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ABSTRACT

Context: Application Programming Interface (API) code examples

are an essential knowledge resource for learning APIs. However, a

few user studies have explored how the structural characteristics

of the source code in code examples impact their comprehensibility

and reusability.

Objectives:We investigated whether the (a) linearity and (b) length

of the source code in API code examples affect users’ performance

in terms of correctness and time spent. We also collected subjective

ratings.

Methods: We conducted an online controlled code comprehension

experiment with 61 Java developers. As a case study, we used the

API code examples from the Joda-Time Java library. We had partici-

pants perform code comprehension and reuse tasks on variants of

the example with different lengths and degrees of linearity.

Findings: Participants demonstrated faster reaction times when

exposed to linear code examples. However, no substantial differ-

ences in correctness or subjective ratings were observed.

Implications: Our findings suggest that the linear presentation

of a source code may enhance initial example understanding and

reusability. This, in turn, may provide API developers with some

insights into the effective structuring of their API code examples.

However, we highlight the need for further investigation.

CCS CONCEPTS

· Software and its engineering → Documentation; Program-

ming by example; · Human-centered computing → Empirical

studies in HCI .
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1 INTRODUCTION

Working through Application Programming Interface (API) code ex-

amples has been proven to be the most preferred learning strategy

for both beginner and experienced API users [16]. Surprisingly, lit-

tle is known about how the different source code structures in these

examples affect their comprehensibility and reusability. Further-

more, existing work (discussed in Section 5) appears to be focused

on examining the impact of several source code characteristics on

comprehension only in the context of generic software. Therefore,

to fill this gap, the study presented in this paper focuses specifi-

cally on API code examples. Moreover, unlike existing studies, we

examine different source code constructs that illustrate the same

API usage and functionality, narrowing the evaluation focus to the

constructs’ impact on comprehension. We also assess an additional

concept, which is the impact of the examined source code structures

on the reusability of API code examples.

In this study, we are particularly interested in exploring the

impact of two source code aspects: the degree of linearity and

length. Linear source code refers to code that can be read primarily

in a sequential order without interference from interdependent

methods or classes. Considering the absence of jumps between

method definitions in such a code, we hypothesise it may be easier

to comprehend. In addition, linear API code examples may be easier

to reuse and adapt into one’s codebase, as they typically contain

a single self-contained method that can be copied and edited, as

opposed to non-linear code examples that involve multiple methods.

Through our study, we aim to help API developers understand

how to structure their API code examples more effectively, thereby

enhancing the examples’ comprehensibility and reusability. This,

in turn, would promote the learnability of their APIs.

This work is a part of larger research [3] in which we develop

tools and techniques to enhance the maintainability and compre-

hensibility of API code examples. All data collected or used in this

study is available in our replication package.1

2 METHODOLOGY

2.1 Research Questions

We intended to answer the following research questions:

RQ1: In terms of correctness and time spent, how does the

linearity of an API code example impact a programmer’s

performance in tasks that require code comprehension?

1Replication package: https://figshare.com/s/52e11ece2f39bac64bcb
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RQ2: What effects does the length of a linear API code exam-

ple2 have on its comprehensibility and reusability?

RQ3: Does the degree of linearity in a non-linear API example

affect its comprehensibility and reusability?

2.2 Study Design

This study was conducted online to allow access to a large and

more diverse pool of participants. We utilised Gorilla [1], a widely

used online experiment builder, which provided all the features we

needed in our study (randomisation, counterbalancing presentation

of formatted source code, accurate reaction times and integration

with participant recruitment platforms). We recruited Java develop-

ers from Prolific3 ś a participant recruitment platform for online

research ś and assigned them to two main groups: linear vs non-

linear (between-subjects). Each group consisted of two sub-groups

that correspond to the treatment categories shown in Table 1. Par-

ticipant assignment to groups was fully randomised and balanced,

with a 1:1 ratio. Each participant completed two code comprehen-

sion and reuse tasks from the same treatment category (highlighted

in the same colour in Table 1). The order in which each partici-

pant received tasks was also randomised to eliminate any potential

order effects. Ethical approval was obtained before the study was

conducted.

2.3 Independent Variables

We considered a single independent variable: the source code struc-

ture of API code examples. Two primary source code factors were

systematically varied: code linearity, which is manipulated using

the source code linearity metric (i) proposed by Peitek et al. [17];

and code length, which is varied by adjusting the number of lines

of code (LOC). As shown in Table 1, we combined these two factors

and generated four treatment categories: linear-short, linear-long,

and non-linear with varying levels of linearity (𝑖), ranging from

(10.00 < 𝑖 ≤ 15.00) to (15.00 < 𝑖 ≤ 20.00). These selected values

reflect a diverse spectrum of code linearity.

2.4 Dependent Variables

We measured three dependent variables: reaction time, correctness

and subjective rating.

Time Duration Marking. For the comprehension phase, reaction

time was defined as the amount of time that elapsed between a

participant’s initial view of an API code example and submission

of their overall comprehension rating Similarly, for the code-reuse

phase, reaction time was defined as the time between a participant’s

first view of the required code-reuse task and the submission of

their solution code.

Judging Correctness.We ensured marking consistency by defin-

ing a set of correctness categories and criteria4: correct (A), almost

correct (B), partially correct (C), incorrect (D) and absent (F).

2Please refer to our (replication package→ examples) for some sample code illustrating
linear and non-linear API code examples.
3https://www.prolific.com
4Detailed criteria are available in our replication package.

2.5 Participants

Pilot. To validate the study design, we conducted a pilot with four

participants (average age 28.5 ± 9.5; average years of Java program-

ming 3.2 ± 1.5). Based on the results, we reduced the number of

tasks assigned to each participant from four to two to minimise the

experiment’s overall duration. We also changed the online IDE5

used due to its slow execution time and enhanced the wording of

the code optimisation question. The data collected in the pilot study

was not used in the final analysis.

Pre-screening survey. In addition to the pre-screeners provided

by Prolific, we created a separate programming knowledge survey

to assess participants’ programming knowledge before they partici-

pated in the study. This was essential since recent research revealed

that, while recruitment platforms, such as Prolific, greatly mitigate

self-selection bias and some security issues, their pre-screeners may

not always be reliable [7, 18, 19]. In this survey, we used the basic

knowledge questions and time limit recommended by Danilova et

al. [7]. Participants who correctly answered all the questions within

the time limit were manually invited to participate in the study.

Study.We recruited 61 Java developers from 14 countries with

varying levels of programming experience. Only 19 (31%) partici-

pants stated that they previously used the Joda-Time Java library.

Among them, only eight (42%) said that they used it more than once,

and none of them reported regular usage. The participants’ prior

programming experience was assessed using a validated question-

naire that is based on self-estimates [8, 22]. Each participant was

compensated £10 for their time and effort. Additional information

about the participant demographics is shown in Table 2.

2.6 Material

API code examples.We chose the Joda-Time6 Java library because it

addresses a well-known concept (i.e. date and time handling). Joda-

Time met our selection criteria of: 1) not requiring prior domain

knowledge that would pose an unnecessary challenge to partici-

pants; 2) being well-documented and 3) not being too popular so

that an average Java developer would not necessarily be familiar

with it. Furthermore, we intended to utilise the code examples avail-

able on the Joda-Time documentation page.6 However, we found

that these examples were not complex enough. Thus, we decided

to create our own examples.

As shown in Table 1, we developed four API code examples,

each of which demonstrated a distinct usage of Joda-Time. This

variation of examples was important to minimise the risk of any

potential learning effect arising from within the examples. We then

created linear and non-linear versions of each example. We strove

to make these examples look as natural as possible by: 1) properly

documenting them and 2) letting them depict real-world scenarios

such as data manipulation or meeting scheduling. For the non-

linear versions of the examples, we refactored the linear version

by extracting some functionalities into a set of utility methods and

replacing the extracted code with method calls using the extract

method refactoring technique. Examples within the same treatment

category were relatively comparable in terms of length, complexity,

degree of linearity and the number of utility method calls.

5https://replit.com
6https://www.joda.org/joda-time/
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Table 1: API code examples and their variants, metric values and study results. Variants sharing the same colour belong to the

same treatment category. The imbalance in the number of responses (N) between two variants of the same example is due to

our exclusion of responses with inaccurately reported break times.

API
Code Example

Variant Metrics N Correctness Comprehension Reuse

LOC Complexity Linearity (i)
# Method
Calls

Median
Reaction Time

p-value∗
Median

Reaction Time
p-value∗

Date Example Linear 31 7 0.00 0 17 15 (88%) 44s
0.01

6m 11s
0.36

Non-linear 14 1 12.95 5 13 8 (62%) 1m 38s 7m 14s
Chronology Example Linear 25 4 0.00 0 18 10 (56%) 43s

0.03
3m 37s

0.10
Non-linear 11 1 11.41 4 14 13 (93%) 1m 49s 6m 15s

Duration Example Linear 35 7 0.00 0 16 9 (56%) 3m 31s
0.60

16m 18s
0.40

Non-linear 21 2 19.47 6 12 5 (42%) 2m 17s 24m 59s
Interval Example Linear 46 7 0.00 0 14 10 (71%) 1m 14s

0.33
9m 21s

0.06
Non-linear 33 5 19.43 6 12 9 (75%) 2m 49s 12m 56s

Overall Linear 65 44 (68%) 58s 7m 17s
Non-linear 51 35 (69%) 1m 50s 10m 13s

∗ MannśWhitney U test

Table 2: Participant demographics.

Category n=61

Student 43 (70%)
Professional Developer 18 (30%)
Programming Experience (in Years) 5.9 ± 3.3
Java Programming Experience (in Years) 3.2 ± 2.2
Familiarity with Joda-Time 19 (31%)
Male 54 (89%)
Female 7 (11%)
Age (in Years) 25.4 ± 6.1

Tasks.Oftentimes, when API users turn to code examples to learn

a new API, they typically have a specific problem in mind. They

are hoping that the code in the example they are reviewing will

be reusable. If this is possible, they copy and paste the example,

then modify its source code by adding or deleting statements to

match their needs [10, 16]. In our study, we wanted to simulate this

behaviour. Therefore, each code-reuse task had two parts: 1) code

modification, in which participants were required to make changes

to address a specific problem; and 2) code optimisation, in which we

asked them to remove any unnecessary code that did not directly

contribute to their task solution. The tasks were generally easy

and designed to be solved with a few edits. Each API code example

had a unique task that remained the same for both versions of the

example.

2.7 Experiment Procedure

After obtaining their consent, we asked the participants to complete

a demographics questionnaire. Subsequently, each of them was

randomly assigned two code examples from the same treatment

category. This means that each participant completed two distinct

code-reuse tasks.

We designed each task to be completed in four sequential parts.

The first was the comprehension part, in which participants were

asked to review the example and rate their own understanding. The

next part pertained to instructions, in which participants were given

a link to an online IDE7 that contained a Java project of the example,

7https://www.jdoodle.com

with Joda-Time imported and ready to use. Participants were also

instructed on how to download the example if they preferred using

their own IDE. The third part was the code-reuse task, in which

participants answered a two-part question (as explained in Section

2.6) and pasted their solution code in a given text box. The final part

involved post-task questions, in which participants were asked to

rate how difficult it was to reuse the code, whether they employed

the provided online IDE or their own, and report any break time (if

any was taken).

We only measured the time spent on two of the four parts: com-

prehension time (part 1) and reuse time (part 3). The rationale

for separating the comprehension and reuse of the same code ex-

ample was to reduce participants’ use of the ‘as-needed’ program

comprehension strategy [9, 15, 24].

2.8 Data Analysis

We manually analysed the correctness of responses for each task.

First, we converted the categories mentioned in Section 2.4 to nu-

merical values (correct (A) = 100%, almost correct (B) = 70%, partially

correct (C) = 40%; both incorrect (D) and absent (F) = 0%). We ap-

plied the same scale to both parts of the code-reuse task (i.e. code

modification and code optimisation). However, when calculating

the overall task score, we assigned more weight (90%) to the first

part of the task, as it required greater effort than the second part,

which accounted for only 10% of the total weight. Responses with

an overall score of 60% or higher were considered correct. This

overall correctness threshold ensures that participants achieve at

least 70% in the first part of the task.

When analysing reaction times automatically captured by Gorilla

[1], we only considered correct responses. We used the Shapiro-

Wilk test [20] to assess the normality of reaction times and correct-

ness as well as Levene’s test [13] to evaluate variance homogeneity.

The findings indicated non-normality and unequal variances for

both correctness and reaction times. Therefore, to test for statis-

tically significant differences, we used a non-parametric test, the

MannśWhitney U test (Wilcoxon rank-sum test), with a significance

level of 𝛼 = 0.05.
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3 RESULTS AND DISCUSSION

As shown in Table 1 and Figure 1, participants generally spent

less time comprehending and reusing linear code examples (both

in mean and median reaction times). This observation suggests

that the source code linearity in an API code example may affect

a programmer’s performance. This influence has a greater impact

on comprehension and is statistically significant when the linear

API code example is also short (e.g. date and chronology examples).

Moreover, in terms of reusability, there appears to be a trend to-

wards significance in two of the API code examples (chronology

and interval examples), as reflected by their moderate p-values of

0.10 and 0.06, respectively. However, the impact on correctness

(MannśWhitney U test,𝑊 = 1690, 𝑝 = 0.428) and subjective rating

(as shown in Figure 2) was not substantial (RQ1).

The MannśWhitney U test revealed a significant difference in

both comprehension (𝑊 = 125, 𝑝 = 0.004) and reusability (𝑊 =

99, 𝑝 = 0.000) between the groups that received linear-short and

linear-long API code examples (RQ2). Similarly, participants spent

less time reusing the non-linear code examples when the linearity

value (i) was lower (𝑖 < 15.00, MannśWhitney U test:𝑊 = 68, 𝑝 =

0.003). Notably, unlike the comparison in RQ1, this comparison is

based on code examples illustrating different API usage; thus, the

significant differences in participants’ performance could be due to

variations in the implemented API functionality and required tasks

(RQ3).

Chronology Example

Date Example

Duration Example

Interval Example 

0 2 4 6 8

Time [in minutes]

Linear Non−Linear

(a) Comprehension time

Chronology Example

Date Example

Duration Example

Interval Example 

0 20 40 60 80

Time [in minutes]

Linear Non−Linear

(b) Reuse time

Figure 1: The time spent on (a) comprehending, and (b)

reusing the API code examples used in the study. Each box-

plot represents the responses for one version (linear or non-

linear) of a single example.
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Figure 2: Participants’ subjective ratings of API code example

comprehension (a) and reusability difficulty (b).

4 THREATS TO VALIDITY

Construct Validity. To mitigate construct validity threats, we used

specific metrics to manipulate our independent variables. We cre-

ated code examples and tasks that represented real-world scenarios

and ensured a consistent correctness evaluation. However, since

the experiment was conducted online, we had limited control over

participants’ activities. To address this, we asked them to self-report

break times, which were subtracted from the time spent on solving

the task, and disclose whether they used their own IDEs. While this

approach provided insights into participants’ behaviour, it was not

entirely conclusive.

Internal Validity. We reduced internal validity threats by ran-

domly assigning participants to treatment groups and randomising

the order in which they viewed tasks. We also administered a val-

idated programming experience questionnaire and pre-screened

participants for their programming knowledge.

External Validity.One potential threat to external validity was the

study’s limited scope. It focused solely on the API of one Java library

and included only a few code examples. Also, 70% of the participants

were students, which limited the generalisability of our findings.

The study’s virtual setting and the use of an online IDE, which lacks

features such as auto-completion and error checking, may not fully

reflect the conditions of a traditional coding environment.

5 RELATED WORK

A large number of studies investigated the impact of various source

code characteristics on programmers’ code comprehension. These

characteristics include the use of intermediate variables [6], certain

syntactic structures such as ifs and for loops [2], different identi-

fier names [4, 12] as well as naming conventions [5, 21]. Moreover,

some studies explored the effects of more global factors such as

the order of methods [11], code regularity [14], and the linearity of

source code and reading order [17].

6 CONCLUSION AND FUTUREWORK

In this paper, we investigated the impact of source code linearity

and length on the comprehensibility and reusability of API code

examples. We chose code examples from the Joda-Time Java library

and manipulated their structure. Furthermore, we recruited 61 Java

developers, assigned each one of them two code examples, and

asked them to complete code-reuse tasks. This study found that

participants demonstrated relatively faster reaction times when

working with linear API examples.

For future work, we intend to expand this study by incorporating

a broader range of APIs from diverse domains. This will involve

utilising a larger set of code examples with varying levels of lin-

earity and increasing the number of participants. Also, to better

capture participants’ activities, we plan to conduct this experiment

in a laboratory setting. Additionally, we are interested in deter-

mining whether the activities of participants, as they work with

code examples of different linearity, still align with the activities

reported in existing studies on the COIL8 model [10, 23].

8Collection and Organization of Information for Learning.
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