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Dynamic ADP-ribosylation signaling is a crucial pathway

that controls fundamental cellular processes, in particular, the

response to cellular stresses such as DNA damage, reactive

oxygen species, and infection. In some pathogenic microbes,

the response to oxidative stress is controlled by a SirTM/zinc-

containing macrodomain (Zn-Macro) pair responsible for

establishment and removal of the modification, respectively.

Targeting this defence mechanism against the host’s innate

immune response may lead to novel approaches to support the

fight against emerging antimicrobial resistance. Earlier studies

suggested that Zn-Macros play a key role in the activation of

this defence. Therefore, we used phylogenetic, biochemical,

and structural approaches to elucidate the functional proper-

ties of these enzymes. Using the substrate mimetic asparagine-

ADP-ribose as well as the ADP-ribose product, we characterize

the catalytic role of the zinc ion in the removal of the ADP-

ribosyl modification. Furthermore, we determined structural

properties that contribute to substrate selectivity within the

different Zn-Macro branches. Together, our data not only give

new insights into the Zn-Macro family but also highlight their

distinct features that may be exploited for the development of

future therapies.

Bacterial and fungal infections pose a significant risk to
human health (1–3). The problem is amplified by the devel-
opment of antimicrobial resistance (AMR) and emergence of
multidrug resistant strains associated with the loss of treat-
ment options. To address this issue, the World Health Orga-
nization has published lists of priority pathogens that pose the
greatest risk (4, 5). Overcoming AMR will require a multi-
pronged approach, including the identification and charac-
terization of new or neglected antimicrobial targets as well as

evaluation of their therapeutic potential for novel (co-)treat-
ment strategies.

We previously described an operon-encoded system pre-
sent in major human pathogens, including Staphylococcus

aureus and Streptococcus pyogenes, that relies on the crosstalk
between two pathways of high therapeutic interest: lipoic acid
metabolism and ADP-ribosylation signaling (Fig. 1). Lipoic
acid is a small organosulfur cofactor that, when covalently
attached to multicomponent dehydrogenases, participates in
the intermediate metabolism of free-living cells (6). In addi-
tion, lipoylated proteins play a role in other crucial cellular
processes including bacterial sporulation, gene expression,
and oxidative defence (6–10). It is therefore not surprising
that disruption of bacterial lipoic acid acquisition has been
shown to reduce virulence in several models of infection
(11–13). Similarly, ADP-ribosylation signaling plays a major
role in processes such as the regulation of the host immune
response or microbial immune evasion and host adaptation
(14–16). ADP-ribosylation is a reversible, posttranslational
modification involving the transfer of an ADP-ribose (ADPr)
moiety from b-NAD+ onto a target residue within a protein
(17–19). ADP-ribosylation “writers” and “erasers” can be
identified in all kingdoms of life as well as several viruses.
Although the signaling mechanism is better understood in
higher eukaryotes (17, 19–21), where it affects genome sta-
bility, host immune response, transcription regulation, among
others (16, 22, 23), extensive evidence is emerging for its
crucial role in microorganisms including microbial immune
evasion and host-adaptation, growth regulation, antiphage
response, and intermicrobial warfare among others (14,
24–29). The modification can either involve the transfer of a
single ADPr unit (mono-ADP-ribosylation, MARylation) or
the extension of the initial modification into linear or
branched ADPr homopolymers (poly-ADP-ribosylation,
PARylation). The enzymes responsible for establishing the
modification, termed (ADP-ribosyl)transferases, belong usu-
ally to the PARP or ARTC family (17, 18, 30). However,
certain sirtuins, which are more commonly associated with
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NAD+-dependent deacylation, have been reported to harbor
transferase activity, too (19, 25, 31, 32).

Recently, microbial and viral macrodomains, which can
reverse ADP-ribosylation signaling, have come into focus as
potential therapeutic targets (15, 33–35). Macrodomains are
ancient, evolutionary conserved structural modules that can be
found in all kingdoms of life as well as some viruses (36, 37).
Structurally, they exhibit an a/b/a sandwich fold of typically
130 to 190 amino acids with a deep ligand-binding cleft on the
crest of the domain (38–41). Macrodomains can bind ADP-
ribosylated ligands via this cleft and act either as signal
“readers” or “erasers.” Phylogenetically, the macrodomain su-
perfamily can be subdivided into at least six evolutionary
distinct families with differences in their mode of ADPr
recognition and hydrolysis (36, 37). Among these, the
MacroD-type family contains several members of pharmaco-
logical interest, including viral macrodomains important for
alphavirus and coronavirus replication as well as the human
immune response (16, 33, 34, 42–44). Furthermore, it was
observed that these viral as well as homologous, PARP-
associated macrodomains are under ongoing positive selec-
tion, which further supports their importance in the host-
pathogen arms race (45, 46). As aforementioned, the operon-
encoded system we described earlier contains an unusual,
genetically linked macrodomain-sirtuin pair and plays a role in
the oxidative stress response of bacterial and fungal pathogens
(31). This pair can be identified either alone, in the context of
an extended operon, or fused into a single polypeptide chain
(Fig. 1A). In the context of the extended operon, ADP-
ribosylation occurs in a sequential order: the encoded carrier
protein, glycine cleavage system H-like (GcvH-L), is first lip-
oylated by a lipoyl protein ligase (LplA) and can subsequently
be ADP-ribosylated by the macrodomain-linked sirtuin
(SirTM) (Fig. 1B). The MARylation can be reversed by a zinc-

containing macrodomain (Zn-Macro). SirTMs appear to be
the only sirtuins that have only (ADP-ribosyl)transferase ac-
tivity due to an exchange of a key histidine residue with
glutamine, while a glycine-rich stretch in the catalytic loop of
the macrodomain was replaced by a zinc-binding motif
(31, 47). While it was suggested that the zinc ion contributes to
the catalytic activity of the macrodomain and is responsible for
the observed ability to cleave the S-glycolytic bond in ADP-
ribosylated cysteine residues (47, 48), experimental evidence
is so far lacking. Moreover, GcvH-L is at present the only
known protein ADP-ribosylated by a SirTM: whether other
targets outside the extended operon exist, what the nature of
targets in other SirTM/Zn-Macro systems is, and what the
physiological role of SirTM/Zn-Macro signalling is, remains
elusive.

In this study, we describe the evolutionary, biochemical,
and structural basis of the (ADP-ribosyl)hydrolase activity of
Zn-Macros. We highlight their unique enzymatic properties
and demonstrate that their function is strictly dependent on
a catalytic zinc within the active site. Furthermore, we
identified structural features that are important for lipoyl
recognition as well as GcvH-L demodification. Members of
the Zn-Macro subfamily play an important role in the
defence against oxidative stress response, a potent host
defence mechanism.

Results

Zinc-containing macrodomains are of the MacroD-type

We showed previously that zinc-containing macrodomains
(Zn-Macros) play a role in the oxidative stress response of
bacterial and fungal pathogens (31). These macrodomains
have structural features that place them within the MacroD-
type family, but closer phylogenetic assessment was still
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outstanding (31, 47). Therefore, we analyzed the relationship
of Zn-Macros to known members of the MacroD-type class.
Focusing on sequence position with more than 95% site
coverage, we found that Zn-Macros cluster with GDAP2- and
MacroD1/2-like macrodomains, whereas they are less closely
related to viral and PARP9/14 macrodomain 1–like macro-
domains (Fig. 2A and Table S1). As yet, no catalytic activity has
been reported for GDAP2-like macrodomains (36, 49) and

they have lost all previously described features, such as po-
tential catalytic residues, the active site arene, and NAAN
motif (Fig, S1 and Table S2), associated with catalytic activity
(36, 37). Zn-Macros contain the active site arene, NAAN
motif, as well as Asp/His catalytic dyad found in MacroD1/
2like macrodomains. Strikingly, however, the “catalytic loop”
found in all other MacroD-type enzymes (also termed “loop
1”) is replaced with and extended loop containing the zinc-
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Figure 2. Phylogenetic analysis of the MacroD-type family. A, evolutionary phylogenetic tree analysis of MacroD-type domain: the tree was constructed
with amino acid sequences isolated from their whole protein context by multiple sequence alignment. The evolutionary history was inferred by using the
maximum likelihood method and LG model of amino acid substitution as implemented in MEGA 11. The tree with the highest log likelihood (−14087.41) is
shown. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Subclasses are indicated and named according to
prominent members. Zn-Macros used in this study are indicated in red, human proteins in green, and asterisks mark sequences identified in this study. B,
multiple sequence alignment of the ‘catalytic/Zn-loop’ region of representative MacroD1/2-like and Zn-Macros. Consensus sequences [ELM nomenclature
(108)] for ‘classic’ and zinc coordination loop are given below the alignment with Zn2+-coordinating residues highlighted in red. Isostructural residues are
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Fig. S1 and sequence information are given in Tables. S1 and S2.
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coordinating Cx(4)HxC motif, here termed the Zn-loop
(Figs. 2B and S1). In addition, all members of the subfamily
carry an N-terminal extension, which structurally resolved into
a three-alpha helical bundle (3a-bundle) (37, 47).

Ligand coordination by Zn-Macros

To gain a closer understanding of the functional role of the
3a-bundle and coordinated Zn2+ ion, we solved structures
from the three sub-branches of Zn-Macros namely from
S. aureus (SauMacro), Methanobrevibacter oralis (MorMacro),

and macrodomain-fused SirTM protein (Mfs1) from Fusarium

oxysporum f.sp. cubense race 1 (Foc1Mfs1) in their apo form as
well as of S. pyogenes (SpyMacro) and MorMacro bound to
ADP-ribose (ADPr) (Figs. 3A, S2 and Table 1). The overall fold
of our apo structures resembles closely an earlier reported
SauMacro structure (PDB 5KIV) with an RMSD of 0.382 Å
over 196 Ca (SauMacro), 0.754 Å over 201 Ca (MorMacro),
and 1.125 Å over 153 Ca (Foc1Mfs1), respectively. Ligand
binding marginally increased the RMSD value to 0.884 Å over
183 Ca (SpyMacro:ADPr) and 1.029 Å over 211 Ca (MorMa-
cro:ADPr) (Fig. S2, A and B).
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Table 1

Crystallographic data collection, phasing, and refinement statistics

PDB accession code

SauMacro (apo) SpyMacro ADPr MorMacro (apo) MorMacro ADPr MorMacro Asn-ADPr Foc1Mfs1 (apo)

8RSL 8RSM 8RSI 8RSJ 8RSK 8RSN

Data collection
Synchrotron/beamline DLS/I04-1 DLS/I03 DLS/I03 ESRF/MASSIF-1 DLS/I04-1 DLS/I03
Detector PILATUS 2M PILATUS3 6M PILATUS3 6M PILATUS3 6M PILATUS3 6M PILATUS3 6M
Wavelength (Å) 0.92000 01.28220 1.28229 0.96598 0.92819 1.28229
Space group P21 P41 P21 21 2 P21 C2 P21 21 21
a (Å) 40.19 41.70 70.28 75.99 104.18 61.75
b (Å) 139.40 41.70 146.39 58.10 110.37 135.16
c (Å) 49.19 137.90 58.35 76.27 104.62 147.60
a (�) 90.00 90.00 90.00 90.00 90.00 90.00
b (�) 93.76 90.00 90.00 117.66 119.63 90.00
g (�) 90.00 90.00 90.00 90.00 90.00 90.00
Content of AU 2 1 2 2 3 2
Resolution (Å)a 49.08–1.94 (1.99–1.98) 68.95–1.87 (1.91–1.87) 146.39–2.06 (2.11–2.06) 67.30–1.66 (1.69–1.66) 90.94–2.36 (2.42–2.36) 147.60–2.22 (2.28–2.22)
Rsym (%)a,b 4.0 (46.4) 9.1 (109.7) 24.2 (707.9) 5.3 (34.3) 8.6 (125.4) 10.6 (170.4)
I/s(I) 18.8 (2.1) 12.6 (2.7) 6.7 (0.9) 18.7 (3.3) 7.3 (0.9) 13.2 (1.4)
Completeness (%)a 97.9 (96.7) 99.8 (97.2) 100.0 (100.0) 98.5 (85.6) 99.9 (99.8) 100.0 (100.0)
Redundancya 3.4 (3.0) 6.6 (4.8) 12.1 (11.6) 6.0 (4.0) 3.1 (2.5) 11.9 (6.9)
CC1/2 (%)

a 99.9 (70.2) 99.8 (53.6) 99.2 (45.7) 99.9 (87.3) 99.3 (49.4) 99.9 (51.2)
Unique reflectionsa 39,007 (2881) 19,406 (1211) 38,093 (2762) 68,604 (2906) 42,263 (3109) 61,954 (4501)
Wilson B factor 26.1 23.4 31.2 16.1 36.8 38.4

Refinement
Rcryst (%)

c 16.4 15.3 19.3 19.2 21.3 20.3
Rfree (%)

d 21.3 20.1 24.4 23.2 26.1 25.3
RMSD bond length (Å) 0.011 0.010 0.015 0.010 0.015 0.010
RMSD bond angle (�) 1.70 1.64 1.73 1.66 2.21 1.75
Molprobity score 1.43 1.52 1.80 1.49 1.99 2.11

No. of atoms [Average B factor (Å2)]e

Protein 4369 [35.7] 2001 [28.2] 4408 [47.8] 4462 [26.9] 6288 [61.4] 8349 [57.9]
Water 346 [39.3] 127 [34.8] 169 [45.7] 622 [36.9] 174 [48.6] 252 [46.5]
Zn 2 [24.03] 1 [26.4] 2 [53.0] 2 [16.0] 9 [38.13] 2 [50.5]
ADP-ribose - 36 [20.8] - 72 [17.5] - -
Asn-ADP-ribose - - - - 132 [34.7] -

Ramachandran plot
Favoured (%) 97.4 96.4 96.9 97.3 96.3 96.1
Allowed (%) 2.2 3.6 3.1 2.5 3.2 3.4
Disallowed (%) 0.4 0.0 0.0 0.2 0.5 0.5

a Data for the highest resolution shell are given in parentheses.
b Rsym = S|/-</>|/S/, where / is measured density for reflections with indices hkl.
c Rcryst = S||Fobs| - |Fcalc||/S|Fobs|.
d Rfree has the same formula as Rcryst, except that calculation was made with the structure factors from the test set.
e Data for the average B factor are given in brackets.
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In all structures, the Zn2+ ion is tetrahedrally coordinated
with three metal-coordination residues within the Zn-loop,
while the fourth coordination-contact is exchangeable and is
provided by either ADPr, a water molecule, or a symmetry-
related protomer within the crystal (Fig. 3B). In contrast to
the typical pattern of two closely spaced amino acids (func-
tioning as stable coordination base) followed by a zinc-
coordinating residue some distance away (50, 51),
Zn-Macros have a very short coordination motif of only eight
amino acids and hence present an uncommonly compact zinc
coordination geometry. His118 (SauMacro) coordinates the
Zn2+ ion via the sterically more demanding, but tighter
coordinating, Nd1 nitrogen. Interestingly, despite differences in
the crystal packing between our (P21; PDB 8RSL) and the
earlier reported SauMacro apo (P212121; PDB 5KIV) structure,
the zinc ions in both structures form crystal contacts with a
symmetry-related molecule (Figs. 3B and S3A). These sym-
metry contacts complete the first coordination sphere of the
Zn2+ ion presumably displacing a water molecule, which can
be observed in the MorMacro apo structure, where symmetry
contacts are absent from the active site (w491; Figs. 3B and
S3A). Note that the observed contacts only occur during
crystallization and Zn-Macros and Mfs1 proteins are mono-
mers in solution (see analytical size exclusion chromatography
[SEC] and small angle X-ray scattering [SAXS] data below).

ADPr is tightly coordinated within the active site. Within
the SpyMacro structure, the adenosine base is coordinated via

an Asp92-adenine C6 amino group contact and Phe251
p-stacks with the base (Fig. S2, B and C). The proximal ribose
is rotated out of the active side and the C30 position makes a
conserved contact with Thr213. The C20 OH moiety is solvent
exposed, but the local environment makes it unlikely that a
poly-ADPr chain could be accommodated, thus suggesting
that Zn-Macros can only interact with terminal ADPr or
mono-ADPr moieties. The ADPr diphosphate is primarily
coordinated via residues of the—in MacroD-type enzymes—
identified diphosphate-binding loop (also termed ‘loop 2’),
which is located on the opposite side of the binding cleft
relative to the catalytic loop. Comparison with the earlier re-
ported structure of SauMacro revealed distinct differences in
loop 2: the symmetry interactions are not equivalent in either
structure and takes place via His(-3), which is part of a vector-
derived sequence (this study; PDB 8RSL) or the side chain of
Asp55 (PDB 5KIV), respectively (Fig. S3). These differences
have an impact on residues Cys209-Phe218, which overlap
with the diphosphate-binding loop region (Thr213-Ala217,
SauMacro; Thr269-Gly273, hMacroD1; Fig. S2D). The
diphosphate-binding loop supports ligand binding and can
transition between an open and closed confirmation. In
contrast, the preceding residues are isostructural between our
Zn-Macro and other MacroD-type structures (Figs. 3C and
S2D) but up to 7.7 Å distorted in SauMacro apo (PDB 5KIV).
The latter conformation is incompatible with the binding of
ADPr, thus indicating that our structure shows a more phys-
iological relevant conformation. This is also confirmed by
comparison with the structures of the SpyMacroD:ADPr and
MorMacro:ADPr complexes, whose loop 2’s are in the closed

position and isostructural to earlier reported MacroD-type
structures (Figs. 3C and S2D).

Interestingly, the major difference between the SpyMacro
and MorMacro complex with ADPr is the form of the distal
ribose (Fig. S2, B and C). In SpyMacro, the ribose adopts a
furanose ring with a 20 endo pucker, while the distal ribose in
MorMacro is in the linear form. The linear ribose isomer is
usually disfavored in solution (52) but has been observed in the
Getah virus macrodomain (53). While in the closed sugar
SpyMacro structure, the distal ribose is coordinated via con-
tacts between the C2’’ OH and Asn110 and Asp125 as well as
the C1’’ OH and Zn2+ ion, the ion contact is lost in the linear
ADPr MorMacro structure and C1’’ OH coordinates with
Asn101 and Asp116 (isostructural to Asn110 and Asp125 in
SpyMacro). The open form is further stabilized via new con-
tacts with Ala100 as well as the short 19SES21 stretch in a
symmetry-related molecule (Fig. S6).

In the Foc1Mfs1 structure, the Zn2+ ion is absent from the
macrodomain, while the structural Zn2+ ion coordinated
within the small subdomain of the SirTM domain is still
present (Fig. S4). This absence leads to increased flexibility and
distortion of the Zn-loop within the crystal structure as indi-
cated by the loss of density information for the region (resi-
dues Asn133 to Ile147). The Zn-loop appears to be partially
stabilized by contacts with the 3a-bundle. Among these resi-
dues, Arg42, Asn46, and Asn123 (SauMacro) are among the
most conserved and make backbone contact to the loop and
among each other, thus establishing a tight packing (Fig. S5).
In particular, the contacts made by Asn46 seem to contribute
to the overall stability of the Zn-loop and the exchange of this
residue to cysteine (Cys61 in Foc1Mfs1) within the Mfs1
branch may contribute for the absence of the Zn2+ ion from
the Foc1Mfs1 macrodomain structure (Fig. S5B). We therefore
created macrodomain only construct (Foc1MOD; aa 1–305)
and compared its zinc-binding ability to SauMacro (Fig. 4A).
In line with our structural observation, the amount of zinc
copurified with the WT Foc1MOD protein was reduced by
approx. 75% relative to SauMacro. Surprisingly, C61N muta-
tion further decreased zinc affinity to levels of H144Y, which is
unable to bind Zn2+ ions. However, we observed a weak hy-
drolytic activity for C61N against Glu-/Asp-ADP-ribosylated
PARP1 E988Q (49, 54), which is an established generic
MARylation substrate, while H144Y is catalytically inactive
(Fig. 4B). To determine whether the activity was inherent to
the mutant or due to the presence of residual zinc, either
copurified or as trace contamination of buffer components, we
performed activity assays in the presence of TPEN, a strong
zinc chelator (Fig. 4C). The presence of TPEN inhibited both
WT and C61N, thus suggesting Zn2+ ion in the assay facilitate
Foc1MOD C61N activity. Furthermore, these data suggest that
Zn-loop stabilization is a complex and important feature of
Zn-Macro activity.

Zinc coordination is essential for Zn-Macro activity

While both the direct interaction between ADPr and the
Zn2+ ion and our Foc1MOD observations are a very strong
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indications for a catalytic involvement of the zinc ion, we
investigated the extent of its functional role by mutation of the
adenosine and zinc-coordinating residues as well as deletion of
the 3a-bundle using our earlier described S. aureus operon
system (31). The mutants were analyzed for catalytic activity as
well as zinc-incorporation (Fig. 5). Among these mutants, zinc
coordination is strictly associated with catalytic activity, thus
demonstrating a direct role of the Zn2+ ion in catalysis (Fig. 5).
Deletion of the N-terminal 3a-bundle (DN, aa 1–70) leads also
to the loss of zinc-coordination (Fig. 5), which is consistent
with our structural observation that the Zn-loop is partially
stabilized by the 3a-bundle.

Differences in the Zn-Macro family

To establish whether all Zn-Macro family members have
similar substrate specificity, we performed (ADP-ribosyl)hy-
drolase assays using ADP-ribosylated SpyGcvH-L, which is
MARylated on Asp27 (31), and PARP1 E988Q, which auto-
modifies on several Glu-/Asp-sites (49, 54), as substrates. As
before, SpyMacro WT from the extended operon background
could remove the ADP-ribosyl modification (Fig. 6, A and B).
Surprisingly, neither MorMacro, which arises from a minimal
operon containing only the Zn-Macro/SirTM pair (Fig. 1A),
nor Zn-Macros derived from Msf1 fusion proteins could

demodify SpyGcvH-L (Fig. 6A). In contrast, all Zn-Macros
could demodify Glu-/Asp-ADP-ribosylated PARP1 E988Q
(Fig. 6B). To determine the molecular basis for this difference,
we performed a phylogenetic analysis of the Zn-Macro sub-
family and found that the macrodomain sequences cluster
according to their taxonomic relationship, with archaeal and
fungal sequences forming sister groups. In addition, we
observed distinct clades depending on the genetic context of
the sequences (extended operon, operon, or fusion protein;
Figs. 1A and 6C, and Table S3). Despite this clustering, we
were unable to identify underlying sequence motifs that would
explain the observed substrate selectivity. Earlier we observed
a strong interaction of the lipoylated GcvH-L protein with the
macrodomain of the extended operon (31) and here confirmed
it by analytical size-exclusion chromatography (Fig. S7). Apple
et al. suggested that the lipoyl moiety would be bound inside a
cavity adjacent to the ADPr-binding site (47). However, our
data do not support this binding mode: first, the different
orientation of the diphosphate-binding loop in our apo
structures shortens the cavity, which would sterically hinder
the binding of the dithiolane moiety. Second, upon ADPr bind,
the cavity is closed due to the reorientation of Phe216 (Spy-
Macro) into the active site to help fix the orientation of the
distal ribose within the catalytic centre (Figs. 3C, S2D, and S6A
and B). Next, we investigated the surface charge distribution
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among the different macrodomains and found a positively
charged surface patch adjacent to the active site present in
macrodomains of the extended operon but absent in either
fungal or archaeal Zn-Macros (Fig. 6D).

Canonical GcvH proteins act—via the prosthetic lipoyl
moiety—as reaction intermediate carrier proteins between the
other components (T-, P-, and L-protein) of the glycine
cleavage system (GCV), thus playing a pivotal role in the one-
carbon (C1) metabolism (6, 55, 56). While fungal pathogens
encode the GCV, not all bacteria do and some species, such as
S. pyogenes, encode only the extended operon-derived GcvH-L
protein (6, 31). Therefore, we analyzed whether surface charge
differences between GcvH and GcvH-L proteins could
contribute to the interaction, but such differences could not be
identified (Fig. S8A). All analysed GcvH(-L) proteins show a
comparable negative surface charge. However, as we reported
earlier, GcvH-L lacks a C-terminal a-helix in comparison to
canonical GcvH proteins (Fig. S8, C and D and Table S4). To

investigate whether these features could influence complex
formation, we used AlphaFold 3 to model Zn-Macro:GcvH(-L)
complexes: (i) from the extended operon of S. aureus,
S. pyogenes, and Dolosigranulum pigrum, (ii) Zn-Macro:GcvH
complex from S. aureus and D. pigrum, which both carry a
canonical GcvH in addition to the operonal GcvH-L, and (iii)
Zn-Macro:SpyGcvH-L complexes, with Zn-Macros from
Enterococcus faecalis and Treponema pedis (52.3% [40.7%] and
56.6% [39.5%] sequence similarity [identity], respectively),
which are derived from lone SirTM/Zn-Macro pairs. The three
Zn-Macro:GcvH-L pairs have very high pTM and ipTM values
(>0.9) and show good model-to-model agreement (Figs. 7, S9,
S10 and Table S5). In contrast, the prediction confidence of all
other models is much lower (pTMs <0.78; ipTMs <0.72),
indicating that the overall structures, but not relative subunit
positions, are correctly predicted (Fig. S10 and Table S5). This
is also reflected by an increased expected position error,
decreased pLDDT around the protein:protein interface, and
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inconsistent GcvH(-L) placement (Figs. 7, A and B, and S9).
We observed that the predicted protein–protein interface in
the Zn-Macro:GcvH-L models of S. aureus, S. pyogenes, and
D. pigrum involved the positive patches observed in our crystal
structures (Figs. 6D and 7C). However, the GcvH-L placement
is inconsistent with a catalytic complex as the residue identi-
fied as the ADP-ribosyl acceptor (Asp27) is �27 Å from the
Zn2+ ion (31). On the other hand, Lys56, the lipoyl acceptor
residue, is adjacent to the active side. While the interaction is

close to the previously predicted site, the above-described
cavity is closed in both models. Given the length of the
modification and the preference of the Zn2+ ion to interact
with thiol groups, a direct zinc–lipoyl interaction appears
feasible but would involve a nearly linear stretched lipoyl-lysyl
moiety. Furthermore, we observe that Lys56 does not
contribute to the proposed interaction due to proximity with
Arg172, Lys175, and Arg183 (SpyMacro) or Arg175 and
Arg176 (SauMacro, Fig. 7C). An isostructural placement was
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observed for three of the SauMacro:SauGcvH models. This
placement brings the N-terminal helix of GcvH, which is ab-
sent in GcvH-L proteins, in close proximity to helix a8 in
SauMacro without requiring local conformational changes. In
contrast, DpiGcvH is rotated by approx. 90�, thus placing the
N-terminal a-helix facing away from DpiMacro (Fig. S10).
Among the residues that contribute to the Zn-Macro:GcvH-L
complex, we identified Tyr7, Asp27, and Glu36 as conserved
among GcvH-L proteins (Figs. 7C and S8D). However, the

contribution of Asp27 indicates that a similar complex might
not be able to form when GcvH-L is ADP-ribosylated. To
validate these findings, we enriched the lipoyl-modified form
of SpyGcvH-L by anion exchange chromatography (Fig. S11,
Experimental Procedures) and performed SAXS experiments
using the SpyMacro:lipoyl-SpyGcvH-L complex as well as the
corresponding monomers (Table S6). The predicted complex
conformed well with the observed scatter (Figs. 6, E and F, and
S12). Together our data suggest that (i) a well-defined lipoyl
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binding site is absent, (ii) the Zn-Macro:GcvH-L interaction
occurs primarily via electrostatic surface interactions, (iii) the
interaction is specific to the extended operon-encoded Zn-
Macro:GcvH-L pair, and (iv) the interaction does not represent
a catalytic complex.

Synthesis of N-(ADP-D-ribosyl)-asparagine

To gain further insights into the catalytic complex, we
endeavored to solve the Zn-Macro:substrate complex. Given
the intrinsic linkage between Zn2+ ion coordination and cat-
alytic activity, we were unable to crystallize our protein with
Asp-ADPr–modified GcvH-L or a peptide containing the
modification. Therefore, we synthesized asparagine-ADP-
ribose (Asn-ADPr) as close, nonhydrolyzable isostere for
structural studies.

The synthesis of Asn-ADPr 1 started with the preparation of
an orthogonally protected ribosylated Asn building block 6
and was followed by the introduction of pyrophosphate at the
5-OH of the ribose moiety in 6 using P(V)-P(III) chemistry
(Fig. 8) (57, 58). First, compound 4 was prepared via coupling
of known trifluoroacetimidate ribofuranose donor 2 (59) with
the carboxamide in Cbz-Asn-OBn (3) under the influence of
TBSOTf as an activator in a mixture of dichloromethane and
1,4-dioxane. The glycosylation of 3 with 2 proceeded in

complete a-stereoselective fashion to furnish the desired N-
ribosylasparagine derivative 4 in a good yield. Subjection of
4 to 0.1 equivalent HCl in HFIP (hexafluoro-2-propanol) (58,
60) removed both para-methoxybenzyl protections and sub-
sequent acetylation of the resulting diol-furnished a-anomer 5.
This acidolysis was accompanied by minimal epimerization to
the b-anomer of 5 that was removed by silica gel column
chromatography. Next, the 5-OH of compound 5 was liberated
by HF-pyridine mediated desilylation to obtain 6. Compound 6
was converted into phosphotriester 7 in a high yield by the
treatment with tert-butyl protected phosphoramidite
[(tBuO)2PNiPr2] and activator 1-methylimidazolium chloride
(61) followed by oxidation with tBuOOH. Both tert-butyl (tBu)
protecting groups in phosphotriester 7 were rapidly cleaved by
the treatment with HCl/HFIP. The obtained crude phospho-
monoester was coupled with phosphoramidite 8 under the
activation of 5-(Ethylthio)-1H-tetrazole (ETT), followed by
oxidation mediated by (1S)-(+)-(10-camphorsulfonyl)-oxazir-
idine. Subsequent treatment with diazabicycloundecene (a
strong organic base) removed cyanoethyl group to furnish
partially protected pyrophosphate 9, which was purified by
column chromatography and gel filtration on Sephadex LH-20.
The complete removal of the benzyl (Bn) and benzylox-
ycarbonyl (Cbz) groups was achieved by Pd/C-catalyzed
hydrogenolysis of 9 for 48 h, as evidenced by LC-MS
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analysis. The acetyl (Ac) and benzoyl (Bz) groups in the ob-
tained crude intermediate were removed by treatment with
NH4OH for 24 h to give highly hydrophilic final compound 1
in a 6% yield after purification by HW-40 gel filtration and,
subsequently, ion exchange column chromatography.

Substrate and ligand binding of Zn-Macros

Having synthesized Asn-ADPr, we were able to crystallize
the MorMacro:Asn-ADPr complex (Table 1). The overall
structure closely resembles the ADPr-bound form (RMSD
0.515 Å over 245 Ca). The ADPr moiety placement is iso-
structural to our SpyMacro:ADPr complex with zinc(II) con-
tact made by the Nd2 atom of the modified Asn side chain,
which again leads to a tetrahedral coordination of the Zn2+ ion
(Fig. 9A). Interestingly, the crystal packing appears to be sta-
bilized by two additional, nonphysiological zinc ion complexes:
(i) a protomer-protomer contact is created by an octahedrally
coordinated zinc ion bound by Asn-ADPr and Glu195 from
the neighbouring protomer (linking A-B, B-C, and C-A) and
(ii) a symmetry contact is created by the tetrahedral coordi-
nation of a zinc ion via Glu72, His239, Glu72sym, and
His239sym (linking A-Asym, B-Bsym, and C-Csym); Fig. 9B and
S13). Comparison with the MorMacro structures lacking these
contacts shows that they have no discernible influence on the
local or overall protein conformation.

Earlier studies on MacroD-type enzymes identified two
well-ordered water molecules in the vicinity of the active side:
w426 (MorMacro) coordinated between the a-phosphate,
distal ribose, and a-helix following the catalytic loop (helix a6
in human MacroD2 [PDB 4IQY] and helix a2 in SARS-CoV-2

macrodomain 1 [PDB 7KQP]) and the second, also termed
wPHOS, between the a-phosphate and the distal ribose
(Fig. 9C). In none of our structures, a water molecule iso-
structural to wPHOS could be observed and no new close-
distant water could be identified. The similarities of w426
coordination among known MacroD-type structures suggest
either a structural or catalytic role. Recent ultra-high resolu-
tion and proton scattering data of the SARS-CoV-2 macro-
domain 1 in complex with ADPr showed that w8 (isostructural
to w426; PDB 7KQP) is ideally positioned for a colinear
nucleophilic attack on the sp3 centre of the C1’’ (62). More-
over, the C1’’ centre appears to be strongly positively polarized
due to the direct substrate coordination by the Zn2+ ion as well
as the coordination of the 2’’ OH group by a conserved
histidine-aspartate dyad (Asp116 and His120 in MorMacro;
Figs. 9, B and C).

Discussion

ADP-ribosylation is, like most posttranslational modifica-
tions, a transient signaling event, and the intricate interplay of
establishing transferases and erasing hydrolases is a crucial
factor of the physiological outcome, determining parameters
such as response intensity and signal duration.

Evolution and function of Zn-Macros

To elucidate the physiological role of dynamic ADP-
ribosylation signaling, a mechanistic understanding of the
enzymes involved is required. Today, three superfamilies of
ADPr reversal enzymes have been identified, (i) (ADP-ribosyl)
hydrolases, (ii) macrodomains, and (iii) NAD and ADP-ribose

Figure 9. Coordination of the substrate analog Asn-ADPr within the active site. A, electron density omit map (2Fo-Fc contoured at 1 s) refined in the
absence of any ligand. The final refined protein–ligand structure is shown as reference. B, 2D ligand interaction diagram of Asn-ADPr coordinated within the
active site of MorMOD. Polar and p-p interactions are indicated by red and green dashed lines, respectively, and hydrophobic contacts by yellow lines. Zn1
indicates the macrodomain bound zinc ion, while Zn2 refers to an additional Zn2+ ion only observed in this structure. The diagram was generated using
PoseEdit (https://proteins.plus). C, ribbon-liquorice representation of w426 coordination within the active site of the MorMOD:Asn-ADPr complex. Polar
contacts are given as black dashed lines and the w426-C1’’ (Asn-ADPr) distance as red dashed line. Zn1 coordinated by the Zn-loop is given for orientation.
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linked hydrolases (36, 37, 63, 64). These superfamilies are
distinguished by their individual folds, modes of substrate
binding, and catalytic mechanisms and present unique solu-
tion to perform partially overlapping function, for example,
both macrodomains and ARHs evolved to hydrolyze a variety
of different linkages on proteins and nucleic acids including
Arg- and Asp/Glu-ADPr linkages on proteins (37, 65–71).
This divergence can also be observed within superfamilies,
especially the macrodomains, which serve both as hydrolases
as well as nonenzymatic ADPr “reader” domains (36). How-
ever, even within the superfamilies, catalytic mechanisms can
be divergent. Among the macrodomains, the MacroD-type
family has come into particular focus as it is conserved in all
branches of life as well as several viruses, shows mechanistic
plasticity, and members have high potential as therapeutic
targets (14, 15, 25, 44, 72–75). We previously showed that viral
and human MacroD-type macrodomains differ in key catalytic
residues with human MacroD1/2 showing a GGGxDx3H,
coronavirus nsp3 MOD1 a HGGG, and alphavirus nsp3
MOD1 a GxGxC motif (Fig. S1) (44). The here described Zn-
Macro subfamily also carries a conserved Dx3H motif, how-
ever, has replaced the preceding catalytic loop with a catalytic
zinc-binding motif (Figs. 2B and S1). This is indicative for an
evolution from a MacroD1/2-like ancestor. While the exact
mechanism of ADPr removal remains elusive, the substrate
and water coordination exhibits communalities with b-glyco-
sidase employing an inverting mechanism (76–78). These
glycosidases have two carboxyl groups within their active site,
which act as general acid and base during the reaction. The
acid can donate a proton to the leaving group, while the base
abstracts a proton from a water molecule, which in turn at-
tacks the anomeric center of the sugar. The steps are carried
out in a concerted manner, which leads to the formation of a
transition state with strong oxocarbenium ion-like character.
The absence of a free oxocarbenium ion species is interesting
as oxocarbenium ions are believed to be too unstable to exist
as a free intermediate without further stabilization (79). In
contrast to glycosidases, Zn-Macros have only the carboxyl
group of the classic Asp/His dyad within the active site
(Figs. 2B and S1). While the aspartate induces polarization at
the anomeric C1’’ center, this occurs via coordination of the
2’’OH moiety and not the acetal ester. However, the Zn2+ ion

interacts with the latter and, due to its filled d orbital (d10) and
thus stable oxidation state, can act as Lewis acid during
catalysis (80, 81). With regard to the catalytic base, extensive
structural studies on MacroD-type hydrolases in their ligand-
bound state revealed consistently the presence of a water
molecule interaction with the ADP-ribose a-phosphate, which
was suggested to participate in achieving a strained substrate
conformation (36, 44, 69). Recently, a detailed investigation of
the SARS-CoV-2 nsp3 MOD1 macrodomain showed that this
water molecule is ideally orientated for a nucleophilic attack
on the C1’’ center, which suggest a dual—structural and cat-
alytic—role (62). We could observe an isostructural water
molecule in our structures of SpyMacro and MorMacro in
complex with ADPr and Asn-ADPr, respectively, thus sug-
gesting that the Pa phosphate group could act as Lewis base in
the reaction (Figs. 9C and 10). Note, Zn-Macros lack residues
involved in the stabilization of an oxocarbenium ion inter-
mediate at the distal ribose, hence suggesting either a mech-
anism without formation of such an intermediate or—like in
glycosidases—a transition state with an oxocarbenium ion-like
character without forming the free species. While further in-
vestigations are needed to establish the detailed mechanism,
the here described features strongly suggest a substrate-
assisted, acid-base–catalyzed mechanism with inversion at
the anomeric centre and oxocarbenium-like transition state
(Fig. 10). The unique mode of substrate activation and pres-
ence of the zinc(II) ion has also a profound impact on the
substrate range. Where other MacroD-type macrodomains are
limited to O-glycosidic bonds involving acidic sidechains, Zn-
Macros are the only known hydrolases able to cleave the
S-glycosidic bond of modified cysteines (48). The latter reac-
tion is likely supported by the readiness of the Zn2+ center to
form thiolate complexes, whereas in other MacroD-type
macrodomains, the thiolate is a poorer leaving group than a
carboxylate.

It is interesting to note that beyond the bond specificity, Zn-
Macros appear to differ in their protein substrate selectivity.
While Zn-Macros encoded by the extended operon can
remove the ADP-ribosyl modification from GcvH-L, Zn-
Macros encoded as Zn-Macro/SirTM pairs or fusion proteins
cannot, thus suggesting that the microenvironment of the
ADP-ribosyl modification contributes to the hydrolysis
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Figure 10. Substrate-assisted reaction mechanism of Zn-Macros. Upon substrate binding, the Zn2+ ion of the macrodomains can act as Lewis acid and
induce polarization of the glycosidic bond via coordination of the acetal ester, while at the same time, the Pa phosphate acts as Lewis base to abstract a
proton from a coordinated water molecule (w426; Fig. 9C). This concerted acid/base action allows a nucleophilic attack at the ribose anomeric centre. In the
transition state, the oxygen adjacent to the reaction centre can stabilize the developing positive charge with one of its lone electron pairs leading to the
formation of an oxocarbenium ion-like species.
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reaction. Our data support the idea that the lipoyl modification
contributes to the Macro:GcvH-L interaction via the removal
of the positive lysine charge. However, the interaction in the
absence of the ADP-ribosyl modification does not position the
potentially modified aspartate (Asp27) close to the active site
and GcvH-L can still be demodified in the absence of the
lipoylation mark. This suggests that the lipoylation contributes
to the overall binding energy, for example, by removing the
positive lysine charge from the interaction surface but is not
the only determinant. On the other hand, the absence of
positive interaction surfaces in the other family members of
the Zn-Macro family (having neutral to negative surfaces)
might provide an energetic barrier to GcvH-L binding and
explain the absence of activity from these macrodomains. In
addition, our assays utilizing MARylated human PARP1
E988Q, which is primarily modified on glutamate site with
only minor aspartate contribution (49, 54), may suggest that
glutamate residues with their slightly longer side chain are
more easily accommodated within the active site. Identifying
the physiological substrates for example, for the Mfs1 fusion
protein would not only elucidate their substrate specificity in
terms of attachment residue and sequential context but also
reveal how these proteins contribute to the oxidative stress
response of pathogenic fungi.

Physiological role and therapeutic potential

The different substrate specificities among the Zn-Macros
hint at distinct roles in regulatory pathways. That said, our
previous findings suggest that SirTM/Zn-Macro–regulated
ADP-ribosylation signaling plays a role in the oxidative stress
response of species carrying the extended operon and fusion
enzyme varieties (31). Support for this idea comes from tran-
scriptomic and proteomic data showing a strong upregulation
of the operon or fusion protein upon oxidative stress (82–84)
as well as the association of this modification system with two
oxidoreductases (one luciferase-like monooxygenase and one
old yellow enzyme-type (OYE); Fig. 1A). Moreover, a recent
study showed that S. aureus OrfA, a close homolog to the
operon-encoded OYE (also termed OrfB), is important for
thiol-dependent redox homeostasis (85). Together with our
earlier observation that GcvH-L and OYE interact in a
lipoylation-dependent manner (31), this hints at the possibility
that the lipoyl modification can act as a redox scavenger. In
this model, ADP-ribosylation of GcvH-L would prevent its
participation in reactive oxygen species (ROS) detoxification,
while removal of this modification by the macrodomain allows
contribution of the target protein in ROS scavenging (31). The
generation of ROS is one of the main defence mechanisms of
the innate immune response and crucial for the early clearance
of pathogens. As Zn-Macros have structurally distinct features
and are primarily encountered in pathogenic microorganisms,
they might, therefore, present a novel therapeutic target for
infections caused by these organisms. The continued rise in
AMR makes it paramount to explore novel strategies to
combat both bacterial and fungal infections. Investigation into
the exact physiological role of the Zn-Macro family could help

to better understand microbial ROS evasion/detoxification and
lead to new therapeutic strategies.

Experimental procedures

Plasmid construction

Expression vectors for SauGcvH-L, SauLplA2, SauSirtM,
SauMacro, SpyGcvH-L, SpyLplA, SpySirTM, SpyMacro, and
PARP1 E988Q were described previously (31, 86). For crys-
tallization, SpyMacro was cloned into pET9H3 (31) via NcoI/
BamHI (vector) and PciI/BamHI (SpyMacro) restriction sites.
Protein sequence of M. oralis macrodomain (WP_042691995)
was transformed into the coding sequence and codon opti-
mized for expression in Escherichia coli (K12 strain) using the
JCat web tool (87). The resulting coding sequence including
PagI and BamHI restriction sides was gene synthesized in
pUC58 (Biomatik). Subsequently, the gene was transferred into
pET9H3 for expression using NcoI/BamHI (vector) and PagI/
BamHI (MorMacro) restriction sites. Coding sequences for
Mfs1 fusion proteins were amplified from genomic DNA
(strains: Aspergillus terreus, IMI35576; Candida albicans,
SC5314; Entamoeba dispar, SAW760; F. oxysporum f.sp.
cubense race 1, IMI141109, and Phytophthora nicotinae var.
parasitica, IMI403522) and cloned into pET28a (CalMfs1),
pET21a (EdiMfs1), or pET9H3 (AteMfs1, Foc1Mfs1, and
PnpMfs1). Differences in codon usage in the CalMfs1
sequence were corrected for expression in E. coli by site-
directed mutagenesis. The macrodomain coding sequences
(AteMacro [aa 1–305], CalMacro [aa 1–281], EdiMacro [aa
1–304], Foc1Macro [aa 1–305], and PnpMacro [aa 1–297])
were PCR-amplified and cloned into pET21a using NdeI/
BamHI restriction sites. Point mutations, deletions, and
sequence exchanges were introduced using site-directed
mutagenesis.

Protein expression and purification

For biochemistry

Recombinant proteins were expressed in Rosetta (DE3) cells
grown in lysogeny broth medium supplemented with 2 mM
MgSO4 and appropriate antibiotics at 37 �C to A600 0.6.
Expression was induced with 0.4 mM IPTG and 5 mM zinc
acetate in case of zinc-containing enzymes. Cells were grown
at 30 �C and harvested 4 h postinduction by centrifugation
(4500×g for 15 min at 4 �C). Cell pellets were resuspended in
lysis buffer (50 mM TrisHCl [pH 8], 500 mM NaCl, 10 mM
imidazole) and stored at −20 �C until use. Recombinant His-
tagged proteins were purified by Ni2+-NTA chromatography
(Serva Electrophoresis GmbH) according to the manufac-
turer’s protocol using the following buffers: all buffer con-
tained 50 mM TrisHCl [pH 8] and 500 mM NaCl; additionally,
the lysis/binding buffer contained 10 mM imidazole, the
washing buffer contained 30 mM imidazole, and the elution
buffer contained 500 mM imidazole. Eluted proteins were
dialyzed against storage buffer (50 mM TrisHCl [pH 8],
200 mM NaCl, 1 mM DTT, 5% (v/v) glycerol) overnight at
4 �C and stored at −80 �C until use. For interaction study,
SauGcvH-L was lipoylated in vivo as described before (31).
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Briefly, Rosetta (DE3) cells were grown as described above and
upon induction, supplemented with 100 mM lipoic acid and
grown for 3 h at 30 �C. Further protein synthesis was inhibited
by the addition of 150 mg/ml kanamycin and cells were incu-
bated for an additional 60 min at 30 �C before harvesting and
processing as described above.

PARP1 E988Q was transformed in Rosetta (DE3) cells
grown in 2xYT medium supplemented with 10 mM benza-
mide and expression was induced at A600 0.6 with 0.4 mM
IPTG. Cells were grown overnight at 17 �C and harvested by
centrifugation (4500×g for 15 min at 4 �C). Pellets were
resuspended in lysis buffer (25 mM Hepes [pH 8], 500 mM
NaCl, 0.5 mM TCEP) and lysed by high-pressure homogeni-
zation. The protein was purified using an ÄKTA FPLC system
(Cytiva) at 4 �C via affinity chromatography using a HisTrap
HP column (Cytiva). After lysate application, the column was
washed with lysis buffer supplemented with, first, 50 mM
imidazole and, second, NaCl to a total concentration of 1 M,
followed by the elution of bound protein with the addition of
250 mM imidazole. The eluate was diluted fivefold with
25 mM TrisHCl [pH 7], 100 mM NaCl, 0.5 mM TCEP and
applied to a HiTrap Heparin column (Cytiva) equilibrated in
the same buffer; the protein was eluted with a linear NaCl
gradient from 100 mM to 1000 mM. Fractions containing
PARP1 E988Q were pooled and loaded on a Superdex 200
Increase 10/300 Gl and eluted with 25 mM Hepes [pH 8],
100 mM NaCl, 0.2 mM TCEP. Fraction containing PARP1
E988Q were pooled and stored at −80 �C until use.

For structural analysis

Proteins for crystallization were expressed as described
above. Cell pellets were thawed overnight on ice, supple-
mented with benzonase and lysozyme, and incubated for 1 h at
4 �C on a rotating wheel. Cells were subsequently lysed by
high-pressure homogenization. Lysate was clarified by centri-
fugation (35,000×g, 50 min, 4 �C) and purified using an ÄKTA
FPLC system (Cytiva) at 4 �C via affinity chromatography
using a HisTrap HP column (Cytiva). Affinity-tags of
Foc1Mfs1, MorMacro, and SpyMacro were removed by pro-
teolytic cleavage using HRV3C protease during dialysis over-
night against lysis buffer at 4 �C. Uncleaved proteins and
protease were removed by passing the protein over a GSTrap
HP (Cytiva) and HisTrap HP affinity-column (Cytiva). His-
affinity purified SauMacro as well as cleaved Foc1Mfs1, Mor-

Macro, and SpyMacro were further purified by SEC on a
HiLoad Superdex 75 pg and eluted with crystallization buffer
(Foc1Mfs1: 10 mM Pipes [pH 7], 75 mM NaCl, 1 mM TCEP;
MorMacro: 10 mM TrisHCl [pH 8], 100 mM NaCl, 1 mM
DTT; SpyMacro: as MorMacro containing 1 mM aspartic acid;
SauMacro: 15 mM TrisHCl [pH 8], 125 mM NaCl, 1.5 mM
DTT) or SAXS buffer (25 mM TrisHCl [pH 8], 150 mM NaCl,
2.5 mM TCEP, 3% (v/v) glycerol). Fraction containing target
proteins were concentrated and stored at −80 �C until use.

SauGcvH-L and SpyGcvH-L for interaction study and SAXS
analysis was lipoylated in vivo as described for SauGcvH-L
above. Cell pellets were resuspended in ice cold lysis buffer

containing benzonase and lysozyme and incubated for 1 h at
4 �C on a rotating wheel. GcvH-L containing fraction were
pooled and diluted to approximately 30 mM NaCl content
using buffer A (50 mM TrisHCl [pH 8]) and loaded onto a
HiTrap Q column (Cytiva). Protein was eluted using a 3 to
100% gradient of buffer A and B (50 mM TrisHCl [pH 8], 1 M
NaCl). Gradient was manually interrupted at approximately
12.5% B to allow for better separation of nonmodified and
lipoylated GcvH-L. Finally, lipoylation status of the eluted
proteins was verified by immunoblot and lipoyl-GcvH-L was
pooled and dialyzed against SAXS buffer and stored at −80 �C
until use.

Immunoblot

Enzymatic reactions stopped with NuPAGE LDS sample
buffer (Invitrogen) containing 1 mM DTT (see below) were
electrophoretically separated on NuPAGE Novex 4 to 12% Bis-
Tris gels (Invitrogen) and transferred to nitrocellulose mem-
branes (Bio-Rad) for 10 min using Trans-Blot Turbo Transfer
System (Bio-Rad). The blotted membranes were blocked with
PBS buffer containing 0.1% (v/v) Tween 20 and 4% (w/v)
skimmed milk powder (Marvel, Premier Foods plc) for 1 h at
RT and then incubated with mouse monoclonal anti-6xHis
antibody (Clontech, 631212; RRID: AB_2721905), HRP-
conjugated goat polyclonal anti-GST antibody (ab58626,
Abcam, RRID: AB_880249), rabbit polyclonal anti-lipoic acid
antibody (437695, Calbiochem; RRID: AB_212120), or rabbit
anti-monoADPr anti reagent (MABE1076, Millipore, RRID:
AB_2665469) over night at 4 �C. After washing with PBS
containing 0.1% (v/v) Tween 20, the blots were incubated with
a horseradish peroxidase–labeled anti-rabbit IgG (P0399,
Dako, RRID: AB_2617141) or anti-mouse IgG (P0447, Dako,
RRID: AB_2617137) for 1 h at RT. Detection was performed
using Pierce ECL Western blotting substrate (Thermo Fisher
Scientific) and analysed by luminography using either Hyper-
film ECL (Amersham) or ChemiDoc MP (Bio-Rad).

Enzymatic assay

Lipoylation of GcvH-L was carried out in lipoylation buffer
(50 mM TrisHCl [pH 8], 200 mM NaCl, 5 mM ATP, 2.4 mM
lipoic acid, 1 mM MgCl2, 1 mM DTT) using 2 mM LplA and
4 mM GcvH-L. Reactions were incubated for 30 min at 30 �C.
Subsequent, ADP-ribosylation was carried out by the addition
of 2 mM SirTM in MARylation buffer (50 mM TrisHCl [pH 8],
200 mM NaCl, 1 mM MgCl2, 1 mM DTT) containing 1 mCi
32P-NAD+ and 5 mM unlabeled NAD+ so that GcvH-L con-
centration was decreased to 2 mM. Reactions were incubated at
30 �C for 60 min. For de-ADP-ribosylation, 1 mM radiolabeled
GcvH-L was incubated with 1 mM macrodomain in MAR-
ylation buffer for 1 h at 30 �C. Reaction were stopped by the
addition of LDS sample buffer and analyzed by immunoblot
and autoradiography.

Auto-MARylation of PARP1 E988Q was carried out in
PARP buffer (50 mM TrisHCl [7.5], 50 mM NaCl, 4 mM
MgCl2, 0.2 mM DTT) containing 0.5 mCi 32P-NAD+,
10 mM unlabelled NAD+, and activated DNA (Trevigen) using
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1 mM enzyme for 30 min at 30 �C. The reaction was stopped by
the addition of 10 mM olaparib. De-modification was carried
out by incubation 0.5 mM radiolabeled PARP1 E988Q with
1 mM macrodomain in MARylation buffer for 1 h at 30 �C.
Reactions were stopped by the addition of LDS sample buffer
and analyzed by immunoblot and autoradiography.

Zinc content analysis

To measure the release of Zn2+ ions from the recombinant
protein, concentrations of WT and mutants proteins were
equalized to 20 mM with dilution buffer (50 mM TrisHCl [7.5],
200 mM NaCl, 1 mM DTT). To 100 ml protein dilution were
added 80 ml of denaturation buffer (50 mM TrisHCl [pH 7.5],
200 mM NaCl, 1 mM DTT, 5% (w/v) SDS) and 20 ml diluted
zinpyr-1 (100 mM in 10% (v/v) DMSO). Proteins were dena-
tured by incubation at 95 �C for 10 min, before rapid cooling
on ice. Samples were transferred in to a black 96-well plate and
fluorescence signals were recorded on a SpectraMax M5 plate
reader (Molecular Devices) and data analyzed with GraphPad
Prism (v10.0.2). All samples were measured in triplicates and
background corrected against a buffer-only control.

Analysis of SauMacro:SauGcvH-L interaction by SEC

To analyze the SauMacro:SauGcvH-L complex, proteins
were diluted either alone or as 1:1.2 M mixture to 50 mM
SauMacro and 60 mM SauGcvH-L with TZNK/D buffer
(50 mM TrisHCl [pH 8], 150 mM KCl, 12 mM NaCl, 100 mM
zinc acetate, 2 mM MgCl2, 5 mM DTT) and loaded onto an
Superdex 200 Increase 10/300 Gl (Cytiva) equilibrated with the
same buffer. Eluted fractions were analysed by immunoblot.

Chemical synthesis of Asn-ADPr

The synthesis methodology utilized for synthesizing
N-(ADP-D-ribosyl)-asparagine (Asn-ADPr) was developed on
the basis of previously described chemistries (59). Further
details of the synthesis, variations to the original protocol, as
well as analytical data are given in the Supporting Information.

Small angle X-ray scattering

Experimental and analysis parameters are summarized in
Table S6. Briefly, SpyMacro and SpyGcvH-L were purified as
described above and analyzed either alone or as a 1:1.2 M
complexes. All samples were filtered using a 0.22 mm filter
column (Ultrafree, Durapore polyvinylidene fluoride mem-
brane) before SAXS measurements were performed using the
SEC configuration: capture of the elution peak in a 1.5 mm
quartz capillary flow cell (1.6 mm path length) and data
collected on an Eiger 4M detector (Dectris). The X-ray
wavelength and sample-to-detector distance were 1.024 Å and
4.04 m, respectively, corresponding to an accessible q-range of
0.0045 to 0.34 Å-1. SEC was achieved with an Agilent 1200
series high-pressure liquid chromatography and a Shodex sil-
ica resin KW402.5-4F column equilibrated with three column
volumes of SAXS buffer before each injection. During the
elution, SAXS measurements were made using 3-s exposure
frames. Data were acquired and reduced using the general data

acquisition software (DLS) and DAWN Science [DLS; (88)],
respectively. Data were analyzed using ScÅtter (Bioisis) and
MULCh [University of Sidney; (89)], and ab initio shapes were
determined using MONSA as integrated into the ATSAS
program suit [EMBL; (90, 91)].

Crystallization and X-ray data collection

Crystallization procedures for all here reported structures
are summarized in Table S7. All proteins were purified as
described above and set up in sitting drop SwissCi (MRC) 96-
well 2-drop plates (SPT Labtech) using a 1:1 mother liquor
(ML) to protein ration. Crystals were grown at 292 K within
7 days if not stated otherwise. For crystal seeding, initial crystals
were crushed using the Seed Bead kit (Hampton Research)
according to manufacturer’s recommendations. Crystals were
grown from seed using a 5:4:1 ratio of ML:protein:crystal seed.
Crystals of MorMacro and SpyMacro were cryoprotected by
submersion in 18% (v/v) ethylene glycol in ML for 5 s. Simi-
larly, SauMacro was cryoprotected with 18% (v/v) glycerol in
ML. All crystals were vitrified in liquid nitrogen.

Structure determination and analysis

X-ray diffraction data were collected using synchrotron ra-
diation at Diamond Light Source and at the European Syn-
chrotron Radiation Facility (Table 1). Diffraction images were
processed using the XIA2 platform (92). All subsequent crys-
tallographic calculations were performed with the CCP4 soft-
ware package (93). Phase information were determined using
the molecular replacement method as implemented in
PHASER (94). Density modification was carried out in PAR-
ROT (95), and initial models were constructed using the
automated building program BUCCANEER (95). To refine the
atomic models, successive cycles of manual building were
undertaken in COOT (96) with structure refinement carried
out using REFMAC5 (97). Structures were validated using
MolProbity (98) and Ramachandran statistics. Detailed pro-
cessing and refinement statistics can be found in Table 1.
Structural alignments, analyses, and figure preparation were
conducted using PyMol (Molecular Graphics System, Version
2.3.3, Schrödinger, LLC) and 2D ligand interaction diagrams
were created with PoseEdit as implemented in ProteinsPlus
(https://proteins.plus) (99, 100).

AlphaFold 3: structural modeling

Zn-Macro:GcvH(-L) complexes as well as the full-length
Foc1Mfs1 structure were modeled using the AlphaFold 3
server (https://golgi.sandbox.google.com) (101). The input
sequences were obtained from GenBank DpiGcvH-L
(EHR34890), SauGcvH-L (WP_000731878), SpyGcvH-L
(WP_002984553), DpiMacro (EHR34889), EfaMacro
(EPH94914), SauMacro (WP_000449069), SpyMacro
(WP_011888850), TpeMacro (WP_024467805), DpiGcvH
(EHR32225), and SauGcvH (WP_000290491) or directly
determined in this study Foc1Mfs1 (OR133608). In addition,
the following ligands were included into the models (i) Zn-
Macro containing complexes: one Zn2+ ion and one ADP
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ligand and (ii) full-length Foc1Mfs1 structure: two Zn2+ ions,
one NAD+ and one ADP ligand. Modeling outputs were
analyzed by quality parameters (pLDDT, EAE, piTM, and
pTM) as well as by comparison to our obtained experimental
data (Figs. 7, S9, S14, and Table S5).

Inference of phylogenetic relationships and sequence

similarities

Amino acid sequences of MacroD-type macrodomains from
all kingdoms of life and viruses (Tables S1 and S2), Zn-Macros
(Table S3), and GcvH(-L) (Table S4) proteins were identified
by BlastP searches using known class members. Sequences
were imported into JalView v2.11.2.7 (102) and aligned using
Muscle (103). Sequences were manually screened for quality
and sequences with incomplete catalytic domains (based on
crystallographic data to determine domain boundaries) rejec-
ted. From this sub-set, sequences were selected ensuring
appropriate reflection of sequence diversity and macrodomain
sequences extracted. Final alignments were generated using
the Mafft L-INS-I algorithm (104). Note, the alignment of all
MacroD-type macrodomains excludes the 3a-bundle of the
Zn-dependent macrodomains, whereas this region is included
in the Zn-dependent macrodomain-only alignment. The
evolutionary history was inferred by using the Maximum
Likelihood method and Le_Gascuel_2008 model (105). Initial
tree(s) for the heuristic search were obtained automatically by
applying the Maximum Parsimony method. A discrete Gamma
distribution was used to model evolutionary rate differences
among sites. All positions with less than 95% site coverage
were eliminated, that is, fewer than 5% alignment gaps, missing
data, and ambiguous bases were allowed at any position
(partial deletion option). Confidence levels were estimated
using 500 cycles of bootstrap method. Evolutionary analyses
were conducted in MEGA11 (106).

Alignment representation were created with JalView
v2.11.2.7 (102) and ALINE v1.0.025 (107).

Data availability

All collected atomic coordinates and structure factors have
been deposited in the Protein Data Bank under accession
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