 14:00, 15:30, 16:30, and 17:20, respectively. 

b) NGSIM Lankershim datasets. Northbound traffic datasets were collected at 
Lankershim Street on June 16, 2005. The studied road segment (path) consists of 
three links: Link 1 from Intersection No. 1 to No. 2, Link 2 from Intersection No. 
2 to No. 3, and Link 3 from Intersection No. 3 to No. 4. These data yield three link-
level datasets and one path-level dataset (i.e., Links 1 to 3 and Path in Table 3). 

c) NGSIM Highway 101 datasets. The study site is a section of freeway with an 
approximate length of 640 meters. Southbound traffic data were collected between 
07:50 and 08:05 on June 15, 2005. These data yield three datasets (i.e., 101_1 to 
101_3 in Table 3) corresponding to 5-minute intervals and one dataset (i.e., 101_4 
in Table 3) corresponding to the entirety of the 15-minute observation period. 

 

An empirical dataset may not represent the upper tail very well, depending on the 
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“extreme” travel time values recorded in the dataset. Rather, it may be better to fit the 
empirical dataset to obtain a more statistically representative distribution tail because 
the concept of the value of distribution tail depends on the tail of the distribution. Here, 
to determine whether the thirteen datasets satisfy the validity condition in Propositions 
5 and 6, three representative methods, namely the lognormal distribution, Burr 
distribution (Susilawati et al., 2013; Taylor, 2017), and analytical estimation method 
(Zang et al., 2018b), were used to fit the empirical datasets. Taking the lognormal 
distribution as an example, the results show that the ratios of 1 +   to l for the 13 
datasets are all greater than or equal to 1, which is clearly shown by Figure 7. Therefore, 
all 13 datasets satisfy the validity condition l ≤ 1 +   when using the lognormal 
distribution to fit empirical datasets.  

 

Figure 7. The values of the ratio of 1 +  to l under different τ for 13 datasets. 
 

In fact, we also reach the same conclusion when using the Burr distribution and the 
analytical estimation method to fit empirical datasets, and Table 4 summarizes the 
results. In other words, all empirical datasets satisfy the validity condition in 
Propositions 5 and 6. Note that the 13 datasets cover different road types and have 
different statistical characteristics including left-skewed, closely normal, and right-
skewed distributions (van Lint et al., 2008; Zang et al., 2018b) as shown in Table 3. We 
can conclude that the validity condition is relatively slack and easily satisfied by 
realistic travel time datasets. 
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Table 4. Satisfaction of the validity condition l ≤ 1 +  

Dataset 
Satisfy validity condition? Dataset Satisfy validity condition? 

Logn Burr Analytical  Logn Burr Analytical 
Campus_1 ✓ ✓ ✓ Link 3 ✓ ✓ ✓ 

Campus_2 ✓ ✓ ✓ Path ✓ ✓ ✓ 

Campus_3 ✓ ✓ ✓ 101_1 ✓ ✓ ✓ 

Campus_4 ✓ ✓ ✓ 101_2 ✓ ✓ ✓ 

Campus_5 ✓ ✓ ✓ 101_3 ✓ ✓ ✓ 

Link 1 ✓ ✓ ✓ 101_4 ✓ ✓ ✓ 

Link 2 ✓ ✓ ✓     

Note: ✓ indicates that the validity condition is satisfied. 
 

3.3  Illustration and Application of the Travel Time Variability Ratio 

This example illustrates how the travel time variability ratio empirically changes with 
the punctuality requirements τ and, more practically, how it can help travelers to achieve 
a better balance between trip reliability and trip cost. The corresponding theoretical 
basis has been given in Propositions 5 and 6 and Corollary 1. 
 

We use the Highway 101_1 dataset as an example to calculate the travel time variability 
ratio based on the analytical estimation method (Zang et al., 2018a, 2018b). As for the 
parameters within the calculation, α can be viewed as a fixed value because (1) the VOT 
of any given risk-averse traveler for any given trip is usually constant, and (2) τ is 
independent of α. Besides, to improve travel time reliability, a risk-averse traveler 
usually attaches a higher penalty to late arrival (i.e., a larger γ) so as to ensure tighter 
punctuality requirements τ. Recalling that τ = γ/(β + γ), we can simply assume that β is 
fixed. Therefore, for simplicity, we set the α and β values to 2 and 1, respectively4. The 
change in punctuality requirements τ is due to the change in γ. Then, if the punctuality 
requirements τ are given, the excess travel time and travel time variability ratio can be 
easily computed according to Eqs. (11) and (24). Figure 8 shows the excess travel time 
and travel time variability ratio under different punctuality requirements τ. With 
increasing τ, the excess travel time increases but the travel time variability ratio 
decreases. This intuitively demonstrates the phenomenon of diminishing VOV given in 
Proposition 5 and Corollary 1. In other words, the different τ requirements of different 
travelers reflect the trade-off between excess travel time and the travel time variability 
ratio, i.e. the willingness of the traveler to accept an increase in travel time with 

 
4 α and β are exactly the same as those in Small (1982), Fosgerau and Karlström (2010) and Taylor (2017). 
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certainty in exchange for a reduction in travel time risk. Specifically, as the traveler 
increases excess travel time (ETT) to mitigate for distribution tail and thereby increase 
the probability of arriving on-time, the value of further reducing travel time variability 
diminishes.  

 

Although τ is continuous in Figure 8, it would seem conceivable that in a realistic travel 
choice decision, the traveler might perceive the punctuality requirement in discrete 
increments, such as 5%. Based on Figure 8, we can obtain the excess travel time and 
travel time variability ratio for every 5% increase of τ, as shown in Table 5. For example, 
a traveler with a current τ of 60% wishes to increase the punctuality requirement but is 
unwilling to accept that the value of the additional time he/she paid for hedging against 
travel time variability (i.e., the value of travel time variability, VOV) is diminished by 
more than 15%. In other words, the reduction of VOV should be less than 15%. Table 
5 lists the proportion of change in the excess travel time relative to the initial excess 
travel time, i.e., 12.35, at τ = 0.60 and the proportion of change in the travel time 
variability ratio relative to the initial travel time variability ratio, i.e., 0.6889, at τ = 0.60 
in parentheses. According to Table 5, if the traveler increases his/her τ to 0.70, his/her 
excess travel time would be 15.80, and thus the proportion of change in the excess travel 
time is (15.80 − 12.35)/12.35 = 27.93%. As the travel time variability ratio for τ = 0.70 
is 0.65, the proportion of change in the travel time variability ratio is (0.6457 − 
0.6889)/0.6889 = −6.27%. In other words, the traveler faces a VOV reduction of 6.27% 
if he/she wishes to increase the τ from 0.6 to 0.7. If the traveler is unwilling to ‘pay’ for 
a VOV reduction greater than 15%, then a τ of 0.85 represents the best choice according 
to Table 5. Therefore, the travel time variability ratio can help travelers to achieve a 
better balance between trip reliability and trip cost. 
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Figure 8. The excess travel time and the travel time variability ratio for different 
punctuality requirements 

 
Table 5. Excess travel times and travel time variability ratios under different τ. 
Τ Excess travel time Travel time variability ratio 

0.60 12.35 0.6889 

0.65 14.07 (↑13.92%) 0.6642 (↓3.59%) 
0.70 15.80 (↑27.93%) 0.6457 (↓6.27%) 
0.75 18.10 (↑46.55%) 0.6256 (↓9.12%) 
0.80 20.99 (↑69.95%) 0.6061 (↓12.02%) 
0.85 24.40 (↑97.56%) 0.5884 (↓14.59%) 
0.90 29.14 (↑135.93%) 0.5613 (↓18.52%) 

Note: Proportions of change relative to a punctuality requirement of 0.60 are indicated 
in parentheses. ↑ indicates an increase and ↓ indicates a decrease. 
 

4. CONCLUSIONS 

Within the framework of the standard Small scheduling model, the existing literature 
on valuing travel time variability has paid limited attention to the unexpected delay due 
to the unreliable aspect (i.e., distribution tail) of travel time. This is despite extensive 
evidence that unexpected delay can have much more serious consequences than 
expected or modest delay. The conceptual contribution of this paper was to propose the 
value of travel time distribution tail (VODT), capturing the unexpected delay inherent 
within the long fat tails that typically characterize travel time distributions. Having 
made this important definition, the paper reconciled the VODT with two existing 
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concepts in the literature, namely the reliability premium (Batley, 2007) and mean-
excess travel time (Chen and Zhou, 2010). Furthermore, the paper demonstrated that 
the aforementioned two concepts are in essence equivalent, with both concepts 
considering the increase in certain travel time that the traveler is willing to accept in 
exchange for reducing or indeed eliminating travel time variability. 
 

The paper then introduced the more general concept of the value of travel time 
variability (VOV), as a weighted sum of the value of travel time reliability (VOR) and 
VODT and investigated the properties of excess travel time and the VOV, especially in 
relation to the scheduling parameters of the Small model. This analysis exposed the key 
property that, as the traveler increases excess travel time to mitigate for unreliability 
aspect of travel time and thereby increase the probability of arriving on-time, the 
marginal benefit of further reducing travel time variability diminishes. Based on the 
theoretically-proven diminishing marginal effect of the VOV under a validity condition, 
the paper further proposed the travel time variability ratio – an extension of the 
established reliability ratio (e.g., Jackson and Jucker, 1981) – as a means of helping 
travelers to understand the trade-off between punctuality requirements and the cost of 
travel time variability, and thereby determine appropriate punctuality requirements. We 
used empirical datasets to test the validity condition of the diminishing marginal effect 
of the VOV, and our results indicated that it is a relatively slack condition that can be 
easily satisfied. Besides, we presented a numerical example to illustrate how the travel 
time variability ratio can support a traveler’s optimization of their punctuality 
requirements. Using numerical examples, we demonstrated that the distribution tail cost 
may account for more than 10% of the total cost of travel time variability. Therefore, if 
appraisals fail to consider the distribution tail of travel time and its impact on departure 
time and route choices, then this could seriously bias policy decisions. 
 

In summary, the VODT can complement existing research on travel time variability by 
providing a more complete and definitive consideration of the cost of travel time 
variability. Specifically, the VOR quantifies the value of expected risk/duration of delay, 
while the VODT quantifies the value of unexpected risk/duration of delay. Therefore, 
the VODT can help travelers to better understand the value of mitigating for the more 
serious delay occurrences associated with the long fat tail of the travel time distribution, 
and help planners and policymakers to better understand the social costs and benefits 
of investments designed to reduce such delays. Besides, travelers may need to set their 
risk parameters in many emerging personalized mobility services such as routing 
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navigation. The diminishing marginal effect of VOV suggests that it may be 
economically inefficient to blindly pursue a higher probability of not being late. That is 
to say, the proposed travel time variability ratio intuitively quantifies the implicit cost 
of the punctuality requirements that travelers impose for their trips, thereby supporting 
travelers in achieving a better balance between trip reliability and trip cost. 
 

Based on our work, further research is warranted. The assumption that the standardized 
travel time is independent of the departure time could be relaxed to consider the time-
varying travel time distribution. Furthermore, the step utility function used in this paper 
represents a special case of the utility function in the schedule delay model and implies 
a specific form of risk aversion, Eeckhoudt (2012) and other related references (Mas-
Colell et al., 1995; Eeckhoudt and Schlesinger, 2006; Beaud et al., 2016; Eeckhoudt et 
al., 2022; Li et al., 2022) highlight that higher order derivatives may provide insight on 
the intensities of attitudes beyond risk aversion such as absolute prudence and absolute 
temperance. In a similar vein, we note Beaud (2016) works on the relationship between 
risk aversion and travel time and inferences regarding constant absolute risk aversion, 
increasing absolute risk aversion, and decreasing absolute risk aversion behaviors. 
Therefore, an investigation of the value of travel time distribution tail under other utility 
functions, such as the slope or nonlinear utility function (Vickrey, 1973; Tseng and 
Verhoef, 2008; Li et al., 2012), may be worthwhile. Besides, it would be valuable to 
extend the analysis of this paper from single trips to trip chains or path level (Jenelius 
et al., 2011; Jenelius, 2012, Jiang et al., 2022) and/or the network level (Uchida, 2014; 
Kato et al., 2021). Finally, given that information on travel time variability may 
influence travelers’ choices of departure time (de Palma and Picard, 2006; de Palma et 
al., 2012; Lindsey et al, 2014; Engelson and Fosgerau, 2020, Jiang et al., 2020), it 
would be interesting to further explore the effect of the accuracy of the available 
information and the regimes of information release (de Palma et al., 2012; Han et al., 
2021; Chen et al., 2023). 
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APPENDIX A. THE DEDUCTION OF EQUATION (2) FROM EQUATION (1) 

As T = A – D, PAT − A = (PAT – D) – (A – D) and A − PAT = (A – D) – (PAT – D), by 

expanding terms of Eq. (1), we have 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ,U D T A D PAT D A D A D PAT D  
+ +

= − − + − − − + − − −  (A-1) 

Rearranging Eq. (A-1): 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

, | |

| |

PAT A A PAT

PAT A A PAT

U D T A D A D

PAT D PAT D

   

 

+ +

+ +

− −

− −

− = − − + + −

+ − − −
 (A-2) 

To simplify mathematical deductions, let PAT = 0. Since the travel time to arrive at 
exactly the PAT is T = PAT – D = – D, travel time must by definition be positive, this 
explains why D < 0 by the assumption PAT = 0. Then, Eq. (A-2) can be simplified as 

( )
( )( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( )( )0 0 0 0

,

| | | |

| | | |

PAT A A PAT PAT A A PAT

A A A A

U D T

A D A D D D

A D A D D D

     

     

+ + + +− − − −

   

−

= − − + + − − +

= − − + + − − +

 (A-3) 

Since ( )( ) ( )( ) ( )( )0 0| |A AA D A D A D      − − = − − + − − , we have 

( ) ( )( ) ( )( )
( )( ) ( )( )( ) ( )
( ) ( )( ) ( )
( ) ( )( )
( ) ( )( ) ( )

0 0 0 0

0 0

0 0

0

0

, | | | |

| |

| |

|

| Since

A A A A

A A

A A

A

A

U D T A D A D D D

A D A D D D

T A D D D

T A D D D

T T D D A T D
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        

      

    

    
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= − − + + − − − − + +

= − + + − − + +

= − + + − + −

= − + + + − = +

 (A-4) 

The final identity of Eq. (A-4) is essentially Eq. (2) in Section 2.1. 

 

APPENDIX B. PROOFS OF PROPOSITIONS AND LEMMAS 

Proof of Proposition 1. The expected utility of a trip under uncertainty for a given 
departure time D is EU, given by Eq. (4). According to Batley (2007), calculation of 
the reliability premium depends on identifying the certainty-equivalent trip that 
corresponds to the trip under uncertainty. A risk-averse traveler would choose to add 
the reliability premium to ensure that their certainty-equivalent arrival time is earlier 
than the PAT. Hence, for a given D, the trip utility of a certainty-equivalent arrival time 
before the PAT is 

( ) ( ) ( ) ( )( ) ( ) 
( )( ) 
( ) 

U E A D D

D

D

      

     

    

+ = − − − − − −

= − − + − +

= − − − +

 (B-1) 
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where E(A) is the certainty-equivalent arrival time. As |EU| = |U(μ + π)| when 
calculating the reliability premium π, π can be obtained as 

( ) ( ) ( )D

EU D
x D f x dx



       
 



− −

− − +  +
= = + +  

 
  (B-2) 

This completes the proof.                   

 

Proof of Proposition 3. If the departure time D in the reliability premium is given by 

Eq. (5), i.e., ( ) ( )( )1
D b F     −= − = − − + , then the reliability premium with Eq. 

(B-2) will be: 
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  (B-3) 

As τ = γ/(β + γ), the expected excess delay is similarly restated as  

( )
1

1 1
EED uF x F dx S

 

     
   

− −

+

  + +
=  − =  +  

  (B-4) 

Therefore, δEED = (α/β)π. This completes the proof.                       

 

Proof of Proposition 4. The first-order derivative of Eq. (4) is 

( ) ( )( ) ( ) ( )

( ) ( )

, 1
D

D
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D D f f x dx
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 

= − − + + 
 




 (B-5) 

Since ( ),EU D T D  = 0 when D = D*, according to Eq. (B-5), if ( ),EU D T D   > 

0, then D < D*; if ( ),EU D T D   < 0, then D > D*. Consequently, we can infer that 

EU(D, T) is strictly decreasing when D > D* and strictly increasing when D < D*, with 
a maximum value at D = D*. Note that the travel time budget associated with the 

punctuality requirement τ is exactly the optimal departure time, i.e., D* = DTTB. We can 
easily prove that the METT is greater than or equal to the TTB, as the EED is non-
negative by definition: 
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( ) ( ) ( ) ( ) ( )0
EED EED

b b
        

 
    = + 

+
，  (B-6) 

According to Eq. (B-6), DMETT ≤ DTTB, yielding EU(DMETT, T) ≤ EU(DTTB, T) and thus 
|EU(DMETT, T)| ≥ |EU(DTTB, T)|. This completes the proof.                      

 

Proof of Lemma 1. The derivative of the ETT scaling factor ζETT with respect to β is  
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The derivative of the ETT scaling factor ζETT with respect to γ is 
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Hence, ζETT is monotonically non-increasing with respect to β and non-decreasing with 
respect to γ. This completes the proof.                                     

 

Proof of Proposition 5. (1) The derivative of the VOV with respect to β is  
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As ( ) ( )10, 0, and 0ETT
ETT

F F
  


−
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
 for risk-averse travelers, 0

VOV
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




.  

 

(2) Please refer to Appendix C for a detailed deduction of the complicated derivative of 
the VOV with respect to γ. The final result is  
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If 1l  + , then we obtain the following inequality:  
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Finally, the VOV is strictly non-increasing with respect to γ for late arrival. This 
completes the proof.                                                 

 

Proof of Proposition 6. (1) The derivatives of ρTTRR and ρTTVR with respect to α are, 
respectively: 
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Obviously, 0TTRR






 and 0TTVR







. 

(2) The derivatives of ρTTRR and ρTTVR with respect to β are, respectively: 
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(3) The derivatives of ρTTRR and ρTTVR with respect to γ are, respectively: 
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Therefore, 0TTVR







 if 1l  + . This completes the proof.                  
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APPENDIX C. DERIVATIVE OF THE VALUE OF TRAVEL TIME VARIABILITY WITH RESPECT TO Γ 
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APPENDIX D. PROOF OF THE TRUTH OF 1l  +  IN THE REMARK 2 

Note that ζETT = F−1(τ) + ζEED, and F(x) and F−1(x) are all non-decreasing functions. It is easy to have F(ζETT) > τ and thus F−1(F(ζETT)) > F−1(τ). 
The following deduction shown in Eq. (C-1) indicates that 1l  +   is equivalent to a non-increasing g(p) for p∈ [τ, 1), where 

( )
( )

( )
1

1

1

1

p
g

F x dx
F pp

p

−

−= −
−

 .  



 

37 

( )
( )

( )
( )

( ) ( )( )

( )
( ) ( ) ( )

( )
( )

( ) ( )( ) ( )( )
( )

( )

( ) ( )( )

( )
( ) ( ) ( )( )

( )
( )

11 11

1 1

1 11 1 11

1 1

1 1 1

1 11

1 1

1 1

1 1
1

1 1 1

1
1

1

ETT

ETT ETT

ETT

F

ETT

ETT

F F

ETT ETT

ETT ETT ETT

F

ETT

F x dxF x dx
F F F

F

F x dx F x dxF x dx
F F F F

F F F F F F

F x dxF x dx

F F F



 



 
 

 
     

  

−−

− −

− −−

− −
− − −

−−

− −

−  −
− −

   
    −  −  −   − − −   
   

 − 
−



 


( ) ( )( )

( )
( ) ( )

( )
( )

( )( ) ( )( )

( )( )
( )

( )
( )

( ) ( )
( )

1

1

11 11

1 1

1
1

1

11 1

1

1 1
1 1

1
1

1

1

ETT

ETT

ETT

ETT

F

ETT ETT

FETT

ETT

F F
F

F x dxF x dx

F F F F

F x dxF F
l

F F F x dx










   




 



−

−−

− −

−−

− −

 
 − − 
 

 −  −
− −

   + 
−

−








 

(D-1) 

The derivative of g(p) with respect to p is  
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As (1− p)2 > 0, Eq. (D-2) indicates that the sign of ( )g p   is the same as the sign of u(p), where u(p) is the numerator of the last fraction in Eq. 
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(D-2), i.e., u(p) = ( ) ( ) ( ) ( ) ( )
121 1 11 1
p
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Note that ( ) 0g p    requires that ( ) 0u p  . Considering u(1) = 0, if we have ( ) 0u p    for p∈[τ, 1), then we have ( ) 0u p  . According 

to Eq. (D-2), ( ) 0u p   when ( )
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. Specifically, if F−1(p) is a concave 

function, then ( )1 0F p
−    and thus 1l  +  must be true.
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NOTATION  

Notation Definition 

T, X Travel time and standardized travel time 

φ, Φ PDF and CDF of T 

μ, σ Mean and standard deviation of T 

f, F  PDF and CDF of X 

τ 
Punctuality requirement (i.e. probability or confidence level of 
arriving at or before the Preferred Arrival Time (PAT)) 

T , minT  Travel time and minimal travel time required to ensure a desired τ 

b(τ), η(τ) Travel time budget and mean-excess travel time for a desired τ 

, ,
TTM EED

    Safety margin, travel time margin, and expected excess delay  

ζTTM, ζEED, ζETT 
Scaling factors of travel time margin, expected excess delay, and 
excess travel time 

 , l 
Quotient of EED

   divided by ( )1
F −   and quotient of 

( )
( )

1
1

ETTF
F x dx



−  divided by ( )( )1
ETT ETT

F −  

α, β, γ Scheduling preference parameters 

U, EU Trip cost and expected trip cost in utility units 

A, D, D* Arrival time, departure time, and optimal departure time 
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