
This is a repository copy of Towards Generating Maintainable and Comprehensible API
Code Examples.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/218769/

Version: Accepted Version

Proceedings Paper:
Alharbi, Seham, Kolovos, Dimitris orcid.org/0000-0002-1724-6563 and Matragkas,
Nicholas (2024) Towards Generating Maintainable and Comprehensible API Code
Examples. In: Proceedings - 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2024. 31st IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER 2024, 12-15 Mar 2024
Proceedings - 2024 IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2024 . Institute of Electrical and Electronics Engineers Inc. , FIN ,
pp. 830-834.

https://doi.org/10.1109/SANER60148.2024.00090

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Towards Generating

Maintainable and Comprehensible

API Code Examples

Seham Alharbi ∗

Department of Computer Science

University of York

York, United Kingdom

saaa528@york.ac.uk

Dimitris Kolovos

Department of Computer Science

University of York

York, United Kingdom

dimitris.kolovos@york.ac.uk

Nicholas Matragkas

CEA-List

Université Paris-Saclay

Palaiseau, France

nikolaos.matragkas@cea.fr

Abstract—One of the most effective resources for learning
application programming interfaces (APIs) is code examples. The
shortage of such examples can pose a significant learning obstacle
for API users. API users desire simple, understandable, self-
contained examples that are easy to reuse in their applications.
However, writing and maintaining code examples that meet the
preferences of API users can be a tedious and repetitive activity
for API developers. To address this issue, we present a new
approach that aims to ease the writing and maintenance of code
examples for API developers, while also improving learnability
and comprehension for API users. The approach automatically
synthesises linear and more comprehensible API code examples
from less repetitive and more maintainable versions by inlining
reusable utility methods. We implement this approach in a
prototype for the Java programming language. We also evaluate
its usefulness in terms of conciseness on a dataset of 600 API
code examples extracted from nine open-source Java libraries.
The results are encouraging and show that the proposed approach
can reduce code repetition and bring a decrease of up to 37%
in the lines of code of the evaluated API code examples.

Index Terms—APIs, code examples, software maintainability

I. INTRODUCTION

The limited availability of high-quality code examples in

Application Programming Interface (API) documentation hin-

ders API learnability, as users often rely on code examples

for initial API understanding [1], [2]. Efforts to tackle this

issue involved proposing systems for mining various resources,

including online sites and test code, to extract API usage

examples [3], [4]. However, only a few approaches have

directly addressed the challenges faced by API developers

and documentation writers in creating and maintaining code

examples [5]. We therefore propose an approach that aims to

tackle the problem of the shortage of code examples from

a different perspective. It intends to assist API developers

in creating and annotating knowledge bases of concise, self-

contained and more maintainable API code examples. These

examples serve as input for generating longer, more linear1 and

easier-to-follow versions of the same examples. Specifically,

∗Seham Alharbi is also affiliated with the College of Computer, Qassim
University, Buraydah, Saudi Arabia.

1Code that does not consist of multiple interdependent methods or classes.

our goal is to reduce duplication in code examples, making it

easier for API developers to write and maintain such examples.

This, in turn, will ultimately increase the number of examples

available to API users and enhance API learnability. Such an

approach is needed since existing research shows that API

developers have remarkably little tool support for effectively

documenting their APIs [6].

Our main assumptions are that:

1) In addition to the known characteristics of effective

code examples [7], API users may prefer linear code

examples (e.g., examples in Listings 1 and 2) because

linear code can eliminate the need for frequent jumps

between method definitions, making it easier to read [8],

comprehend2 and adapt in the users’ codebases.

2) On the flip side, writing such examples, particularly

for large APIs, can be tedious and require substan-

tial effort from API developers, as they may contain

a significant amount of repetitive code that can pose

challenges during their maintenance and evolution [9].

Therefore, developers may prefer writing less linear but

more maintainable examples (e.g., Listing 4).

Thus, our approach provides a middle-ground solution for

automatically synthesising linear API code examples from

less repetitive and more maintainable versions by refactoring

reusable methods.

To assess our synthesis approach, we evaluated 600 API

code examples from nine popular Java projects. Our approach

reduced repetition and example size by over 30% in a good

portion of the evaluated API code examples.

The main novel contributions of this work can be sum-

marised as follows:

• A synthesis prototype for the Java programming language

that can alleviate API developers’ burden of writing

repetitive and costly-to-maintain API code examples, thus

enabling them to produce more examples for API users,

which can enhance API learnability.

2The linear structure of source code could minimise programmers’ eye
movements, which can enhance the comprehension process [8].

• A dataset3 of real-world API code examples extracted

from widely-used open-source Java projects, along with

identified duplicate code found among them.

• An evaluation of the proposed synthesis approach that

shows that the approach can bring a fair amount of

reduction in code repetition.

• Some observations that suggest future extensions and

evaluation.

II. APPROACH OVERVIEW

To illustrate our approach, let us consider two real-world

code examples (Listings 1 and 2) from the open-source Vonage

Voice API [10]. Listing 1 demonstrates sending dual-tone

multi-frequency tones to an active call, while Listing 2 shows

playing a text-to-speech message to a specified phone call.

1 final String ANSWER_URL = "https://nexmo-community.../long-tts.json";

2 CallEvent call = client

3 .getVoiceClient()

4 .createCall(new Call(TO_NUMBER,VONAGE_NUMBER,ANSWER_URL));

5

6 Thread.sleep(20000);

7

8 final String UUID = call.getUuid();

9 final String DIGITS = "332393";

10 client.getVoiceClient() .sendDtmf(UUID, DIGITS);

Listing 1. Vonage API Example (1) - SendDtmfToCall.java.

1 final String ANSWER_URL = "https://nexmo-community.../silent-loop.json";

2 CallEvent call = client

3 .getVoiceClient()

4 .createCall(new Call(TO_NUMBER, VONAGE_NUMBER, ANSWER_URL));

5

6 Thread.sleep(5000);

7

8 final String UUID = call.getUuid();

9 final String TEXT = "Hello ... ";

10 client.getVoiceClient() .startTalk(UUID, TEXT, var);

Listing 2. Vonage API Example (2) - SendTalkToCall.java.

While the above code snippets illustrate two distinct API

usages, they are very similar in structure and contain dupli-

cated code. The only code statements that differ are those

highlighted in the same colour in both snippets. Moving

repetitive code to a reusable/utility method (e.g., createCallEvent in

Listing 3) would make the two API code examples much more

modular and maintainable. However, following and reusing the

resulting non-linear code examples (e.g., Listing 4) might not

be straightforward for API users because users may have to

jump between method definitions and copy and paste multiple

methods instead of a single, linear, self-contained example.

1 public void createCallEvent(String URL, long threadMillis, String string,

boolean isTalk) {

2 final String ANSWER_URL = URL;

3 CallEvent call = client

4 .getVoiceClient()

5 .createCall(new Call(TO_NUMBER, VONAGE_NUMBER, ANSWER_URL));

6

7 Thread.sleep(threadMillis);

8

9 final String UUID = call.getUuid();

10 final String STRING = string;

11

12 if (isTalk) {

13 client.getVoiceClient().startTalk(UUID, STRING,

TextToSpeechLanguage.AMERICAN_ENGLISH);

14 } else {

15 client.getVoiceClient().sendDtmf(UUID, STRING);

16 }

17 }

Listing 3. Utility Method.

3All implementation code, data, and R scripts are available in our replication
package at: https://figshare.com/s/ac8128c17420fa9c5d2e

The objective of our synthesiser is to empower API devel-

opers to minimise the amount of repetition when writing API

usage examples by allowing them to encapsulate shared be-

haviours into reusable utility methods and then automatically

refactor and inline the calls to these utility methods to produce

simple and linear API code examples.

1 public class SendDtmfToCall {

2 public static void main(String[] args) {

3 configureLogging();

4 // ... some code

5 createCallEvent("https://nexmo-community.../long-tts.json", 20000, "332393

", false);

6 }

7 }

Listing 4. Documentation Method - Vonage API - SendDtmfToCall.java.

The proposed linear code synthesiser works by automat-

ically refactoring and inlining the calls to utility methods

to produce simple, linear, correct and dead-code-free API

code examples. It comes in the form of an Eclipse plug-

in to facilitate its use. It takes as input a single non-linear

API code example (i.e., a Java source code file)4, which then

passes through four main stages: (1) code analysis, (2) code

transformation, (3) code processing and (4) code generation.

The following sections explain each of these stages in more

detail.

A. Code Analysis

The proposed synthesiser relies on static analysis of anno-

tated source code and abstract syntax tree (AST) parsing. API

developers must use two main Java annotations: @Documentation

for methods illustrating API usage and containing non-linear

code, and @Utility for methods encapsulating reusable code. A

visitor then analyses, marks annotated methods, and locates

calls to utility methods, along with their bindings found in the

definitions of the marked methods for later inlining. The Java

source code parsing and analysis are done using Eclipse JDT.

B. Code Transformation

A MethodDeclarationTransformer takes each documentation method

(e.g., the main method in Listing 4) found in the under-

processing Java source code file and automatically inlines all

the calls to utility methods found in its definition (e.g., the

method call at line 5 in Listing 4). This transformer works

recursively, meaning that it programmatically performs the

following steps: (1) it traverses the documentation method,

(2) inlines the first encountered instance of a utility method

call and all other nested calls within the invoked method, (3)

it updates the AST node of the documentation method once

the inlining is complete, (4) it updates the entire example

source code in preparation for the next inlining of utility

method invocations (if any exist), and (5) it repeats all previous

steps for the next encountered utility method call, this time

on the updated version of the example. It also manages

potential errors that developers might make, such as annotating

a method with both annotations or calling a documentation

method within a utility method. In such cases, the synthesiser

does not inline and generate code.

4Select a Java source code file → right-click → synthesise code.

The transformer utilises the refactoring capabilities of

Eclipse JDT (i.e., InlineMethodRefactoring) to inline utility method

calls. The rationale for choosing JDT is its ability to prevent

syntax errors during code transformation, thus generating cor-

rect and executable code. In addition, the transformer complies

with several JDT constraints, such as the prevention of inlining

calls to recursive methods, multi-return methods and methods

used as parameters for other methods. Another reason for

utilising Eclipse JDT, and not using a template language, is

because we wanted the more condensed examples (i.e., non-

linear examples) used in our approach to be valid Java code

so that API developers can benefit from error checking, code

completion, and other similar features. However, each of these

two approaches has its strengths and weaknesses.

C. Code Processor and Generator

The code processor refines the resulting linear code by

detecting and removing redundant elements such as temporary

variables and dead code that could be generated during the

inlining process done by the code transformer. Once all

documentation methods are inlined and refined, including the

removal of unnecessary import statements and annotations, the

entire example is sent to a linear code generator. This generator

generates and stores the linear API code example in a separate

package within the source folder of the active Java project.

III. PRELIMINARY EVALUATION

We aimed at answering the following research questions

(RQs):

RQ1 How many API code examples contain duplicated

code that can be eliminated using the proposed

approach?

RQ2 How much reduction of duplicated code is achieved

by the proposed approach?

RQ3 How often are the duplicated code fragments re-

peated across the API code examples?

To answer these RQs, we followed the five-step evaluation

process explained below.

A. Data Collection

To evaluate our approach, we had to obtain a dataset of self-

contained and compilable API code examples grouped by their

associated Java libraries. These examples need to be explicitly

provided or referenced by the API developers to illustrate

specific API usage. This was crucial as our evaluation focused

on understanding the current state of API code examples and

measuring code repetition. Existing datasets like CodeSearch-

Net5 and code from search engines like SearchCode6 were

unsuitable for our criteria since they were extracted from

various open-source projects or online sites, such as Stack

Overflow [11].

To build a suitable dataset, we collected API code examples

from popular and open-source Java projects available on

5https://github.com/github/CodeSearchNet
6https://searchcode.com

GitHub. We based this library selection on the following

criteria: (1) the popularity (i.e., 50 starts on GitHub or used

by 30 other projects) and activity level (i.e., recent commits

and at least five contributors) of the library, (2) the availability

of complete and compilable code examples in its repository

and (3) its domain.

To extract GitHub projects, we utilised GitHub Search7.

Examples were sourced from the official library website,

the ‘samples’ or ‘examples’ folder in the library’s GitHub

repository, or external tutorials linked in the library’s GitHub

page description. Seven Java libraries from different domains

were randomly selected, along with two standard Java APIs

(JDBC and Java Applets) that are frequently used in existing

literature [12]. This selection strikes a balance between the

generalisability of our findings and the effort required for

rigorous manual evaluation of the examples.

B. Data Cleaning

Through this step, we tried to reduce noise in each subset

(Java library) of the dataset and focus the analysis on relevant

API usage examples only. Thus, we removed unnecessary

testing code and identical copies, as well as all the Java

source code files that had no behaviour or did not demonstrate

a certain usage of an API. These included model classes,

interfaces, package-info files, class files with minimal code

(e.g., a toString() method) and class files that were only created

to be parsed or manipulated.

C. Similarity Detection

In this step, we individually examined subsets, searching

for code examples with near-duplicate code suitable for our

proposed approach. By utilising the JPlag code similarity

detector8, we conducted pairwise comparisons of source code

files to identify similarities. JPlag is capable of detecting exact

and modified code clones at different granularities and offers

a web-based interface for result visualisation.

Subsequently, we manually inspected the identified clones,

assessing their potential as input for our code synthesiser. This

inspection focused on determining whether duplicate code

could be moved into a separate utility method and substituting

it with a method call for the subsequent automated refactoring

by our synthesiser.

D. Examples Rewriting

We took copies of the API code examples that contained

applicable similarities (i.e., similarities that can be eliminated

using our synthesis approach) and manually rewrote them

based on the structure of our proposed synthesis approach.

This means that we factored out repetitive code in a set of

utility methods, called these methods wherever needed and

added the required Java annotations (i.e., @Documentation and @Utility

). We maintained the same coding style used in the original

examples.

7https://seart-ghs.si.usi.ch
8https://github.com/jplag/JPlag

TABLE I
STATISTICS OF THE SELECTED JAVA LIBRARIES AND PACKAGES.

Library Source of Examples Stars Used by
of Examples

(raw)

of Examples

(after cleaning)

≈ Median Example Size

(in LOC)∗

Vonage GitHub 82 - 98 98 29

Jackson GitHub and LogicBig 8.1k 25.4k 179 81 20

JAXB GitHub 165 5.5k 80 49 23

Eclipse Epsilon Epsilon’s Git Repository - 256 18 16 32

JavaParser GitHub 4.6k 558 29 20 22

Java Applet Oracle Java Documentation - - 20 17 40

JDBC Oracle Java Documentation - - 19 19 113

gRPC GitHub 10.4k 3.9k 56 45 70

PDFBox GitHub 1.9k 646 101 84 86

Total 600 429
∗Lines of code (LOC).

E. Examples Evaluation

We evaluated the conciseness of the rewritten examples and

measured the reduction in code repetition by comparing them

to their original versions. This was done by computing the

relative percentage decrease (Formula 1) in the non-comment,

non-blank lines of code (LOC) in each API code example.

LOC is calculated using cloc.9

PercentageDecrease =

LOCOriginal −LOC Rewritten
LOCOriginal

× 100% (1)

IV. RESULTS AND DISCUSSION

As listed in Table II, four out of the nine scanned Java

projects contained over 40% API code examples with near-

duplicate code that could be factored out and reduced using

our approach. The duplicate code manifested several patterns,

such as similar interface implementation and type instantiation.

The mean percentage of such examples (across all evaluated

Java libraries) is 36.33% and the median percentage is 36%.

These results show that the percentage of examples contain-

ing repetitive code varied among the evaluated Java libraries,

thus making it not possible to conclude which library domain

is likely to benefit more from our proposed approach. This

is true since the repetitiveness in code examples is highly

impacted by the coding style API developers prefer when

writing code examples.

Answer to RQ1: The percentages of the API code examples that
contained duplicate code that could be eliminated using the proposed
approach ranged between 18% and 56% in the selected Java libraries.

It is also worth mentioning that four of the selected Java

libraries already contained a set of utility methods for some

repetitive functionalities, which could indicate API developers’

desire to reduce repetitiveness in API code examples.

As shown in Table II and illustrated in Figure 1, the median

of the percentages of decrease in the LOC of many of the

evaluated API code examples are scattered between 15% and

37% in four of the selected Java projects. Precisely, more than

50% of the evaluated API code examples in three of these Java

libraries received more than a 15% decrease in LOC, whereas

in JAXB only 33% of the examples obtained such a decrease.

9https://github.com/AlDanial/cloc

0

10

20

30

Applet Epsilon gRPC Jackson JavaParser JAXB JDBC PDFBox Vonage

%
 D

e
c
re

a
s
e

 i
n

 L
O

C

Fig. 1. Distributions of the Evaluated API Code Examples and the Percentage
Decrease in their Lines of Code (LOC). Each Boxplot Aggregates the API
Examples of each Java Library.

TABLE II
SUMMARY OF THE EVALUATION RESULTS.

Library % Applicable
% Decrease

(in LOC)

of Utility

Methods

of Utility Calls

(Total)

Vonage 18 (18%) 15% 9 22

Jackson 29 (35%) 19% 4 34

JAXB 18 (36%) 14% 2 28

Eclipse Epsilon 9 (56%) 26% 3 11

JavaParser 4 (20%) 8% 3 6

Java Applet 8 (47%) 11% 5 28

JDBC 8 (42%) 9% 4 18

gRPC 15 (33%) 3% 4 19

PDFBox 34 (40%) 7% 9 60

Answer to RQ2: The proposed linear code synthesis approach brought
more than a 30% decrease in LOC in five of the nine evaluated Java
projects.

The significance of this evaluation lies not only in reducing

duplicate code within a single example but also in assessing

the frequency of duplicate code across the entire subset

(column four in Table II). For instance, in the JDBC subset,

while eliminating some duplicate code fragments may not

significantly reduce individual example sizes, these fragments

are recurrent throughout the entire subset. Therefore, for RQ3,

we examine how often a repetitive code fragment appears

across other API examples within the same Java library. This

analysis could indicate the API developers’ efforts in writing

repetitive code examples.

Answer to RQ3: Overall, a substantial number of duplicate code
fragments were recurrent in many of the API code examples subsets.

V. LIMITATIONS AND OBSERVATIONS FOR FURTHER

EXTENSIONS

Template-based code synthesis: As discussed in Section

II, for a practical reason (i.e., Java syntax), the current version

of our prototype could not accommodate all the detected

patterns of code similarity. Therefore, an extension that allows

a template-based linear example code synthesis is required to

address this limitation.

Interactive example generation: An extension involves

allowing API users to specify values interactively for the API

code example generator using a new annotation (@DocGen). This

prompts users to input values as command-line arguments, en-

hancing the search for relevant examples, and thus promoting

API learnability.

VI. THREATS TO VALIDITY

To enhance construct validity, we manually reviewed

JPlag’s detection results to identify additional instances of

undetected similarity. Also, we used an automated tool for

calculating LOC in API code examples to minimize subjective

bias and human error.

To mitigate internal validity threats, we maintained con-

sistent coding and formatting styles across API code example

versions (original and rewritten). This is crucial as the program

size metric used is highly sensitive to code formatting.

To reduce external validity threats, we selected code ex-

amples based on specific criteria, spanning diverse domains

in Java. However, our approach would benefit from further

evaluation with a larger and more diverse dataset.

VII. RELATED WORK

To our knowledge, prior studies have not empirically ex-

plored the prevalence of duplicated code in code examples.

Nevertheless, van Bladel and Demeyer [13] showed that test

code, which is somewhat similar to code examples, contains

more than double the redundancy found in production code.

Such duplication has been proven to negatively impact pro-

gram maintainability and comprehensibility [14].

Various methods have been proposed to compensate for the

shortage of code examples, including extracting code from

online sources [3], using publicly available unit tests [4], [5]

and improving code example format and maintainability [15].

Unlike these approaches, our method enables API developers

to write structured, maintainable code examples. Its input is

manually crafted code with specific annotations, rather than

code that was not originally written to document APIs. This

makes it particularly beneficial for newly released APIs with

no existing client code to mine.

VIII. CONCLUSION AND FUTURE WORK

We proposed an approach to address the issue of the

repetitiveness of API code examples. This synthesiser aims

at helping API developers with writing and maintaining less

repetitive and more maintainable code examples while also

keeping the examples linear and thus easy to follow for API

users. Our evaluation with real-world API examples showed

substantial reductions in code repetition and example size.

For future work, we plan to validate our assumptions

through user studies, confirming that (1) linear code enhances

comprehensibility and reusability for API users, and (2) API

developers would prefer to use our proposed approach to

minimise duplicated code. Additionally, we aim to implement

the extensions discussed in Section V and make our approach

applicable to other strongly typed programming languages.

REFERENCES

[1] M. P. Robillard, “What makes APIs hard to learn? answers from
developers,” IEEE Software, vol. 26, no. 6, pp. 27–34, 2009.

[2] M. Meng, S. Steinhardt, and A. Schubert, “Application Programming
Interface Documentation: What Do Software Developers Want?” Journal

of Technical Writing and Communication, vol. 48, no. 3, pp. 295–330,
2018.

[3] J. Kim, S. Lee, S. W. Hwang, and S. Kim, “Enriching documents
with examples: A corpus mining approach,” ACM Transactions on

Information Systems, vol. 31, no. 1, 1 2013.
[4] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang, “Mining API usage

examples from test code,” in 30th International Conference on Software

Maintenance and Evolution, 2014, pp. 301–310.
[5] S. M. Nasehi and F. Maurer, “Unit tests as API usage examples,” in 26th

IEEE International Conference on Sofware Maintenance in Timisoara,

Romania, 2010.
[6] K. Nybom, A. Ashraf, and I. Porres, “A systematic mapping study on

API documentation generation approaches,” in 44th Euromicro Confer-

ence on Software Engineering and Advanced Applications, SEAA, 2018,
pp. 462–469.

[7] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
IEEE International Conference on Software Maintenance, ICSM, 2012,
pp. 25–34.

[8] N. Peitek, J. Siegmund, and S. Apel, “What drives the reading order of
programmers? an eye tracking study,” in 28th International Conference

on Program Comprehension (ICPC ’20). ACM, 10 2020, pp. 342–353.
[9] B. Hu, Y. Wu, X. Peng, J. Sun, N. Zhan, and J. Wu, “Assessing Code

Clone Harmfulness: Indicators,Factors, and Counter Measures,” in 2021

IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER), 2021, pp. 225–236.
[10] “Vonage Quickstart Examples for Java,” 2023. [Online]. Available:

https://github.com/Vonage/vonage-java-code-snippets
[11] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are

code examples on an online Q&A forum reliable?: A study of API
misuse on stack overflow,” in ACM/IEEE International Conference on

Software Engineering, 2018, pp. 886–896.
[12] C. Treude and M. P. Robillard, “Augmenting API documentation with

insights from stack overflow,” in International Conference on Software

Engineering, vol. 14-22-May-, 2016, pp. 392–403.
[13] B. van Bladel and S. Demeyer, “A comparative study of test code clones

and production code clones,” Journal of Systems and Software, vol. 176,
6 2021.

[14] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
Empirical Analysis of the Distribution of Unit Test Smells and Their
Impact on Software Maintenance,” in 2012 28th IEEE International

Conference on Software Maintenance (ICSM). IEEE, 2012, pp. 56–
65.

[15] M. Nassif, Z. Horlacher, and M. P. Robillard, “Casdoc: Unobtrusive
Explanations in Code Examples,” in 30th International Conferenceon

Program Comprehension (ICPC ’22). Virtual Event, USA. ACM, 2022.

	Introduction
	Approach Overview
	Code Analysis
	Code Transformation
	Code Processor and Generator

	Preliminary Evaluation
	Data Collection
	Data Cleaning
	Similarity Detection
	Examples Rewriting
	Examples Evaluation

	Results and Discussion
	Limitations and Observations for Further Extensions
	Threats to Validity
	Related Work
	Conclusion and Future Work
	References

