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Abstract: Time-varying demand distribution (TDD) is a critical input data for operation and 11 

management in HSR systems. This paper proposed a bi-level model to estimate the TDD with the 12 

ticket booking date and using the schedule-based User Equilibrium (UE) assignment. The up-level 13 

aims to determine the TDD with maximum entropy value and minimal error between the path flow 14 

(ticket booking volumes) and the corresponding equilibrium flows (determined from lower-level); 15 

the lower-level is a schedule-based UE assignment with rigid capacity constraints to reflect the 16 

interactions of ticket booking choices behaviors between different OD pairs in the HSR networks, 17 

and further, the advance booking cost is considered endogenously as a part of passenger choice 18 

equilibrium. The bi-level model is converted into a single-level model through equivalent 19 

complementary constraints. Then, based on linear relaxation, the single-level model is transformed 20 

into a mixed-integer quadratic program (MIQP). Furthermore, in order to improve the 21 

computational efficiency of the MIQP, the approach of reducing the calculation size of our 22 

problem is proposed. By solving the MIQP we get the information about the upper and lower 23 

bounds of our original problem, and then a global optimal solution algorithm with four piecewise 24 

interval strategies is proposed. The effectiveness and applicability of the proposed algorithm are 25 

illustrated with a simple case and three real-world cases. 26 

 27 

Keywords: Time-varying demand estimation; Bi-level model; UE assignment; Linear relaxation; 28 

Global optimal solution 29 

 30 

1. Introduction 31 

In the past few decades, High-Speed Railway (HSR) has been very popular and has made 32 

great developments in densely populated countries and regions such as China, Japan and Europe. 33 

Especially in China, it has the world’s largest HSR network with over 40,000 km of track in 34 

service as of 2021.1 Whilst HSR has made a significant contribution to increasing passenger 35 

capacity with its high speed and high service frequency, many studies refer to operational 36 

challenges (Kaspi and Raviv, 2013; Niu et al., 2015; Xu et al., 2023a; Zhao et al., 2021) which 37 

are shifting the focus from meeting total demand volume to meeting the time-varying demand. 38 

That is to say, we seek not only to supply the capacity to meet total passenger demand for each 39 

OD pair, but also to improve the correspondence between the desired departure time distribution 40 

of passengers and the frequency and timing of train departures (as shown in Fig. 1). For a given 41 

HSR OD pair, each passenger will have a desired departure time2, and the demand volumes at 42 

different desired departure time points may be different; this can be seen as the TDD for this 43 

 

1 Statista. High-speed railway in China – statistics & facts, 2023. https://www.statista.com/topics/7534/high-speed-
rail-in-china/?kw=&crmtag=adwords&gclid=CjwKCAjw-vmkBhBMEiwAlrMeF4Up5jhzJEPx_ynUJneWiVECW 
YsRPk0_7BEz3_usZJxVDiybND2_hBoCiogQAvD_BwE#topicOverview. Accessed 30.06.2023 

2 Desired arrival time can be converted into desired departure time as the in-train time is fixed by the schedule and 
will not vary by the train flow. 
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OD pair (Xu et al., 2018b; Zhang et al., 2021). In the above studies about HSR operational 44 

problems for time-varying demand, the TDD is a key input – but no insight is given as to how 45 

to obtain it. Obviously, obtaining accurate TDD for the OD pair is very important to improve 46 

the service quality and HSR systems performance. Therefore, how to obtain TDD for the OD 47 

pair is a critical problem for the operation and management of the HSR systems, and this paper 48 

focuses on that problem.   49 
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Fig. 1 Operational challenges in HSR 52 

 53 

In recent years, demand estimation with time varying demand has been a hot topic in 54 

transport research, but the manifestation of this problem in HSR is somewhat different from 55 

other modes.  56 

In traditional railway systems, demand forecasting traditionally relies on elasticity-based 57 

models where the core principle is that variations in fares or travel times will influence 58 

passenger rail demand (Börjesson and Eliasson, 2014; Liu et al., 2023; Qin et al., 2022; 59 

Wardman, 1997, 2006; Wardman et al., 2007; Wijeweera et al., 2014). In recent years, the 60 

emergence of the big data era has led to the gradual incorporation of machine learning 61 

technologies in railway demand forecasting. This includes the use of Neural Network (Tsai et 62 

al., 2009), Long Short Term Memory Network (Zhang et al., 2020) and the combined 63 
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forecasting models (Emami Javanmard et al., 2023; Qin et al., 2019; Wei et al., 2023; Wen et 64 

al., 2022). However, given the relatively slow speeds and lower transport capacities, the primary 65 

goal of conventional railway systems is to accommodate the total daily demand volumes 66 

between OD pairs. Consequently, the focus is on estimating or forecasting the overall daily 67 

demand volume rather than on the TDD within the day.  68 

In road networks, this often called the dynamic demand estimation problem, whereby 69 

drivers are free to choose their departure times and routes, leading to variability in path time or 70 

cost varies on different arc/link flows at a given time of day, and on a given arc/link flow at 71 

different times of day. Researchers have used the likes of traffic count (Bierlaire and Crittin, 72 

2004; Osorio, 2019), automatic vehicle identification counts (Tang et al., 2021; Zhou and 73 

Mahmassani, 2006) and license plate recognition information (Mo et al., 2020; Nakanishi and 74 

Western, 2005) to analyze and solve this problem. However, application of the same problem 75 

to HSR introduces some distinct issues: firstly, passengers’ real departure times are governed 76 

by the schedule and discretized; secondly, the in-train time is constant and independent of 77 

changes in train flow (Wu et al., 2022; Zhao et al., 2021).  78 

In urban transit networks, the departure times of passengers are also governed by the 79 

timetable but there is no need to book a ticket in advance to secure a seat under the First-Come-80 

First-Served (FCFS) principle, and passengers’ boarding time or smart transit card tap-on time 81 

can be approximated as the desired departure time (Shang et al., 2019; Shi et al., 2017; Wang 82 

et al., 2011; Zhao et al., 2022). However, HSR is typically subject to rigid seat capacity 83 

constraints under the First-Book-First-Served (FBFS) principle, and as a result the departure 84 

time of the chosen train can be significantly different from the desired departure time of the 85 

passenger. 86 
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Fig. 2 HSR TDD estimation problem description 89 

 90 

 91 



4 

 

Table 1. A summary of studies on time-varying demand distribution estimation problems 92 

Authors Study topic 
Transport 

mode 
Input data 

Arc/link/train 

capacity 

constraints 

Governed 

by the 

schedule 

Network 

level 

problem 

Services 

principle 
Modelling Algorithm 

Bierlaire and 

Crittin (2004) 

Dynamic OD 

Estimation 
Car traffic 

Traffic counts, historical 

OD matrix × × √ - Least-square model 
The least squares 

(LSQR) algorithm 

Zhou and 

Mahmassani 

(2006) 

Dynamic OD 

Estimation 
Car traffic 

Traffic count, AVI 

counts, historical OD 

matrix 
× × √ - 

Nonlinear ordinary least-

squares estimation model 

Iterative bilevel 

estimation procedure 

Carrese et al. 

(2017). 

Dynamic OD 

Estimation 
Car traffic 

Floating car data and 

traffic count × × √ - 
Extension of the Kalman 

Filter model 

Simultaneous 

Perturbation Stochastic 

Approximation 

algorithm 

Krishnakumari 

et al. (2020) 

Dynamic OD 

Estimation 
Car traffic 

3D Supply pattern (link 

speeds, link flows), 

historical OD matrix 
× × √ - 

Production and attraction 

time series prediction model 

Machine learning, 

weighted shortest path 

algorithm 

Ros-Roca et 

al. (2022) 

Dynamic OD 

Estimation 
Car traffic 

GPS data, traffic counts, 

historical OD matrix × × √ - 
Constrained non-linear 

optimization model 
Quasi-Newton algorithm 

Wong and 

Tong (1998) 

Dynamic OD 

Estimation 

Transit 

networks 

Observed passenger 

counts × √ √ FCFS Entropy-based model Sparse algorithm 

Yao et al. 

(2015) 

Dynamic OD 

Estimation 

Transit 

networks 

AFC data, historical OD 

matrix × √ √ FCFS Structural state-space model 
Extended Kalman 

filtering algorithm 

Cheng et al. 

(2022) 

Dynamic OD 

Estimation 

Metro 

networks 

Smart cards data, 

historical OD matrix × √ √ FCFS 
Low-rank high-order vector 

autoregression model 

Tailored online update 

algorithm 

Wei et al. 

(2019) 

TDD 

Estimation 
HSR  Ticket booking volume  × √ × FBFS Rooftop model 

SBPRA algorithm and 

MBPRA algorithm 

This study 
TDD 

Estimation 
HSR 

HSR schedule, ticket 

booking volume √ √ √ FBFS 
Bi-level model and Mixed-

integer linear relaxation 

SL-ETDDP Global 

Convergence Algorithm 

 93 
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Due to the above distinctions, the estimation methods or techniques used on the traditional 94 

speed railway network, road network and urban transit network cannot be readily applied to the 95 

HSR. In the case of HSR systems (e.g., Eurostar in EU, CRH in China), passengers must book 96 

the tickets in advance to get a seat reservation before travelling and this brings convenience to 97 

the TDD estimation problem. From the booking records and timetable information, the 98 

train/path flows for a given pair – i.e., the ticketing volumes at all departure times of the 99 

trains/paths which serve this OD pair – can be readily obtained (as shown in Fig. 2). To some 100 

extent, this train/path flow reflects the booking demand across all departure times, but it still 101 

has some challenges for our TDD estimation problem, as follows:   102 

i) Governed by the timetable, train flows or path flows are discrete data within the 103 

operation period, and cannot reflect demand distribution during the periods when no trains 104 

depart;  105 

ii) With FBFS and the train capacity constraint, a passenger’s real departure time may 106 

deviate from his or her desired departure time, and this deviation will be exacerbated with more 107 

and more tickets sold out for the popular trains; 108 

iii) Inferring demand distribution from the train/path flow may generate multiple solutions, 109 

or different TDDs may produce the same train/path flows, but we need to find a reasonable one 110 

(as shown in Fig. 2). 111 

To date, a small number of studies have explored the estimation of TDD problems for HSR. 112 

Based on ticketing data of a single OD pair, Wei et al. (2019) studied the TDD estimation 113 

problem by simulating the ticket booking process. However, as a train will usually serve more 114 

than one OD pair, and each OD pair may carry several train services subject to rigid capacity 115 

constraints under the FBFS principle, the selling-out of any given train will affect the 116 

subsequent ticket booking behaviors of passengers of all OD pairs served by this train. Focusing 117 

on the context of a single OD pair may therefore be unduly restrictive, and it would be 118 

considerably more informative to solve the TDD estimation problem at the network level.  119 

 In Table 1, we present a summary of studies regarding the time-varying demand estimation 120 

problem and highlight the contribution of this paper against the existing literature. In particular, 121 

this study seeks to fill this gap in knowledge, by solving the estimation problem of TDD in the 122 

HSR network subject to rigid capacity constraints under the FBFS principle. Assuming a 123 

discrete representation of time, the space-time network is designed and a bi-level model is 124 

formulated. Then, we convert the bi-level model into a single-level model through equivalent 125 

constraints. In order to find the global optimal solution, our model is relaxed as a mixed-integer 126 

quadratic program (MIQP) and an optimal solution is obtained by iteratively solving the relaxed 127 

MIQP with the piecewise interval strategy. Our methods are tested on four cases and their 128 

advantages are illustrated by the results analysis. The methodology of the paper is summarized 129 

as Fig. 3 and the principal contributions are as follows.  130 

 131 
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 132 

Fig. 3 Overall methodology 133 

 134 

i) This study proposes a bi-level model to estimate the TDD with the ticket booking 135 

volumes and using the schedule-based User Equilibrium (UE) assignment. The upper-level 136 

aims to get the TDD with maximum entropy value and minimal error between the path flows 137 

(ticket booking volumes) and the corresponding space-time path flows or equilibrium flows 138 

(determined from lower-level); the lower-level is a schedule-based UE assignment with rigid 139 

capacity constraints to reflect the interactions of ticket booking choices behaviors between 140 

different OD pairs in the HSR networks, and furthermore, the advance booking cost is 141 

considered endogenously as a part of passenger choice equilibrium. 142 

ii) Based on model reformulation and linear relaxation, a global optimal solution 143 

algorithm with four piecewise interval strategies is designed. We replace the lower-level 144 

problem with complement conditions and then convert the bi-level model into a single-level 145 

mode. Furthermore, using linear relaxation, we transform the single-level model into a MIQP. 146 

By solving the MIQP we can determine the information about the upper and lower bounds of 147 

our original problem, and then the global optimal solution algorithm with calculation size 148 

reduction approach and four piecewise interval strategies are proposed.  149 

iii) The effectiveness and applicability of the proposed algorithm are illustrated with 150 

a simple case and three real-world cases. Specifically, the simple case shows the details of 151 

our algorithm result with different input data, different parameter values and different strategies. 152 

The second case illustrates the applicability and calculating efficiency of four strategies in a 153 

real-world network of Nanchang-Jiujiang Intercity Railway. And the third case study tests our 154 

algorithm in the real-world intersection network of Guangzhou-Zhuhai Intercity Railway with 155 

larger scale. In order to further analysis the application of our algorithm, we test it on a larger 156 

and more complex network in the Xi’an region HSR network. 157 

The rest of this paper is organized as follows. Section 2 introduces the basic considerations 158 

of our problem, and Section 3 formulates our model. Section 4 uses linear relaxation to 159 

reformulate our model and propose the solution algorithm. Numerical studies are conducted in 160 

Section 5 and Section 6 concludes our paper.  161 

 162 

2. Basic considerations 163 

In this section, we first list the notation and then the assumptions of this paper are proposed. 164 

2.1 Notations 165 

Table 2. Parameters and variables 166 
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Symbol  Definition  
Sets and indices  (𝑉, 𝐸) HSR network, where 𝑉 and 𝐸 represent the Set of HSR stations and rail 

track sections (𝕍, 𝔸) Space-time network, where 𝕍 and 𝔸 represents set of space-time nodes 
and arcs 𝑅𝑆 Set of HSR OD pairs (with (𝑟, 𝑠) ∈ 𝑅𝑆) 𝐾 Set of HSR trains (with 𝑘 ∈ 𝐾) 𝑉𝑘 Set of stop stations of train 𝑘 ∈ 𝐾 (with 𝑉𝑘 = (𝑣1𝑘, 𝑣2𝑘, ⋯ , 𝑣𝑛(𝑘)𝑘 )) 𝐷𝑘 
Set of departure time points of 𝑘 ∈ 𝐾  (with 𝐷𝑘 =(𝑑1𝑘 , 𝑑2𝑘 , ⋯ , 𝑑𝑛(𝑘)−1𝑘 )) 𝐴𝑘 Set of arrival time points of 𝑘 ∈ 𝐾 (with 𝐴𝑘 = (𝑎2𝑘 , 𝑎3𝑘 , ⋯ , 𝑎𝑛(𝑘)𝑘 )) 𝐴𝑎𝑐 Set of access arcs (with (𝑟(𝑡), 𝑑𝑖𝑘) ∈ 𝐴𝑎𝑐) 𝐴𝑖𝑛 Set of in-train arcs (with  (𝑑𝑖𝑘 , 𝑎𝑖+1𝑘 ) ∈ 𝐴𝑖𝑛) 𝐴𝑑𝑤 Set of dwell arcs (with  (𝑎𝑖𝑘 , 𝑑𝑖𝑘) ∈ 𝐴𝑑𝑤) 𝐴𝑡𝑟 Set of transfer arc (with  (𝑎𝑖𝑘 , 𝑑𝑖𝑘′) ∈ 𝐴𝑡𝑟) 𝐴𝑒𝑛𝑑 Set of ending arc (with (𝑎𝑖𝑘 , 𝑠∞) ∈ 𝐴𝑒𝑛𝑑) 𝑃𝑟𝑠(𝑡) Set of feasible space-time paths for demand 𝑞𝑟𝑠(𝑡) (with 𝑝(𝑡) ∈ 𝑃𝑟𝑠(𝑡)) �̅�𝑟𝑠(𝑡) Set of feasible space-time paths with reduction in calculation size for 
demand 𝑞𝑟𝑠(𝑡) 𝑃𝑟𝑠 Set of paths for OD pair (𝑟, 𝑠) (with  𝑝 ∈ 𝑃𝑟𝑠) 𝑄𝑟𝑠𝑡  Set of breakpoints (with 𝑞𝑟𝑠𝑡,𝑛 ∈ 𝑄𝑟𝑠𝑡 ) ∆�̃�𝑟𝑠𝑡,ℎ Set of adding breakpoints at iteration ℎ 

Parameters   [𝑇1, 𝑇2] Daily operation period (can be discretized as [𝑇1, 𝑇2] = [1,2,⋯ , 𝑇]) |𝑘(𝑖, 𝑖 + 1)| Mileage of route train 𝑘 from its stop station 𝑣𝑖𝑘 to 𝑣𝑖+1𝑘  𝜂′, 𝜂′′ The unit cost for the early and late departure 𝜔 The unit cost of travel time 𝛿 The minimum transfer time duration at the HSR station 𝛾(𝑘) The ticket fare rate of train 𝑘 ∈ 𝐾 𝜑(𝑣) The transfer cost at station 𝑣 ∈ 𝑉 𝑢𝑘 The capacity of train 𝑘 ∈ 𝐾 𝑓𝑝 The flow (ticket booking volume) of path 𝑝 𝛿𝑝(𝑡)𝑎  
A binary variable, which equals one if arc 𝑎  on path 𝑝(𝑡)  and 0 
otherwise. 𝑈 An extremely small negative number 𝑀 An extremely large positive number 𝑁 
The breakpoints number for piecewise interval by the demand of OD 
pair for linear relaxation 𝛼1, 𝛼2 Weighting coefficient for objective function 𝜗 An extremely small positive number and close to 0 𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡  Lower and upper bounds of 𝑞𝑟𝑠𝑡  
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𝜀 Convergence criterion 

Variables  𝑞𝑟𝑠𝑡  
Demand with desired departure time at 𝑡 of HSR OD pair (𝑟, 𝑠) ∈ 𝑅𝑆 
(with 𝑡 = 1,2,⋯ , 𝑛) 𝑓𝑝(𝑡) The flow of feasible space-time path 𝑝(𝑡) ∈ 𝑃𝑟𝑠(𝑡) 𝑥𝑎 The flow on arc 𝑎 ∈ 𝔸 𝜋𝑟𝑠𝑡  
Lagrange multipliers (can be seen as the minimal cost between OD pair (𝑟, 𝑠) ∈ 𝑅𝑆 for demand 𝑞𝑟𝑠𝑡 ) 𝜋𝑎 
Lagrange multipliers (can be seen as advance booking fee of space-time 
arc 𝑎 ∈ 𝔸) 𝑣𝑝(𝑡) Lagrange multipliers (with 𝑡 = 1,2,⋯𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆) 𝑙𝑎 Introduced 0-1 decision variables (with 𝑎 ∈ 𝔸) ℎ𝑝(𝑡) Introduced 0-1 decision variables (with 𝑡 = 1,2,⋯𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈𝑅𝑆) 𝜆𝑟𝑠𝑡,𝑛 
Introduced 0-1 decision variables (with 𝑛 = 1,2,⋯ ,𝑁 − 1; 𝑡 =1,2,⋯𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆) 𝜃𝑟𝑠𝑡,𝑛 
Introduced decision variables (with 𝑛 = 1,2,⋯ ,𝑁; 𝑡 =1,2,⋯𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆) ℒ𝑟𝑠𝑡  Introduced decision variables (with 𝑡 = 1,2,⋯𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆) 

 167 

2.2 Assumptions 168 

In order to facilitate the presentation of our problem, the following assumptions are made: 169 

A1: As high speed and high service frequency, the total transport capacity of each 170 

HSR OD pair can cover its total demand volumes. This assumption is consistent with reality 171 

most of the time where the tickets of some popular trains may be sold out, but the total demand 172 

volumes are still lower than supply capacity of HSR systems and some passengers may shift to 173 

less ideal trains at non-peak period (Niu et al., 2015; Xu et al., 2021). Compared with the 174 

traditional rail system, the transport capacity of the HSR system has greatly improved with its 175 

high speed and high service frequency. Additionally, the capacity of the HSR system can be 176 

further enhanced by flexible train formation (e.g., China’s HSR train can expand from 8 coaches 177 

to 16 coaches). These means that the situation that the total transport capacity cannot cover its 178 

total demand volume is not common in the HSR systems, and only occurs on special holidays 179 

(such as the Chinese Spring Festival) or in special events (such as driver strikes or extreme 180 

weather). Since our research mainly focuses on the common conditions, we exclude the 181 

relatively unlikely situation through this assumption. 182 

A2: The demand outside the operation period in a day is negligible and can be ignored. 183 

On the one hand, from technological considerations, HSR cannot provide 24-hour service. It 184 

needs a certain time period within a day for necessary rail inspection and equipment 185 

maintenance. Therefore, the demand outside the operation period cannot be met by the HSR 186 

systems, and there is no need to estimate this demand. On the other hand, from the demand 187 

perspective, the operation period of HSR is usually set during the daytime when the demand is 188 

high, while non-operation periods (maintenance periods) are usually set in the night (such as 189 

0:00-5:59) when the demand is very low. Since the demand out of operation period is very low 190 

and be ignored, we only consider the time-varying demand distribution within the operation 191 
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period, which is similar to existing works (Wei et al., 2019; Wong and Tong, 1998). 192 

A3: Passengers book their tickets (choose their train/path) to minimize their own 193 

travel cost. This assumption about rational consumers exists in almost all transportation studies 194 

using the UE theoretical framework (Huang et al., 2023; Wu et al., 2022). There may be some 195 

differences between it and the reality, but we want to use UE theory to provide a foundational 196 

framework for understanding and modeling the TDD estimation problem in the HSR networks. 197 

By utilizing this principle, we can develop models that more straightforwardly analyze and 198 

interpret passengers' choice behaviors. Further, we have relaxed the Assumption A3 by 199 

extending our model from the UE framework to the Boundedly Rational User Equilibrium 200 

(BRUE) framework in the following Section 3.3, please refer to it for details. 201 

 202 

3. Model formulation 203 

In this section, we first propose the space-time network of the HSR systems, then a bi-204 

level model and its corresponding single-level model are formulated for the TDD estimation 205 

problem. 206 

3.1 Space-time network 207 

Let (𝑉, 𝐸) be the HSR track network, where 𝑉 is the station set and 𝐸 is the section set, 208 

and here the section is the rail track between two adjacent stations. For the HSR network  (𝑉, 𝐸), 209 

let 𝑅𝑆 be the OD pair set with (𝑟, 𝑠) ∈ 𝑅𝑆, and [𝑇1, 𝑇2] denotes the daily operation period of 210 

HSR systems. The continuous daily operation period [𝑇1, 𝑇2] can be discretized into 𝑇 equal 211 

time intervals with [𝑇1, 𝑇2] = [1,2,⋯ , 𝑇] where the time length of each interval is 𝑇2−𝑇1𝑇 . Then 212 

given the timetable and based on the HSR network (𝑉, 𝐸), we design the space-time network 213 (𝕍, 𝔸) as follows. 214 

i) Space-time nodes 215 

 We denote the HSR train set as 𝐾 in the timetable. For any train 𝑘 ∈ 𝐾, define its stop 216 

stations set as 𝑉𝑘 = (𝑣1𝑘, 𝑣2𝑘,⋯ , 𝑣𝑖𝑘,⋯ , 𝑣𝑛(𝑘)𝑘 ) , its departure time nodes set as 𝐷𝑘 =217 (𝑑1𝑘 , 𝑑2𝑘 , ⋯ , 𝑑𝑖𝑘 , ⋯ , 𝑑𝑛(𝑘)−1𝑘 ), and its arrival time nodes set as 𝐴𝑘 = (𝑎2𝑘 , 𝑎3𝑘 , ⋯ , 𝑎𝑖𝑘 ,⋯ , 𝑎𝑛(𝑘)𝑘 ), 218 

where 𝑛(𝑘) is the number of stop stations of train 𝑘. For train 𝑘 ∈ 𝐾, the train segment from 219 

its stop station 𝑣𝑖𝑘 to 𝑣𝑖+1𝑘  is denoted as 𝑘(𝑖, 𝑖 + 1), and its corresponding mileage denoted as 220 |𝑘(𝑖, 𝑖 + 1)|. Then in the space-time network, the departure node 𝑑𝑖𝑘 and arrival point 𝑎𝑖𝑘 means 221 

the departure and arrival events of train 𝑘 at station 𝑣𝑖𝑘. For example, in Fig. 4 the departure 222 

and arrival nodes of train 1 are 𝑑11, 𝑎21, 𝑑21, 𝑎31, 𝑑31 and 𝑑41. The departure node of train 2 at station 223 𝑣12 = 𝑣1 is 𝑑12, and its arrival node at station 𝑣22 = 𝑣3 is 𝑎22, while station 𝑣2 is skipped by this 224 

train. 225 

 226 
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Fig. 4. Illustration space-time network 228 

 229 

For the HSR OD pair (𝑟, 𝑠) ∈ 𝑅𝑆, let the virtual start node 𝑟(𝑡) represent the trip start for 230 

the passengers with desired departure time 𝑡 = 1,2,⋯ , 𝑛 at original station 𝑟, and let the virtual 231 

end node 𝑠∞ represent the end at the destination station 𝑠.  232 

Then in the space-time network, the set of space-time nodes 𝕍 consists of departure nodes, 233 

arrival nodes, virtual start nodes and virtual end nodes, which is expressed as Eq. (1). 234 𝕍 = {𝑑𝑖𝑘 ∈ 𝐷𝑘} ∪ {𝑎𝑖𝑘 ∈ 𝐴𝑘} ∪ {𝑟(𝑡)|(𝑟, 𝑠) ∈ 𝑅𝑆; 𝑡 = 1,2,⋯ , 𝑇} ∪ {𝑠∞|𝑠 ∈ 𝑉} (1) 235 

ii) Space-time arcs 236 

 Access arc (𝑟(𝑡), 𝑑𝑖𝑘), from the desired departure node 𝑟(𝑡) of the passenger to the real 237 

departure node 𝑑𝑖𝑘 of the chosen train at the original station 𝑟 (𝑣𝑖𝑘 = 𝑟), which means for the 238 

HSR OD pair (𝑟, 𝑠) ∈ 𝑅𝑆, passengers whose desired departure time is 𝑡, book the tickets of 239 

train 𝑘 ∈ 𝐾 with the departure time 𝑑𝑖𝑘 to start their trips. And the set of access arcs is denoted 240 𝐴𝑎𝑐. 241 

In-train arc (𝑑𝑖𝑘 , 𝑎𝑖+1𝑘 ), from the departure node 𝑑𝑖𝑘 at station 𝑣𝑖𝑘 of train 𝑘 ∈ 𝐾 to its next 242 

arrival node 𝑎𝑖+1𝑘   at station 𝑣𝑖+1𝑘  , reflects passengers’ journeys from station 𝑣𝑖𝑘  to 𝑣𝑖+1𝑘   with 243 

train 𝑘 ∈ 𝐾. The set of in-train arcs can be denoted as 𝐴𝑖𝑛. 244 

Dwell arc (𝑎𝑖𝑘 , 𝑑𝑖𝑘) , from the arrival node 𝑎𝑖𝑘  at station 𝑣𝑖𝑘  of train 𝑘 ∈ 𝐾  to its next 245 

departure node 𝑑𝑖𝑘, shows that passengers wait for a dwell time at station 𝑣𝑖𝑘 on train 𝑘 ∈ 𝐾. 246 

The set of dwell arcs is denoted 𝐴𝑑𝑤. 247 

Transfer arc (𝑎𝑖𝑘 , 𝑑𝑖′𝑘′) , from the arrival node 𝑎𝑖𝑘  of train 𝑘 ∈ 𝐾  at station 𝑣𝑖𝑘  to the 248 

departure node 𝑑𝑖′𝑘′  of the first subsequent train 𝑘′ ∈ 𝐾  at this station (𝑣𝑖′𝑘′ = 𝑣𝑖𝑘 ) whose 249 
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departure time is greater than the minimum transfer time duration 𝛿, such as 𝛿 = 10 minutes. 250 

It reflects passengers making a transfer from train 𝑘  to 𝑘′  at station 𝑣𝑖𝑘 = 𝑣𝑖′𝑘′ . The set of 251 

transfer arcs is denoted as 𝐴𝑡𝑟. 252 

Ending arc (𝑎𝑖𝑘 , 𝑠∞), from the arrival node 𝑎𝑖𝑘 at station 𝑣𝑖𝑘 = 𝑠 ∈ 𝑉 to its corresponding 253 

ending node 𝑠∞, shows the ending of passengers’ journeys. The set of ending arc is denoted 254 𝐴𝑒𝑛𝑑. 255 

Thus, in the space-time network, the set of space-time arcs 𝕍 consists of access arcs, in-256 

train arcs, dwell arcs, transfer arcs and ending arcs, which is represented as Eq. (2). 257 𝔸 = 𝐴𝑎𝑐 ∪ 𝐴𝑖𝑛 ∪ 𝐴𝑑𝑤 ∪ 𝐴𝑡𝑟 ∪ 𝐴𝑒𝑛𝑑                                                                            (2) 258 

 iii) Space-time arc cost 259 

The total travel cost for a HSR passenger consists of adjusted departure time cost, travel 260 

time cost, ticket fare and transfer cost. Then the arc cost can be expressed as Eq. (3). 261 

𝑐𝑎 =
{   
   𝜂′ ∙ max{0, 𝑡 − 𝑑𝑖𝑘} + 𝜂′′ ∙ max{0, 𝑑𝑖𝑘 − 𝑡} ,         𝑎 = (𝑟(𝑡), 𝑑𝑖𝑘) ∈ 𝐴𝑎𝑐𝜔 ∙ (𝑎𝑖+1𝑘 − 𝑑𝑖𝑘) + 𝛾(𝑘) ∙ |𝑘(𝑖, 𝑖 + 1)|,                  𝑎 = (𝑑𝑖𝑘 , 𝑎𝑖+1𝑘 ) ∈ 𝐴𝑖𝑛𝜔 ∙ (𝑑𝑖𝑘 − 𝑎𝑖𝑘),                                                             𝑎 = (𝑎𝑖𝑘 , 𝑑𝑖𝑘) ∈ 𝐴𝑑𝑤𝜔 ∙ (𝑑𝑖′𝑘′ − 𝑎𝑖𝑘) + 𝜑(𝑣𝑖𝑘),                                          𝑎 = (𝑎𝑖𝑘 , 𝑑𝑖′𝑘′) ∈ 𝐴𝑡𝑟 0,                                                                                     𝑎 = (𝑎𝑖𝑘 , 𝑠∞) ∈ 𝐴𝑒𝑛𝑑

 (3) 262 

where, 𝜂′ and 𝜂′′ are the unit costs for early and late departures, and we assume the cost of the 263 

adjusted departure time penalty to be linear with the adjustment time, which is similar to many 264 

previous studies (Abegaz et al., 2017; Hamdouch et al., 2011; Liang et al., 2024; Tang et al., 265 

2019, 2020b; Yang and Tang, 2018); 𝜔 is the unit cost of travel time; 𝛾(𝑘) is the ticket fare rate 266 

of train 𝑘 ∈ 𝐾, and 𝜑(𝑣) is the transfer cost at station 𝑣 ∈ 𝑉.   267 

 iv) Space-time arc capacity 268 

 In HSR space-time network (𝕍, 𝔸), let 𝑢𝑎 be the capacity of space-time arc 𝑎 ∈ 𝔸. The 269 

capacity of in-train arc is equal to its corresponding train capacity, and the capacity of other 270 

space-time arcs can be set as infinite. Then the capacity can be represented as Eq. (4). 271 

𝑢𝑎 =
{   
   ∞,                                                                           𝑎 = (𝑟(𝑡), 𝑑𝑖𝑘) ∈ 𝐴𝑎𝑐𝑢𝑘,                                                                          𝑎 = (𝑑𝑖𝑘 , 𝑎𝑖+1𝑘 ) ∈ 𝐴𝑖𝑛∞,                                                                           𝑎 = (𝑎𝑖𝑘 , 𝑑𝑖𝑘) ∈ 𝐴𝑑𝑤∞,                                                                           𝑎 = (𝑎𝑖𝑘 , 𝑑𝑖𝑘′) ∈ 𝐴𝑡𝑟 ∞,                                                                           𝑎 = (𝑎𝑖𝑘 , 𝑠∞) ∈ 𝐴𝑒𝑛𝑑

     (4) 272 

Where 𝑢𝑘 is the capacity of train 𝑘 ∈ 𝐾. 273 

v) Path and feasible space-time path 274 

For any HSR OD pair (𝑟, 𝑠) ∈ 𝑅𝑆, denote all paths from the departure node at station 𝑟 to 275 

the arrival node at station 𝑠 as the set 𝑃𝑟𝑠. For any path 𝑝 ∈ 𝑃𝑟𝑠, its flow is denoted as 𝑓𝑝, which 276 

represents the ticket booking volume of 𝑝 and can be obtained from the ticket booking system. 277 

Taking Fig. 4 as an example, the three paths 𝑝1, 𝑝2 and 𝑝3 for OD pair (𝑣1, 𝑣4) are shown as 278 

below, and their corresponding path flows 𝑓𝑝1 , 𝑓𝑝2  and 𝑓𝑝3  can be obtained from the ticket 279 
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booking system.  280 𝑝1 = {(𝑑11, 𝑎21), (𝑎21, 𝑑21), (𝑑21, 𝑎31), (𝑎31, 𝑑31), (𝑑31, 𝑎41)} 281 𝑝2 = {(𝑑12, 𝑎22), (𝑎22, 𝑑22), (𝑑22, 𝑎32)} 282 𝑝3 = {(𝑑11, 𝑎21), (𝑎21, 𝑑21), (𝑑21, 𝑎31), (𝑎31, 𝑑22), (𝑑22, 𝑎32)} 283 

where, paths 𝑝1 and 𝑝2 use Train 1 and Train 2 respectively to get to the destination, and 𝑝3 284 

first uses Train 1 and then transfers to Train 2 at station 𝑣3 to get to the destination. 285 

For demand 𝑞𝑟𝑠𝑡 , let 𝑝(𝑡) be the feasible space-time path from the desired departure time 286 

node 𝑟(𝑡) connected to the path 𝑝 by access arc, and then ending up at destination node 𝑠∞ 287 

with ending arc, and this 𝑝(𝑡) means the passengers with desired departure time 𝑡 choose path  288 𝑝 to destination to form the space-time path. And the feasible space-time path set for demand 289 𝑞𝑟𝑠𝑡  is denoted 𝑃𝑟𝑠(𝑡). Take demand 𝑞14𝑡  in Fig. 4 as an example. For the passengers with desired 290 

departure time 𝑡, their feasible space-time paths are the follows. 291 𝑝1(𝑡) = {(𝑟(𝑡), 𝑑11), (𝑑11, 𝑎21), (𝑎21, 𝑑21), (𝑑21, 𝑎31), (𝑎31, 𝑑31), (𝑑31, 𝑎41), (𝑎41, 𝑠∞)} 292 𝑝2(𝑡) = {(𝑟(𝑡), 𝑑12), (𝑑12, 𝑎22), (𝑎22, 𝑑22), (𝑑22, 𝑎32), (𝑎32, 𝑠∞)} 293 𝑝3(𝑡) = {(𝑟(𝑡), 𝑑11), (𝑑11, 𝑎21), (𝑎21, 𝑑21), (𝑑21, 𝑎31), (𝑎31, 𝑑22), (𝑑22, 𝑎32), (𝑎32, 𝑠∞)} 294 

Denote the flow and cost of feasible space-time path 𝑝(𝑡) as 𝑓𝑝(𝑡) and 𝑐𝑝(𝑡) respectively. 295 

For demand 𝑞𝑟𝑠𝑡 , the feasible space-time path cost of 𝑝(𝑡) ∈ 𝑃𝑟𝑠(𝑡) is the sum of the costs for 296 

all space-time arcs along this path. In the HSR systems, the transport capacity is significantly 297 

improved due to the high speed and high departure frequency of train services. Consequently, 298 

passengers are more willing to depart at their desired departure times (choose the train closest 299 

to their desired departure times) and more sensitive to the adjusted desired departure time 300 

penalty. Thus, the cost 𝑐𝑝(𝑡) is formulated as a generalized cost which combinate the adjusted 301 

departure time cost, travel time cost, tickets fare and transfer cost. And it can be represented as 302 

Eq. (5). 303 𝑐𝑝(𝑡) = ∑ 𝑐𝑎𝑎∈𝑝(𝑡) ,        𝑝(𝑡) ∈ 𝑃𝑟𝑠(𝑡); 𝑡 = 1,2,⋯ , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆 (5) 304 

From the above description, our problem can be stated more formally as: given the HSR 305 

schedule we can use the above space-time network to determine the capacity 𝑢𝑎 and cost 𝑐𝑎 of 306 

each space-time arc 𝑎 ∈ 𝔸, and together with the ticket booking volume 𝑓𝑝 of each path 𝑝 ∈307 𝑃𝑟𝑠, (𝑟, 𝑠) ∈ 𝑅𝑆 from ticket booking system, then we need to estimate the TDD 𝑞𝑟𝑠𝑡 , 𝑡 ∈ [𝑇1, 𝑇2] 308 

for each HSR OD pair (𝑟, 𝑠) ∈ 𝑅𝑆. 309 

3.2 Bi-level model for estimating the TDD problem (BL-ETDDP) 310 

Based on the above analysis, we formulate the following Bi-Level model (M1) for 311 

Estimating the TDD problem (abbreviated by BL-ETDDP) as shown in Fig. 5.  312 

 313 

Upper level: 314 min𝑍 (𝒒) = 𝛼1 ∑ ∑(𝑞𝑟𝑠𝑡 ln 𝑞𝑟𝑠𝑡 − 𝑞𝑟𝑠𝑡 )𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆 + 𝛼2 ∑ ∑ (∑𝑓𝑝(𝑡)𝑇

𝑡=1 − 𝑓𝑝)2𝑝∈𝑃𝑟𝑠(𝑟,𝑠)∈𝑅𝑆 (6) 315 

subject to 316 𝑞𝑟𝑠𝑡 ≥ 0,                                                    𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆    (7) 317 
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∑ 𝑓𝑝𝑝∈𝑃𝑟𝑠 =∑𝑞𝑟𝑠𝑡𝑇
𝑡=1 ,                                                             (𝑟, 𝑠) ∈ 𝑅𝑆    (8) 318 

Lower level: 319 min𝑍(𝐟) = ∑ 𝑐𝑎 ∙ 𝑥𝑎𝑎∈𝔸                                                                              (9) 320 

subject to 321 𝑞𝑟𝑠𝑡 = ∑ 𝑓𝑝(𝑡)𝑝∈𝑃𝑟𝑠 ,                                  𝑡 = 1,2,⋯ , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆    (10) 322 𝑥𝑎 ≤ 𝑢𝑎,                                                                                    𝑎 ∈ 𝔸    (11) 323 𝑓𝑝(𝑡) ≥ 0,                                𝑡 = 1,2,⋯ , 𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆    (12) 324 𝑥𝑎 = ∑ ∑ ∑𝑓𝑝(𝑡) ∙ 𝛿𝑝(𝑡)𝑎𝑇
𝑡=1𝑝∈𝑃𝑟𝑠(𝑟,𝑠)∈𝑅𝑆 ,                                       𝑎 ∈ 𝔸    (13) 325 

where 𝛿𝑝(𝑡)𝑎  is the path-arc parameter, and its value can be determined by Eq. (14). 326 𝛿𝑝(𝑡)𝑎 = {1, if arc 𝑎 is on path 𝑓𝑝(𝑡)0, otherwise ,  327       𝑎 ∈ 𝔸; 𝑡 = 1,2,⋯ , 𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆    (14) 328 

 329 

The lower level model

Minimum flow errors and 

maximum entropy

UE assignment with rigid 

capacity constraint

The upper level model

𝒒 𝒇 

 330 

Fig. 5. Illustration of the Bi-level model 331 

 332 

In the upper-level, Eq. (6) is the weighted sum minimization of the least squares term and 333 

maximum entropy term. The least squares term seeks to obtain a TDD with a minimal error 334 

between the booking volumes 𝑓𝑝 of 𝑝 and its corresponding feasible space-time path flow 𝑓𝑝(𝑡), 335 

where 𝑓𝑝(𝑡) is the equilibrium flow obtained by solving the lower-level model. As there may be 336 

more than one TDD that meets the requirements, we choose the one with maximal entropy 337 

value.  The maximum entropy framework considers that all possible states of the variables have 338 

equal probability to occur and selects the most likely state consistent with the evidence available 339 

(Shannon, 1948; Teye et al., 2017). Following this principle, López-Ospina et al. (2022); Van 340 

Zuylen and Willumsen (1980); Xie et al. (2011) proposed their maximum entropy models to 341 

predict a most likely OD flow pattern for the road network with the observed link traffic counts. 342 

Wong and Tong (1998) use the maximum entropy approach to estimate the time-dependent OD 343 

matrices based on the measured link flow rates at each time interval for public transit network. 344 

This principle is particularly useful in situations where we have limited or incomplete 345 

information about a system, e.g., no demand information during the period with no train 346 
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departing. Following these papers, given the constraints and data available we develop a 347 

maximum entropy-based model to estimate an unbiased and most likely TDD pattern (over 348 

desired departure time).  349 

Eq. (7) are the non-negative constraints of the decision variable 𝑞𝑟𝑠𝑡 . And Eq. (8) means 350 

that the demand from all desired departure times for an OD pair will be served by all paths of 351 

this OD pair.  352 

In the lower-level, Eq. (9) minimizes the total cost in the HSR networks, where 𝑥𝑎 is the 353 

flow on arc 𝑎 ∈ 𝔸. Eq. (10) are the conservation constraints which means demand 𝑞𝑟𝑠𝑡  must be 354 

serviced by all paths in 𝑃𝑟𝑠 between OD pair (𝑟, 𝑠) ∈ 𝑅𝑆. Eqs. (11) are capacity constraining 355 

for space-time arcs3, and the non-negative constraints of feasible space-time path flows are 356 

shown in Eqs. (12). Eqs. (13) and (14) are the calculations of space-time arc flow 𝑥𝑎 from the 357 

feasible space-time path flow 𝑓𝑝(𝑡). Therefore, for a given TDD 𝑞𝑟𝑠𝑡  from the upper-level, the 358 

feasible space-time path flow 𝑓𝑝(𝑡) can be determined by solving the lower-level model.  359 

There are many previous studies on the bi-level model (Szeto and Jiang, 2014; Tang et al., 360 

2020a; Xi et al., 2023; Yang and Bell, 2001), and in this paper, we will use complementary 361 

constraints to replace the lower-level program and convert the bi-level model into a single-level 362 

model, and then use linear relaxation to design the global optimal algorithm.  363 

Before we analyze the above model, we first introduce the definition of User Equilibrium 364 

(UE) as applicable to HSR systems. 365 

 366 

Definition 1 (UE): In HSR systems, with the principle of passengers booking their tickets to 367 

minimize their travel cost, the UE will be achieved when, for all passengers with the same 368 

desire departure time for the same OD pair, all used paths have equal and minimal cost, and all 369 

other unused paths have higher costs. 370 

 371 

Proposition 1. In the HSR systems, with rigid seat capacity constraints and flow-independent 372 

cost components, the linear programming (LP) of the lower-level model is equivalent to UE.  373 

 374 

Proof. We get the Lagrange function for the LP as the following: 375 𝐿 = ∑ 𝑐𝑎 ∙ 𝑥𝑎𝑎∈𝔸 − ∑ ∑𝜋𝑟𝑠𝑡 ∙ ( ∑ 𝑓𝑝(𝑡)𝑝∈𝑃𝑟𝑠 − 𝑞𝑟𝑠𝑡 )𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆 −∑𝜋𝑎 ∙ (𝑢𝑎 − 𝑥𝑎)𝑎∈𝔸  376 

− ∑ ∑ ∑𝑣𝑝(𝑡) ∙ 𝑓𝑝(𝑡)𝑇
𝑡=1𝑝∈𝑃𝑟𝑠(𝑟,𝑠)∈𝑅𝑆                                                                                    (15) 377 

where 𝜋𝑟𝑠𝑡 , 𝜋𝑎 and 𝑣𝑝(𝑡) are the corresponding Lagrange multipliers for constraints (10), (11) 378 

and (12) respectively. Then the Kuhn-Tucker (KT) conditions of the above lower-level LP 379 

problem can be derived as follows: 380 ∑𝑐𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝜋𝑟𝑠𝑡 +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝑣𝑝(𝑡) = 0, 𝑡 = 1,2,⋯ , 𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆 (16) 381 

{𝑢𝑎 ≥ 𝑥𝑎𝜋𝑎 ≥ 0𝜋𝑎 ∙ (𝑢𝑎 − 𝑥𝑎) = 0 ,                                                        𝑎 ∈ 𝔸    (17) 382 

 
3  This arc-based capacity constraints can be extended to the space-time path-based capacity constraints by 
considering the seat allocation scheme. Since the rest of the subsequent technical processes are the same and we can 
only choose one of the two (arc-based and space-time path-based), we retain the current model to maintain scalability.  
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{𝑓𝑝(𝑡) ≥ 0𝑣𝑝(𝑡) ≥ 0𝑓𝑝(𝑡) ∙ 𝑣𝑝(𝑡) = 0 ,            𝑡 = 1,2,⋯𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆    (18) 383 

In the railway system, passengers need to select the train service and book the tickets in 384 

advance, using either the on-site or online ticketing system. Due to rigid train capacity 385 

constraints, individual passengers may not be able to obtain their preferred train service, 386 

depending on how many passengers are competing and how early they make their ticket 387 

booking. This “early booking” to ensure ticket availability indeed can yield non-negligible cost 388 

to passengers, which is defined as the advance booking cost. By analyzing passenger choice 389 

equilibrium, it can be better understood how much individuals are willing to pay for securing 390 

tickets on their preferred trains with ideal departure and arrival times, as well as shorter journey 391 

times. In situations where the passenger demand is low and trains have residual capacity, there 392 

is no need for passengers to book tickets in advance. However, during peak periods popular 393 

trains are expected to be fully occupied. As a result, passengers must book tickets much further 394 

in advance. This reflects their willingness to pay a higher cost to secure their desired train tickets. 395 

Eq. (17) above is equivalent to Eq. (19) which follows. And the Lagrange multiplier 𝜋𝑎 can be 396 

seen as the advance booking cost of arc 𝑎 ∈ 𝔸 to secure a seat. Then Eq. (19) means that if the 397 

flow of arc 𝑎 ∈ 𝔸 equals its capacity, i.e., 𝑥𝑎 = 𝑢𝑎, then the advance booking fee of arc 𝑎 ∈ 𝔸 398 

is larger than or equal to zero, i.e., 𝜋𝑎 ≥ 0, and passengers need to book early enough to secure 399 

a ticket; and if the flow of arc 𝑎 ∈ 𝔸  less than its capacity, i.e., 𝑥𝑎 < 𝑢𝑎 , then there is no 400 

advance booking fee of arc 𝑎 ∈ 𝔸, i.e., 𝜋𝑎 = 0, and passengers can book the tickets just before 401 

boarding as there are always available tickets.  402 {𝜋𝑎 ≥ 0, if 𝑥𝑎 = 𝑢𝑎𝜋𝑎 = 0, if 𝑥𝑎 < 𝑢𝑎  ,                                                            𝑎 ∈ 𝔸   (19) 403 

Then the total travel cost for passengers choosing feasible space-time path 𝑝(𝑡) is the sum 404 

of arc costs and advance booking cost of all arcs along the path, i.e., ∑ (𝑐𝑎 + 𝜋𝑎)𝑎∈𝑝(𝑡) =405 𝑐𝑝(𝑡) +∑ 𝜋𝑎𝑎∈𝑝(𝑡) . And from Eqs. (5), (16) and (18), we can obtain: 406 

{   
   𝑓𝑝(𝑡) ≥ 0𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝜋𝑟𝑠𝑡 ≥ 0
𝑓𝑝(𝑡) ∙ (𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝜋𝑟𝑠𝑡 ) = 0  ,   𝑡 = 1,2,⋯𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆  (20) 407 

{  
  𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 = 𝜋𝑟𝑠𝑡 , if 𝑓𝑝(𝑡) > 0𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 ≥ 𝜋𝑟𝑠𝑡 , if 𝑓𝑝(𝑡) = 0, 𝑡 = 1,2,⋯𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆 (21) 408 

For the Lagrange multiplier 𝜋𝑟𝑠𝑡  , it can be seen as the minimal cost between OD pair 409 (𝑟, 𝑠) ∈ 𝑅𝑆 for demand 𝑞𝑟𝑠𝑡 . And Eq. (20) is equivalent to the subsequent Eq. (21). From Eq. 410 

(21) we can establish that if any passengers associated with demand 𝑞𝑟𝑠𝑡  choose the feasible 411 

space-time path 𝑝(𝑡) ∈ 𝑃𝑟𝑠(𝑡), i.e., 𝑓𝑝(𝑡) > 0, then the actual cost of path 𝑝(𝑡) (path cost 𝑐𝑝(𝑡) 412 

and the advance ticket booking cost ∑ 𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 ) equals the minimal cost between OD pair 413 (𝑟, 𝑠)  for demand 𝑞𝑟𝑠(𝑡) , i.e., 𝑐𝑝(𝑡) + ∑ 𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 = 𝜋𝑟𝑠𝑡  ; and if no passenger uses the 414 

feasible space-time path 𝑝(𝑡) ∈ 𝑃𝑟𝑠(𝑡), i.e., 𝑓𝑝(𝑡) = 0, then the actual cost of path 𝑝(𝑡) is larger 415 

than or equal to the minimal cost between OD pair (𝑟, 𝑠)  for demand 𝑞𝑟𝑠(𝑡) , i.e., 𝑐𝑝(𝑡) +416 
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∑ 𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 ≥ 𝜋𝑟𝑠𝑡 . This means that Eq. (21) meets Definition 1 and the lower-level model 417 

of M1 is the UE. □ 418 

3.3 Single-level model for estimating TDD problem (SL-ETDDP) 419 

From the above analysis, we know that the lower-level of M1 is the UE, and the UE is 420 

equivalent with its complementary conditions Eqs. (10), (16) and (19). Then, by replacing the 421 

lower-level problem with complementary conditions, the BL-ETDDP model M1 can be convert 422 

into single level model M2  for estimating TDD problem (SL-ETDDP), which is shown as 423 

below.  424 𝐌𝟐: 425 min𝑍 (𝒒) = 𝛼1 ∑ ∑(𝑞𝑟𝑠𝑡 ln 𝑞𝑟𝑠𝑡 − 𝑞𝑟𝑠𝑡 )𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆 + 𝛼2 ∑ ∑ (∑𝑓𝑝(𝑡)𝑇

𝑡=1 − 𝑓𝑝)2𝑝∈𝑃𝑟𝑠(𝑟,𝑠)∈𝑅𝑆 (6) 426 

subject to 427 

Eqs. (7)-(8), (10), (13), (17) and (20). 428 

In addition, the above model estimates the TDD involving the UE passenger assignment 429 

method, and it can be extended to adopting the Boundedly Rational User Equilibrium (BRUE) 430 

passenger assignment modeling, please see the Appendix A for more details. 431 

4. Solution algorithm 432 

In this section, we first relax the SL-ETDDP model M2 to the MIQP by mixed-integer linear 433 

relaxation. And based on the global solution of MIQP, we will discuss how to reduce the 434 

calculation size of our problem and the idea of obtaining the optimal solution to our original 435 

problem. Then, four strategies will be proposed to obtain the global optimal solution. And the 436 

algorithm of our problem will be designed in the last subsection. 437 

The piece-wise linear approximation method has been utilized to reformulate problems and 438 

along with the development of global optimization algorithms, has garnered significant interest 439 

among researchers focusing on transportation optimization issues. Examples include 440 

transportation network design challenges within the frameworks of UE or Stochastic User 441 

Equilibrium (SUE) constraints by the studies from Liu and Wang (2015); Luathep et al. (2011); 442 

Wang and Lo (2010). Furthermore, it has been explored in addressing toll design issues by 443 

Ekström et al. (2012); Zhang and van Wee (2012). More recent contributions, such as those 444 

from Froger et al. (2019); Montoya et al. (2017); Zhou et al. (2022), have applied the piece-445 

wise linear approximation method to approximate nonlinear charging functions for Electric 446 

Vehicle charging scheduling problems, as well as Caicedo et al. (2023); Liu et al. (2019) applied 447 

it in bike network design problems. In this paper, the piece-wise linear approximation method 448 

is introduced into the estimation of TDD problems for HSR systems. Drawing inspiration from 449 

Liu and Wang (2015); Xu et al. (2022), we have developed a custom range reduction technique 450 

to tighten the feasible region of the TDD estimation problem. This is prior to applying the global 451 

optimal solution algorithm detailed herein, and it significantly reduces the computational time 452 

required to achieve results. 453 
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4.1 Mixed-integer linear relaxation 454 

 i) Linear relaxation of constraints 455 

In the above SL-ETDDP model M2, nonlinear constraints Eq. (17) and Eq. (20) can be 456 

replaced by the following linear constraints Eq. (22) and Eq. (23) respectively.  457 

 458 

{  
  𝑈 ∙ 𝑙𝑎 + 𝜀 ≤ 𝜋𝑎 ≤ 𝑀 ∙ (1 − 𝑙𝑎)𝑈 ∙ 𝑙𝑎 ≤ 𝑢𝑎 − 𝑥𝑎 ≤ 𝑀 ∙ 𝑙𝑎𝑢𝑎 − 𝑥𝑎 ≥ 0𝜋𝑎 ≥ 0𝑙𝑎 ∈ {0,1}                                   ,                  𝑎 ∈ 𝔸                            (22) 459 

{   
   
  𝑈 ∙ ℎ𝑝(𝑡) + 𝜗 ≤ 𝑓𝑝(𝑡) ≤ 𝑀 ∙ (1 − ℎ𝑝(𝑡))𝑈 ∙ ℎ𝑝(𝑡) ≤ 𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝜋𝑟𝑠𝑡 ≤ 𝑀 ∙ ℎ𝑝(𝑡)𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝜋𝑟𝑠𝑡 ≥ 0𝑓𝑝(𝑡) ≥ 0ℎ𝑝(𝑡) ∈ {0,1}

, 𝑡 = 1,2,⋯𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆  460 

  (23) 461 

where 𝑈 is an extremely small negative number; 𝑀 is an extremely large positive number; 𝜗 is 462 

an extremely small positive number and close to 0; and 𝑙𝑎, ℎ𝑝(𝑡) are 0-1 decision variables.  463 

Then, all the constraints in the SL-ETDDP model M2 are linear, by replacing Eq. (17) and 464 

Eq. (20) with Eq. (22) and Eq. (23) respectively. 465 

ii) Linear relaxation of objective function 466 

For the above model M2, the objective function is nonlinear with the logarithmic term 467 

(maximum entropy) and quadratic term (least square). Similar to existing studies (Liu et al., 468 

2019; Liu and Wang, 2015; Vielma et al., 2010), the logarithmic term can be linearized in 469 

piecewise manner by the linear approximate method. The objective function Eq. (6) can be 470 

represented as: 471 min𝑍2 = 𝛼1 ∑ ∑ℒ𝑟𝑠𝑡𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆 + 𝛼2 ∑ ∑ (∑𝑓𝑝(𝑡)𝑇

𝑡=1 − 𝑓𝑝)2𝑝∈𝑃𝑟𝑠(𝑟,𝑠)∈𝑅𝑆                 (24) 472 ℒ𝑟𝑠𝑡 = 𝑞𝑟𝑠𝑡 ln 𝑞𝑟𝑠𝑡 − 𝑞𝑟𝑠𝑡 ,                                         𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆     (25) 473 

Obviously, the second partial derivative of Eq. (25) with respect to its decision variable 474 

(𝑞𝑟𝑠𝑡 ) is larger than 0, then Eq. (25) is a convex function on its closed interval.  475 

For Eq. (25), denote the lower and upper bounds of 𝑞𝑟𝑠𝑡  as 𝑞𝑟𝑠𝑡  and 𝑞𝑟𝑠𝑡  respectively (their 476 

values will be discussed in the next subsection). The interval [𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡 ] , 𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈477 𝑅𝑆  can be divided uniformly into 𝑁 − 1 intervals by the set of breakpoints 𝑞𝑟𝑠𝑡,𝑛 ∈ 𝑄𝑟𝑠𝑡  which 478 

is calculated by Eq. (26). 479 

𝑄𝑟𝑠𝑡 = {𝑞𝑟𝑠𝑡,𝑛|𝑞𝑟𝑠𝑡,𝑛 = 𝑞𝑟𝑠𝑡 + 𝑞𝑟𝑠𝑡 − 𝑞𝑟𝑠𝑡𝑁 − 1 ∙ (𝑛 − 1), 𝑛 = 1,2,⋯ ,𝑁}, 480 𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆     (26)  481 
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As shown in Fig. 6, linear relaxation of Eq. (25) is set to be the region above all tangent 482 

lines and below all curve chords. The tangential support is constructed at each 𝑞𝑟𝑠𝑡,𝑛 ∈ 𝑄𝑟𝑠𝑡  and 483 

the curve chords are formed by connecting two adjacent points 𝑞𝑟𝑠𝑡,𝑛  and 𝑞𝑟𝑠𝑡,𝑛+1  for 𝑛 =484 1,2,⋯ ,𝑁 − 1.  485 

 486 

Tangent line

Curve chord

 487 

Fig 6. Linear relaxation 488 

 489 

Then the relaxation of ℒ𝑟𝑠𝑡 (𝑞𝑟𝑠𝑡 )  with breakpoints 𝑞𝑟𝑠𝑡,𝑛 ∈ 𝑄𝑟𝑠𝑡 , 𝑛 = 1,2,⋯ , 𝑁  can be 490 

constructed as follows: 491 

ℒ𝑟𝑠𝑡 ≥ −𝑞𝑟𝑠𝑡,𝑛 + 𝑞𝑟𝑠𝑡 ∙ ln 𝑞𝑟𝑠𝑡,𝑛 ,    ∀𝑞𝑟𝑠𝑡,𝑛 = 𝑞𝑟𝑠𝑡 + 𝑞𝑟𝑠𝑡 − 𝑞𝑟𝑠𝑡𝑁 − 1 ∙ (𝑛 − 1), 𝑛 = 1,2,⋯ ,𝑁 (27) 492 

∑𝜃𝑟𝑠𝑡,𝑛 ∙ 𝑞𝑟𝑠𝑡,𝑛𝑁
𝑛=1 = 𝑞𝑟𝑠𝑡                                                                                                              (28) 493 

∑𝜃𝑟𝑠𝑡,𝑛 ∙ ℒ𝑟𝑠𝑡 (𝑞𝑟𝑠𝑡,𝑛)𝑁
𝑛=1 ≥ ℒ𝑟𝑠𝑡 (𝑞𝑟𝑠𝑡 )                                                                                         (29) 494 

∑𝜃𝑟𝑠𝑡,𝑛𝑁
𝑛=1 = 1                                                                                                                           (30) 495 𝜃𝑟𝑠𝑡,𝑛 ≥ 0,                                                                                                𝑛 = 1,2,⋯ , 𝑁       (31) 496 𝜃𝑟𝑠𝑡,𝑛 ≤ 𝜆𝑟𝑠𝑡,𝑛−1 + 𝜆𝑟𝑠𝑡,𝑛,                  𝑛 = 2,3,⋯ , 𝑁 − 1; 𝜃𝑟𝑠𝑡,1 ≤ 𝜆𝑤𝑡,1; 𝜃𝑤𝑡,𝑁 ≤ 𝜆𝑤𝑡,𝑁−1       (32) 497 ∑𝜆𝑟𝑠𝑡,𝑛𝑁−1
𝑛=1 = 1                                                                                                                           (33) 498 𝜆𝑟𝑠𝑡,𝑛 = {0,1},                                                                                 𝑛 = 1,2,⋯ , 𝑁 − 1       (34) 499 
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Since the right-hand side of Eq. (27) denotes all the tangent lines, then this equation 500 

ensures that ℒ𝑟𝑠𝑡  are above the tangent lines. If 𝑞𝑟𝑠𝑡  is within the interval [𝑞𝑟𝑠𝑡,𝑛∗ , 𝑞𝑟𝑠𝑡,𝑛∗+1], i.e., 501 𝜆𝑟𝑠𝑡,𝑛∗ = 1 from Eq. (34), then we can get 0 ≤ 𝜃𝑟𝑠𝑡,𝑛∗ ≤ 1, 0 ≤ 𝜃𝑟𝑠𝑡,𝑛∗+1 ≤ 1 and 𝜃𝑟𝑠𝑡,𝑛 = 0,   𝑛 =502 1,2,⋯ ,𝑁; 𝑛 ≠ 𝑛∗, 𝑛∗ + 1 from Eqs. (30)-(33). Next, we can obtain 𝜃𝑤𝑡,𝑛∗ + 𝜃𝑤𝑡,𝑛∗+1 = 1 by Eq. 503 

(30), and from Eqs. (29)-(30) we can get 𝜃𝑤𝑡,𝑛∗ ∙ ℒ𝑤𝑡,𝑛∗ + 𝜃𝑤𝑡,𝑛∗+1 ∙ ℒ𝑤𝑡,𝑛∗+1 ≥ ℒ𝑤𝑡 , where the left-504 

hand side means the curve chord from (𝑞𝑤𝑡,𝑛∗ , ℒ𝑤𝑡,𝑛∗) to (𝑞𝑤𝑡,𝑛∗+1, ℒ𝑤𝑡,𝑛∗+1). And Eqs. (28)-(34) 505 

together constrain ℒ𝑤𝑡  to be smaller than those defined by all curve chords. Thus, the logarithm 506 

constraint Eq. (25) can be linearized by the linear constraints Eqs. (27)-(34).  507 

With the above linear relaxation, SL-ETDDP model M2 can be relaxed into the following 508 

model M3. 509 𝐌𝟑: 510 min𝑍3 = 𝛼1 ∑ ∑ℒ𝑟𝑠𝑡𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆 + 𝛼2 ∑ ∑ (∑𝑓𝑝(𝑡)𝑇

𝑡=1 − 𝑓𝑝)2𝑝∈𝑃𝑟𝑠(𝑟,𝑠)∈𝑅𝑆                 (24) 511 

subject to 512 

Eqs. (7)-(8), (10), (13), (22)-(23) 513 

Constraints in Eqs. (27)-(34),  𝑡 = 1,2, … , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆 514 

For the above model M3, as the quadratic term (least square) in the objective function and 515 

all constraints are linear with integer or continuous variables, this model is the MIQP 4 . 516 

Furthermore, as the objective function of model M3 is the convex quadratic5, we can obtain its 517 

global optimal solutions by some commercial solvers such as GUROBI and CPLEX. In this 518 

paper, we use GUROBI to calculate the model M3.  519 

Next, we will discuss how to reduce the calculation size of our problem to help us improve 520 

the computational efficiency.  521 

4.2 Reducing the calculation size 522 

 In the above model M3, for any HSR OD pair (𝑟, 𝑠) ∈ 𝑅𝑆, we can obtain all path flows 523 

from the ticketing system, and those paths form the set 𝑃𝑟𝑠 of paths for OD pair (𝑟, 𝑠), i.e., the 524 𝑓𝑝 of path 𝑝 ∈ 𝑃𝑟𝑠 and the path set 𝑃𝑟𝑠 can be obtained from the ticketing system. As the HSR 525 

operation period [𝑇1, 𝑇2]  is discretized into 𝑇  equal time intervals, for any HSR OD pair 526 (𝑟, 𝑠) ∈ 𝑅𝑆, it will generate 𝑇 ∙ |𝑃𝑟𝑠| access arcs and 𝑇 ∙ |𝑃𝑟𝑠| feasible space-time paths for this 527 

OD pair, where |𝑃𝑟𝑠| is the path number of 𝑃𝑟𝑠. Denote |𝔸| and |𝑊| as the total number of the 528 

arcs and OD pairs of the HSR space-time network respectively. Then the calculation size of the 529 

above model M3 is shown as Table 3 (Original size column).  530 

 531 

Table 3. The comparison of the calculation sizes of model M3 before and after the calculation size 532 

reduction approach 533 

Calculation 

size 
Original size 

Updated scale after reducing calculation 

size 

 

4 ILOG CPLEX Optimization Studio, ‘MIQCP: mixed integer programs with quadratic terms in the constraints’. 
https://www.ibm.com/docs/en/icos/20.1.0?topic=smippqt-miqcp-mixed-integer-programs-quadratic-terms-in-
constraints 

5 ILOG CPLEX Optimization Studio, ‘Distinguishing between convex and nonconvex QPs’. 
https://www.ibm.com/docs/en/icos/20.1.0?topic=qp-distinguishing-between-convex-nonconvex-qps 
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Constraints 

number 

(3𝑁 + 6)𝑇|𝑊| + |𝑊| + 7|𝔸| + ∑ |𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆 + 7 ∑ 𝑇|𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆  

(3𝑁 + 6)𝑇|𝑊| + |𝑊| + 7|�̅�| + ∑ |𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆 + 7 ∑ ∑|�̅�𝑟𝑠(𝑡)|𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆  

Variables 

number 

(2𝑁 + 2)𝑇|𝑊| + 3|𝔸| + ∑ |𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆 + 3 ∑ 𝑇|𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆  

(2𝑁 + 2)𝑇|𝑊| + 3|�̅�| + ∑ |𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆 + 3 ∑ ∑|�̅�𝑟𝑠(𝑡)|𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆  

Continuous 

variable 

(𝑁 + 3)𝑇|𝑊| + 2|𝔸| + ∑ |𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆 + 2 ∑ 𝑇|𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆  

(𝑁 + 3)𝑇|𝑊| + 2|�̅�| + ∑ |𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆 + 2 ∑ ∑|�̅�𝑟𝑠(𝑡)|𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆  

Binaries (𝑁 − 1)𝑇|𝑊| + |𝔸| + ∑ 𝑇|𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆  (𝑁 − 1)𝑇|𝑊| + |�̅�| + ∑ ∑|�̅�𝑟𝑠(𝑡)|𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆  

 534 

 From the above table we know that the calculation size of the model M3 will increase 535 

rapidly with the expansion of network scale (associated with feasible space-time path number 536 ∑ 𝑇|𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆   and arc number |𝔸|  of the network) and the increase of piecewise interval 537 

number (associate with 𝑁). In this section, we will discuss how to reduce the calculation size 538 

to improve the solution speed. 539 

 For the OD pair (𝑟, 𝑠) ∈ 𝑅𝑆, if no measures are taken to reduce the computing size, the 540 

desired departure time node 𝑟(𝑡), 𝑡 = 1,2,⋯ , 𝑇 will generate the access arc with any path 𝑝 ∈541 𝑃𝑟𝑠, and then it will have |𝑃𝑟𝑠(𝑡)| = |𝑃𝑟𝑠| feasible space-time paths for this node (as shown in 542 

Fig. 7), where |𝑃𝑟𝑠(𝑡)| denotes the number of feasible space-time paths in 𝑃𝑟𝑠(𝑡).  543 

For feasible space-time paths set 𝑃𝑟𝑠(𝑡), its corresponding set by reduction in calculation 544 

size is denoted as �̅�𝑟𝑠(𝑡), and the number of feasible space-time paths in �̅�𝑟𝑠(𝑡) is represented 545 

as |�̅�𝑟𝑠(𝑡)|. The arc set and access arc set after the reduction in calculation size are denoted as 546 �̅� and �̅�𝑎𝑐, and its corresponding arc numbers are denoted as |�̅�| and |�̅�𝑎𝑐| respectively. For 547 

the desired departure time 𝑡 of OD pair (𝑟, 𝑠) ∈ 𝑅𝑆, we undertake the following steps to obtain 548 

the �̅�𝑟𝑠(𝑡) and �̅�𝑎𝑐 (as shown in Fig. 7).  549 

First, we use the Eq. (5) to calculate the cost for all feasible space-time paths in 𝑃𝑟𝑠(𝑡), and 550 

then sort them in order of cost from smallest to largest. After this the set of all these ordered 551 

feasible space-time paths are still denoted as set 𝑃𝑟𝑠(𝑡) = {�̃�1(𝑡), �̃�2(𝑡),⋯ , �̃�|𝑃𝑟𝑠(𝑡)|(𝑡)}. 552 

Second, for �̃�𝑗(𝑡) from 𝑗 = 1 to |𝑃𝑟𝑠(𝑡)|, we check the flow of each arc passed by �̃�𝑗(𝑡) 553 

whether it reaches its capacity or not. If at least one arc traversed by �̃�𝑗(𝑡)  has reached its 554 

capacity, i.e., ∃𝑎 ∈ �̃�𝑗(𝑡), 𝑥𝑎 = 𝑢𝑎, put this �̃�𝑗(𝑡) into set �̅�𝑟𝑠(𝑡) and continue the process. This 555 

suggests that the capacity of �̃�𝑗(𝑡) may be insufficient to meet the demand from the desired 556 

departure time 𝑡 (i.e., demand 𝑞𝑟𝑠𝑡 ). Consequently, it is possible for the demand 𝑞𝑟𝑠𝑡  to utilize 557 

other feasible space-time paths, �̃�𝑗′(𝑡), 𝑗′ = 𝑗 + 1, 𝑗 + 2,⋯ , |𝑃𝑟𝑠(𝑡)|. If all the flow of each arc 558 

passed by  �̃�𝑗(𝑡) has not reached its capacity, i.e., 𝑥𝑎 < 𝑢𝑎 , 𝑎 ∈ �̃�𝑗(𝑡), put it into set �̅�𝑟𝑠(𝑡), i.e., 559 �̅�𝑟𝑠(𝑡) = �̅�𝑟𝑠(𝑡) ∪ {�̃�𝑗(𝑡)} and break the process. This indicates that the capacity of �̃�𝑗(𝑡) is 560 

sufficient to meet the demand 𝑞𝑟𝑠𝑡 . Based on Assumption A3, it is understood that the demand 561 𝑞𝑟𝑠𝑡  will not choose other feasible space-time paths, i.e., �̃�𝑗′(𝑡), 𝑗′ = 𝑗 + 1, 𝑗 + 2,⋯ , |𝑃𝑟𝑠(𝑡)|, 562 

because these paths are the worse options than �̃�𝑗(𝑡).  563 

Third, after the above process, we can get the path set �̅�𝑟𝑠(𝑡), in which the feasible space-564 
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time paths have the possibilities to be chosen by the demand 𝑞𝑟𝑠𝑡 . It is known that �̅�𝑟𝑠(𝑡) ⊆565 𝑃𝑟𝑠(𝑡), and |�̅�𝑟𝑠(𝑡)| ≤ |𝑃𝑟𝑠(𝑡)|. And the access arcs associated with feasible space-time paths 566 

in �̅�𝑟𝑠(𝑡) can form the set �̅�𝑎𝑐.  567 

 568 

1 2 3

𝑣𝑟  

    

𝑣𝑠  
    

    

Desired departure time point Access arc

Path Feasible space-time path

𝑡 𝑇 

|𝑃𝑟𝑠(𝑡)| = |𝑃𝑟𝑠| 
1 2 3

𝑣𝑟  

    

𝑣𝑠  
    

𝑡 𝑇 

1 2 3

𝑣𝑟  

    

𝑣𝑠  
    

𝑡 𝑇 

�̃�2(𝑡) 

�̅�𝑟𝑠(𝑡) = {�̃�𝑗 (𝑡)}, 𝑗 = 1 

If 𝑥𝑎 < 𝑢𝑎 ,𝑎 ∈ �̃�𝑗 (𝑡) is true, terminate; 

otherwise, set 𝑗 = 𝑗 + 1 and continue 

Original calculation  size

 
 

Minimal-cost feasible space-time path

�̃�1(𝑡) 

Updated size after reducing the calculation size

�̅�𝑟𝑠(𝑡) = {�̃�1(𝑡), �̃�2(𝑡)}, 𝑗 = 2 

If 𝑥𝑎 < 𝑢𝑎 ,𝑎 ∈ �̃�𝑗 (𝑡) is true, terminate; 

otherwise, set 𝑗 = 𝑗 + 1 and continue 

�̅�𝑟𝑠(𝑡) = {�̃�1(𝑡), �̃�2(𝑡),⋯ , �̃�𝑗 (𝑡)}
 569 

Fig 7. The comparison between original calculation size and after reduction size 570 

 571 

From the above steps, the number of feasible space-time paths from node 𝑟(𝑡)  can be 572 

reduced from |𝑃𝑟𝑠(𝑡)| = |𝑃𝑟𝑠| to |�̅�𝑟𝑠(𝑡)|, and the number of access arc can also be reduced 573 

from |𝑃𝑟𝑠(𝑡)| = |𝑃𝑟𝑠| to |�̅�𝑟𝑠(𝑡)|. Further, the number of feasible space-time paths for the model 574 M3 can be reduced from ∑ 𝑇|𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆  to ∑ ∑ |�̅�𝑟𝑠(𝑡)|𝑇𝑡=1(𝑟,𝑠)∈𝑅𝑆 , and similarly, the access arc 575 

number is decreased from ∑ |𝑃𝑟𝑠| ∙ |𝑇|(𝑟,𝑠)∈𝑅𝑆   to ∑ ∑ |�̅�𝑟𝑠(𝑡)|𝑇𝑡=1(𝑟,𝑠)∈𝑅𝑆  . As the proportion of 576 

arcs that have reached the capacity is usually not large, the number of constraints and variables 577 

of model M3 can be greatly reduced. And the comparison of the calculation sizes of model 𝑀3 578 

before and after this calculation reduction approach are shown in 𝑇𝑎𝑏𝑙𝑒 2. 579 

Meanwhile, we can also reduce the calculation size by reducing the piecewise interval 580 

number 𝑁 and this can be done by the following steps. In the original size situation, as the 581 

desired departure time node 𝑟(𝑡) connects with all paths in 𝑃𝑟𝑠, i.e., all paths in 𝑃𝑟𝑠 have the 582 

possibility to be chosen by the demand 𝑞𝑟𝑠𝑡 , the upper bound of demand 𝑞𝑟𝑠𝑡  needs to be set as 583 

the sum flows of all paths for this OD pair, i.e., 𝑞𝑟𝑠𝑡 = ∑ 𝑓𝑝𝑝∈𝑃𝑟𝑠 . The lower bound of its demand 584 𝑞𝑟𝑠𝑡  can be set as 0, i.e., 𝑞𝑟𝑠𝑡 = 0. While, after reducing the number of space-time paths and get 585 

the set �̅�𝑟𝑠(𝑡), the upper bound of demand 𝑞𝑟𝑠𝑡  can be set as 𝑞𝑟𝑠𝑡 = ∑ 𝑓𝑝𝑝(𝑡)∈�̅�𝑟𝑠(𝑡) ≤ ∑ 𝑓𝑝𝑝∈𝑃𝑟𝑠 . 586 

The updated information about the upper and lower bound of demand 𝑞𝑟𝑠𝑡  are shown in Table 587 
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4.  588 

 589 

Table 4. The information of upper and lower bound of the variable 𝑞𝑟𝑠𝑡  590 

Demand 𝑞𝑟𝑠𝑡  Original size Updated one after reducing calculation size 

Upper bound ∑ 𝑓𝑝𝑝∈𝑃𝑟𝑠  ∑ 𝑓𝑝𝑝(𝑡)∈�̅�𝑟𝑠(𝑡)  

Lower bound 0  0 

 591 

With the above tightening of the feasible region for the demand 𝑞𝑟𝑠𝑡 , we can reduce the 592 

piecewise interval number 𝑁, and together with the reducing numbers of space-time paths and 593 

access arcs for the desired departure time node, we can reduce the calculation size of model 594 M3 . Based on the above analysis, we proposed the Reduce Calculation Size Algorithm as 595 

follows. 596 

 597 

Algorithm 1: Reduce Calculation Size Algorithm. 598 

Step 0: Initialization.  599 

Partition the daily operation period into 𝑇 equal time intervals with [𝑇1, 𝑇2] = [1,2,⋯ , 𝑇]; 600 

Obtain the capacity 𝑢𝑎 and cost 𝑐𝑎 of each space-time arc 𝑎 ∈ 𝔸; 601 

Obtain path set 𝑃𝑟𝑠 and the flow 𝑓𝑝 of each path 𝑝 ∈ 𝑃𝑟𝑠, (𝑟, 𝑠) ∈ 𝑅𝑆 from ticketing system; 602 

Obtain the original size of feasible space-time path set 𝑃𝑟𝑠(𝑡) and the cost 𝑐𝑝(𝑡) of each 603 

feasible space-time path 𝑝(𝑡) ∈ 𝑃𝑟𝑠(𝑡) for (𝑟, 𝑠) ∈ 𝑅𝑆, 𝑡 = 1,2,… , 𝑇; 604 

Set �̅�𝑟𝑠𝑡 = ∅ and �̅�𝑟𝑠(𝑡) = ∅ for all 𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆; 605 

Set �̅� = ∅ and �̅�𝑎𝑐 = ∅; 606 

Step 1: Reduce the numbers of feasible space-time paths and number of access arcs 607 

 For each OD pair (𝑟, 𝑠) ∈ 𝑅𝑆 and each desired departure time 𝑡 = 1,2,⋯ , 𝑇 608 

Using Eq. (5) to calculate the cost for all feasible space-time paths in 𝑃𝑟𝑠(𝑡), and sort 609 

them in increasing order of cost, i.e., {�̃�1(𝑡), �̃�2(𝑡),⋯ , �̃�|𝑃𝑟𝑠(𝑡)|(𝑡)}; 610 For 𝑗 = 1 to |𝑃𝑟𝑠(𝑡)| 611 

 �̅�𝑟𝑠(𝑡) = �̅�𝑟𝑠(𝑡) ∪ {�̃�𝑗(𝑡)}; 612 If 𝑥𝑎 < 𝑢𝑎 , 𝑎 ∈ �̃�𝑗(𝑡) or 𝑗 = |�̃�𝑟𝑠(𝑡)| 613 break;  614 else 615 𝑗 = 𝑗 + 1; 616 The access arcs associated with feasible space-time paths in �̅�𝑟𝑠(𝑡) are added to set 617 �̅�𝑎𝑐. 618 

Step 2: Tighten the feasible region of demand 𝒒𝒓𝒔𝒕  619 

 For each OD pair (𝑟, 𝑠) ∈ 𝑅𝑆 and each desired departure time 𝑡 = 1,2,⋯ , 𝑇 620 

Update the upper bound and lower bound of demand 𝑞𝑟𝑠𝑡  as 𝑞𝑟𝑠𝑡 = ∑ 𝑓𝑝𝑝(𝑡)∈�̅�𝑟𝑠(𝑡)  and 621 𝑞𝑟𝑠𝑡 = 0 respectively. 622 

Step 3: Output 623 

Output the set �̅�𝑟𝑠(𝑡), the upper bound 𝑞𝑟𝑠𝑡  and lower bound 𝑞𝑟𝑠𝑡  of demand 𝑞𝑟𝑠𝑡  for all 𝑡 =624 1,2,⋯ , 𝑇, (𝑟, 𝑠) ∈ 𝑅𝑆;  625 

Output the access set �̅� ← �̅�𝑎𝑐 ∪ (𝔸/𝐴𝑎𝑐). 626 
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 627 

Next, based on the global solution of model M3, we will discuss the idea to obtain the 628 

optimal solution of our original problem.  629 

 630 

4.3 Lower and upper bounds 631 

With the intention to simplify, we define 𝒒 = {𝑞𝑟𝑠𝑡 |𝑡 = 1,2,⋯𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆}  and 𝒇 =632 {𝑓𝑝(𝑡)|𝑡 = 1,2,⋯ , 𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆}, then the SL-ETDDP model M2 can be abbreviated 633 

as: 634 (𝐌𝟐):min𝑍2 = 𝐹2(𝒒, 𝒇) 635 

subject to                               636 𝐺(𝒒, 𝒇) ≤ 0 637 

Define 𝓛 = {ℒ𝑟𝑠𝑡 |𝑡 = 1,2,⋯𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆}, then model M3 can be abbreviated as: 638 (𝐌𝟑):min𝑍3 = 𝐹3(𝒒, 𝒇, 𝓛) 639 

subject to                               640 𝐺(𝒒, 𝒇, 𝓛) ≤ 0 641 

i) lower bound 642 

For model M3, it is a relaxed programing from model M2. Then the lower bound of model 643 M2  can be determined by solving the M3 and obtaining its global optimal solution (𝒒, 𝒇, 𝓛), 644 

i.e.,  645 𝐹3(𝒒, 𝒇, 𝓛) ≤ 𝐹2(𝒒∗, 𝒇∗)                                          (35) 646 

where (𝒒∗, 𝒇∗) represents the global optimal solution of M2.  647 

ii) upper bound 648 

As all the constraints in model M2 are also in M3, the global optimal solution (𝒒, 𝒇, 𝓛) of 649 M3 is also the feasible solution of M2. Then, the upper bound of model M2 can be determined 650 

from its objective function Eq. (6) by using (𝒒, 𝒇), i.e.,  651 𝐹2(𝒒∗, 𝒇∗) ≤ 𝐹2(𝒒, 𝒇)                                               (36) 652 

iii) global optimal solution 653 

Therefore, based on Eqs. (35)-(36), the global optimal solution (𝒒∗, 𝒇∗)  of model M2 654 

satisfies the following Eq. (37).  655 𝐹3(𝒒, 𝒇, 𝓛) ≤ 𝐹2(𝒒∗, 𝒇∗) ≤ 𝐹2(𝒒, 𝒇)                     (37) 656 

As was shown in section 3.3, our original BL-ETDDP model M1 is equivalent to the SL-657 

ETDDP model M2. Then, the global optimal solution (𝒒∗, 𝒇∗) of model M2 is just the global 658 

optimal solution of our original problem.  659 

Thus, we can use the idea of successive linear approximations to obtain the global solution 660 

of our original problem. Firstly, we begin with an initial breakpoint number 𝑁 to divide the 661 

domain [𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡 ] into 𝑁 − 1 uniformly intervals by Eq. (26). Secondly, we use GUROBI to 662 

calculate model  M3 and determine its global optimal solution (𝒒, 𝒇, 𝓛). Thirdly, we can use Eq. 663 
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(37) to obtain the lower and upper bounds of model M2. Fourthly, we calculate the difference 664 

between the upper and lower bounds of model M2 and test convergence: if the difference is 665 

smaller than the convergence criterion, then solution (𝒒, 𝒇) can be seen as the global solution 666 

of model M2 for output; otherwise more breakpoints need to be added to increase the number 667 

of piecewise intervals of domain [𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡 ] for the purpose of making the region constrained by 668 

Eqs. (27)-(34) closer to the logarithmic function Eq. (25), and then we return to the second 669 

stage.  670 

The key element of the above successive linear approximations is replacing the logarithmic 671 

function with more piecewise intervals step-by-step. As the piecewise interval number 672 

approaches infinity, the region constrained by Eqs. (27)-(34) becomes the same as the 673 

logarithmic function Eq. (25). In practice, we can get a satisfactory result without the need for 674 

an infinite number of piecewise intervals. In the following section 4.4, we will discuss the 675 

strategy design for adding the breakpoints to divide the domain [𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡 ] into more piecewise 676 

intervals. 677 

4.4 Piecewise interval strategy 678 

 Denote 𝑄𝑟𝑠𝑡,ℎ  as the breakpoints set in [𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡 ] , 𝑡 = 1,2,⋯𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆  at iteration 679 

number ℎ, and its corresponding breakpoint number is denoted as 𝑁(ℎ), then the piecewise 680 

intervals number at iteration number ℎ can be expressed as 𝑁(ℎ) − 1. Let ∆�̃�𝑟𝑠𝑡,ℎ be the set of 681 

breakpoints which need to be added to increase the number of piecewise intervals at iteration 682 

number ℎ , and denote 𝑞𝑟𝑠𝑡 (ℎ)  to be the solution of M3  at iteration number ℎ . Next, we will 683 

introduce four strategies (as shown in Fig. 8) of adding the breakpoints set ∆�̃�𝑟𝑠𝑡,ℎ to increase 684 

the number of piecewise intervals within a certain range of the domain after each iteration. 685 

 686 

Solution point

Strategy 1: All domain strategy

Strategy 2: Half domain strategy

Strategy 3: Solution interval double divide strategy

Strategy 4: Solution interval multiple divide strategy
 687 

Fig. 8. Strategy for adding the breakpoints. 688 

 689 

 i) All domain strategy 690 

 This strategy means that we double the number of piecewise intervals in the whole domain 691 [𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡 ] , (𝑟, 𝑠) ∈ 𝑅𝑆  and the whole domain will still be redivided uniformly. The set of 692 

additional breakpoints set ∆�̃�𝑟𝑠𝑡,ℎ can be calculated by Eq. (38). 693 
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∆�̃�𝑟𝑠𝑡,ℎ = {�̃�𝑟𝑠𝑡,𝑛 = 𝑞𝑟𝑠𝑡,𝑛 + 𝑞𝑟𝑠𝑡,𝑛+12 |𝑞𝑟𝑠𝑡,𝑛, 𝑞𝑟𝑠𝑡,𝑛+1 ∈ 𝑄𝑟𝑠𝑡,ℎ; 𝑛 = 1,2,⋯ ,𝑁(ℎ) − 1}, 694 𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆         (38) 695 

 ii) Half domain strategy 696 

 In this strategy, we double the number of piecewise intervals in the half domain 697 [𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡 ] , (𝑟, 𝑠) ∈ 𝑅𝑆 where the solution 𝑞𝑟𝑠𝑡 (ℎ) is located in, and this half domain will still be 698 

redivided uniformly. Denote the breakpoint that divides the domain [𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡 ] , (𝑟, 𝑠) ∈ 𝑅𝑆 into 699 

two half parts as 𝑞𝑟𝑠𝑡,𝑛∗, i.e., 𝑞𝑟𝑠𝑡,𝑛∗ = 𝑞𝑟𝑠𝑡 +𝑞𝑟𝑠𝑡2 . Then the set of additional breakpoints set ∆�̃�𝑟𝑠𝑡,ℎ can 700 

be calculated by Eq. (39). 701 ∆�̃�𝑟𝑠𝑡,ℎ702 

= {  
  {�̃�𝑟𝑠𝑡,𝑛 = 𝑞𝑟𝑠𝑡,𝑛 + 𝑞𝑟𝑠𝑡,𝑛+12 |𝑞𝑟𝑠𝑡,𝑛, 𝑞𝑟𝑠𝑡,𝑛+1 ∈ 𝑄𝑟𝑠𝑡,ℎ; 𝑛 = 1,2,⋯ , 𝑛∗ − 1} ,                   if 𝑞𝑟𝑠𝑡 (ℎ) ≤ 𝑞𝑟𝑠𝑡,𝑛∗{�̃�𝑟𝑠𝑡,𝑛 = 𝑞𝑟𝑠𝑡,𝑛 + 𝑞𝑟𝑠𝑡,𝑛+12 |𝑞𝑟𝑠𝑡,𝑛, 𝑞𝑟𝑠𝑡,𝑛+1 ∈ 𝑄𝑟𝑠𝑡,ℎ; 𝑛 = 𝑛∗, 𝑛∗ + 1,⋯ ,𝑁(ℎ) − 1} , if 𝑞𝑟𝑠𝑡 (ℎ) > 𝑞𝑟𝑠𝑡,𝑛∗ , 703 

𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆         (39) 704 

 iii) Solution interval double divide strategy  705 

In this strategy, a breakpoint will be added to the interval where the solution located in, 706 

and this interval will be redivided uniformly. The interval where the solution 𝑞𝑟𝑠𝑡 (ℎ) located in 707 

is denoted as [𝑞𝑟𝑠𝑡,�̅�, 𝑞𝑟𝑠𝑡,�̅�+1], i.e., 𝑞𝑟𝑠𝑡,�̅� ≤ 𝑞𝑟𝑠𝑡 (ℎ) < 𝑞𝑟𝑠𝑡,�̅�+1. Then ∆�̃�𝑟𝑠𝑡,ℎ can be calculated by Eq. 708 

(40). 709 

∆�̃�𝑟𝑠𝑡,ℎ = {�̃�𝑟𝑠𝑡,𝑛 = 𝑞𝑟𝑠𝑡,�̅� + 𝑞𝑟𝑠𝑡,�̅�+12 |𝑞𝑟𝑠𝑡,�̅�, 𝑞𝑟𝑠𝑡,�̅�+1 ∈ 𝑄𝑟𝑠𝑡,ℎ} , 𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆      (40) 710 

 iv) Solution interval multiple divide strategy 711 

In this strategy, a fixed number 𝑁0  of breakpoints will be added to the interval 712 [𝑞𝑟𝑠𝑡,�̅�, 𝑞𝑟𝑠𝑡,�̅�+1] where the solution 𝑞𝑟𝑠𝑡 (ℎ) is located, and this interval will be redivided uniformly. 713 

Then ∆�̃�𝑟𝑠𝑡,ℎ can be calculated by Eq. (41). 714 

∆�̃�𝑟𝑠𝑡,ℎ = {�̃�𝑟𝑠𝑡,𝑛 = 𝑞𝑟𝑠𝑡,�̅� + (𝑞𝑟𝑠𝑡,�̅�+1 − 𝑞𝑟𝑠𝑡,�̅�) ∙ 𝑛𝑁0 + 1 |𝑞𝑟𝑠𝑡,�̅�, 𝑞𝑟𝑠𝑡,�̅�+1 ∈ 𝑄𝑟𝑠𝑡,ℎ; 𝑛 = 1,2,⋯ ,𝑁0 − 1}, 715 𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆      (41) 716 

With the above strategies, we can obtain the set of additional breakpoints ∆�̃�𝑟𝑠𝑡,ℎ, update 717 

the breakpoints set by Eq. (42), and then carry out the next iteration calculation.  718 𝑄𝑟𝑠𝑡,ℎ+1 = ∆�̃�𝑟𝑠𝑡,ℎ ∪ 𝑄𝑟𝑠𝑡,ℎ ,      𝑡 = 1,2,… , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆      (42) 719 

Further, we denote Ωℎ as the feasible region of model M3 at iteration number ℎ, and then 720 

we can get the following Proposition 2.  721 
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 722 

Proposition 2. With the strategies of adding breakpoints, and if the number of initial piecewise 723 

intervals is an integer multiple of 2, then for all of the above all four strategies, we have Ωℎ ⊃724 Ωℎ+1  and the set of optimal function values {𝐹3(𝒒ℎ, 𝒇ℎ , 𝓛ℎ)}  of model M3  will be a 725 

monotonically increasing series. 726 

 727 

Proof. The details of this proof are shown in Appendix B. 728 

 729 

4.5 SL-ETDDP Global Convergence Algorithm 730 

Based on the above analysis, our initial BL-ETDDP model M1 aligns with the SL-ETDDP 731 

model M2 , and this indicates that M2 ’s global optimal solution also represents the global 732 

optimal solution for our primary problem. As model M3 is relaxed from model M2, the global 733 

optimal solution (𝒒, 𝒇, 𝓛) of model M3 is the lower bound of model M2. Meanwhile, as all the 734 

constraints in model M2  are also in M3 , this means that (𝒒, 𝒇, 𝓛)  of M3  is also the feasible 735 

solution of M2. And we can determine the upper bound of model M2 by using (𝒒, 𝒇) for the 736 

objective function Eq. (6). Therefore, the lower bound and upper bound of model M2 can all 737 

be determined by calculating the model M3.  738 

 739 
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 740 

Fig.9. The flowchart of SL-ETDDP global convergence algorithm 741 

 742 

 As we show in Fig. 9, we can first use the Algorithm 1 to reduce the calculation size of 743 

model M3 , and then use the breakpoints set to divide the domain [𝑞𝑟𝑠𝑡 , 𝑞𝑟𝑠𝑡 ]  into piecewise 744 
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intervals by Eq. (26). Then solve model M3 by using the GUROBI to get its global optimal 745 

solution (𝒒, 𝒇, 𝓛), and based on this global optimal solution, we use Eq. (37) to obtain the lower 746 

and upper bounds of model M2. Next, we test the convergence. If the criterion is satisfied, we 747 

output the results (𝒒, 𝒇)  for model M2 ; otherwise, using one piecewise interval strategy to 748 

update the breakpoints set and go back to the step of using the breakpoints set to divide the 749 

decision domain of the demand and do the following steps again. 750 

 Based on the above analysis, we propose the SL-ETDDP Global Convergence Algorithm 751 

as follows. 752 

 753 

Algorithm 2: SL-ETDDP Global Convergence Algorithm 754 

Step 0: Initialization.  755 

Using a sufficiently large value and a sufficiently small value as the upper bound 𝑍20 and 756 

lower bound 𝑍20 of the SL-ETDDP model M2 respectively; 757 

set the iteration number as ℎ = 1;  758 

set convergence criterion 𝜀; set the initialize breakpoints 𝑁 and construct the breakpoints 759 𝑄𝑟𝑠𝑡,ℎ set by Eq. (26). 760 

Step 1: Using the Algorithm 1 to reduce the calculation size. 761 

 Reduce the calculation size of model  M3 by using Algorithm 1. 762 

Step 2: Solving the MIQP.  763 

Using the GUROBI to solve model M3 , then determine its global optimal solution 764 (𝒒ℎ, 𝒇ℎ , 𝓛ℎ) and its objective function value 𝐹3(𝒒ℎ, 𝒇ℎ, 𝓛ℎ). 765 

Step 3: Update the upper bound and lower bound.  766 

Updating the upper bound of SL-ETDDP model M2: 𝑍2ℎ = min {𝑍2ℎ−1, 𝐹2(𝒒ℎ, 𝒇ℎ)}; 767 

Updating the lower bound of model M2: 𝑍2ℎ = max{𝑍2ℎ−1, 𝐹3(𝒒ℎ, 𝒇ℎ , 𝓛ℎ)}. 768 

Step 4: Convergence test.  769 

If the convergence criterion is met, i.e., 
|𝑍2ℎ−𝑍2ℎ|𝑍2ℎ < 𝜀, then stop and output; otherwise, go to 770 

Step 5. 771 

Step 5: Updating breakpoints set.  772 

Choose a piecewise interval strategy (Eqs. (38), (39), (40) or (41)) to obtain the added 773 

breakpoints set ∆�̃�𝑟𝑠𝑡,ℎ and update the breakpoints set 𝑄𝑟𝑠𝑡,ℎ+1 by Eq. (42);  774 

set ℎ = ℎ + 1 and go to Step 2. 775 

 776 

Proposition 3. When the iteration number ℎ → ∞ , the above algorithm guarantees the 777 

convergence to the globally optimal solution of model M2. 778 

 779 

Proof. Appendix C shows the details of this proof.  780 

 781 

5. Numerical studies 782 

This section will test our algorithm in two networks. We firstly present a simple network 783 

example to illustrate the details process of our algorithm, and then the applicability of our 784 

algorithm will test on the real-world networks in China. 785 
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All tests are conducted on the computer with Intel Xeon W-2145 3.70 GHz, 64 GB RAM 786 

and Windows 10 operating system (64-bit). The MATLAB 2022a together with YALMIP-787 

R20200930 is used to conduct numerical tests. The commercial solver GUROBI optimization 788 

studio 10.0.1 is adopted to solve all MILR -ETDDP problems.  789 

5.1 Case study 1: a simple network 790 

 We adopt a HSR network with three stations 𝑣1, 𝑣2 and 𝑣3. There are three trains Train 1, 791 

Train 2 and Train 3 running in this network. We assume that the operation period is discretized 792 

into 10 equal time intervals with [𝑇1, 𝑇2] = [1,2,⋯ ,10]. For simplicity, the distances from 𝑣1 793 

to 𝑣2 and 𝑣2 to 𝑣3 are all set as 1. The assumed timetable of those three trains and its schedule 794 

are shown in Table 5 and Fig. 10.  795 

 796 

 797 

Table 5. Timetable of case one 798 

Station 
Train 1 Train 2 Train 3 

Arrival  Depart Arrival  Depart  Arrival  Depart  𝑣1  2  5  7 𝑣2 3 4   8 9 𝑣3 5  7  10  

Train 1 Train 2 Train 3

1 2 3 4 5 6 7 8 9 10799 

 800 Fig. 10. Scheduling of Case 1 801 

 802 

The unit costs for the early and late departure are 𝜂′ = 0.4 and 𝜂′′ = 0.7 respectively, and 803 

the capacity (seats) of all three trains is set as 100. We set the weight parameter value in the 804 

objective function as 𝛼1 = 𝛼2 = 0.5, the convergence parameter as 𝜀 = 0.005 and the initial 805 

breakpoints 𝑁 = 5. 806 

With reference to (Wu et al., 2022), other parameters are set as follows: the unit cost of 807 

travel time parameter 𝜔 = 0.5 , the ticket fare rate for all trains are 𝛾(1) = 𝛾(3) = 0.4  and 808 𝛾(2) = 0.45, and the transfer cost at each station is 𝜑(𝑣1) = 𝜑(𝑣2) = 𝜑(𝑣3) = 12.  809 

From the above information, we can ascertain that there are three OD pairs: (𝑣1, 𝑣2) , 810 (𝑣2, 𝑣3) and (𝑣1, 𝑣3). The cost of paths calculated by Eqs. (3) (5) are shown in Table 6.  811 

 812 

Table 6. Information about path for each OD pair 813 

OD pair Path Cost Capacity (𝑣1, 𝑣2) Path 1: 𝑝1 Arc ① 0.9 100 

Path 2: 𝑝2 Arc ⑥ 0.9 100 (𝑣2, 𝑣3) Path 3: 𝑝3 Arc ④ 0.9 100 

Path 4: 𝑝4 Arc ⑧ 0.9 100 

(𝑣1, 𝑣3) Path 5: 𝑝5 Arc ①②④ 2.3 100 

Path 6: 𝑝6 Arc ⑤ 1.9 100 

Path 7: 𝑝7 Arc ⑥⑦⑧ 2.3 100 

Path 8: 𝑝8 Arc ①③⑧ 16.8 100 

 814 

i) Different input data 815 

For the purpose of showing the impact from the ticketing volumes (input data), we set two 816 

groups of ticket booking volumes for all paths as Case 1.a and Case 1.b (as shown in Table 7). 817 

In Case 1.a, the tickets of all arcs are not sold out, but in Case 1.b the ticket booking volumes 818 
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of Path 3 for OD pair (𝑣2, 𝑣3) is 80 (red color in Table 7), which is the only difference between 819 

Case 1.a and Case 1.b, and this makes the 100 capacity of Arc ④ fully occupied (80 for Path 3 820 

and 20 for Path 5) in Case 1.b.  821 

 822 

Table 7. Two groups of ticket booking volumes for paths  823 

OD pair Path 
Ticket booking volume (input data) 

Case 1.a Case 1.b (𝑣1, 𝑣2) Path 1: 𝑝1 Arc ① 50 50 

Path 2: 𝑝2 Arc ⑥ 20 20 (𝑣2, 𝑣3) Path 3: 𝑝3 Arc ④ 70 80 

Path 4: 𝑝4 Arc ⑧ 45 45 

(𝑣1, 𝑣3) Path 5: 𝑝5 Arc ①②④ 20 20 

Path 6: 𝑝6 Arc ⑤ 45 45 

Path 7: 𝑝7 Arc ⑥⑦⑧ 20 20 

Path 8: 𝑝8 Arc ①③⑧ 0 0 

 824 

As all arcs have not reached their capacity limits in Case 1.a, each desired departure time 825 

node only generates the minimal-cost feasible space-time path, with 10 feasible space-time 826 

paths for each OD pair in Case 1.a; while in Case 1.b, because Arc ④ has reached its capacity 827 

limit, these feasible space-time paths passed by this Arc ④ may not be insufficient for demand 828 

from its corresponding desired departure time points. Consequently, these desired departure 829 

time points will use other feasible space-time paths to ensure their demand can be met. 830 

Specifically, Case 1.b generates the number of feasible space-time paths for OD pair (𝑣1, 𝑣2), 831 (𝑣2, 𝑣3) and (𝑣1, 𝑣3) are 10, 17 and 13 respectively as shown in Fig. 11. 832 

1 2 3 4 5 6 7 8 9 10
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 833 

Fig. 11. Space-time network for each OD pair (Case 1.b) 834 

 835 

Using the SL-ETDDP global convergence algorithm (all domain divided strategy), we can 836 

calculate the results for Case 1.a and Case 1.b. Figs. 12-13, Table 8-9 and Appendix D show 837 

the detail of the results.  838 
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 839 

Fig. 12. Objective values with iterations 840 

 841 

Table 8. Estimate results for the paths  842 

Path  

Case 1.a Case 1.b 

Ticket booking 

volume/input 

Estimate 

results/output 

Ticket booking 

volume/input 

Estimate 

results/output 

Path 1: 𝑝1 50 49.80  50 49.80  

Path 2: 𝑝2 20 20.20  20 20.20  

Path 3: 𝑝3 70 70.07  80 80.03  

Path 4: 𝑝4 45 44.93  45 44.97  

Path 5: 𝑝5 20 20.09  20 19.97  

Path 6: 𝑝6 45 44.70  45 44.84  

Path 7: 𝑝7 20 20.21  20 20.19  

Path 8: 𝑝8 0 0.00  0 0.0  

Table 9. Results for space-time arcs 843 

Arc Arc type 𝑢𝑎 
Case 1.a Case 1.b 𝑥𝑎 𝑢𝑎 − 𝑥𝑎 𝜋𝑎 𝑥𝑎 𝑢𝑎 − 𝑥𝑎 𝜋𝑎 

① In-train arc 100 69.89 30.11 0 69.77 30.23  0 

② Dwell arc ∞ 20.09 ∞ 0 19.97 ∞ 0 

③ Transfer arc ∞ 0 ∞ 0 0 ∞ 0 

④ In-train arc 100 90.17 9.83 0 100.00 0 0.60 

⑤ In-train arc 100 44.70 55.30 0 44.84 55.16 0 

⑥ In-train arc 100 40.41 59.59 0 40.39 59.61 0 

⑦ Dwell arc ∞ 20.21 ∞ 0 20.19 ∞ 0 

⑧ In-train arc 100 65.13 34.87 0 65.16 34.84 0 

  844 

For any feasible space-time path 𝑝(𝑡), 𝑡 = 1,2,⋯ , 𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆, if 𝑓𝑝(𝑡) > 0, it 845 

means that passengers with desired departure time 𝑡 choose path 𝑝 for their trips, and this can 846 

be seen as path 𝑝 attracts passengers with desired departure time 𝑡, which is abbreviated as path 847 𝑝 attracts desired departure time 𝑡 or desired departure time 𝑡 is attracted by path 𝑝. Then, from 848 

the results we can ascertain that: 849 

i) After a limited number of iterations, our algorithm can obtain global optimal 850 

solutions. Fig. 12 shows that both Case 1.a and Case 1.b obtain the results after only 4 iterations, 851 

and Table 8 demonstrates that the quality of the solution is good. 852 

ii) Our model can effectively reflect the UE statement and the ticket booking 853 

competition between different OD pairs in the HSR networks under rigid capacity 854 

constraints. As we can see from Table 9, the results of the space-time arcs (access arc omitted) 855 

from both Case 1.a and Case 1.b meet the UE constraints Eqs. (17). In Case 1.a, as no tickets 856 



31 

 

are sold out for any arc or path, the ticket advance booking fee for all arcs and paths is 0. But 857 

in Case 1.b the 100 seat capacity of arc ④ is fully booked and its advance booking fee is 0.6 858 

(red colored in Table 8), which means in the UE statement that passengers who want to choose 859 

the path through arc ④ need to compete for the available seat resource by booking tickets in 860 

advance, and the advance booking fee is 0.6 (red colored in Appendix D). 861 

iii) In the situation that the seat capacity of each path providing services for the HSR 862 

OD pair is in surplus and passengers do not need to compete for the tickets in advance 863 

(advance ticket booking fee is 0), our algorithm results (the TDD estimation results) can 864 

approximately be seen as the results of evenly distributing the ticket booking volume of 865 

each path to its corresponding attracting desired departure time points (maximal entropy 866 

value). This leads to a phenomenon that, under the no tickets sold out situation, if the number 867 

of desired departure time points attracted by each path for the OD pair is close in quantity, the 868 

trend from all paths’ ticket booking volumes within the operation period is similar to the trend 869 

of TDD estimation results; otherwise, the trends between all paths’ ticket booking volumes and 870 

TDD estimation results will be inconsistent.  871 

For example, for OD pair (𝑣1, 𝑣2) in both Case 1.a and Case 1.b, the seat capacities of Path 872 

1 (arc ①) and Path 2 (arc ⑥) are in surplus (30.11 for arc ① and 59.59 for arc ⑥ as shown in 873 

Table 9), and as shown in Appendix D, for  𝑡 = 1,2,⋯ ,5, 𝑓𝑝1(𝑡) ∈ [9.85,10.39] and for 𝑡 =874 6,7,⋯ ,10, 𝑓𝑝2(𝑡) ∈ [3.81,4.38]. This means that Path 1 attracts 5 desired departure time points 875 

( 𝑡 = 1,2,⋯ ,5 ) and Path 2 attracts the remaining 5 desired departure time points ( 𝑡 =876 6,7,⋯ ,10 ). Meanwhile, the estimated results [9.85,10.39]  for 𝑡 = 1,2,⋯ ,5  can be 877 

approximately seen as evenly values of the of ticket booking volume 50 of Path 1 to its 878 

attracting 5 departure time points (50 5⁄ = 10 ). And [3.81,4.38]  for 𝑡 = 6,7,⋯ ,10  can be 879 

approximately seen as evenly values of the of ticket booking volume 20 of Path 2 to its 880 

attracting 5 departure time points (20 5⁄ = 4).  Furthermore, as shown in Fig. 13, the trend of 881 

ticket booking volumes of these two paths within the operation period is left-peak, which is 882 

similar to the trend of TDD estimation results (left-peak). Similarly, for OD pair (𝑣1, 𝑣3) in 883 

Case 1.a, the seat capacities of Path 5, Path 6 and Path 7 are in surplus, and the number of 884 

desired departure time points attracted by Path 5, Path 6 and Path 7 are 3, 3 and 4, such that the 885 

trend of all three paths’ ticket booking volumes is middle-peak, which is similar to the trend of 886 

TDD estimation results. By contrast as shown in Table 9 and Appendix D for OD pair (𝑣2, 𝑣3) 887 

in Case 1.a, the seat capacities of Path 3 (arc ④) and Path 4 (arc ⑧) are all in surplus, but the 888 

number of desired departure time points attracted by Path 3 is 7 (𝑡 = 1,2,⋯ ,7 ), which is 889 

significantly larger than that of Path 4 (3 points, 𝑡 = 8,9,10). This leads to that Path 3’s ticket 890 

booking volume (70) is higher than Path 4’s ticket booking volume (45), but the TDD 891 

estimation results of the desired departure time points attracted by Path 3 ( 𝑓𝑝3(𝑡) ∈892 [9.86,10.79]) are lower than that by Path 4 (𝑓𝑝4(𝑡) ∈ [14.4,15.26]). And the trend of ticket 893 

booking volumes of Path 3 and 4 (left-peak) is different with the trend of TDD estimation results 894 

(right-peak), which is shown in Fig. 13 in Case 1.a for OD pair (𝑣2, 𝑣3).  895 

iv) In the situation that the seat capacity of some popular paths for the HSR OD pair 896 

is insufficient and passengers need to compete for these popular paths by booking tickets 897 

in advance (advance ticket booking fee larger than 0), then some passengers who fail to 898 

secure the more popular paths have to choose a less ideal one, and our algorithm can 899 

address this situation by reallocating those passengers to alternative departure times. And 900 
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this leads to the phenomenon that under the situation of tickets selling-out for some popular 901 

trains, there will be some inconsistency between the trend of our TDD estimation results and 902 

the trend of the ticket booking volumes of the paths for the OD pair. 903 

For instance, as we can see in Case 1.b in Fig. 13, as the tickets of Path 3 (arc ④) and Path 904 

5 (arc ①②④) are claimed by passengers from OD pair (𝑣2, 𝑣3) and (𝑣1, 𝑣3), the capacity of 905 

arc ④ is fully occupied (advance booking fee is 0.6), and some passengers who failed to book 906 

tickets for the ideal train have to adjust their departure times on a larger scale and choose less 907 

ideal trains (for passengers of OD pair (𝑣2, 𝑣3) choose Path 4, whilst passengers of OD pair 908 (𝑣1, 𝑣3) choose Path 6). Compared with Case 1.a, we find that our algorithm reallocates the 909 

demand that are forced to choose the less ideal Path 4 and Path 6 due to capacity constraints to 910 

the desired departure time points attracted by ideal Path 3 and Path 5 respectively. And this 911 

leads to significant inconsistence in the trend of the estimate results for OD pair (𝑣2, 𝑣3) 912 

between Case 1.a and Case 1.b. Furthermore, even both in Case 1.a and Case 1.b the ticket 913 

booking volumes of all paths for OD pair (𝑣1, 𝑣3) are all the same, but in Case 1.b the trend of 914 

our TDD estimation results (left-middle-peak) is different from that of the ticket booking 915 

volumes of all paths (middle-peak). These adjustments to train/path choices under capacity 916 

constraint account for interactions between all OD pairs on the networks – thus highlighting 917 

one of the key contributions of our paper. 918 

 919 

 920 

 921 

 922 

Fig. 13. Estimate results about the time-varying demand distribution 923 

 924 
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ii) Different Parameter values 925 

As different values of parameters will affect passengers’ ticket booking choices and further 926 

affect our estimation results, next we will analyze the effect of changes in the early and late 927 

departure cost parameters 𝜂′ and 𝜂′′ value on our results.  928 

We set the late departure cost parameter 𝜂′′ as a fixed value 0.7, and change the value of 929 

the early departure cost parameter 𝜂′ from 0.1 to 1.3 in steps of 0.1 (as shown in Table 10). 930 

Then, the results of Case 1.a and Case 1.b are shown in Fig. 14. 931 

 932 

Table 10. Different values of early and late departure cost parameters 933 𝜂′ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 𝜂′′ 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

 934 

From Fig. 14 we can see that: 935 

1) In the situation with no ticket selling out for the OD pair, the change of parameter 936 

values of 𝜼′ has the same effect on Case 1.a and Case 1.b. As the 𝜂′ is the early departure 937 

cost parameter, the smaller the value of 𝜂′, the greater the inclination for passengers to choose 938 

the train departure before (rather than after) their desired departure time, this means that the 939 

train will attract more passengers whose desired departure time points after the departure time 940 

of this train. Conversely, passengers will be more inclined to choose the train departure after 941 

their desired departure time as the value of 𝜂′ larger than 𝜂′′, and the train will attract more 942 

passengers whose desired departure time points before this train’s departure time. In Fig. 14 the 943 

change of parameter values has the same effect for OD pair (𝑣1, 𝑣2) in both Case 1.a and Case 944 

1.b: Path 1 with departure time 2 attracts from desired departure time [1,6] at 
𝜂′𝜂′′ = 17 to [1,3] at 945 𝜂′𝜂′′ = 137 . And Path 2 with departure time 7 attracts from desired departure time [7,10] at  𝜂′𝜂′′ =946 17 to [4,10] at 𝜂′𝜂′′ = 137 . 947 

2) In the situation with the tickets selling-out for some paths or arcs of the OD pair, 948 

in the range where 𝜼′ and 𝜼′′ are relatively close (𝜼′𝜼′′ is close to 1), our model has good 949 

consistency in addressing that passengers are force to adjust their departure times due to 950 

capacity constraints. For example, in Fig. 13 the tickets of Path 5 (arc ④) are sold out for the 951 

OD pairs (𝑣1, 𝑣3) in Case 1.b, and the TDD results of OD pairs (𝑣1, 𝑣3) in Case 1.b of Fig. 14 952 

are almost the same as the parameter values change from 
𝜂′𝜂′′ = 37 to 117 , which are significantly 953 

different from that in Case 1.a. Empirical studies (Hess et al., 2017) show that the penalty for 954 

early adjustment is slightly lower than that of late in rail, which falls in the range of [37 , 117 ]. And 955 

this provides support for the practical application of our model. 956 

 957 
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 958 

Fig. 14. Estimate results with different parameter values 959 

 960 

iii) Different strategies and different calculation sizes 961 

In the above analysis, all the results are calculated by our SL-ETDDP global convergence 962 

algorithm with the first piecewise interval strategy (all domain strategy) in the original 963 

calculation size. Next, we will test all four strategies in different calculation sizes to compare 964 

computational efficiency. 965 

Fig. 15 shows the solution point information after the last iteration for all four piecewise 966 

interval strategies. In order to demonstrate the effectiveness of algorithms and strategies 967 

proposed in this paper, we test our Algorithm 2 with four strategies in the situation of original 968 

calculation size (i.e., not applying Algorithm 1) and the situation of calculation size reduction 969 
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(i.e., applying Algorithm 1) respectively. Our problem scale and the corresponding calculation 970 

time at each iteration for all four strategies in different situations of calculation size are shown 971 

in Table 11. 972 

 973 

 974 

Fig. 15. Solution point information after the last iteration 975 

 976 

In Table 11, statistical information about the four strategies in the original calculation size 977 

situation and the reduced calculation size situation are shown in black color and red color 978 

respectively. From this we can ascertain that: 979 

Firstly, with the increase in iterations, our problem scale (constraints number and variable 980 

number) and calculation time are themselves increasing, and all of the strategies in different 981 

calculation size situations can obtain the global solution with a limited number of iterations (up 982 

to 6 iterations). 983 

Secondly, for all strategies, in terms of constraints number, variables number and total 984 

calculation time, the red numbers are smaller than the black numbers, indicating that Algorithm 985 

1 not only reduces the calculation scale but also significantly lowers the total computation time. 986 

Thirdly, for all strategies, the number of iterations in red is less than that in black; this 987 

means that tightening the feasible region in Algorithm 1 can make Algorithm 2 converge faster, 988 

which further reduces the total calculation time. 989 

Fourthly, under the situation of original calculation size, Strategy 1 performs worst; 990 

Strategy 3 has the best performance in computation time but requires more iterations; whilst 991 

Strategy 4 has the fewest iterations. In contrast, under the situation of reduced calculation size, 992 

the computation time of all strategies is significantly reduced, making the advantage of Strategy 993 

4 over Strategies 1 and 2 less obvious; in particular, due to the relatively high number of 994 

iterations, Strategy 3 ends up costing the most time, and this may be due to the relatively small 995 

size of the problem, the advantages of Strategy 3 are not well reflected. We can test these effects 996 

on larger scale cases. 997 

 998 

Table 11. Statistical information for four strategies in different calculation size situations 999 

Iteration number h 1 2 3 4 5 6 total 

Strategy 1 
Constrains 

num 

1747 2107 2827 4267 7147 / / 

1117 1477 2197 / / / / 
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(Original 

size 

/Reduction 

size) 

Variables 

num 

842 1082 1562 2522 4442 / / 

572 812 1292 / / / / 

Calculate 

time(s) 

0.11 0.34 0.47 2.4 5.45 / 8.77 

0.13 0.34 0.75 / / / 1.22 

Strategy 2 

(Original 

size 

/Reduction 

size) 

Constrains 

num 

1747 1927 2287 3007 4447 / / 

1117 1297 1837 / / / / 

Variables 

num 

842 962 1202 1682 2642 / / 

572 692 1052 / / / / 

Calculate 

time(s) 

0.12 0.17 0.39 1.87 2.98 / 5.53 

0.14 0.23 0.47 / / / 0.84 

Strategy 3 

(Original 

size 

/Reduction 

size) 

Constrains 

num 

1747 1837 1927 2017 2107 2197 / 

1117 1207 1297 1387 1477 / / 

Variables 

num 

842 902 962 1022 1082 1142 / 

572 632 692 752 812 / / 

Calculate 

time(s) 

0.1 0.11 0.36 0.37 0.6 0.73 2.27 

0.14 0.18 0.21 0.34 0.47 / 1.34 

Strategy 4 

(Original 

size 

/Reduction 

size) 

Constrains 

num 

1747 2107 2467 2827 / / / 

1117 1477 1837 / / / / 

Variables 

num 

842 1082 1322 1562 / / / 

572 812 1052 / / / / 

Calculate 

time(s) 

0.11 0.36 1.4 2.05 / / 3.92 

0.14 0.14 0.49 / / / 0.77 

 1000 

In this section, all cases were tested on the small simple network for demonstrating the 1001 

step details of our algorithms and strategies. Next, we will test our algorithm in the real-world 1002 

network to verify its effectiveness and computational efficiency. 1003 

5.2 Case study 2: a real-world network of Nanchang-Jiujiang Intercity Railway 1004 

This section tests our proposed model and algorithm in a real-world network in China, i.e., 1005 

Nanchang-Jiujiang Intercity Railway, which includes 6 HSR stations and is shown in Fig.16. 1006 

We adopt the timetable on 15 March 2023 6 with 54 trains running on the networks, and the 1007 

timetable of Nanchang-Jiujiang Intercity Railway is shown in Fig. 17 and Appendix E.  The 1008 

operation period [𝑇1, 𝑇2] = [6: 00,23: 00]  is discretized into [𝑇1, 𝑇2] = [1,2,⋯ ,102]  of 10-1009 

minute time intervals. 1010 

 1011 

Nanchangxi Yongxiu
Gongqing

cheng Dean Lushan Jiujiang

63 km 26 km 8 km 19 km26 km
 1012 

Fig. 16. Nanchang-Jiujiang Intercity Railway 1013 

 1014 

Modelling by the space-time network, there are 180 paths, and in the original calculation 1015 

situation, there will be ∑ 𝑇|𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆 = 180 × 102 = 18360  feasible space-time paths, and 1016 

18570 space-time arcs (18360 access arcs). While after applying the Algorithm 1 in the situation 1017 

of reduced the calculation size, there are only 1456 feasible space-time paths, and 1665 space-1018 

time arcs (1456 access arcs). The convergence parameter as 𝜀 = 0.01 and the initial breakpoints 1019 

are set as 𝑁 = 6. The ticket fare rate for G trains (300 km/h) is 𝛾(𝐺) = 0.45 yuan/km and for 1020 

 
6 China Railway (http:// 12306.cn) 
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D trains (200 km/h) is 𝛾(𝐷) = 0.4 yuan/km. The unit cost for the early and late departure 𝜂′ =1021 0.4 and 𝜂′′ = 0.5. The values of other parameters are set to be the same as in Section 5.1.  1022 

 1023 

 1024 

Fig. 17. The Timetable of Nanchang-Jiujiang Intercity Railway 1025 

 1026 

Fig. 18 illustrates the TDD results of each OD pair, from which we can make the following 1027 

observations:  1028 

1) For the OD pair during the period of high departure frequency of trains or paths, 1029 

the TDD curve fluctuates significantly; on the contrary, in other periods with low service 1030 

frequency of trains or paths, the TDD curve fluctuates slightly. For example, for almost all 1031 

OD pairs in Fig. 18, the estimated TDD curve naturally fluctuates during the period with peak 1032 

departure of trains; and most OD pairs have no train service after 21:00, then, their estimated 1033 

TDD curve after 21:00 remains at a relatively steady altitude. The variation in the estimated 1034 

TDD curve can be attributed to the availability of information. During peak departure periods, 1035 

more information or constraints about the ticketing volumes and departure time of the trains or 1036 

paths can be used. Conversely, during periods with fewer departures, less information can be 1037 

used, then the estimated TDD curve remains relatively constant reflecting a maximum entropy 1038 

value.  1039 

2) In the situation with no ticket selling out of the OD pair, if the number of desired 1040 

departure time points attracted by a train is significantly different from that of others, 1041 

near the departure time of this train, the trend of ticketing volumes and trend of estimated 1042 

TDD curve will have some mismatch phenomenon. For example, the train and its 1043 

surrounding estimated demand marked by the purple circle in Fig. 18. This is because there are 1044 

no other trains providing services near the departure time of this train in the purple circle, so 1045 

the desired departure times nearby are all attracted by this only train. A small number of trains 1046 

provide services for a relatively long time period, this results in mismatch. 1047 
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 1048 

Fig. 18. Results for the Case study 2 1049 

 1050 

3) In the situation with tickets selling-out for some popular trains of the OD pair, the 1051 
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estimated TDD results near the popular train (tickets selling-out) will be relatively higher 1052 

than the trend of its ticket booking volumes. For example, the train and its surrounding 1053 

estimated demand results marked by the green circle in Fig. 18. The capacity of train (D6378) 1054 

in this green circle is fully occupied by the passengers from OD pair Nanchangxi→Jiujiang and 1055 

Dean→Jiujiang (red colored in Appendix E). Interestingly, the estimated demand results nearby 1056 

D6378’s departure time (7:42) is higher than that of previous departure time (7:00) of another 1057 

train. However, it’s worth noting that the ticket booking volume of train D6378 is lower than 1058 

that of the preceding departure train. Our estimated results capture these mismatches implying 1059 

that the model proposed in our paper can effectively applied to the TDD estimation problem. 1060 

Table 12 shows the statistical information for four strategies in different calculation size 1061 

situations of Case 2. The information about the situation of original calculation size and 1062 

situation of reduce calculation size are shown with black color and red color numbers 1063 

respectively. From this we can ascertain that: 1064 

First, comparing the two situations, reducing the calculation size has brought a significant 1065 

improvement in the computational efficiency of the algorithm. Specifically, by adding 1066 

Algorithm 1, on the one hand, the number of constraints and the number of variables are greatly 1067 

reduced (the red numbers are significantly smaller than the black numbers), which can 1068 

obviously increase computation speed; on the other hand, the tighter feasible region in 1069 

Algorithm 1 allows Algorithm 2 to achieve global convergence faster (reducing the number of 1070 

iterations by 1-2 times for the 4 strategies), thereby significantly reducing the computation time 1071 

occupied by subsequent iterations. Therefore, using Algorithms 1 to reduce the calculation scale 1072 

will greatly improve the computational efficiency of Algorithm 2, reducing its total 1073 

computation time to less than 1% of what it would be without using Algorithm 1. 1074 

Second, for the different strategies, Strategy 4 performs the best under the situation of 1075 

original size without reducing the calculation size (shortest total computation time in black 1076 

numbers), while Strategy 3 is the fastest when the problem size is reduced (shortest total 1077 

computation time in red numbers). This may be because, after using Algorithm 1 to reduce the 1078 

calculation size, the feasible region is greatly tightened, and it is not necessary to have many 1079 

iteration steps (number of piecewise interval) to obtain the global solution. Therefore, Strategy 1080 

3, which adds one piecewise interval at each iteration, appears more flexible, lightweight, and 1081 

efficient. 1082 

 1083 

Table 12. Statistical information for four strategies in different calculation size situations of 1084 

Case 2 1085 

Iteration number h 1 2 3 4 5 6 total 

Strategy 1 

(Original size 

/Reduction 

size) 

Constrains 

num 

357299 442979 614339 957059 1642499 / / 

56313 77733 120573 / / / / 

Variables 

num 

173829 230949 345189 573669 1030629 / / 

29535 43815 72375 / / / / 

Calculation 

time(s) 

4601.85 28672.31 16043.58 74417.84 284975 / 408711  

19.28 185.37 618.94 / / / 824  

Strategy 2 

(Original size 

/Reduction 

size) 

Constrains 

num 

357299 400139 485819 657179 999899 / / 

56313 77733 120573   / / 

Variables 

num 

173829 202389 259509 373749 602229 / / 

29535 43815 72375   / / 

Calculation 

time(s) 

4418.02 14949.18 33407.99 108383.8 298882.1 / 460041  

19.42 309.87 464.67     / 794  
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Strategy 3 

(Original size 

/Reduction 

size) 

Constrains 

num 

357299 361583 365867 370151 374435 378719 / 

56313 60579 64881 69165 73449  / 

Variables 

num 

173829 176685 179541 182397 185253 188109 / 

29535 32391 35247 38103 40959  / 

Calculation 

time(s) 

4580.74 17986.53 20099.66 30216.76 51684.11 64332.6 188900  

19.68 19.03 168.12 231.21 261.4   699  

Strategy 4 

(Original size 

/Reduction 

size) 

Constrains 

num 

357299 374435 391571 408707 / / / 

56313 73449 90585   / / 

Variables 

num 

173829 185253 196677 208101 / / / 

29535 40959 52383   / / 

Calculation 

time(s) 

4525.55 27260.35 44173.51 67093.6 / / 143053  

19.27 306.74 423.34     / 749  

 1086 

From the above analysis, it is clear that the use of Algorithm 1 to reduce the calculation 1087 

size has significantly improved the computational performance of Algorithm 2. This greatly 1088 

facilitates the application of the model and methods proposed in this paper on larger-scale 1089 

networks. Meanwhile, it is obvious that the original calculation size situation will not perform 1090 

well when applied to a larger scale network. So next, we will only test the performance in the 1091 

situation of reducing the calculation size on the more complex HSR networks. 1092 

 1093 

5.3 Case study 3: a larger real-world network of Guangzhu Intercity Railway 1094 

The preceding section evaluated our proposed model and algorithms on a single railway 1095 

track line to demonstrate its applicability. To further assess its applicability in a more complex 1096 

context, we apply it to an intersection network scenario in this section.  1097 

 1098 
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 1099 

Fig. 19. Guangzhu Intercity Railway 1100 

 1101 

We utilize the timetable on July 1, 2015, of the Guangzhou-Zhuhai Intercity Railway for 1102 

additional testing. At that time, the railway network, as depicted in Fig. 19, consisted of 20 HSR 1103 
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stations, encompassing the Guangzhou-Zhuhai main line and the Xiaolan-Xinhui line. The 1104 

network was serviced by 52 trains, catering to 74 OD pairs, with the corresponding timetable 1105 

illustrated in Fig. 20. And the values of all parameters are set to be the same as in section 5.2. 1106 

We obtained the ticketing volume for each path from the ticketing system7, and there were 1107 

960 paths used by the passengers. The original calculation size of our problem will have 1108 ∑ 𝑇|𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆 = 102 × 960 = 97920 feasible space-time paths and 98478 space-time arcs. 1109 

After reducing the calculation size by using Algorithm 1, there are 7,703 feasible space-time 1110 

paths, and 8,261 space-time arcs, of which 7,703 are access arcs and 558 are other types of 1111 

space-time arcs.  1112 

 1113 

 1114 

Fig. 20. The Timetable of Guangzhu Intercity Railway 1115 

 1116 

Fig. 21. The TDD results for the OD pair Guangzhounan→zhuhai 1117 

 1118 

Fig. 21 shows the TDD estimation results for one OD pair. And Table 13 shows the 1119 

statistical information of our Algorithm 2 for case study 3, from which we can obtain the 1120 

following: 1121 

 
7 www.12306.cn 
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First, when applied to large-scale networks with intersecting lines, our SL-ETDDP global 1122 

convergence algorithm (Algorithm 2) can also obtain the global optimal solution within a 1123 

limited number of iterations and an acceptable total computation time. 1124 

Second, Strategy 1 is the benchmark strategy, which is simple and easy to operate, but 1125 

requires more computation time than the other strategies; Strategy 3, due to its flexibility and 1126 

convenience of only adding one piecewise interval per iteration, although requiring a slightly 1127 

higher number of iterations than other strategies, has a significantly lower total computation 1128 

time. In combination with the situation of Case study 2, after using Algorithm 1 to reduce the 1129 

model size, Algorithm 2 achieves the highest computational efficiency when using Strategy 3. 1130 

 1131 

Table 13. Statistical information of algorithm 2 for Case study 3 1132 

Iteration number h 1 2 3 4 total 

Strategy 

1 

Constrains num 293934 407154 633594  / 

Variables num 154524 230004 380964  / 

Calculation time(s) 4084.91 6950.66 117701.17 
 128737 

Strategy 

2 

Constrains num 293934 384510 565662  / 

Variables num 154524 214908 335676  / 

Calculation time(s) 3998.39 9537.06 38661.36  52197 

Strategy 

3 

Constrains num 293934 316578 339222 361866 / 

Variables num 154524 169620 184716 199812 / 

Calculation time(s) 3986.45 1743.86 7217.49 8344.05 21292 

Strategy 

4 

Constrains num 293934 384510 475086  / 

Variables num 154524 214908 275292  / 

Calculation time(s) 4005.27 16075.61 51965.45   72046 

 1133 

5.4 Case study 4: a more complex real-world network of Xi’an region HSR networks 1134 

In this section, we will further extend our model and algorithms to more complex railway 1135 

line networks. The timetable and ticket booking data on June 1, 2015, of the Xi’an region HSR 1136 

networks are used for this test. At that time, the Zhengxi HSR, Xibao HSR, Daxi HSR, and 1137 

Baoxi HSR were all connected with Xi’an city and form an 'X' shape intersection, which is 1138 

shown Fig. 22. The network containing 31 stations was serviced by 73 trains with 145 OD pairs, 1139 

and the corresponding timetable illustrated in Fig. 23-24. The operation period [𝑇1, 𝑇2] =1140 [6: 00,24: 00]  is discretized into [𝑇1, 𝑇2] = [1,2,⋯ ,108]  of 10-minute time intervals. The 1141 

convergence parameter as 𝜀 = 0.03 and the values of other parameters are set to be the same 1142 

as in section 5.3. 1143 

We obtained the ticketing volume for each path from the ticketing system, and there were 1144 

1091 paths used by the passengers. The original calculation size of our problem will have 1145 ∑ 𝑇|𝑃𝑟𝑠|(𝑟,𝑠)∈𝑅𝑆 = 108 × 1091 = 117828  feasible space-time paths and 118487 space-time 1146 

arcs. After reducing the calculation size by using Algorithm 1, there are 15894 feasible space-1147 

time paths, and 16553 space-time arcs.  1148 

 1149 
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Fig. 22. Xi’an region HSR networks in 2015 1151 

 1152 

  1153 

Fig. 23. The Timetables of Xibao HSR and Daxi HSR 1154 

 1155 
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 1156 

Fig. 24. The Timetables of Zhengxi HSR and Baoxi HSR 1157 

 1158 

Table 14 shows the statistical information of our Algorithm 2 for case study 4. As we can 1159 

see, all strategies can obtain the results within 3 iterations. Strategy 1, as the foundational 1160 

strategy, took the most time, followed by Strategy 2. Strategy 4 performed the best this time, 1161 

consuming the least computation time, with Strategy 3 next in line. Additionally, it is worth 1162 

noting that although the network in Case Study 4 is more complex than in Case Study 3, and 1163 

the computation scale is larger than Case Study 3, the time spent by each strategy on computing 1164 

Case Study 4 is less than that spent on Case Study 3. To more intuitively analyze the 1165 

effectiveness of our algorithm in different case studies, we further compiled the information 1166 

from the four case studies into the following Table 14 for comparative analysis. 1167 

 1168 

Table 14. Statistical information of algorithm 2 for Case study 4 1169 

Iteration number h 1 2 3 total 

Strategy 

1 

Constrains num 604205 839105 1308905 / 

Variables num 317672 474272 787472 / 

Calculation time(s) 2869.21 19109.28 74928.48 96907 

Strategy 

2 

Constrains num 604205 745145 980045 / 

Variables num 317672 411632 568232 / 

Calculation time(s) 2936.51 6432.11 65498.31 74846 

Strategy 

3 

Constrains num 604205 651185 698165 / 

Variables num 317672 348992 380312 / 

Calculation time(s) 2892.51 3940.85 8935.36 15769 

Strategy 

4 

Constrains num 604205 745145  / 

Variables num 317672 411632  / 

Calculation time(s) 2944.86 2191.62  5136 

 1170 
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 1171 

Fig. 25. The TDD results for the OD pair Xiangyang-Qindu→Xi’anbei 1172 

 1173 

From Table 15 we can see that: 1174 

First, as the scale of the high-speed rail network increases, the scale of our problems is also 1175 

increasing. From Case Study 1 to 4, our HSR network evolves from simple line to complex 1176 

real-world networks, with both the number of feasible space-time paths and space-time arcs 1177 

continuously growing. 1178 

Second, by comparing the original size of feasible space-time paths and space-time arcs 1179 

with the reduction size, it is clear that our Algorithm 1 significantly reduces the problem scale, 1180 

which can greatly reduce the consumption of computing resources and computational time. 1181 

Third, referring to the performance of different strategies, Strategies 3 and 4 are quite 1182 

effective in reducing computation time. Strategy 1, as the basic strategy, takes the longest 1183 

computation time, while Strategy 2 is at a moderate level. 1184 

Forth, from Case study 1 to Case study 3, the computation time increases with the scale of 1185 

the problem; however, from Case study 3 to Case study 4, an increase in problem scale does 1186 

not lead to an increase in computation time. This is because ticket booking volumes in Case 1187 

study 4 are relatively lower than that in Case study 3. The Guangzhou-Zhuhai intercity line of 1188 

the Case study 3 is located in one of the most economically developed regions of China, with 1189 

relatively high travel demand, leading to more frequent and intense competition among 1190 

passengers for popular trains. As these popular trains will usually serve more than one OD pair, 1191 

and each OD pair may carry several train services, the more competition for the ticketing among 1192 

passengers, the more complex to reach the UE state, which obviously increases the 1193 

computational time for the TDD problems. This illustrates that the problem of estimating the 1194 

TDD of HSR networks is not only affected by the scale of the HSR network, but also by the 1195 

volumes of the demand.  1196 

 1197 

Table 15. Comparison information of Case studies 1198 

Case study Case study 1 Case study 2 Case study 3 Case study 4 

Total Station Number 3 6 20 31 

Toal OD Number 3 14 74 145 
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Toal Train Number 3 54 52 73 

Toal Feasible Space-

time Path Number 

(Original 

size/Reduction size) 

80/ 

40 

18360/ 

1456 

97920/ 

7703 

117828/ 

15894 

Total Space-time Arc 

Number (Original size/ 

Reduction size) 

78/ 

48 

18570/ 

1665 

98478/ 

8261 

118487/ 

16553 

Calculate time of 

Strategy 1 
1.22 824 128737 96907 

Calculate time of 

Strategy 2 
0.84 794 52197 74846 

Calculate time of 

Strategy 3 
1.34 699 21292 15769 

Calculate time of 

Strategy 4 
0.77 749 72046 5136 

 1199 

6. Conclusions 1200 

TDD is a critical input for operation and management in the HSR systems, i.e., it can help 1201 

to improve the service quality of the HSR systems by informing the appropriate train departure 1202 

frequency for the peak and off-peak periods within a day to allow passengers to depart at their 1203 

desired departure times as far as possible. This study is the first in the literature to analytically 1204 

estimate TDD for HSR networks with the ticket booking data and using the schedule-based UE 1205 

assignment. A bi-level model is formulated to estimate the TDD problems and the advance 1206 

booking cost is considered endogenously as a part of passenger choice equilibrium. We convert 1207 

the bi-level model into a single-level model through equivalent complementary constraints. 1208 

Furthermore, based on linear relaxation, the single-level model is transformed into a MIQP. By 1209 

solving the MIQP we get the information about the upper and lower bounds of our original 1210 

problem, and then a global optimal solution algorithm with four piecewise interval strategies is 1211 

proposed. And the effectiveness and applicability of the proposed algorithm are illustrated with 1212 

three case studies. The first simple case illustrates the details of our algorithm result with 1213 

different input data, different parameter values and different strategies; and the real-world case 1214 

illustrates the applicability and calculating efficiency of four strategies in a real-world network 1215 

in China. Further, two more complex real-world networks studies are proposed to test our 1216 

algorithm in an intersection HSR network. The results of the four case studies show that the 1217 

proposed model can help operators to elicit the time-varying demand in the HSR systems 1218 

especially when demand is relatively high and passengers need to book in advance to guarantee 1219 

their itinerary.  1220 

As our study focuses on the demand estimation, we can provide high quality of TDD for 1221 

HSR operators, especially for the routes experiencing strains on train capacity during the peak 1222 

hours within a day, where there is a discrepancy between passengers' actually departure time 1223 

and their desired departure time. By accurately capturing these discrepancies, our proposed 1224 

solution offers valuable insights for HSR operational management teams. It enables them to 1225 

make more informed decisions in line planning and timetable scheduling, aiming to align 1226 

transportation services more closely with passenger demand. This alignment is crucial for 1227 

enhancing the overall service quality across the HSR network, thereby improving passenger 1228 
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satisfaction and system efficiency. Meanwhile, implementing our model and algorithm can 1229 

assist HSR operators in identifying critical bottlenecks and demand patterns, facilitating the 1230 

development of more responsive and demand-adaptive transportation services. For example, it 1231 

can guide the allocation of additional train services during identified peak periods or the 1232 

adjustment of train capacities to better meet passenger demand without significantly 1233 

overhauling existing schedules. 1234 

 This study can be further extended along several avenues. Firstly, this study assumes that 1235 

the ticket price is independent of ticket booking time (this reflects the current practice in China), 1236 

and future research can extend to variable ticket prices during the pre-sale period (booking time 1237 

horizon). Secondly, based on the arcs/links capacity constraints, we formulate our current 1238 

model, and if the seat allocation becomes more popular in the future, we can build the model 1239 

based on the seat allocation scheme for the TDD estimation problem. Further, the special 1240 

situation for passengers booking tickets covering more than their desired journey due to the 1241 

unavailability of direct tickets between their intended OD pair can be considered. Thirdly, this 1242 

study considers the demand with homogeneity and deterministic choice behaviors (UE 1243 

principle), while future study can further explore the TDD of heterogeneity passenger demand 1244 

with Stochastic user equilibrium (SUE) principle, and this problem for multi-class seats (Xu et 1245 

al., 2018b) can also be considered. Fourth, uncertainty factors, including equipment failures and 1246 

extreme weather conditions, which can cause train delays and subsequently influence passenger 1247 

choices, can be incorporated into the TDD estimation problem by utilizing the reliability-based 1248 

assignment approach (Xu et al., 2018a; Xu et al., 2023b).  1249 
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 1266 

Appendix A. Estimate the TDD by considering the BRUE 1267 

 In the theory of Bounded Rationality, individuals are considered to make decisions in a 1268 

boundedly rational manner, opting for satisfactory rather than optimal solutions. This is 1269 

attributed to either a lack of precise information or the complexity of scenarios that hinder the 1270 
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attainment of an optimized decision (Conlisk, 1996; Di and Liu, 2016; Ye and Yang, 2017). 1271 

Drawing upon the terminology used in Jiang et al. (2022); Liu and Zhou (2016); Lou et al. 1272 

(2010), we define BRUE as follows: 1273 

 1274 

Definition 2.1: A path is considered "acceptable" if the discrepancy between its cost and that 1275 

of the least-cost path does not exceed a predetermined threshold value. 1276 

 1277 

Definition 2.2 (BRUE): A path flow distribution achieves BRUE status when it aligns with 1278 

travel demands, ensuring that each user selects an acceptable path. 1279 

 1280 

We define 𝜀𝑟𝑠 as the threshold value of passengers for the OD pair (𝑟, 𝑠) ∈ 𝑅𝑆. In BRUE, 1281 

for any feasible space-time path 𝑝(𝑡), if its flow 𝑓𝑝(𝑡) > 0, then we can get the following Eq. 1282 

(43). 1283 𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 ≤ 𝜋𝑟𝑠𝑡 + 𝜀𝑟𝑠,            𝑡 = 1,2,⋯𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆  (43) 1284 

The left of Eq. (43) means the actual cost of path 𝑝(𝑡), and right of Eq. (43) means minimal 1285 

cost between OD pair (𝑟, 𝑠) for demand 𝑞𝑟𝑠(𝑡) plus the threshold value 𝜀𝑟𝑠. 1286 

 Then, the Eq. (20) of UE conditions can be rewritten as Eq. (44) with BRUE conditions.  1287 

{  
   
 𝑓𝑝(𝑡) ≥ 0𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝜋𝑟𝑠𝑡 ≥ 0
𝑓𝑝(𝑡) ∙ (𝜀𝑟𝑠 − 𝑐𝑝(𝑡) −∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 + 𝜋𝑟𝑠𝑡 ) ≥ 0𝜀𝑟𝑠 ≥ 0

 ,   𝑡 = 1,2,⋯𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆  (44) 1288 

In the above Eq. (44), when 𝜀𝑟𝑠 = 0, the BRUE (Eq. (44)) is equivalent with UE (Eq. (20)); 1289 

and when 𝜀𝑟𝑠 > 0, if 𝑓𝑝(𝑡) > 0, then we can obtain Eq. (43). And similarly with subsection 4.1, 1290 

Eq. (44) can be replaced by the following linear constrains Eqs. (45). 1291 

{  
  
   
 𝑈 ∙ ℎ𝑝(𝑡) + 𝜗 ≤ 𝑓𝑝(𝑡) ≤ 𝑀 ∙ (1 − ℎ𝑝(𝑡))𝑈 ∙ ℎ𝑝(𝑡) ≤ 𝜀𝑟𝑠 − 𝑐𝑝(𝑡) −∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 + 𝜋𝑟𝑠𝑡𝑓𝑝(𝑡) ≥ 0𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝜋𝑟𝑠𝑡 ≥ 0𝜀𝑟𝑠 ≥ 0ℎ𝑝(𝑡) ∈ {0,1}

,     𝑡 = 1,2,⋯𝑇; 𝑝 ∈ 𝑃𝑟𝑠; (𝑟, 𝑠) ∈ 𝑅𝑆   (45) 1292 

Thus, our estimation problem for TDD by considering the BRUE can be formulated as the 1293 

following model M4. 1294 𝐌𝟒: 1295 min𝑍3 = 𝛼1 ∑ ∑ℒ𝑟𝑠𝑡𝑇
𝑡=1(𝑟,𝑠)∈𝑅𝑆 + 𝛼2 ∑ ∑ (∑𝑓𝑝(𝑡)𝑇

𝑡=1 − 𝑓𝑝)2𝑝∈𝑃𝑟𝑠(𝑟,𝑠)∈𝑅𝑆                 (24) 1296 

subject to 1297 

Eqs. (7)-(8), (10), (13)-(14), (22), (45) 1298 

Constraints in Eqs. (27)-(34),  𝑡 = 1,2, … , 𝑇; (𝑟, 𝑠) ∈ 𝑅𝑆 1299 
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As the only difference between model 𝑀4 and 𝑀3 is the use of 𝐸𝑞𝑠. (45) instead of 𝐸𝑞𝑠. (43), 1300 

and 𝐸𝑞𝑠. (45)  are also the linear constraints, we still can use the algorithm proposed in 1301 

Subsection 4.4 to calculate the model M4. 1302 

  1303 

 1304 

Appendix B. Proof of proposition 2 1305 

 From Eqs. (38) - (41) we know that each strategy does not move existing breakpoints when 1306 

adding the new breakpoints if the number of initial piecewise intervals is an integer multiple of 1307 

2. And we use the following Fig. B1 to provide some intuition. The existing breakpoints are 1308 

shown as green points and the additional breakpoints are shown as red ones. We know that the 1309 

region defined by the red solid curve chords and the curve of ℒ𝑟𝑠𝑡 (𝑞𝑟𝑠𝑡 ) is a subset of that defined 1310 

by the green solid curve chords and the curve of ℒ𝑟𝑠𝑡 (𝑞𝑟𝑠𝑡 ). Similarly, the region defined by red 1311 

dotted tangent lines, green dotted tangent lines and the cure of ℒ𝑟𝑠𝑡 (𝑞𝑟𝑠𝑡 ) is the subset of that 1312 

defined by the green dotted tangent lines and the cure of ℒ𝑟𝑠𝑡 (𝑞𝑟𝑠𝑡 ) . Furthermore, with the 1313 

strategy of adding breakpoints, Ωℎ ⊃ Ωℎ+1. As Ωℎ ⊃ Ωℎ+1, then we have {𝐹3(𝒒ℎ, 𝒇ℎ , 𝓛ℎ)} ≤1314 {𝐹3(𝒒ℎ+1, 𝒇ℎ+1, 𝓛ℎ+1)}. Thus, proposition 2 is true. □ 1315 

 1316 

Fig. B1. The updated breakpoints  1317 

 1318 

Appendix C. Proof of proposition 3 1319 

 This proof follows a similar logic to that in Wang et al. (2015) and Xu et al. (2022) .Let 𝑍2∗ 1320 

be the optimal objective function value of the SL-EDTTP model M2 . As the model M3  is 1321 

relaxed from model M2, then model M3 has a larger solution space than M2, and the objective 1322 

function value 𝐹3(𝒒, 𝒇, 𝓛)  of model M3  is always the lower bound of model M2 , i.e., 1323 𝐹3(𝒒, 𝒇, 𝓛) ≤ 𝑍2∗. Meanwhile, from proposition 2 we know that the set of optimal objective 1324 

function values {𝐹3(𝒒ℎ, 𝒇ℎ , 𝓛ℎ)}  is a monotonically increasing series with respect to the 1325 
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iteration number ℎ . From our SL-ETDDP Global Convergence Algorithm, we have 𝑍2ℎ =1326 max{𝑍2ℎ−1, 𝐹3(𝒒ℎ, 𝒇ℎ , 𝓛ℎ)} ≤ 𝑍2∗ , then we can know that {𝑍2ℎ}  is also a monotonically 1327 

increasing series and can obtain the following equation. 1328 𝑍21 ≤ 𝑍22 ≤ ⋯ ≤ 𝑍2ℎ ≤ ⋯ ≤ 𝑍2∗ 1329 

 Furthermore, with an increasing number of iterations ℎ, Eqs. (27)-(34) will make ℒ𝑟𝑠𝑡 (𝑞𝑟𝑠𝑡 ) 1330 

closer to approach the curve of 𝑞𝑟𝑠𝑡 ln 𝑞𝑟𝑠𝑡 − 𝑞𝑟𝑠𝑡  , and then, the solution of model M3  will 1331 

approach the solution of model M2. If the optimal solution of model M2 is still not achieved, 1332 

then the solution (𝒒ℎ, 𝒇ℎ, 𝓛ℎ)  in model M3  will be updated with the set of additional 1333 

breakpoints and its corresponding reduction region by step 4, and then the lower bounds 𝑍2ℎ 1334 

will be updated by 𝑍2ℎ = max{𝑍2ℎ−1, 𝐹3(𝒒ℎ, 𝒇ℎ , 𝓛ℎ)}. Therefore, with the number of iterations 1335 

approaches infinity, we have limℎ→∞𝑍2ℎ = 𝑍2∗  and (𝒒ℎ , 𝒇ℎ)  will approach the optimal solution 1336 (𝒒∗, 𝒇∗). 1337 

 Moreover, as all the constraints in model M3 are also in model M2, the optimal solution 1338 (𝒒ℎ , 𝒇ℎ, 𝓛ℎ) of model M3 at iteration number ℎ is also the feasible solution of model M2. Then 1339 

the objective function value 𝐹2(𝒒ℎ, 𝒇ℎ) can be calculated by given (𝒒ℎ, 𝒇ℎ), and 𝐹2(𝒒ℎ, 𝒇ℎ) 1340 

are the upper bounds of model M2, i.e., 𝐹2(𝒒ℎ, 𝒇ℎ) ≥ 𝑍2∗. And from our algorithm in section 1341 

4.4, we have 𝑍2ℎ = min {𝑍2ℎ−1, 𝐹2(𝒒ℎ, 𝒇ℎ)} ≥ 𝑍2∗, which means that {𝑍2ℎ} is a monotonically 1342 

decreasing series and it can be expressed as 1343 𝑍21 ≥ 𝑍22 ≥ ⋯𝑍2ℎ ≥ ⋯ ≥ 𝑍2∗ 1344 

Furthermore, with iteration number ℎ approach infinity, we have limℎ→∞𝑍2ℎ = 𝑍2∗. The above 1345 

means that by using the upper and lower bounds, our proposed algorithm will converge to the 1346 

global optimal solution of the model M2. □ 1347 

 1348 
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Appendix D. Path flow results of Case 1 

Table D. Path flow results of Case 1 

OD pair 𝑡 𝑝(𝑡) 𝑐𝑝(𝑡) Case 1.a Case 1.b ∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸  𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝜋𝑟𝑠𝑡  𝑓𝑝(𝑡) ∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸  𝑐𝑝(𝑡) +∑𝜋𝑎 ∙ 𝛿𝑝(𝑡)𝑎𝑎∈𝔸 − 𝜋𝑟𝑠𝑡  𝑓𝑝(𝑡) 

𝑣1 → 𝑣2 

1 𝑝1(1) 1.6 0 0 9.85 0 0 10.39 

2 𝑝1(2) 0.9 0 0 9.85 0 0 9.85 

3 𝑝1(3) 1.3 0 0 9.85 0 0 9.85 

4 𝑝1(4) 1.7 0 0 10.39 0 0 9.85 

5 𝑝1(5) 2.1 0 0 9.85 0 0 9.85 

 6 𝑝2(6) 1.6 0 0 3.81 0 0 3.81 

 7 𝑝2(7) 0.9 0 0 4.38 0 0 4.38 

 8 𝑝2(8) 1.3 0 0 3.81 0 0 4.38 

 9 𝑝2(9) 1.7 0 0 4.38 0 0 3.81 

10 𝑝2(10) 2.1 0 0 3.81 0 0 3.81 

𝑣2 → 𝑣3 

1 𝑝3(1) 3 0 0 9.86 
0.6 0 12.68 

0 2.9 0 

2 𝑝3(2) 2.3 0 0 9.86 
0.6 0 13.68 

0 2.9 0 

3 𝑝3(3) 1.6 0 0 9.96 
0.6 0 13.63 

0 2.9 0 

4 𝑝3(4) 0.9 0 0 10.79 
0.6 0 12.68 

0 2.9 0 

5 𝑝3(5) 1.3 0 0 9.86 
0.6 0 13.68 

0 1.8 0 
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6 𝑝3(6) 1.7 0 0 9.86 
0.6 0 13.68 

0 0.7 0 

7 𝑝3(7) 2.1 0 0 9.86 
0.6 0.4 0 

0 0 11.73 

8 𝑝4(8) 1.6 0 0 14.4 0 0 10.8 

9 𝑝4(9) 0.9 0 0 15.26 0 0 11.73 

10 𝑝4(10) 1.3 0 0 15.26 0 0 10.72 

𝑣1 → 𝑣3 

1 𝑝5(1) 3 0 0 6.15 
0.6 0 10.02 

0 1.1 0 

2 𝑝5(2) 2.3 0 0 6.65 
0.6 0 9.96 

0 1.1 0 

3 𝑝5(3) 2.7 0 0 7.29 
0.6 0 0 

0 0 11.28 

4 𝑝6(4) 2.6 0 0 14.62 0 0 10.99 

5 𝑝6(5) 1.9 0 0 15.27 0 0 11.28 

6 𝑝6(6) 2.3 0 0 14.81 0 0 11.28 

7 𝑝7(7) 2.3 0 0 4.94 0 0 4.92 

8 𝑝7(8) 2.7 0 0 5.32 0 0 5.32 

9 𝑝7(9) 3.1 0 0 4.63 0 0 4.63 

10 𝑝7(10) 3.5 0 0 5.32 0 0 5.32 
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Appendix E. Timetable of Nanchang-Jiujiang Intercity Railway 

Table E. Timetable of Nanchang-Jiujiang Intercity Railway 

Train 

No 
Station Name 

Arrival 

Time 

Depart 

Time 
Capacity 

Train 

No 
Station Name 

Arrival 

Time 

Depart 

Time 
Capacity 

D6258 Nanchangxi ---- 7:00 

565 

D3274 Yongxiu 13:50 13:52 
565 

D6258 Yongxiu 7:22 7:24 D3274 Lushan 14:18 14:20 

D6258 Gongqingcheng 7:36 7:38 G2712 Nanchangxi 13:41 13:44 
518 

D6258 Jiujiang 8:03 8:05 G2712 Lushan 14:27 14:29 

G892 Nanchangxi ---- 7:20 
518 

G1480 Nanchangxi 13:33 13:50 

518 G892 Lushan 8:03 8:05 G1480 Dean 14:21 14:28 

G1466 Nanchangxi ---- 7:31 

518 

G1480 Jiujiang 14:50 14:50 

G1466 Gongqingcheng 8:00 8:02 G2296 Nanchangxi 13:49 13:56 
518 

G1466 Lushan 8:22 8:24 G2296 Lushan 14:39 14:41 

D6378 Nanchangxi ---- 7:42 

565 

D6264 Yongxiu 14:26 14:28 
565 

D6378 Dean 8:13 8:15 D6264 Jiujiang 15:01 15:05 

D6378 Jiujiang 8:37 8:37 G3156 Nanchangxi 14:13 14:17 
518 

D3252 Nanchangxi ---- 7:52 

565 

G3156 Lushan 15:00 15:02 

D3252 Yongxiu 8:12 8:14 G648 Nanchangxi 14:29 14:32 

518 
D3252 Lushan 8:41 8:43 G648 Yongxiu 14:52 15:05 

D6344 Dean 8:50 8:52 
565 

G648 Dean 15:20 15:22 

D6344 Jiujiang 9:13 9:13 G648 Lushan 15:38 15:40 

D2236 Yongxiu 9:07 9:09 

565 

G1470 Nanchangxi ---- 14:38 
518 

D2236 Gongqingcheng 9:21 9:23 G1470 Lushan 15:22 15:24 

D2236 Lushan 9:42 9:44 G896 Nanchangxi ---- 14:43 
518 

D3190 Nanchangxi ---- 9:02 

565 

G896 Lushan 15:27 15:29 

D3190 Yongxiu 9:22 9:24 D3198 Nanchangxi ---- 15:15 
565 

D3190 Gongqingcheng 9:36 9:38 D3198 Lushan 16:03 16:05 

D3190 Dean 9:45 9:47 D3256 Nanchangxi ---- 15:20 

565 D3190 Lushan 10:03 10:05 D3256 Gongqingcheng 15:48 15:50 

D6266 Yongxiu 9:36 9:38 

565 

D3256 Lushan 16:09 16:11 

D6266 Gongqingcheng 9:50 9:52 D3288 Nanchangxi 15:15 15:25 

565 
D6266 Dean 9:59 10:01 D3288 Yongxiu 15:45 15:47 

D6266 Jiujiang 10:23 10:26 D3288 Dean 16:02 16:04 

D3194 Nanchangxi ---- 9:31 

565 

D3288 Lushan 16:20 16:22 

D3194 Gongqingcheng 9:59 10:01 D6352 Yongxiu 16:11 16:13 

565 
D3194 Dean 10:08 10:10 D6352 Gongqingcheng 16:25 16:33 

D3194 Lushan 10:26 10:28 D6352 Dean 16:40 16:42 

D6254 Nanchangxi ---- 10:20 

565 

D6352 Jiujiang 17:04 17:04 

D6254 Gongqingcheng 10:48 10:50 G2694 Nanchangxi 16:01 16:04 
565 

D6254 Jiujiang 11:15 11:19 G2694 Lushan 16:47 16:49 

D2242 Nanchangxi 10:27 10:32 
565 

D2202 Nanchangxi 16:10 16:10 

565 
D2242 Lushan 11:15 11:17 D2202 Yongxiu 16:30 16:32 

G2790 Nanchangxi 10:33 10:38 

518 

D2202 Gongqingcheng 16:44 16:46 

G2790 Dean 11:09 11:11 D2202 Jiujiang 17:11 17:15 

G2790 Lushan 11:27 11:29 G2766 Nanchangxi 16:24 16:31 

518 G2382 Nanchangxi ---- 10:45 
518 

G2766 Yongxiu 16:51 16:59 

G2382 Gongqingcheng 11:15 11:17 G2766 Gongqingcheng 17:11 17:13 
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G2382 Jiujiang 11:42 11:45 G2766 Jiujiang 17:41 17:41 

G636 Nanchangxi 11:14 11:18 

518 

G2698 Nanchangxi 16:35 16:38 

518 G636 Yongxiu 11:38 11:40 G2698 Dean 17:09 17:11 

G636 Dean 11:56 11:58 G2698 Lushan 17:29 17:31 

G636 Lushan 12:13 12:15 G2786 Nanchangxi 17:22 17:30 

518 D376 Nanchangxi 11:23 11:32 

565 

G2786 Yongxiu 17:55 17:57 

D376 Yongxiu 11:52 11:59 G2786 Lushan 18:25 18:27 

D376 Dean 12:14 12:16 D6252 Nanchangxi 17:48 17:48 

565 
D376 Lushan 12:32 12:34 D6252 Yongxiu 18:09 18:11 

G894 Nanchangxi ---- 11:38 
518 

D6252 Dean 18:26 18:28 

G894 Lushan 12:22 12:24 D6252 Jiujiang 18:50 18:54 

G2046 Nanchangxi 11:39 11:42 

518 

G2036 Nanchangxi 17:45 17:53 

518 
G2046 Yongxiu 12:06 12:08 G2036 Yongxiu 18:17 18:19 

G2046 Dean 12:23 12:25 G2036 Gongqingcheng 18:31 18:33 

G2046 Lushan 12:40 12:42 G2036 Lushan 18:51 18:53 

D3266 Nanchangxi 11:53 11:57 

565 

D6508 Nanchangxi 18:21 18:25 

565 
D3266 Gongqingcheng 12:26 12:28 D6508 Yongxiu 18:45 18:47 

D3266 Lushan 12:46 12:48 D6508 Gongqingcheng 18:59 19:01 

G2762 Nanchangxi 11:59 12:02 

518 

D6508 Jiujiang 19:29 19:29 

G2762 Yongxiu 12:22 12:24 D6260 Gongqingcheng 19:39 19:41 

565 G2762 Jiujiang 12:57 12:57 D6260 Dean 19:47 19:49 

D2232 Nanchangxi 12:19 12:23 
565 

D6260 Jiujiang 20:12 20:14 

D2232 Lushan 13:06 13:08 D3264 Nanchangxi 19:14 19:20 

565 G2294 Nanchangxi 12:24 12:28 

518 

D3264 Gongqingcheng 19:48 19:50 

G2294 Yongxiu 12:48 12:50 D3264 Lushan 20:09 20:11 

G2294 Lushan 13:17 13:19 D3278 Nanchangxi 19:24 19:34 

565 D2226 Nanchangxi 12:35 12:39 

565 

D3278 Gongqingcheng 20:02 20:04 

D2226 Dean 13:10 13:12 D3278 Lushan 20:23 20:25 

D2226 Lushan 13:28 13:30 G2782 Nanchangxi 19:32 19:40 
518 

G2794 Nanchangxi 12:42 12:46 

518 

G2782 Lushan 20:28 20:30 

G2794 Yongxiu 13:06 13:08 G2796 Nanchangxi 20:11 20:15 

518 
G2794 Lushan 13:34 13:36 G2796 Yongxiu 20:35 20:37 

D2376 Nanchangxi 13:02 13:08 

565 

G2796 Dean 20:51 20:53 

D2376 Gongqingcheng 13:36 13:38 G2796 Lushan 21:09 21:11 

D2376 Lushan 13:57 13:59 G2706 Nanchangxi 20:42 20:48 

518 G2764 Nanchangxi 13:09 13:13 

518 

G2706 Gongqingcheng 21:16 21:18 

G2764 Yongxiu 13:34 13:36 G2706 Lushan 21:36 21:38 

G2764 Jiujiang 14:09 14:13 D734 Nanchangxi 20:51 20:59 
565 

D3274 Nanchangxi 13:25 13:29 565 D734 Jiujiang 22:02 22:05 
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