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Abstract: The dial-a-ride (DAR) service is a precursor to emerging shared mobility. Service providers expect 

efficient management of fleet resources to improve service quality without degrading economic viability. Most 

existing studies overlook possible future demands that could yield better matching opportunities and scheduling 

benefits, and therefore have short-sighted limitations. Moreover, the effects of correlated demand and potential 

prediction errors were ignored. To address these gaps, this paper investigates prediction-failure-risk-aware online 
DAR scheduling with spatial demand correlation. Request selection and cancellation are explicitly considered. We 

formulate the problem as a Markov decision process (MDP) and solve it by approximate dynamic programming 

(ADP). We further develop a demand prediction model that can capture the characteristics of DAR travel demand 

(uncertainty, sparsity, and spatial correlation). Deep quantile regression is adopted to estimate the marginal 

distribution of each OD pair. These marginals are combined into a joint demand distribution by constructing a 

Gaussian Copula to capture the spatial demand correlation. A prediction error correction mechanism is proposed to 

eliminate prediction errors and rectify policies promptly. Based on the model properties, several families of 
customized pruning strategies are devised to improve the computational efficiency and solution quality of ADP. We 

solve policies over time in the dynamic environment mixed with actual and stochastic future demands via the ADP 

algorithm and scenario approach. We propose the value function rolling method and multi-scenario exploration 

method, to address the deviation of the value function and identify the optimal policy from multiple future demand 

scenarios. Numerical results demonstrate the importance and benefits of incorporating demand forecasting and 

spatial correlation into the DAR operation. The improvement due to prediction is significant even when the 
prediction is imperfect, while the demand prediction can hedge against the negative effects of request cancellation. 

The real-world application result shows that compared to state-of-the-practice, the overall delivery efficiency can 

be substantially improved, along with better service quality and fleet size savings. 

 

Keywords: Dial-a-ride service; OD demand prediction; Spatial demand correlation; Approximate dynamic 

programming; Risk-aware decision-making 

  

                                                        

 
1

 Corresponding author, E-mail: ctwtwu@scut.edu.cn 

https://doi.org/10.1016/j.trc.2024.104801


2 

 

 

1. Introduction  

Public transportation is essential to urban mobility and development. Its operation usually compromises 

between service quality and operation cost. Conventional fixed-route service can be operated in high-demand areas 

but cannot be affordable in low-density demand areas. Taxis offer a good door-to-door, however, expensive service. 

The advancement in information and communication technologies creates both opportunities and challenges for 
new transportation services. Dial-a-ride (DAR), as an emerging public transport and ridesharing service, has been 

suggested as a system capable of fulfilling the dynamic and sparse demand, which is becoming increasingly 

important in both practice and the academy. 

Although the DAR service can better cope with the ever-changing demand for transportation, it is often over 

three times more expensive than traditional fixed-route systems in that more fleet and crew resources are required 

to meet the unbalanced spatiotemporally distributed demand (Anderson et al., 2014). Crew costs usually take up to 
as high as 60% of the overall operation cost (Perumal et al., 2019). The operation cost and service quality are great 

concerns for transit service providers because they impact their profitability and long-term survival. In this highly 

competitive, growing market segment of on-demand mobility services, the service providers are often in a 

challenging dilemma of whether to maintain the economic viability of the system or maintain good services for 

passengers, which can trigger the ‘vicious cycle’ effect if the system is not well designed. Inexpensive solutions 

that do not involve new fleet resources are the most desired. 

Traditionally, dynamic DAR problems are usually addressed by the repetitive one-period static model and 
myopic insertion heuristics, while having not fully taken advantage of historical demand data. However, traditional 

methods are generally sub-optimal because requests are matched independently between periods, and they fail to 

consider the future dynamics and measures of the whole system, making it difficult to adapt to a time-varying 

stochastic environment. Instead, on one hand, more informed decision-making could be achieved by joint planning 

for requests across multiple periods through more refined dynamic schedule adjustment strategies, such as request 

insertions and trip adjustments. On the other hand, an anticipating solution based on look-ahead information and 
foresighted prior fleet allocation can potentially enable more efficient and effective deployment of vehicles to travel 

demand. A possible way to exploit the vehicle capacity is to forecast future demand and then distribute the scarce 

fleet resources. The increasing availability of travel demand data from reservation platforms provides opportunities 

for moving beyond DAR services into a proactive operation mode. The historical travel demand data from the day-

to-day operation can be used to predict future demand and dispatch vehicles preemptively, which contributes to 

improving service quality and system efficiency.  

In this paper, we address the dynamic and stochastic problem for DAR services with an accurate demand-
anticipatory predictor. We consider a fleet of vehicles with limited capacity operating in a general multi-depot 

context. Our problem determines simultaneously vehicle routing, departure times, and request selection. Seeking 

effective solutions for this problem is difficult due to the following complications. First, such DAR problems often 

deal with travel demand that reveals over time and requires decision-making under uncertainty of not only the 

appearance of future users and cancellations of users but also the operations concerning users who have already 

appeared. In the highly dynamic DAR system, a delayed arrival at a single station may affect the operational 
efficiency of subsequent routes. Accordingly, any joint optimization action can affect not only the immediate 

performance but also the future performance (i.e., the rewards of the following states). Thus, an efficient approach 

that can maximize long-run rewards and that can make dynamic decisions is highly desired for the real-time 

application of DAR services.  

Second, the decision-making should be amenable to the unique characteristics of travel demand. Thus far, 

DAR problems have relied on the assumption that all customer presences are independent from each other. Unlike 
traditional bus services with fixed itineraries, the DAR service usually operates in lower-density regions subject to 

volatile demand (Chandakas, 2020). In the transit catchment area, the spatial-temporal activities in area-based OD 

pairs present latent features following some latent spatiotemporal distribution (Guo and Karimi, 2017). In theory, 
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the OD movement between locations presents possibly spatial dependencies mainly attributed to spatial spillover 

effect or unobserved factors shared by adjacent zonal units. In practice, close neighborhoods might share a similar 

spatial and temporal mobility pattern. For example, mobility tends to be more active in the vicinity of the areas with 

activities of high intensity. When the travel demand is aggregated such as work and shopping movement, people 
move densely from a large number of dispersed origins to a specific functional area; when travel demand is 

evacuated such as home-bound movement, people from the same origins move widely. Meanwhile, a few 

recreation-based travel demands and short-distance traffic modes can induce movement in adjacent areas. These 

facts indicate the presence of possible simultaneous movements between certain OD pairs. The dynamic decision-

making process will be affected by spatially correlated demand forecasts. For instance, a vehicle with only a single 

empty seat would not be selected to pick up a passenger if more passengers heading in the same direction are 

expected to arrive shortly at the nearby locations of the first passenger. Instead, a vehicle with a higher remaining 
capacity will be employed to serve the passenger. As such, overlooking spatial demand correlations can fail in 

demand fulfilment when optimizing and anticipating decisions.  

Another challenge is that, even after making optimal decisions, inevitable prediction errors and passenger trip 

cancellations can lead to scheduling failure. This failure risk not only wastes the driver’s work efforts, but also 

exacerbates the fleet resource scarcity in execution due to unfulfilled tasks, among other disappointing 

consequences. Thus, the service provider faces the challenge of how to design the correction mechanism for 
prediction errors and request cancellation to mitigate such negative effects. 

Putting together the above challenges, this paper investigates a prediction-failure-risk-aware online DAR 

scheduling problem. Request selection and cancellation are also considered. Under the rolling horizon framework, 

the research problem is formulated as a Markov decision process (MDP), which aims to find the optimal policy that 

minimizes the expected cost over the planning horizon in each optimization period. To overcome the curse of 

dimensionality, we resort to approximate dynamic programming (ADP) to solve it. Our approach has the potential 
to act as a generic methodology for solving a wide range of similarly structured dynamic and stochastic problems in 

other application fields. Our model and algorithm are applied to a real-world case study in Guangzhou, China. 

Managerial insights are also provided. 

Overall, our study makes contributions to the DAR problem as well as general methodologies of ADP: 

First, we introduce a foresighted online DAR scheduling problem allowing for request selection and 
cancellation. Distinct from prior research, the correction mechanisms for prediction errors and cancelled requests 

are devised and embedded into the optimization framework to proactively mitigate the negative effects. 

Second, we develop an OD demand prediction model to generate multiple future demand scenarios through 

sampling, and embed them into the MDP model using the scenario approach. The prediction model captures the 

unique characteristics of DAR travel demand (i.e., uncertainty, sparsity, and spatial demand correlation) by 

comprehensively using deep quantile regression and Copula function joint distribution.  

Third, we combine the ADP algorithm and scenario approach to solve policies over time in the dynamic 

environment mixed with actual and stochastic future demands. The value function rolling method and multi-

scenario exploration method are proposed to enhance the ADP algorithm, to tackle the challenge of deviation of the 

value function in iterations between adjacent periods and identify the optimal policy from multiple future demand 

scenarios. 

Fourth, based on the model properties, we propose several families of customized pruning strategies for the 
dynamic programming formulation to derive a compact state space representation of provably near-optimal 

dispatching decisions. Experiments show that the pruning strategies can improve both solution quality and 

computation efficiency for ADP. 

The rest of this paper is organized as follows. In Section 2, we review the related literature. In Section 4, the 

model is presented, followed by solution methodologies in Section 5. In Section 6, a numerical example and a real-
world application are conducted and managerial insights are provided. Finally, the concluding remarks are provided. 
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2. Literature review 

In recent years, there has been a resurgence of interest in shared mobility systems. In what follows, we begin 

by reviewing the on-demand ride services, proceed to review DAR problems, and finally solution approaches.  

2.1. On-demand ride services 

The emergence of mobile internet technologies has reshaped personal mobility. The successful deployment of 
ridesharing requires a high-quality balance of demand and supply (Wang and Yang, 2019; Qin et al., 2022). There 

has been considerable research on on-demand ride service, including matching (Qin et al., 2021), the vehicle 

routing/rebalancing problem (Guo et al., 2021), pricing (Chen et al., 2021), and equilibrium analysis for ride-

sourcing markets (Ke et al., 2020; Ke et al., 2021; Zhou et al., 2022).   

Ridesharing matching is an online bipartite matching problem in which both supply and demand are dynamic. 

Matching can be conducted continuously in a streaming manner or at fixed intervals (i.e., batching). Özkan and 
Ward (2020) presented parameter-based matching policies using a continuous linear program, considering different 

arrival rates and the amount of time that customers and drivers are willing to wait. Qin et al. (2021) proposed a 

multi-party matching problem with bundled option services. The authors developed an integer linear programming 

model with multiple objectives for on-line matching. Zhou et al. (2022) developed a matching optimization model 

for coexisting ride-hailing and ridesharing services accounting for traveler’s mode choices. Feng et al. (2022) 

proposed a block-matching mechanism for the ride-sourcing system. The impacts of block size on key market 

measurements were discussed. Weidinger et al. (2023) studied the free-floating car-sharing system using 
instantaneous matching and batch matching, and they showed that the batch-matching mechanism greatly improves 

service performance.  

The vehicle routing/rebalancing problem is to dynamically guide idle vehicles over the road network to 

alleviate the supply-demand imbalance. The decision is generally to determine the optimal rebalancing flows from 

one region to another. Braverman et al. (2019) modelled the ride-sharing network with a closed queueing network, 

and optimized empty-car routing based on a fluid model associated with the closed queueing network. Chen and 
Levin (2019) developed a linear programming model to optimize the car flows between regions, and they used an 

agent-based simulator to test the rebalancing policy. Guo et al. (2021) presented a robust optimization model for 

on-demand ride services comprised of a fleet of both autonomous vehicles and human-driven vehicles. Later, Guo 

et al. (2023) developed a data-driven robust optimization for contextual vehicle rebalancing for on-demand ride 

services considering uncertain demand. The model was formulated as mixed integer second-order cone 

programming solvable by commercial solvers. Wang et al. (2019) developed routing and scheduling approaches for 

the last-mile transportation system where passengers arrive in batches at the metro station, which was formulated as 
a mixed integer model and addressed by several computationally feasible heuristics. Later, Shehadeh et al. (2021) 

investigated the fleet sizing and allocation problem for the on-demand last-mile transportation system. They 

developed a stochastic programming model and a distributionally robust optimization model to solve the problem. 

Request cancellation behavior has a considerable impact on the operational performance of ride-sourcing 

platforms, which is reflected by wasted platform and driver efforts to pick up passengers and reduced platform 

vehicle supply (He et al., 2018). Xu et al. (2022) discussed the effect of time-dependent cancellation behavior on 
the maximum number of completed trips, and they showed that relaxing request cancellation penalties can improve 

the utilization rate of taxis and the profits of service providers. Wang et al. (2019) investigated the relationship 

between pickup and delivery distance and passenger cancellation decisions, which showed that the platform’s 

profitability can be enhanced by a well-designed penalty and compensation strategy. 

2.2. The DAR problem 

The DAR problems have drawn much research attention in the field of public transportation. The first trial of 

on-demand flexible buses, called dial-a-ride services, was provided to the elderly and disabled in the USA in 1970 
and was first formulated by Psaraftis in 1980 (Psaraftis, 1980). Later, its application was extended to other areas, 



5 

 

 

such as patient transportation (Lim et al., 2017; Berg and Essen, 2019) and demand-responsive feeder services (Ren 

et al., 2022; Galarza Montenegro et al., 2021). For an overview of research on DAR problems, see Ho et al. (2018) 

and Vansteenwegen et al. (2022).  

The DAR problem can be viewed as a variant of the vehicle routing problem with pickup and delivery, which 
is generally to determine rider-vehicle matching and the associated routes. There are static and dynamic versions of 

DAR problems. In the static version, all riding requests are known in advance, and decisions are made a priori. In 

the dynamic case, the existing schedule might be modified during the time horizon in response to new requests. 

Early studies on DAR feature homogeneous vehicles (Psaraftis, 1980; Desrosiers et al., 1986). Subsequent research 

has been extended to considering more realistic and complex factors, such as heterogeneous vehicles characterized 

by differentiated equipment and capacities (Molenbruch et al., 2017; Detti et al., 2017), passenger transfers 
(Masson et al., 2013; Masson et al., 2014; Posada et al., 2017), and manpower requirements (Braekers and Kovacs, 

2016). Qu and Bard (2013) developed a heterogeneous pickup and delivery problem, in which the vehicle capacity 

can be reconfigured by modifying the vehicle’s inner configuration to comply with different customer demands. 

Later, Tellez et al. (2018) extended this work by including both heterogeneous fleets of vehicles and users in a DAR 

problem, considering different combinations of equipment required (e.g., wheelchairs and stretchers). The 

fundamental question of the DAR problem with transfers is how to synchronize passenger transfers between 

vehicles in space and time. Masson et al. (2014) addressed a DAR problem in which passengers can transfer from 
one vehicle to another at intermediate points. Kim and Schonfeld (2014) integrated conventional and flexible bus 

services considering uncertain arrival times. The objective is to optimize the service type selection, vehicle size, 

headways, slack times, and the number of zones for different types of services. The DAR problems with manpower 

requirements, which are motivated by the preference of companion staff members on the vehicle, address jointly 

the traditional DAR problem and staff scheduling. Braekers and Kovacs (2016) presented a multi-period dial-a-ride 

problem considering driver consistency. Lim et al. (2017) investigated a joint multi-trip pickup and delivery and 

staff scheduling problem for real-life healthcare.  

With the advent of transportation electrification and automatic driving, the DAR problems in this context have 

attracted increasing attention. Pimenta et al. (2017) proposed a reliability-based DAR problem with autonomous 

electric vehicles, to minimize the number of stops. Masmoudi et al. (2016) investigated the DAR problem 

considering electric vehicles and battery-swapping stations. Bongiovanni et al. (2019) presented an electric 

autonomous DAR problem and developed two mixed-integer linear program formulations. Li et al. (2022) 

considered eco-routing technology in the DAR service and developed a mix-integer model to determine eco-
oriented routes and schedules. 

As for the dynamic DAR problem, Huang et al. (2020) investigated the DAR service network design problem 

with both static and dynamic demands. Azadeh et al. (2022) proposed a dynamic DAR problem integrating 

passengers’ choice behavior using discrete choice models and assortment optimization. There are also a handful of 

works that incorporate pricing in decision-making (Sayarshad and Chow, 2015; Santo and Xavier, 2015). To deal 

with the dynamism of the DAR problem, most research works employ the rolling horizon method (Huang et al., 
2020), in which the whole period is decomposed into several static sub-problems, and adjustment is made at each 

decision epoch. Another category makes discrete event-based decisions each time a new riding request pops up 

(Wong et al., 2014; Engelen et al., 2018). 

2.3. Solution approach 

Once the model is developed, it is essential to design a solution approach to solve the problem to optimality 

effectively and efficiently, particularly for large-scale scenarios. Two types of algorithms are commonly adopted to 

address DAR problems: exact algorithms and heuristics. Most exact algorithms for DAR problems are developed 
based on the branch-and-bound framework, such as the branch-and-price algorithm (Parragh et al., 2014), branch-

and-cut algorithm (Cordeau, 2006; Bongiovanni et al., 2019), and branch-and-price-and-cut algorithm (Luo et al., 

2019). Although the exact algorithms can guarantee the solution optimality, the computational time can be very 

long, which is unaffordable for online fashion with a large number of requests. Thus, the exact algorithms can be 
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only applied to the static DAR problem of limited-sized instances.  

In comparison, heuristics can solve larger instances in a reasonable time, though the solution optimality cannot 

be guaranteed. Therefore, heuristics can be applied to both static and dynamic DAR problems. Jaw et al. (1986) 
were among the first to propose an efficient insertion heuristic to address the dynamic DAR problem. Since it is 

simple and easy to implement, the construction insertion heuristics have gained wide popularity and many 

advancements have been made (e.g., Luo and Schonfeld, 2007; Häme, 2011). However, given its greedy properties 

(e.g., assigning a request to the closest vehicle), this method is sub-optimal since it fails to consider the future 

dynamics and measures of the whole system. Another line of research concentrates on the metaheuristics, such as 

tabu search (Cordeau and Laporte, 2003), simulated annealing (Braekers et al., 2014), and adaptive large 

neighborhood search (Gschwind and Drexl, 2019). 

The predict-then-optimize method is a data-driven optimization approach to dynamic scheduling problems by 

leveraging historical data to predict future demand and make proactive decisions. However, most relevant studies 

are governed by the repetitive one-period static model. For example, Chang et al (2021) and Chang et al (2023) 

presented predict-then-optimize frameworks for dynamic free-floating bike repositioning problems by the rolling 

horizon method. Deep learning models were developed to forecast trip distribution in the next rolling period. 

The decision processes in ridesharing markets are dynamic and exhibit strong spatiotemporal dependencies. 
The MDP model is a promising option to capture the dynamics of ridesharing markets and derive policies with 

long-term returns under stochastic and unbalanced supply-demand environments. Qin et al. (2022) provided a 

comprehensive survey of MDP-based reinforcement learning studies in the ridesharing field. Yu et al. (2021) 

proposed an MDP model considering vehicle dispatching, relocation, and charging decisions to maximize overall 

profit. Zhu et al. (2021) formulated dynamic ridesharing systems as a mean-field MDP model to maximize revenue 

and service rate, and developed a representative-agent reinforcement learning algorithm with significant 
computational and performance advantages. Gao et al. (2024) proposed the dynamic policy of the MDP model 

under two rolling horizon heuristic methods for the stochastic ridesharing problem. Guo et al. (2021) developed a 

robust optimization version of the matching-integrated vehicle rebalancing model, generating superior policies by 

incorporating demand uncertainty. Huang et al. (2023) modeled online ridesharing as MDP and proposed a multi-

agent hierarchical reinforcement learning approach to achieve efficient large-scale fleet management.   

Approximate dynamic programming (ADP) is an approach based on a Markov decision process that 
efficiently aggregates information model realizations, future changes in decisions, and their interactions, which has 

been widely applied in solving stochastic problems for logistics and transportation (Powell et al., 2012; Soeffker et 

al., 2022). Novoa and Storer (2009) studied ADP algorithms for vehicle route problems (VRP) with stochastic 

demands. Çimen and Soysal (2017) addressed the time-dependent capacitated VRP with random vehicle speed and 

environment, and they showed that the solution based on ADP is more environmentally friendly. Deng and Santos 

(2022) proposed an ADP method for aircraft maintenance scheduling, which considers uncertain aircraft daily use 

and maintenance inspection time. Nguyen and Chow (2023) developed an optimization framework for dynamic rail 
transit network operations using ADP. Koch and Klein (2020) presented dynamic pricing for the attended home 

delivery services model. Their ADP approach outperformed benchmark heuristics in terms of both profit and the 

number of customers served.  

The scenario approach is a general data-driven decision-making methodology that can deal with uncertainties 

of the system by sampling a set of representative scenarios. Bent and Van Hentenryck (2004) introduced a multiple-

scenario approach to the dynamic vehicle routing problem, considering time windows and unpredictable customers. 
This approach systematically integrates future scenarios into the planning process. Hvattum et al. (2006) 

formulated a multistage stochastic model to address the dynamic stochastic vehicle routing problem. The authors 

proposed a dynamic stochastic hedging heuristic based on sample scenarios for problem-solving. Ghilas et al. (2016) 

developed a scenario-based sample average approximation approach to the dynamic and stochastic pickup and 

delivery problem, considering fixed scheduled lines and stochastic demand. Li et al. (2019) developed a 

metaheuristic algorithm to schedule a fleet of vans to dynamically serve passengers. The algorithm uses multiple 
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scenarios to represent diverse realizations of stochastic requests. Gong et al. (2021) presented an integer nonlinear 

programming model for the train timetable optimization problem with the scenario-based representation of 

passenger distribution. 

 

3. Preliminaries 

3.1. Benefits and challenges of DAR operation with demand prediction 

Based on the travel demand (i.e., origin and destination locations, time windows) provided by customers, the 

platform assigns vehicles to serve the customers. Most existing works on DAR problems assign vehicles only to 

currently known requests, overlooking the importance of unknown future requests that can improve their utilization. 

To illustrate, let us consider a vehicle and two requests (request 1 and request 2). Request 1’s presence is known but 
far from the vehicle. Request 2 is located between the vehicle and request 1 but is unknown currently. When 
demand prediction is not considered, the platform would reject request 1 due to high costs. If request 2’s presence 

can be anticipated, the plan that serves request 2 first and request 1 later will be more profitable. This toy example 

suggests that offering demand prediction contributes to making more informed decisions. 

However, offering a perfect prediction is particularly difficult because prediction errors can exist in the future 

demand due to its stochastic attributes. The outputs of the prediction models (e.g., deep learning models) are also 

variable due to unavoidable learning errors. The prediction errors will accumulate gradually over the entire 
planning horizon if not well addressed, which can significantly mislead the problem-solving. To warrant the 

benefits of demand prediction, it is imperative to develop a prediction error correction mechanism to eliminate 

prediction errors and rectify the policies promptly. 

3.2. Processing of DAR operation and future demand 

To handle the high dynamism of the DAR problem, a rolling horizon method is employed to transform the 

problem into a series of interdependent sub-problems. This method has a higher matching quality than immediate 

matching (Yang et al., 2020). The entire planning horizon of the DAR service is divided into |𝑃| optimization 

periods with an interval of 𝑇. As shown in Fig. 1(a), at the start time of each period, a new batch of actual demand 

is known, and the platform re-plans for both the actual demand and predicted future demand; subsequently, the 
requests submitted during this period (from start time to end time) are stored into the request pool. For instance, in 

period 2, the platform plans for requests submitted during the time slot [0, 𝑇], which have been already stored in the 

request pool, together with potential requests that may occur during the time slot [𝑇, 2𝑇].  
The DAR service is optimized by periodically solving a MDP model with an adaptive lookup table. As shown 

in Fig.1 (b), in each period, we consider serving actual and future requests as a sequence of events. Since each 

request includes both boarding and alighting services, an event can be regarded as a decision epoch that dispatches 

a vehicle to a specific node to pick up or drop off passengers (Note that different requests may be served at a single 

node simultaneously). We conduct an offline simulation of anticipatory decision-making within a short 

computational time, 𝑡𝐵, to update the lookup table of the MDP model. At the time (𝑝 − 1)𝑇 + 𝑡𝐵, the optimized 

policy based on the updated lookup table maps a series of vehicle dispatching decisions for the current period. 

Subsequently, the corresponding vehicle executes the decisions until new actual demand is received, i.e., the start 

time of the next period. In each period, the optimization of both types of demands is based on the system state at 

the start time of that period, which is determined by the execution status of the decisions of the previous period.  
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Fig. 1 Rolling horizon planning framework 

The model outputs the decision execution result of the previous period, the future demand, and the policy for 

the current period (see Fig. 1(c)). The platform processes multiple types of requests during the DAR operation. As 

shown in Fig. 1(d), the uncertainty information of stochastic future requests will be updated to the actual 

information after receiving a new batch of actual demand. The assignment result of each request is either matching 

or rejection, which will be informed to the passenger after the computational time. Matched requests can be 

categorized as served requests and matched but unserved requests, depending on the status of the corresponding 
vehicle executing the decisions. The matched but unserved requests are transferred to the request pool and retained 

until being assigned to the same vehicle again in the next period, which are not allowed to be rejected. 

3.3. Prediction-failure-risk-aware optimization framework 

The optimization of the DAR service is formulated as a MDP model with the objective to reduce total system 

cost, including fixed transportation cost, variable transportation cost, and penalty cost. To capture the 

spatiotemporal characteristics of the demand, we utilize deep quantile regression and Copula methods to predict 

stochastic future demand. This also enables us to generate multiple future demand scenarios and corresponding 
probabilities to explore various possibilities of future demand (see Section 4.3). In order to promptly rectify the 

prediction errors, in each period, we re-predict the future demand after updating the historical request data and 

correcting the policy. Additionally, to expedite the solution efficiency, we derive several pruning strategies to 

effectively reduce the decision space and computation time (see Section 4.4). 

The overall optimization framework is presented in Fig. 2. At the start time of each optimization period, the 

platform validates the correctness of future demand predicted in the previous period based on the relationship 
between the received actual demand and previous decision execution result, and if necessary, uses the correction 

mechanism to handle their prediction errors. Then, the platform predicts future demand utilizing historical requests. 

The platform performs two types of operations, with and without demand prediction, depending on whether 

demand prediction is considered. The operation with demand prediction embeds the future demand into the MDP 

model and the optimal policy is identified using the scenario approach. The optimal policy for operation with 

demand prediction is derived by solving the model using the ADP algorithm and the scenario approach with 

pruning strategies. Upon receiving new actual demand, the platform updates the state variable through a periodic 
state transition function, which takes into account the policy, the executed decision set, and the over-period time, 

thereby rolling the time to the next optimization period. 
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Fig. 2 Overall optimization framework 

 

4. Model formulation  

4.1. Problem description, assumptions, and notation 

The DAR service area is modelled as a directed network 𝐺(𝑆,𝒜). 𝑆 = 𝑍 ∪ 𝐵 denotes the set of nodes, where 𝑍 = {𝑧|𝑧 = 1,2,3,⋯ |𝑍|} and 𝐵 = {𝑏|𝑏 = |𝑍| + 1, |𝑍| + 2,⋯ , |𝑍| + |𝐵|} represent the set of depots and physical 

bus stops, respectively. Each node can be used as a pick-up stop and drop-off stop. 𝑉 = {𝑣|𝑣 = 1,2, … , |𝑉|} denotes 

the set of vehicles. 𝒜 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑆} denotes the set of arcs between nodes in 𝑆. The service provider pre-

collects static requests before operation (in period 1), and will receive dynamic requests during the service process 

(from period 2 to period |𝑃|). Let 𝑅 = {𝑟|𝑟 = 1,2,… , |𝑅|} denote the set of riding requests. Each request 𝑟 includes 

the information of desired pick-up stop 𝑜𝑟 ∈ 𝑆 and drop-off stop 𝑑𝑟 ∈ 𝑆, soft pick-up time window [𝐸𝑇𝑟, 𝐿𝑇𝑟], and 

the number of passengers 𝑐𝑟. The requests can be rejected to avoid over-allocation of fleet resources and ensure the 

economical viability of the DAR operation, and can be cancelled by passengers at any time after submission. 

To simplify the model formulation, the following assumptions are made: 

(1) The passengers of each request can wait arbitrarily long but cannot exceed a threshold 𝑇̃. A request must be 

served by only one vehicle, and the maximum detour time for each request is taken into account.  

(2) The vehicle can be repeatedly dispatched but only once for each period, and it has a maximum working 
time for each trip. A trip represents a vehicle departing from the depot, providing service at multiple stops for 

boarding and alighting, and finally returning to the depot. 

(3) When there are no passengers in the vehicle, it is allowed to hold at any node, including the physical bus 

stops and depot. 

We summarize the primary notation in this study in Table 1. 

Table 1 Primary notation 

Sets Description 𝑃 The set of optimization periods, i.e., 𝑃 = {𝑝|𝑝 = 1,2,… , |𝑃|} 𝐾𝑝 
The set of decision epochs of the MDP model in period 𝑝, 𝐾𝑝 = {𝑘𝑝|𝑘𝑝 = 1,2,… , |𝐾𝑝|}, 𝑝 ∈ 𝑃. 
To ease the representation, the notation 𝑘𝑝 and |𝐾𝑝| is represented by 𝑘 and 𝒦, respectively. 𝑅 The set of riding requests, 𝑅 = {𝑟|𝑟 = 1,2, … , |𝑅|} 𝑍 The set of depots, 𝑍 = {𝑧|𝑧 = 1,2,3,⋯ , |𝑍|} 𝐵 The set of bus stops, 𝐵 = {𝑏|𝑏 = |𝑍| + 1, |𝑍| + 2,⋯ , |𝑍| + |𝐵|} 

End

Executed decision set 
and over-period time

MDP 

model

Request 
pool

Consider demand 
prediction?

Predicted demand

Actual 
demand

Operation without 

demand prediction

Operation with

demand prediction

Passenger OD 
empirical distribution

Future demand scenarios and 
corresponding probabilities  

Copula joint 
distribution

Quantile 
regression+LSTM

Historical data

Prediction model

No

Output the policy and 
execute the decisions

NoAre all requests
matched successfully?

Reject requests
for failed matches

Yes

Optimization

Update state variables

No

Yes

Next period

Roll to the 
period ?

Received new 
requests

Previous decision 
execution result

Prediction error correction

Start

Yes

C
ol

le
ct

in
g

ADP algorithm with 
pruning strategies

ADP algorithm and scenario 
approach with pruning strategies 

Re-solving



10 

 

 

𝑆 The set of nodes, 𝑆 = 𝑍 ∪ 𝐵 = {𝑠|𝑠 = 1,… , |𝑍| + |𝐵|} 𝒜 
The set of arcs, 𝒜 = {(𝑖, 𝑗)|∀𝑖, 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗}, where node 𝑖 or 𝑗 represents either a depot or a bus 
stop 𝑉 The set of vehicles, 𝑉 = {𝑣|𝑣 = 1,2,… , |𝑉|} 𝐿 The set of quantile levels, 𝐿 = {𝑙|𝑙 = 1,2, … , |𝐿|} ℒ The set of iterations, ℒ = {ℓ|ℓ = 1,… , |ℒ|} 𝑁 The set of future demand scenarios, 𝑁 = {𝑛|𝑛 = 1,… , |𝑁|} 

Auxiliary variables 𝜏𝑙 The quantile value, which takes 𝜏𝑙 = {5%, 25%, 50%, 75%, 95%} in this study 𝓂𝑣 The depot to which the vehicle 𝑣 belongs to 𝑞𝑟𝑝 𝑞𝑟𝑝 = 1, if request 𝑟 is received by the scheduling platform in period 𝑝; 𝑞𝑟𝑝 = 0, otherwise 𝑞𝑖𝑗𝑝  The number of passengers from node 𝑖 ∈ 𝑆 to node 𝑗 ∈ 𝑆 of actual demand for period 𝑝, ∀𝑖 ≠ 𝑗 𝑞̃𝑖𝑗𝑝  
The predicted number of passengers from node 𝑖 ∈ 𝑆 to node 𝑗 ∈ 𝑆 of future demand for period 𝑝, 
which has been predicted at period 𝑝 − 1, ∀𝑖 ≠ 𝑗 𝑞̃𝑖𝑗𝑝(𝜏𝑙) The predicted number of passengers from node 𝑖 ∈ 𝑆 to node 𝑗 ∈ 𝑆 of future demand for period 𝑝 
when the quantile takes 𝜏𝑙 , ∀𝑖 ≠ 𝑗 𝑄𝑛𝑝 The future demand scenario 𝑛 for period 𝑝, i.e., 𝑄𝑛𝑝 = [𝑞̃11𝑝 ,… , 𝑞̃|𝑆||𝑆|𝑝 ] 𝐹(𝑞𝑖𝑗𝑝 ) The empirical distribution function of the demand from node 𝑖 ∈ 𝑆 to node 𝑗 ∈ 𝑆 𝑂𝑘𝑣𝑝  The set of pick-up stops served by vehicle 𝑣 in the current trip at decision epoch 𝑘 of period 𝑝 𝐷𝑘𝑣𝑝  The set of drop-off stops corresponding to 𝑂𝑘𝑣𝑝  Θ̃𝑣𝑝 The dispatching decision set for vehicle 𝑣 of period 𝑝 

State variables  𝑠𝑘𝑝 State variables at decision epoch 𝑘 of period 𝑝 𝑜𝑘𝑟𝑝  
𝑜𝑘𝑟𝑝 = 1 , if passengers of request 𝑟  are on-board at decision epoch 𝑘  of period 𝑝 ; 𝑜𝑘𝑟𝑝 = 0 , 
otherwise 𝑑𝑘𝑟𝑝  
𝑑𝑘𝑟𝑝 = 1,  if passengers of request 𝑟  are arriving at decision epoch 𝑘  of period 𝑝 ; 𝑑𝑘𝑟𝑝 = 0 , 
otherwise ℎ𝑘𝑣𝑝  The location of vehicle 𝑣 at decision epoch 𝑘 of period 𝑝 𝑐𝑘𝑣𝑝  The remaining capacity of vehicle 𝑣 at decision epoch 𝑘 of period 𝑝 𝑡𝑘𝑣𝑝  The accumulated travel time of vehicle 𝑣 at decision epoch 𝑘 of period 𝑝 𝑢𝑘𝑣𝑝  The driver’s accumulated working time of vehicle 𝑣 at decision epoch 𝑘 of period 𝑝 

Decision variables  𝑎𝑘𝑝 The decision variables of vehicle 𝑣 at decision epoch 𝑘 of period 𝑝 𝑥𝑘𝑠𝑣𝑟𝑝  
Binary variable. 𝑥𝑘𝑠𝑣𝑟𝑝 = 1, if vehicle 𝑣 is dispatched from the location ℎ𝑘𝑣𝑝  to node 𝑠 to serve 
request 𝑟 at decision epoch 𝑘 of period 𝑝; 𝑥𝑘𝑠𝑣𝑟𝑝 = 0, otherwise 𝜆𝑘𝑠𝑣𝑟𝑝  The holding time of vehicle 𝑣 at node 𝑠 when serving request 𝑟 at decision epoch 𝑘 of period 𝑝 

Exogenous information and transition function 𝑔𝑘𝑝 The exogenous information at decision epoch 𝑘 of period 𝑝 𝐺𝑝 
The exogenous information of period 𝑝, 𝐺𝑝 = (𝑡̂𝑣𝑝 , Θ𝑣𝑝)∀𝑣∈𝑉, where 𝑡̂𝑣𝑝 and Θ𝑣𝑝 is the over-period 

time and the executed decision set for vehicle 𝑣 of period 𝑝, respectively. 𝑆𝑘(𝑠𝑘𝑝, 𝑎𝑘𝑝, 𝑔𝑘𝑝) State transition function that describes the change of each attribute in 𝑠𝑘𝑝 at decision epoch 𝑘 𝑆𝑝(𝑠1𝑝, Θ̃𝑣𝑝, 𝐺𝑝) Periodic state transition function that describes the change of each attribute in 𝑠1𝑝 for period 𝑝 

Algorithmic variables 𝒱̅ℓ(𝑠𝑘𝑝) The value function of the state 𝑠𝑘𝑝 after ℓ-th iteration 𝒱̅𝜋𝑀𝑆ℓ (𝑠𝑘𝑝) The value function of the state 𝑠𝑘𝑝 after ℓ-th iteration of the multi-scenario exploration method 𝓋̂ℓ(𝑠𝑘𝑝) The unbiased sample estimate of the value of the state 𝑠𝑘𝑝 at ℓ-th iteration 𝛼ℓ The stepsize of ADP at ℓ-th iteration 
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Model parameters 𝑇 The time interval of each optimization period 𝑇̃ The maximum allowable late time 𝑜𝑟  The pick-up stop of riding request 𝑟 𝑑𝑟 The drop-off stop of riding request 𝑟 𝑐𝑟 The number of passengers of riding request 𝑟 𝐸𝑇𝑟 The lower bound of the time window of riding request 𝑟 𝐿𝑇𝑟 The upper bound of the time window of riding request 𝑟 𝒹(𝑖,𝑗) The shortest distance between node 𝑖 and node 𝑗, ∀𝑖, 𝑗 ∈ 𝑆, ∀𝑖 ≠ 𝑗, 𝜀 The detour time coefficient, which represents the maximum ratio between the in-vehicle travel 
time and the shortest travel time of each request 𝓈 The vehicle’s travel speed 𝜆 The discount factor of ADP 𝑐max The vehicle capacity 𝑡max The maximum working time for one trip of the vehicle ℯ Average boarding and alighting time per person 𝛽𝑓 Fixed transportation cost per vehicle trip 𝛽𝑣 Unit mileage cost 𝛽𝑒 Unit early arrival penalty cost 𝛽𝑙 Unit late arrival penalty cost 

4.2. Markov decision process for DAR optimization 

We present a mathematical model of the DAR problem as a Markov decision process, whose components are 

defined as follows.  

4.2.1. State variable 

As mentioned above, in each event, the platform will make a vehicle dispatching decision. Since a vehicle can 

be re-dispatched only when it completes its decision, the next decision epoch is triggered by one of the following 

cases: (a) if the vehicle is en-route heading to node 𝑠, the next decision epoch occurs after the vehicle serves 

assigned request 𝑟 (when 𝑠 is the bus stop) or arrives (when 𝑠 is the depot), (b) if the vehicle is holding at bus stop 

or depot, the next decision epoch occurs after the vehicle serves assigned request 𝑟.  

During each optimization period, the platform makes several decisions, along with attribute changes of 
requests and vehicles in decision execution. To ensure that the necessary information is available before a decision 

is made, we define 𝑠𝑘𝑝  as the state variable at decision epoch 𝑘 of period 𝑝. This state variable consists of the 

request state (𝑜𝑘𝑟𝑝 , 𝑑𝑘𝑟𝑝 )𝑟∈𝑅 and the vehicle state (ℎ𝑘𝑣𝑝 , 𝑐𝑘𝑣𝑝 , 𝑡𝑘𝑣𝑝 , 𝑢𝑘𝑣𝑝 )∀𝑣∈𝑉 .  𝑠𝑘𝑝 = ((𝑜𝑘𝑟𝑝 , 𝑑𝑘𝑟𝑝 )∀𝑟∈𝑅, (ℎ𝑘𝑣𝑝 , 𝑐𝑘𝑣𝑝 , 𝑡𝑘𝑣𝑝 , 𝑢𝑘𝑣𝑝 )∀𝑣∈𝑉) (1) 

Since decision-making is terminated once all requests have been assigned, the number of decision epochs 𝒦 

of each period is associated with the current requests and future requests. In period 1, since the requests have not 

yet been served, the value of 𝒦 is the number of pick-up stops plus the number of drop-off stops of the requests of 

this period. Note that the 𝒦 is an induced variable from period 2 to period |𝑃|, which is related to the number of 

unserved requests to date. Based on the request state (𝑜𝑘𝑟𝑝 , 𝑑𝑘𝑟𝑝 )𝑟∈𝑅, the value of 𝒦 can be calculated as follows: 

𝒦 = |𝐾𝑝| = {  
  ∑2𝑞𝑟𝑝, if 𝑝 = 1𝑟∈𝑅∑ ∑ ∑𝑞𝑟𝓅[(1 − 𝑜𝑘𝑟𝓅 ) + (1 − 𝑑𝑘𝑟𝓅 )],∀𝑝 ∈ 𝑃 ∖ {1}𝑟∈𝑅𝑘∈𝐾𝑝

𝑝
𝓅=1

 (2) 

4.2.2. Decision variable 
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Since vehicle holding can increase the flexibility of DAR service, the departure time at the depot and holding 

time at bus stops are introduced into the decisions. The decision 𝑎𝑘𝑝 at decision epoch 𝑘 of period 𝑝 is represented 

by Eq. (3). 𝑎𝑘𝑝 = ((𝑥𝑘𝑠𝑣𝑟𝑝 , 𝜆𝑘𝑠𝑣𝑟𝑝 )∀𝑠∈𝑆,𝑣∈𝑉,𝑟∈𝑅) (3) 

Although optimizing the holding time exclusively by discretization can enhance exploration accuracy, it poses 
another modeling challenge in that the decision space will be significantly enlarged. Specifically, at decision epoch 𝑘 of period 𝑝, 𝑥𝑘𝑠𝑣𝑟𝑝  is initially a three-dimensional decision variable, but it will become a more complex four-

dimensional decision variable if the holding time is determined using the discretization method. 

Given that 𝑥𝑘𝑠𝑣𝑟𝑝  has already assigned vehicle 𝑣 to request 𝑟 at node 𝑠, we can calculate the minimum holding 

time directly based on 𝐸𝑇𝑟 and the vehicle’s arrival time at this node, without additionally exploring the current 

holding time. To reduce the decision space and efficiently represent the decisions, we consider 𝜆𝑘𝑠𝑣𝑟𝑝  as an 

exogenous decision variable of 𝑥𝑘𝑠𝑣𝑟𝑝  and the optimal value of 𝜆𝑘𝑠𝑣𝑟𝑝  can be calculated by Eq. (4). 

𝜆𝑘𝑠𝑣𝑟𝑝 =
{   
   
  max {𝑥𝑘𝑠𝑣𝑟𝑝 (𝐸𝑇𝑟 − 𝑡𝑘𝑣𝑝 −𝒹(𝓂𝑣,𝑠)𝓈 ) , 0} , if 𝑠 = ℎ𝑘𝑣𝑝 = 𝓂𝑣 , ∀𝑟 ∈ 𝑅, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃max {𝑥𝑘𝑠𝑣𝑟𝑝 (𝐸𝑇𝑟 − 𝑡𝑘𝑣𝑝 −𝒹(ℎ𝑘𝑣𝑝 ,𝑠)𝓈 ) , 0} , if 𝑐𝑘𝑣𝑝 = 𝑐max and ℎ𝑘𝑣𝑝 ≠ 𝓂𝑣 , ∀𝑠 ∈ 𝑆 ∖ {𝓂𝑣}                                         , ∀𝑟 ∈ 𝑅, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃0, if 𝑐𝑘𝑣𝑝 ≠ 𝑐max and ℎ𝑘𝑣𝑝 ≠𝓂𝑣 , ∀𝑠 ∈ 𝑆 ∖ {𝓂𝑣},∀𝑟 ∈ 𝑅, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃

  
(4) 

When the vehicle is not dispatched (𝑥𝑘𝑠𝑣𝑟𝑝 = 0), its holding time is 0. The dispatched vehicles can be classified 

into in-depot vehicles (ℎ𝑘𝑣𝑝 = 𝓂𝑣) and out-depot vehicles (ℎ𝑘𝑣𝑝 ≠ 𝓂𝑣), depending on their current locations. For 

in-depot vehicles, if the vehicle arrives earlier than the specified earliest pick-up time 𝐸𝑇𝑟, it is more cost-effective 

to hold the vehicle in the depot to reduce the driver’s working time. Thus, the node 𝑠 at which the vehicle arrives at 

this decision epoch is still depot 𝓂𝑣, and the optimal holding time is max{𝐸𝑇𝑟 − 𝑡𝑘𝑣𝑝 − 𝒹(𝓂𝑣,𝑠)𝓈 , 0}. For out-depot 

vehicles, if there are still onboard passengers before heading to the pick-up stop, it is undesirable to hold the vehicle 

and onboard passengers at the stop. For this reason, we impose the following restrictions, i.e., if there are no on-

board passengers (𝑐𝑘𝑣𝑝 = 𝑐max), then the vehicle can go to any pick-up stop and the optimal holding time can be 

calculated similarly. Otherwise, if there exist onboard passengers (𝑐𝑘𝑣𝑝 ≠ 𝑐max), then the vehicle is only allowed to 

go to the pick-up stop where the vehicle can arrive within the soft pick-up time window. 

4.2.3. Constraints 

The feasible decision space is determined by the following constraints: ∑∑𝑞𝑟𝑝𝑟∈𝑅𝑝∈𝑃 = |𝑅| (5) 

∑(𝑜𝒦𝑟|𝑃| + 𝑑𝒦𝑟|𝑃|)𝑟∈𝑅 = 2|𝑅| (6) 𝑞𝑟𝑝(𝑜𝒦𝑟𝑝 + 𝑑𝒦𝑟𝑝 ) = 2, ∀𝑟 ∈ 𝑅, ∀𝑝 ∈ 𝑃 (7) 0 ≤ ∑ ∑𝑥𝑘𝑠𝑣𝑟𝑝𝑣∈𝑉𝑘∈𝐾𝑝 ≤ 1, if 𝑠 ∈ {𝑜𝑟 , 𝑑𝑟}, ∀𝑟 ∈ 𝑅, ∀𝑝 ∈ 𝑃 (8) 

0 ≤ ∑ ∑𝑥𝑘𝑑𝑟𝑣𝑟𝑝 𝑡𝑘+1,𝑣𝑝𝑣∈𝑉𝑘∈𝐾𝑝 − ∑ ∑𝑥𝑘𝑜𝑟𝑣𝑟𝑝 𝑡𝑘+1,𝑣𝑝𝑣∈𝑉𝑘∈𝐾𝑝 ≤ 𝜀 𝒹(𝑜𝑟,𝑑𝑟)𝓈 , ∀𝑟 ∈ 𝑅, ∀𝑝 ∈ 𝑃 (9) 0 ≤ 𝑢𝑘𝑣𝑝 ≤ 𝑡max , ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 (10) 
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0 ≤ 𝑐𝑘𝑣𝑝 −∑∑𝑥𝑘𝑠𝑣𝑟𝑝 𝑐𝑟𝑟∈𝑅𝑠∈𝑆 ≤ 𝑐max, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 (11) 

𝐸𝑇𝑟 ≤ 𝑡𝑘𝑣𝑝 + 𝑥𝑘𝑠𝑣𝑟𝑝 𝒹(ℎ𝑘𝑣𝑝 ,𝑠)𝓈 + 𝜆𝑘𝑠𝑣𝑟𝑝 ≤ 𝐿𝑇𝑟 + 𝑇̃, if 𝑠 = 𝑜𝑟 , ∀𝑣 ∈ 𝑉, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾𝑃 , 𝑝 ∈ 𝑃 (12) 0 ≤ 𝑡̂𝑣𝑝 ≤ 𝑇,∀𝑣 ∈ 𝑉, ∀𝑝 ∈ 𝑃 (13) 𝑥𝑘𝑠𝑣𝑟𝑝 ∈ {0,1}, ∀𝑠 ∈ 𝑆, ∀𝑣 ∈ 𝑉, ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 (14) 

Constraints (5) ensure that all riding requests should be received by the platform. Constraints (6) ensure that 

each request has been either served or rejected at the end of period |𝑃|. Constraints (7) ensure that the received 

requests are either matched or rejected in each period. Constraints (8) ensure that each request is served by only one 

vehicle for boarding and alighting. Constraints (9) state that the travel time of each request is no more than 𝜀 times 

the shortest travel time from its pick-up stop to its drop-off stop. Constraints (10) state that the driver has a 

maximum working time for each trip. Constraints (11) ensure that the assigned requests do not violate the 

remaining vehicle capacity. Constraints (12) enforce that the vehicle arrives at the pick-up stop within the soft time 

window of each request. Constraints (13) define the duration of the over-period time (see Section 4.2.4.2). 
Constraints (14) specify that the decision variable is binary. 

4.2.4. Transition function 

4.2.4.1. State transition function 

The transition from the pre-decision state 𝑠𝑘𝑝 to the next pre-decision state 𝑠𝑘+1𝑝  is governed by the function 𝑆𝑘( ), which reflects the attribute changes of the state variable based on the selected decisions. Once the decision 𝑎𝑘𝑝 is executed, the new exogenous information 𝑔𝑘𝑝 is generated, including the shortest distance 𝒹(ℎ𝑘𝑣𝑝 ,𝑠) from the 

vehicle location to the decision node, the number of passengers for boarding or alighting, boarding time, and 

alighting time. Using this new information, the next pre-decision state can be obtained, denoted as: 𝑠𝑘+1𝑝 = 𝑆𝑘(𝑠𝑘𝑝, 𝑎𝑘𝑝, 𝑔𝑘𝑝) (15) 

In this study, since the choice of a decision determines the subsequent state with certainty, we model the 

transition probability function deterministically as in Eq. (16). To simplify notation, we will omit 𝑃𝑟(𝑠𝑘+1𝑝 |𝑠𝑘𝑝, 𝑎𝑘𝑝) 
in subsequent equations. 𝑃𝑟(𝑠𝑘+1𝑝 |𝑠𝑘𝑝, 𝑎𝑘𝑝) = {1, if 𝑆𝑘(𝑠𝑘𝑝, 𝑎𝑘𝑝, 𝑔𝑘𝑝) = 𝑠𝑘+1𝑝0, if 𝑆𝑘(𝑠𝑘𝑝, 𝑎𝑘𝑝, 𝑔𝑘𝑝) ≠ 𝑠𝑘+1𝑝  (16) 

The attribute changes of the state variables under different decision variables are as follows: 𝑜𝑘+1,𝑟𝑝 = 𝑜𝑘𝑟𝑝 +∑𝑥𝑘𝑠𝑣𝑟𝑝𝑣∈𝑉 , if 𝑠 = 𝑜𝑟 , ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 (17) 

𝑑𝑘+1,𝑟𝑝 = 𝑑𝑘𝑟𝑝 +∑𝑥𝑘𝑠𝑣𝑟𝑝𝑣∈𝑉 , if 𝑠 = 𝑑𝑟, ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 (18) 

ℎ𝑘+1,𝑣𝑝 =
{  
  𝑠, if ∑𝑥𝑘𝑠𝑣𝑟𝑝𝑟∈𝑅 = 1, ∀𝑠 ∈ 𝑆 ∖ {𝓂𝑣}, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃𝓂𝑣 , if ∑𝑥𝑘𝓂𝑣𝑣𝑟𝑝𝑟∈𝑅 = 1, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃ℎ𝑘𝑣𝑝 , otherwise

 (19) 
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𝑐𝑘+1,𝑣𝑝 = {  
  𝑐𝑘𝑣𝑝 −∑𝑥𝑘𝑜𝑟𝑣𝑟𝑝 𝑐𝑟𝑟∈𝑅 +∑𝑥𝑘𝑑𝑟𝑣𝑟𝑝 𝑐𝑟𝑟∈𝑅 , if ∑𝑥𝑘𝓂𝑣𝑣𝑟𝑝𝑟∈𝑅 ≠ 1, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃
𝑐max , if ∑𝑥𝑘𝓂𝑣𝑣𝑟𝑝𝑟∈𝑅 = 1, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃  (20) 

𝑡𝑘+1,𝑣𝑝 = 𝑡𝑘𝑣𝑝 +∑∑𝑥𝑘𝑠𝑣𝑟𝑝 𝒹(ℎ𝑘𝑣𝑝 ,𝑠)𝓈𝑟∈𝑅𝑠∈𝑆 +∑∑ 𝜆𝑘𝑠𝑣𝑟𝑝 + ℯ∑∑𝑥𝑘𝑠𝑣𝑟𝑝 𝑐𝑟𝑠∈𝑆𝑟∈𝑅𝑟∈𝑅𝑠∈𝑆 , ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 (21) 

𝑢𝑘+1,𝑣𝑝 =
{  
  
  𝑢𝑘𝑣𝑝 +∑∑𝑥𝑘𝑠𝑣𝑟𝑝 𝒹(ℎ𝑘𝑣𝑝 ,𝑠)𝓈𝑟∈𝑅𝑠∈𝑆 +∑∑𝜆𝑘𝑠𝑣𝑟𝑝 + ℯ∑∑𝑥𝑘𝑠𝑣𝑟𝑝 𝑐𝑟𝑠∈𝑆𝑟∈𝑅𝑟∈𝑅𝑠∈𝑆, if ∑𝑥𝑘𝓂𝑣𝑣𝑟𝑝𝑟∈𝑅 ≠ 1, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃
0, if ∑𝑥𝑘𝓂𝑣𝑣𝑟𝑝𝑟∈𝑅 = 1, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃  (22) 

In Eqs. (17) and (18), 𝑜𝑘𝑟𝑝  and 𝑑𝑘𝑟𝑝  are updated once the passengers of request 𝑟 board at the pick-up stop and 

alight at the drop-off stop, respectively. Eq. (19) specifies the location of vehicle 𝑣. In Eq. (20), when the decision 

node 𝑠 is a bus stop, the remaining capacity of vehicle 𝑣 decreases by the number of passengers boarding, or 

increases by the number of passengers alighting of request 𝑟 ; when decision node 𝑠  is a depot, the capacity 

becomes full. In Eqs. (21) and (22), when the decision node 𝑠 is a bus stop, the accumulated travel time and 

driver’s working time of vehicle 𝑣 increase by the travel time between the location and node 𝑠, holding time, and 

service time. The current trip ends after the vehicle is pulled into its depot, and the driver’s working time is reset to 
0.  

4.2.4.2. Periodic state transition function 

The new batch of riding requests is received periodically under the rolling horizon framework, which poses 

another challenge in that, the final decision epoch 𝒦 can exceed the end time of the current period when the 

number of requests surges. In other words, the decisions cannot be fully executed by vehicles before the platform 

receives new actual demand, resulting in the mismatch between the expected state of optimization and the actual 

state after execution. Therefore, 𝑆𝑝( ) is needed to govern the transition of states between adjacent periods. 

 

Fig. 3 Illustration of the over-period time 

For vehicles executing a decision at the start time of the next period, if they have not reached the decision 

node 𝑠 that triggers the next decision epoch, the state variable is unable to transition. To address this issue, we 

introduce the over-period time 𝑡̂𝑣𝑝. Fig. 3 illustrates the decision execution process for the vehicle 𝑣 from period 2 to 
period 4. For instance, at the start time of period 2, the vehicle executes the decision heading to stop 3. If the over-

period time is not considered, the decision cannot be executed effectively. A plausible way is to continue executing 

the decision, such that the original executed decision set of period 2 is changed from Θ𝑣2 = 1 → 2 to Θ𝑣2 = 1 → 2 →
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3. The extra time spent is recorded as the over-period time 𝑡̂𝑣2, and the available execution time is changed from the 

original 𝑇 to 𝑇 − 𝑡̂𝑣2 in period 3. Similarly, the executed decision set in period 4 is Θ𝑣4 = 4 → 8 → 5, with the over-

period time being 𝑡̂𝑣4. 

Based on the received time of new actual demand and the previous decision execution results, we can derive 

the exogenous information 𝐺𝑝 = (𝑡̂𝑣𝑝, Θ𝑣𝑝)∀𝑣∈𝑉 between periods. Specifically, the decision immediately before the 

available execution time 𝑇 − 𝑡̂𝑣𝑝  is consumed up is first identified, which is added to Θ𝑣𝑝 together with decisions that 

have been executed in the current period, thereby constituting the executed decision set Θ𝑣𝑝+1. The state variables of 

the next period 𝑠1𝑝+1can be calculated by the change of 𝑠1𝑝 resulting from Θ𝑣𝑝+1. The pseudo-code of the periodic 

state transition function is presented in Table 2. 

Table 2 The pseudo-code of the periodic state transition function 

Algorithm 1: Periodic state transition function 𝑺𝒑(𝒔𝟏𝒑, 𝚯̃𝒗𝒑 , 𝑮𝒑) 
Input: Initial state variable 𝑠1𝑝, dispatching decision set Θ̃𝑣𝑝  of period 𝑝, and exogenous information 𝐺𝑝 

Output: Initial state variable 𝑠1𝑝+1and executed decision set Θ𝑣𝑝+1 of the next period 

1: Initialize the variables: ∆𝑡𝑣𝑝+1 ← 0; Θ𝑣𝑝+1 ← Θ𝑣𝑝 

2: While decision variable 𝑎𝑘𝑝 s.t. 𝑎𝑘𝑝 ∈ Θ̃𝑣𝑝, ∆𝑡𝑣𝑝+1 ≤ 𝑇 − 𝑡̂𝑣𝑝, ∀𝑣 ∈ 𝑉 do 

3: 
   Calculate the time change : ∆𝑡𝑣𝑝+1 ← ∆𝑡𝑣𝑝+1 + ∑ ∑ 𝑥𝑘𝑠𝑣𝑟𝑝 𝒹(ℎ𝑘𝑣𝑝 ,𝑠)𝓈𝑟∈𝑅𝑠∈𝑆 + ∑ ∑ 𝜆𝑘𝑠𝑣𝑟𝑝 +𝑟∈𝑅𝑠∈𝑆    ℯ∑ ∑ 𝑥𝑘𝑠𝑣𝑟𝑝 𝑐𝑟𝑠∈𝑆𝑟∈𝑅 , and add this decision 𝑎𝑘𝑝 to the executed decision set of vehicle 𝑣: Θ𝑣𝑝+1 ← Θ𝑣𝑝+1 ∪𝑠 

4:    Update the attributes in 𝑠1𝑝: ((𝑜𝑘𝑟𝑝′ , 𝑑𝑘𝑟𝑝′ )∀𝑟∈𝑅 , (ℎ𝑘𝑣𝑝′ , 𝑐𝑘𝑣𝑝′ , 𝑡𝑘𝑣𝑝′ , 𝑢𝑘𝑣𝑝′ )∀𝑣∈𝑉) ← 𝑆𝑘(𝑠1𝑝, 𝑎𝑘𝑝, 𝑔𝑘𝑝) 
5: end while 

6: if ∆𝑡𝑣𝑝+1 > 𝑇 − 𝑡̂𝑣𝑝 then 

7:    Recode the over-period time of the next period: 𝑡̂𝑣𝑝+1 ← ∆𝑡𝑣𝑝+1 − 𝑇𝑣𝑝+1 
8: else 

9:    𝑡̂𝑣𝑝+1 ← 0 
10: end if 

11: If 𝑡𝑘𝑣𝑝′ < (𝑝 + 1)𝑇 then 

12:    𝑡𝑘𝑣𝑝′ ← (𝑝 + 1)𝑇 
13: end if 

14: 𝑠1𝑝+1 ← ((𝑜𝑘𝑟𝑝′ , 𝑑𝑘𝑟𝑝′ )∀𝑟∈𝑅, (ℎ𝑘𝑣𝑝′ , 𝑐𝑘𝑣𝑝′ , 𝑡𝑘𝑣𝑝′ , 𝑢𝑘𝑣𝑝′ )∀𝑣∈𝑉) 

4.2.5. Cost models 

The cost components include fixed transportation cost, variable transportation cost, and penalty cost. The fixed 
transportation cost is related to the number of vehicle trips for each period. Since a vehicle can have at most one 

trip for each period (Assumption 2), the formulation is taken as follows: 𝐶𝐹𝑝 = 𝛽𝑓∑min{∑ ∑∑𝑥𝑘𝑠𝑣𝑟𝑝𝑟∈𝑅𝑠∈𝑆𝑘∈𝐾𝑝 , 1}𝑣∈𝑉 , ∀𝑝 ∈ 𝑃 (23) 

The variable transportation cost depends on the running mileage of each vehicle dispatching decision, i.e., the 

distance from the dispatched vehicle location ℎ𝑘𝑣𝑝  to decision node 𝑠, which can be computed as follows: 𝐶𝑉𝑘𝑝 = 𝛽𝑣∑∑∑𝑥𝑘𝑠𝑣𝑟𝑝 𝒹(ℎ𝑘𝑣𝑝 ,𝑠)𝑟∈𝑅𝑣∈𝑉𝑠∈𝑆 , ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 (24) 

The penalty cost includes the penalties for early arrival and late arrival. In general, late arrival is more harmful 

than early arrival (𝛽𝑙 > 𝛽𝑒). If the vehicle arrives at the pick-up stop within the specified time windows, the penalty 

cost is 0. Consequently, the penalty cost is taken as follows: 
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𝐶𝑃𝑘𝑝 =∑∑∑𝑥𝑘𝑠𝑣𝑟𝑝 {𝛽𝑒 ⋅ max {𝐸𝑇𝑟 − (𝑡𝑘𝑣𝑝 + 𝒹(ℎ𝑘𝑣𝑝 ,𝑠)𝓈 ) , 0} + 𝛽𝑙𝑟∈𝑅𝑣∈𝑉𝑠∈𝑆 ⋅ max {(𝑡𝑘𝑣𝑝 + 𝒹(ℎ𝑘𝑣𝑝 ,𝑠)𝓈 ) − 𝐿𝑇𝑟 , 0}} , ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 

(25) 

 In period 𝑝, given the state 𝑠𝑘𝑝 and the decision 𝑎𝑘𝑝 at decision epoch 𝑘, we can calculate the newly incurred 

costs of post-decision by Eq. (26). ℛ(𝑠𝑘𝑝, 𝑎𝑘𝑝) = {𝐶𝑉𝑘𝑝 + 𝐶𝑃𝑘𝑝, ∀𝑘 ∈ 𝐾𝑝 ∖ {𝒦}, ∀𝑝 ∈ 𝑃𝐶𝑉𝑘𝑝 + 𝐶𝑃𝑘𝑝 + 𝐶𝐹𝑝, if 𝑘 = 𝒦,∀𝑝 ∈ 𝑃 (26) 

4.2.6. Objective function 

The platform consistently receives a new batch of requests over time, resulting in changes in the environment. 

Consequently, the optimal policy found in the previous period may no longer hold optimality, so we must 

periodically ascertain the optimal policy for the updated environment by solving the MDP model. As illustrated in 

Fig. 4(a), the optimal solution over the entire planning horizon can be represented by the sequence of optimal 

policies 𝜋 = {𝜋1, … , 𝜋|𝑃|}, where 𝜋𝑝 denotes the sequence of decision rules {𝑋1𝜋𝑝( ),… , 𝑋𝒦𝜋𝑝( )} that minimizes 

the expected cost over the planning horizon of period 𝑝. Here, 𝑋𝑘𝜋𝑝( ) is a function mapping state 𝑠𝑘𝑝 to decision 𝑎𝑘𝑝 at decision epoch 𝑘 of period 𝑝. The optimal policy sequence can be found by solving the Bellman equation for 

each period: 𝓋 ∗(𝑠1𝑝) = min𝜋𝑝∈Π𝑝 𝔼 {∑ ℛ(𝑠𝑘𝑝, 𝑋𝑘𝜋𝑝(𝑠𝑘𝑝))𝑘∈𝐾𝑝 |𝑠1𝑝} , ∀𝑝 ∈ 𝑃 (27) 

where 𝓋∗( ) is the optimal value function under the optimal policy for a specific state. 

 

Fig. 4 Illustration of the optimal solution 

 Under the operation with demand prediction, the optimal solution over the entire planning horizon, denoted as 𝜋𝑀𝑆 = {𝜋1𝑀𝑆 ,… , 𝜋|𝑃|𝑀𝑆}, should explicitly consider the impact of future stochastic demands. As illustrated in Fig. 

4(b), we generate a scenario-based uncertain future demand set from historical information. Each scenario 

Optimal policy of period 𝑃Optimal policy of period 𝑝Optimal policy of period 1

𝑠1𝑝+1
𝑋1𝜋𝑝  𝑀𝑆 𝑠1  𝑝 , … , 𝑋𝒦𝜋𝑝  𝑀𝑆 𝑠𝒦  𝑝

𝑠1𝑝
𝑄1𝑝
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𝑄  𝑝

…

𝑋1𝜋𝑝 𝑀𝑆 𝑠11𝑝 , … , 𝑋𝒦𝜋𝑝 𝑀𝑆 𝑠𝒦1𝑝
𝑋1𝜋𝑝 𝑀𝑆 𝑠12𝑝 ,… , 𝑋𝒦𝜋𝑝 𝑀𝑆 𝑠𝒦2𝑝

𝓋∗ 𝑠11𝑝
𝓋∗ 𝑠12𝑝

𝓋∗ 𝑠1  𝑝

…

𝑃𝑟 𝑄1𝑝

𝑃𝑟 𝑄  𝑝

𝑃𝑟 𝑄2𝑝

… …
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(a) Optimal solution over the entire planning horizon
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𝑠11 𝑋1𝜋 𝑠11 ,… , 𝑋𝒦𝜋 𝑠𝒦1 𝑠1𝑝 𝑋1𝜋  𝑠1𝑃 , … , 𝑋𝒦𝜋  𝑠𝒦𝑃 EndStart 𝑋1𝜋𝑝 𝑠1𝑝 ,… , 𝑋𝒦𝜋𝑝 𝑠𝒦𝑝 …… 𝑠1𝑝+1 …
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represents a realization of future stochastic demands sampled from the joint probability distribution of all OD pairs, 

where scenario 𝑛 and its occurrence probability 𝑃𝑟(𝑄𝑛𝑝) are known once a period starts (see Section 4.3). The 

scenario approach is applied to identify the optimal policy of each period, which considers the future demand 

within each scenario as deterministic (Li et al., 2019). This is also supported by Lian et al. (2024) who employed 

the scenario approach to represent possible realizations of stochastic future requests. Hence, in period 𝑝 , we 
parallelly solve a series of deterministic optimization problems to find the optimal policy for each scenario:  𝓋∗(𝑠1𝑛𝑝 ) = min𝜋𝑝𝑛𝑀𝑆∈Π𝑝𝑛𝑀𝑆 𝔼 {∑ ℛ(𝑠𝑘𝑝, 𝑋𝑘𝜋𝑝𝑛𝑀𝑆(𝑠𝑘𝑛𝑝 ))𝑘∈𝐾𝑝 |𝑠1𝑝, 𝑄𝑛𝑝} , ∀𝑛 ∈ 𝑁 (28) 

 All optimal policies constitute the candidate policy set, for instance, the candidate policy set of period 𝑝 are {𝜋𝑝1𝑀𝑆 , … , 𝜋𝑝| |𝑀𝑆 }, where the 𝜋𝑝𝑛𝑀𝑆 represents the optimal policy in scenario 𝑛. We select the one policy from the set 

that minimizes the expected value for all scenarios as the optimal policy for the current period: 𝜋𝑝𝑀𝑆 = argmin𝜋𝑝𝑛𝑀𝑆∈{𝜋𝑝 𝑀𝑆 ,…,𝜋𝑝| |𝑀𝑆 }(∑ 𝑃𝑟(𝑄𝑛𝑝)𝓋(𝜋𝑝𝑛𝑀𝑆|𝑠1𝑝, 𝑄𝑛′𝑝 )𝑛′∈ ) (29) 

where the 𝓋(𝜋𝑝𝑛𝑀𝑆|𝑠1𝑝, 𝑄𝑛′𝑝 ) represents the value function of executing policy 𝜋𝑝𝑛𝑀𝑆 at the state 𝑠1𝑝 in the scenario 𝑄𝑛′𝑝 . 

4.2.7. Request rejection mechanism 

The passenger-to-vehicle assignment is essential to decision-making. However, the received requests cannot 
be always matched subject to supply limitations, such as the fleet size, vehicle capacity, and driver’s working time. 

In this section, we propose a practical request rejection mechanism, whose specifications are described as follows. 

When received request 𝑟 cannot be matched in period 𝑝, we have 𝑞𝑟𝑝(𝑜𝒦𝑟𝑝 + 𝑑𝒦𝑟𝑝 ) ≠ 2, and the requests can be 

potentially rejected. We remove the request with the largest number of matching failures and then resolved the 

MDP model one by one until the remaining requests can be matched. Based on this principle, the pseudo-code for 

the request rejection mechanism is provided in Table 3. 

Table 3 The pseudo-code of the request rejection mechanism 

Algorithm 2: Request rejection mechanism 

Input: State variables 𝑠1𝑝 
Output: Updated state variables 𝑠1𝑝 after rejection, the policy of period 𝑝 

1: While request 𝑟 s.t. 𝑞𝑟𝑝(𝑜𝒦𝑟𝑝 + 𝑑𝒦𝑟𝑝 ) ≠ 2 do 

2:    Make a vehicle dispatching decision and transition the state through 𝑆𝑘 
3:    if all unserved requests can be matched then 

4:       Return the policy and end while 
5:    else 

6: 
      Solve the MDP model a few times with 𝑠1𝑝 parallelly, and record the number of matching failures 

request 𝑟′ 
7:       Update 𝑜1𝑟′𝑝  and 𝑑1𝑟′𝑝  by removing the request 𝑟′ of the highest matching failure: 𝑜1𝑟′𝑝 ← 1; 𝑑1𝑟′𝑝 ← 1 

8:       Update and return the state variables: 𝑠1𝑝 ← ((𝑜1𝑟𝑝 , 𝑑1𝑟𝑝 )∀𝑟∈𝑅, (ℎ1𝑣𝑝 , 𝑐1𝑣𝑝 , 𝑡1𝑣𝑝 , 𝑢1𝑣𝑝 )∀𝑣∈𝑉) 

9:    end if 

10: end while 

4.2.8. Prediction error correction mechanism 

The prediction errors may introduce significant risks to request assignment since the decision-making module 

can use unreliable or erroneous predictions, resulting in vehicle detours and incomplete service. To address this 

issue, we propose a prediction error correction mechanism. 
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Fig. 5 Illustration of prediction error correction mechanism 

Fig. 5(a) illustrates the execution process of anticipatory dispatching decisions for vehicles in period 𝑝 . 

Specifically, bus 1 and bus 2 have executed decisions 7→5→3→2 and 6→8→4→1, respectively. The partial 

decisions (3→2, 4→1, and 2→9) for period 𝑝 are made to serve future demand 𝑞̃𝑖𝑗𝑝 , and the true information of 𝑞̃𝑖𝑗𝑝  

is known only when the actual demand 𝑞𝑖𝑗𝑝+1  is received. Although the unexecuted decision 2→9 can be re-

optimized in the next period based on the true information, the decisions 3→2 and 4→1 with prediction errors, 

which have already been executed, cannot be altered. To promptly eliminate the negative impact on the expected 

execution result, during the computation time 𝑡𝐵 of the next period, we will check these decisions and re-dispatch 

the vehicles to correct the executed decisions. 

The prediction error is reflected by the OD offsets, the number deviation, and whether the request is cancelled, 

all of which contribute to the inconsistency between the predicted and the actual number of passengers on the arc (𝑖, 𝑗). As shown in Fig. 5(b), we track the executed decisions that have deviations in demand, such as 3→2 and 4→

1. As shown in Fig. 5(c), the prediction errors can be classified into two types, and their corresponding correction 

mechanisms are as follows: 

 Overestimation of future demand, i.e., 𝑞̃𝑖𝑗𝑝 ≥ 𝑞𝑖𝑗𝑝+1. 

The executed decision ensures the sufficient remaining capacity to accommodate the actual demand, so the 

original value 𝑐𝑘𝑣𝑝  can be simply updated to the correct value 𝑐𝑘𝑣𝑝+1 = 𝑐𝑘𝑣𝑝 − 𝑞𝑖𝑗𝑝+1. 

 Underestimation of future demand, i.e., 𝑞̃𝑖𝑗𝑝 < 𝑞𝑖𝑗𝑝+1. 

If the remaining vehicle capacity 𝑐𝑘𝑣𝑝  is less than the actual demand, the executed decision is invalid such that 

a detour results. To avoid wasting mileage and working time, we pick up only 𝑐𝑘𝑣𝑝  passengers for those split 

requests, while the other 𝑞𝑖𝑗𝑝+1 − 𝑐𝑘𝑣𝑝  passengers that exceed the vehicle capacity are treated as newly submitted 

requests and are dispatched by other vehicles in the next period. In contrast, the non-split requests have to be 

rejected subject to the remaining capacity. If the remaining vehicle capacity is not less than the actual demand 

(𝑞̃𝑖𝑗𝑝 < 𝑞𝑖𝑗𝑝+1, 𝑐𝑘𝑣𝑝 ≥ 𝑞𝑖𝑗𝑝+1), it is equivalent to the overestimation type. For cancelled requests, the distance to the arc 

that reaches their pick-up stop is considered a detour distance, regardless of the prediction error type.  

4.3. Demand prediction with uncertainty 

The prediction module is essential to predictive DAR optimization. Fig. 6 shows the DAR travel demand 
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between five stops in a real-world bus network of a ‘Shared Bus’ project in Guangzhou for 31 days (see Section 

6.3). Three findings are observed. First, the demand exhibits significant temporal relationships, and the majority of 

stops exhibit sparse demand. Second, the distribution of demands is highly irregular. For instance, the temporal 

regularity of OD demands from stop 3 to stop 5 is relatively strong, while that between stop 2 and stop 1 fluctuates 
sharply. Third, as shown in Fig. 6(b), the absolute values of the correlation coefficients range from 0.41 to 1, 

indicating a significant spatial correlation in demands. Therefore, a challenge of operation with demand prediction 

is to simultaneously capture the spatiotemporal characteristics of demand, including uncertainty, sparsity, and 

spatial correlation. Given the effectiveness of long short-term memory (LSTM) networks in extracting temporal 

relationships (Zhang et al., 2020; Ma et al., 2021; Liu et al., 2019), we combine LSTM with quantile regression 

methods to capture the temporal features of short-term sparse passenger demands. Additionally, Copula functions 

are employed to capture the spatial features between stops. 

 

(a) Time-dependent OD matrix 

 

(b) Heat map of Pearson correlation coefficients 

Fig. 6 Temporal and spatial characteristics of demand distribution between five stops 

To achieve rolling forecasting and reveal the possibilities for future stochastic demands, we design a multi-

scenario prediction model considering spatial correlation that widely captures spatiotemporal characteristics. The 

principle is similar to Bent and van Hentenryck’s (2004) approach, where future demand scenarios are generated 

through sampling from its probability distribution. Specifically, we update the historical requests that serve as the 
training set periodically, and estimate the marginal distribution of each OD in the service area by accumulating the 

quartiles of the distribution function. After that, Copula functions are introduced to capture the spatial correlation of 

marginal distributions of different OD pairs to construct joint probability distributions. By multiple sampling, future 

demand scenarios and corresponding occurrence probabilities are obtained. The main steps are provided as follows: 

(1) The historical actual demand {𝑞𝑖𝑗1 ,… , 𝑞𝑖𝑗𝑝−1} for each OD is obtained. The future demand 𝑞̃𝑖𝑗𝑝(𝜏𝑙) with a 

quantile level of 𝜏𝑙 is predicted using LSTM and quantile regression.  

(2) The corresponding empirical distribution 𝐹(𝑞𝑖𝑗𝑝 ) is constructed based on 𝑞̃𝑖𝑗𝑝(𝜏𝑙), and |𝑁| future demand 

scenarios are obtained by randomly sampling from the empirical distribution. 

(3) Gaussian Copula function 𝐶𝐺  is adopted to capture the spatial correlation between the empirical 

distributions of each OD pair. 

(4) The |𝑁| future demand scenarios are imported into the 𝐶𝐺  to obtain its occurrence probability 𝑃𝑟(𝑄𝑛𝑝). 
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The advantages of our prediction model are significant, primarily attributed to four aspects: (1) the use of 

interval estimates of quartiles, instead of traditional point estimates, can retain the uncertainty in travel demand; (2) 

the sampling of a sufficient number of demand scenarios enables exploration of various possibilities of future 

demand; (3) the utilization of Copula function accommodates spatial correlation, of which the generated joint 
probabilities provides the foundation for identifying the optimal policy from the candidate policy set; (4) the 

periodic update training set can prevent the accumulation of prediction errors. Furthermore, we implement a 

prediction error correction mechanism that can eliminate the impact of errors. In cases where future demand does 

not match the actual demand, we handle executed decisions with subtlety rather than completely removing them. 

This approach allows us to preserve the optimized policy in distinguished future demand scenarios. 

4.3.1. Deep quantile regression for time-dependent OD demand 

To build the nonlinear relationship between the input and output variables with different quartile levels, we 

estimate the future demand for each OD pair by combining the LSTM with quantile regression methods. By 

incorporating the quantile regression into the loss function of the LSTM model, the stochasticity of future demands 

can be produced without prior assumptions of demand data. 

The training dataset consists of the received request information from all previous periods, and 𝜏𝑙 ={5%, 25%, 50%, 75%, 95%}  is selected to encompass a range of quantile levels. Since the future demand of 

different quantile levels needs to be predicted, the loss function of the LSTM is modified to align with the 

optimization equation of quantile regression, that is,  

𝑙𝑜𝑠𝑠 = ∑∑max{𝜏𝑙 ∙ (𝑞𝑖𝑗𝓅 − 𝑞̃𝑖𝑗𝓅(𝜏𝑙)), (1 − 𝜏𝑙) ∙ (𝑞̃𝑖𝑗𝓅(𝜏𝑙) − 𝑞𝑖𝑗𝓅)}5
𝑙=1

𝑝
𝓅=1 , ∀𝑖, 𝑗 ∈ 𝑆, ∀𝑙 ∈ 𝐿 (30) 

In doing so, the quantile sample 𝑞̃𝑖𝑗𝑝(𝜏𝑙) of future demand of each OD pair can be obtained. The actual demand 

distribution follows the quantile sample performance, i.e., 𝑞𝑖𝑗𝑝~𝜀 (𝑞̃𝑖𝑗𝑝(𝜏𝑙)), which can be expressed as the following 

empirical distribution: 

𝐹(𝑞𝑖𝑗𝑝 ) = {  
  0 , ∀𝑖, 𝑗 ∈ 𝑆, 𝑞𝑖𝑗𝑝 < 𝑞̃𝑖𝑗𝑝(0.05)𝑙5 , ∀𝑖, 𝑗 ∈ 𝑆, 𝑞𝑖𝑗𝑝 ∈ (𝑞̃𝑖𝑗𝑝(𝜏𝑙), 𝑞̃𝑖𝑗𝑝(𝜏𝑙+ )]1 , ∀𝑖, 𝑗 ∈ 𝑆, 𝑞𝑖𝑗𝑝 > 𝑞̃𝑖𝑗𝑝(0.95) , if 𝑙 = 1, … ,4 (31) 

As a result, the predicted value with uncertainty for each OD pair can be obtained by sampling from the 

empirical distribution 𝐹(𝑞𝑖𝑗𝑝 ). By sampling all OD pairs, a stochastic future demand scenario 𝑄𝑛𝑝 for period 𝑝 can 

be obtained, with a dimension of |𝑆|2. 

𝑄𝑛𝑝 = [ 𝐹(𝑞11𝑝 )−1 … 𝐹(𝑞1|𝑆|𝑝 )−1… …𝐹(𝑞|𝑆|1𝑝 )−1 … 𝐹(𝑞|𝑆||𝑆|𝑝 )−1] , ∀𝑛 ∈ 𝑁, ∀𝑝 ∈ 𝑃 (32) 

4.3.2. Copula function joint distribution for capturing spatial demand correlation  

As discussed previously, the marginal distributions of different OD pairs exhibit spatial correlation. For this 
reason, the Copula function is adopted to capture this correlation by combining the marginal distributions into a 

joint demand distribution. 

The marginal distribution 𝐹(𝑞𝑖𝑗𝑝 )  of each OD pair is mapped into an interval [0,1]  using the standard 

cumulative distribution function (CDF) Φ. According to Sklar’s Copula theory (Sklar, 1973), the multivariate 
cumulative distribution function can be defined as a function of these CDFs and a Copula function. In this study, 

we employ the Gaussian Copula function 𝐶𝐺 , represented by Eq. (33). 
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𝐶𝐺(𝑞11𝑝 ,… , 𝑞|𝑠||𝑠|𝑝 ) = Φ[Φ−1 (Φ(𝑞11𝑝 )) ,… ,Φ−1 (Φ(𝑞|𝑠||𝑠|𝑝 )) ; 𝜎] (33) 

where Φ−1 represents the inverse function of Φ, and 𝜎 denotes the covariance matrix. By substituting 𝑄𝑛𝑝 into 𝐶𝐺 , 

we can obtain the occurrence probability 𝑃𝑟(𝑄𝑛𝑝). 
4.4. Pruning strategies  

In this section, we propose several families of pruning strategies to strengthen the dynamic programming 

formulations, which improve the computational efficiency and solution quality of ADP. The principle is to reduce 

unnecessary decisions and state space, and avoid incorrect vehicle decisions that lead to large update deviations and 

variance of the state value function. 

4.4.1. Upper bound of the driver’s working time  

Since vehicle 𝑣 must deliver all passengers of assigned requests to their drop-off stops, it makes sense to 

determine whether the driver’s working time is sufficient to complete the subsequent route before going to the new 

pick-up stop 𝑜𝑟  of request 𝑟. The following theorems are given along with their proofs. 

Theorem 1: There is always an upper bound for the driver’s working time sup 𝑢𝑘𝑣𝑝  when dispatch vehicle 𝑣 to 

pick-up stop 𝑜𝑟  of request 𝑟 at decision epoch 𝑘 of period 𝑝. 

Proof: Suppose that the driver has sufficient working time, there are two scenarios when the vehicle arrives at the 

pick-up stop. 

 Scenario 1. The vehicle is empty 

If the vehicle has not served the pick-up stop in previous decision epochs, its subsequent route is either: (a) 

pick-up stop→  corresponding drop-off stop→  pick-up stop of request 𝑟 , or (b) pick-up stop of request 𝑟 → 

corresponding drop-off stop→ depot 𝓂𝑣. 

For route (a), when a vehicle is dispatched to the pick-up stop of request 𝑟, the vehicle will hold and serve at 

this pick-up stop, and a corresponding drop-off stop of this request will be generated subsequently in its route. 

Since this pruning strategy needs to be identified each time the vehicle arrives at the pick-up stop, it is only 
necessary to consider whether the remaining working time after holding and serving can complete the trip to the 

corresponding drop-off stop. Furthermore, the vehicle is forced to return to the depot from the drop-off stop, i.e., 

route (b). In summary, for Scenario 1, there exists an upper bound of the working time when the driver serves the 

pick-up stop, such that sup 𝑢𝑘𝑣𝑝 = 𝑡max − 𝒹(ℎ𝑘𝑣𝑝 ,𝑜𝑟)+𝒹(𝑜𝑟,𝑑𝑟)+𝒹(𝑑𝑟,𝓂𝑣)𝓈 − 𝜆𝑘𝑜𝑟𝑣𝑟𝑝 − 2ℯ𝑐𝑟, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃. 

 Scenario 2. The vehicle is loaded with passengers 

If the driver has served no less than one pick-up stop in previous decision epochs, i.e., |𝑂𝑘𝑣𝑝 | ≥ 1, the driver 

needs to serve all drop-off stops in the set 𝐷𝑘𝑣𝑝 . Similarly, its subsequent route is either: (c) pick-up stop→ 𝐷𝑘𝑣𝑝 → 

pick-up stop of request 𝑟, or (d) pick-up stop of request 𝑟 → 𝐷𝑘𝑣𝑝 → depot 𝓂𝑣. 

Similar to the analysis of Scenario 1, route (c) is equivalent to route (d). For route (d), its starting stop and end 

stop are fixed as 𝑜𝑟  and 𝓂𝑣 , respectively. Although different permutations of drop-off stops in the set 𝐷𝑘𝑣𝑝  

constitutes various routes, there must be a minimum travel time. 

To ease representation, route (d) is defined as 𝑜𝑟 → inf𝐷𝑘𝑣𝑝 →𝓂𝑣, and its upper bound of the driver’s working 

time satisfies sup𝑢𝑘𝑣𝑝 = 𝑡max − 𝒹(ℎ𝑘𝑣𝑝 ,𝑖𝑟)+𝒹(𝑜𝑟→inf 𝐷𝑘𝑣𝑝 →𝓂𝑣)𝓈 − 𝜆𝑘𝑜𝑟𝑣𝑟𝑝 − ℯ(2𝑐𝑟 + 𝑐max − 𝑐𝑘𝑣𝑝 ) , where 𝒹(𝑜𝑟 →inf𝐷𝑘𝑣𝑝 →𝓂𝑣) denotes the shortest travel distance for a vehicle to serve all drop-off stops in the set 𝐷𝑘𝑣𝑝  from the 

starting stop 𝑜𝑟  to the end stop 𝓂𝑣, which can be calculated by the Dijkstra algorithm, and where ℯ(2𝑐𝑟 + 𝑐max −𝑐𝑘𝑣𝑝 ) denotes the serving time of request 𝑟 (both boarding and alighting) and other passengers in-vehicle (only 
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alighting). For sup𝑢𝑘𝑣𝑝 = 𝑡max − (𝒹(ℎ𝑘𝑣𝑝 ,𝑜𝑟) +𝒹(𝑜𝑟,𝑑𝑟) + 𝒹(𝑑𝑟,𝓂𝑣)) /𝓈 − 𝜆𝑘𝑜𝑟𝑣𝑟𝑝 − 2ℯ𝑐𝑟  in Scenario 1, 𝐷𝑘𝑣𝑝  contains 

only one drop-off stop 𝑑𝑟. Combining Scenario 1 with Scenario 2, the upper bound value of the driver’s working 
time can be expressed as follows: sup 𝑢𝑘𝑣𝑝 = 𝑡max − 𝒹(ℎ𝑘𝑣𝑝 ,𝑖𝑟) + 𝒹(𝑜𝑟 → inf 𝐷𝑘𝑣𝑝 →𝓂𝑣)𝓈 − 𝜆𝑘𝑜𝑟𝑣𝑟𝑝 − ℯ(2𝑐𝑟 + 𝑐max − 𝑐𝑘𝑣𝑝 ), ∀𝑣∈ 𝑉, ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 (34) 

This completes the proof of the existence of the upper bound of the driver’s working time. Using this pruning 

strategy, we can eliminate the decisions where the driver’s working time is greater than its upper bound. Since for 

these decisions the vehicle cannot serve the subsequent drop-off stops and return to the depot successfully, the 

eliminated routes are incorrect and cannot be optimal policy.  

Theorem 2: Compared with the standard dynamic programming, the state space of decision epoch 𝑘 of period 𝑝 

will be reduced by (∑ 𝑞𝑟𝑝𝑟∈𝑅 − |𝑂𝓀𝑣𝑝 |)(|𝑂𝓀𝑣𝑝 | + 1)! if the decision is pruned. 

Proof: In period 𝑝, the number of received requests is ∑ 𝑞𝑟𝑝𝑟∈𝑅 . Suppose that vehicle 𝑣 has served |𝑂𝑘𝑣𝑝 | pick-up 

stops at the decision epoch 𝑘  and its remaining capacity can guarantee that the vehicle serves passengers at ∑ 𝑞𝑟𝑝𝑟∈𝑅 − |𝑂𝑘𝑣𝑝 |  pick-up stops. According to the dynamic programming algorithm, the vehicle will traverse (∑ 𝑞𝑟𝑝𝑟∈𝑅 − |𝑂𝑘𝑣𝑝 |) pick-up stops. Once the vehicle arrives at each pick-up stop, the set of corresponding drop-off 

stops 𝐷𝑘𝑣𝑝  is formed, of which length equals to |𝑂𝑘𝑣𝑝 | + 1 and contains totally (|𝑂𝑘𝑣𝑝 | + 1)! permutations. Thus, the 

state space of decision epoch 𝑘 equals (∑ 𝑞𝑟𝑝𝑟∈𝑅 − |𝑂𝑘𝑣𝑝 |)(|𝑂𝑘𝑣𝑝 | + 1)!, which will not be recorded if the decision 

is pruned. 

4.4.2. Holding time  

Since vehicle 𝑣 can hold in depot 𝓂𝑣, the departure time can be optimized to reduce the time penalty cost for 

the first-served pick-up stop. Since the heading pick-up stop 𝑜𝑟  after holding has been determined and its 

subsequent decisions cannot be observed, we only optimize the arrival time at this stop. Eq. (35) calculates the 

optimal holding time 𝜆𝑘𝑠𝑣𝑟𝑝 .  𝜆𝑘𝑠𝑣𝑟𝑝∗ = argmin𝜆𝑘𝑠𝑣𝑟𝑝 {𝛽𝑒 ⋅ max {𝐸𝑇𝑟 − (𝑡𝑘𝑣𝑝 + 𝒹(𝓂𝑣,𝑜𝑟)𝓈 + 𝜆𝑘𝑠𝑣𝑟𝑝 ) , 0} + 𝛽𝑙
⋅ max {(𝑡𝑘𝑣𝑝 + 𝒹(𝓂𝑣,𝑜𝑟)𝓈 + 𝜆𝑘𝑠𝑣𝑟𝑝 ) − 𝐿𝑇𝑟 , 0}} (35) 

Eq. (36) calculates the optimal penalty cost 𝐶𝑃𝑘𝑝∗.  𝐶𝑃𝑘𝑝∗ = 𝛽𝑒 ⋅ max {𝐸𝑇𝑟 − (𝑡𝑘𝑣𝑝 +𝒹(𝓂𝑣,𝑜𝑟)𝓈 + 𝜆𝑘𝑠𝑣𝑟𝑝∗ ) , 0} + 𝛽𝑙⋅ max {(𝑡𝑘𝑣𝑝 +𝒹(𝓂𝑣,𝑜𝑟)𝓈 + 𝜆𝑘𝑠𝑣𝑟𝑝∗ ) − 𝐿𝑇𝑟 , 0} 

(36) 

4.4.3. Return to the depot 

When the vehicle has served each drop-off stop and no onboard passengers left, the vehicle may return to the 

depot at the next decision epoch to achieve lower costs, and thus its subsequent route is either: (e) pick-up stop of 

request 𝑟 →  corresponding drop-off stop, or (f) the vehicle’s depot 𝓂𝑣 → pick-up stop of request 𝑟 → 

corresponding drop-off stop. Since the pruning strategy of the upper bound of the driver’s working time in Section 
4.4.1 has eliminated the incorrect vehicle routes, the premise of route (e) is that the remaining working time is 

sufficient. Hence, we prune the decision from the cost perspective. 



23 

 

 

The cost of route (f) must be higher than route (e) without considering the time window penalty, even if the 

fixed transportation cost is ignored (similar to Clarke and Wright’s saving method). To reduce the penalty cost and 

total cost, it might be more economical to dispatch another vehicle from the depot to the pick-up stop for serving 

request 𝑟 . Based on this principle, the pruning strategy is set as follows: When 𝛽𝑣 (𝒹(ℎ𝑘𝑣𝑝 ,𝑜𝑟) +𝒹(𝑜𝑟,𝑑𝑟) +𝒹(𝑑𝑟,𝓂𝑣)) + 𝐶𝑃𝑘𝑝 < 𝛽𝑣 (𝒹(ℎ𝑘𝑣𝑝 ,𝓂𝑣) +𝒹(𝓂𝑣,𝑜𝑟) +𝒹(𝑜𝑟,𝑑𝑟) + 𝒹(𝑑𝑟,𝓂𝑣)) + 𝐶𝑃𝑘+1𝑝∗ , the route (e) is adopted; when 𝛽𝑣 (𝒹(ℎ𝑘𝑣𝑝 ,𝑜𝑟) +𝒹(𝑜𝑟,𝑑𝑟) + 𝒹(𝑑𝑟,𝓂𝑣)) + 𝐶𝑃𝑘𝑝 ≥ 𝛽𝑣 (𝒹(ℎ𝑘𝑣𝑝 ,𝓂𝑣) +𝒹(𝓂𝑣,𝑜𝑟) +𝒹(𝑜𝑟,𝑑𝑟) + 𝒹(𝑑𝑟,𝓂𝑣)) + 𝐶𝑃𝑘+1𝑝∗ , the route 

(f) is adopted, where the formulation of 𝐶𝑃𝑘𝑝∗ is shown in Section 4.4.2.  

 

5. Solution algorithm  

For the DAR optimization, the state space and decision space of the MDP model are so enormous that the 

optimal policy cannot be searched quickly using standard dynamic programming. Approximate dynamic 

programming is effective in tackling the curse of dimensionality (Powell, 2007). In this study, we select the 

prevailing VFA to speed up the solving of the MDP model.  

Under the operation with demand prediction, we need to search for the optimal policy in a stochastic 
environment mixed with actual and future demands. For the learning of optimal policy in a stochastic environment, 

previous studies on ADP or reinforcement learning methodologies have focused on exploring the stochastic 

environment by attempting feasible decisions and adaptive approximation updates (Kool et al., 2018; Çimen and 

Soysal, 2017). Another stream has applied exact algorithms (e.g., branch-and-price) or stochastic programming 

(e.g., chance-constrained programming) to solve the vehicle dispatching problem in a stochastic environment 

(Florio et al., 2022; Lee et al., 2022; Wu et al., 2022; Wu et al., 2024). However, the former approach is difficult to 
maintain the stability and high quality of the solution with dynamic pop-up requests, while the latter approach is 

inefficient in periodic re-optimization for DAR due to computational complexity. Distinct from prior research, 

considering both actual and stochastic future demands simultaneously, we search for the optimal policy for each 

period via the ADP algorithm and scenario approach. Specifically, in each period, we approximate the value 

function of the state to find the candidate policy set for |𝑁| scenarios, and identify the optimal policy from the 

candidate policy set. Meanwhile, under the rolling horizon framework, since unexecuted decisions can cause state 

skipping, we still need to devise a method to maintain a stable iteration of the value function. In doing so, the set of 
scenarios sufficiently reveals the possibilities of future stochastic demands, which can produce reliable and high-

quality solutions in a reasonable time by parallel computing. Moreover, the periodic future demand scenarios 

generation and the prediction error correction mechanism can prevent the accumulation of prediction errors, 

thereby ensuring the stability of the policy.  

Based on this principle, we propose a multi-scenario exploration and rolling ADP framework to achieve high-

quality management of DAR operation considering demand prediction. This framework integrates the value 
function rolling method and the multi-scenario exploration method, to tackle the challenge of deviation of the value 

function in iterations between adjacent periods and identify the optimal policy from multiple future demand 

scenarios. Besides, we provide three stepsize rules and discuss the approximation strategies. The framework and 

stepsize of ADP are presented in Section 5.1 and Section 5.2, respectively, and the approximation strategy is 

discussed in Section 5.3. In Section 6.2.4, we will compare the performance of our approach with state-of-the-art. 

5.1. Multi-scenario exploration and rolling ADP framework 

The ADP algorithm tackles the challenge of the curse of dimensionality by estimating the true value of the 
state value function. The VFA is a widely used method that converges the estimated values to their true values. 

Specifically, the VFA iteratively generates sample policies through repeated simulation from the initial state to the 

end state, and these sample policies are employed to approximate the state value function. The sample policy is 

continuously refined based on the updated value function approximation until it converges to the optimal value 
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function 𝓋 ∗(𝑠𝑘𝑝), at which point the optimal policy is found. Our study aims to find the optimal solution 𝜋𝑀𝑆 for 

operation with demand prediction, and identify the sequence of optimal policies {𝜋1𝑀𝑆 , … , 𝜋|𝑃|𝑀𝑆}. Thus, in each 

period, we perform |ℒ| iterations to simulate decision-making. 

We now introduce the procedure of VFA policy and the temporal difference update method. Let 𝒜𝑘𝑝 denote the 

decision space at decision epoch 𝑘 of period 𝑝 with constraints and pruning strategies. In general, for period 𝑝, the 

VFA policy starts at the initial state and iterates ℓ times along the simulated sample decision 𝑎𝑘𝑝ℓ. The unbiased 

sample estimate of the value of the state 𝑠𝑘𝑝 at ℓ-th iteration is calculated as follows: 𝓋̂ℓ(𝑠𝑘𝑝) = ℛ(𝑠𝑘𝑝, 𝑎𝑘𝑝ℓ) + 𝒱̅ℓ−1(𝑠𝑘+1𝑝 ) (37) 

where the value function 𝒱̅ℓ−1(𝑠𝑘+1𝑝 ) denotes the estimated value of 𝑠𝑘+1𝑝  at (ℓ − 1)-th iteration. 

At ℓ-th iteration, the service provider makes the decision 𝑎𝑘𝑝ℓ  using the value function 𝒱̅ℓ−1(𝑠𝑘+1𝑝 )  after (ℓ − 1)-th iteration. 𝑎𝑘𝑝ℓ = argmin𝑎𝑘𝑝∈𝒜𝑘𝑝 (ℛ(𝑠𝑘𝑝, 𝑎𝑘𝑝) + 𝒱̅ℓ−1(𝑠𝑘+1𝑝 )) (38) 

There are a few value function approximation methods in the literature. In this study, the temporal difference 

update method 𝑇𝐷(𝜆) is adopted to update the value function approximation by the estimated value of the state. 

When 𝜆 = 0 in 𝑇𝐷(𝜆), there is a special case as shown in Eq. (39). We refer interested readers to Powell (2007) for 

more details, and the methods experimentally are compared in Section 6.2.4. 

𝒱̅ℓ(𝑠𝑘𝑝) = {𝒱̅ℓ−1(𝑠𝑘𝑝) + 𝛼ℓ−1 ∑|𝐾𝑝|𝓀=𝑘𝜆𝓀−𝑘 (ℛ(𝑠𝑘𝑝, 𝑎𝑘𝑝ℓ) + 𝒱̅ℓ−1(𝑠𝑘+1𝑝 ) − 𝒱̅ℓ−1(𝑠𝓀𝑝)) , 𝑇𝐷(𝜆)𝒱̅ℓ−1(𝑠𝑘𝑝) + 𝛼ℓ−1 (ℛ(𝑠𝑘𝑝, 𝑎𝑘𝑝ℓ) + 𝜆𝒱̅ℓ−1(𝑠𝑘+1𝑝 ) − 𝒱̅ℓ−1(𝑠𝑘𝑝)) , 𝑇𝐷(0)  (39) 

The VFA can accurately approximate the value function of the state of each decision epoch of period 𝑝, but is 

not suitable under the rolling horizon framework. For example, when a new batch of actual demand is received, the 

decisions may not be executed completely. In such cases, the unexecuted decisions should not participate in the 

approximation of the value function. Therefore, a value function rolling method is required. 

 

Fig. 7 Illustration of the multi-scenario exploration and rolling ADP framework 

Fig. 7 describes the process of the value function rolling method. If the decisions {𝑎1𝑝ℓ,… , 𝑎𝒦𝑝ℓ} for period 𝑝 is 

executed up to 𝑎𝑘−1𝑝ℓ  when new actual demand is received, the initial state for period 𝑝 + 1 is 𝑠𝑘𝑝 after transition 

through 𝑆𝑝, i.e., 𝑠1𝑝+1 = 𝑠𝑘𝑝 . To ensure the stability of the update of the value function between periods, we roll the 

estimated value of the state 𝑠𝑘𝑝 to state 𝑠1𝑝+1 after |ℒ| iterations in Eq. (40). 𝒱̅1(𝑠1𝑝+1) = 𝒱̅|ℒ|(𝑠𝑘𝑝 |𝑠𝑘𝑝 = 𝑠1𝑝+1) (40) 

Optimal policy

… … … … … … …

Multi-scenario exploration

… …

Value function rolling
Executed decisions

Period Period 

… …
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…
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Up to now, employing the aforementioned methods, we can conduct |ℒ| iterations in each period to explore 

the optimal policy, yielding the optimal solution 𝜋 for operation without demand prediction. Nevertheless, upon 

incorporating future demands, in each period, additional iterations are required to explore the future demand 

scenarios to formulate the candidate policy set, and the optimal policy 𝜋𝑝𝑀𝑆 is subsequently identified from these 

candidate policies. To integrate the scenario approach and ADP algorithms, we propose the multi-scenario 

exploration method for VFA, which enables the approximation of value function in the scenario-based uncertainty 

future demand set. Specifically, as shown in Fig. 7, at the start time of period 𝑝 , we generate |𝑁| simulated 

channels of sample policies. In each channel, we iterate ℓ times to approximate the value function to find the 

candidate policy for the corresponding scenario. Given the future demand scenario 𝑄𝑛𝑝 , we make the sample 

decision 𝑎𝑘𝑛𝑝ℓ  using the value function 𝒱̅𝜋𝑝𝑛𝑀𝑆ℓ−1 (𝑠𝑘+1,𝑛𝑝 ) of the state 𝑠𝑘+1𝑝  after (ℓ − 1)-th iteration in scenario 𝑛: 𝑎𝑘𝑛𝑝ℓ = argmin𝑎𝑘𝑝∈𝒜𝑘𝑝 (ℛ(𝑠𝑘𝑛𝑝 ,𝑎𝑘𝑝) + 𝒱̅𝜋𝑝𝑛𝑀𝑆ℓ−1 (𝑠𝑘+1,𝑛𝑝 )|𝑄𝑛𝑝) (41) 

The sample policy in scenario 𝑛 is formed when the sample state 𝑠𝑘𝑛𝑝  runs to 𝑠𝒦𝑛𝑝 . Similarly, in each channel, 

we use 𝑇𝐷(𝜆) and 𝑇𝐷(0) methods to approximate the value function. 

𝒱̅𝜋𝑝𝑛𝑀𝑆ℓ (𝑠𝑘+1,𝑛𝑝 ) = {  
  𝒱̅𝜋𝑝𝑛𝑀𝑆ℓ−1(𝑠𝑘𝑛𝑝 ) + 𝛼ℓ−1 ∑|𝐾𝑝|𝓀=𝑘𝜆𝓀−𝑘 (ℛ(𝑠𝓀𝑛𝑝 , 𝑎𝓀𝑛𝑝ℓ ) + 𝒱̅𝜋𝑝𝑛𝑀𝑆ℓ−1(𝑠𝓀+1,𝑛𝑝 ) − 𝒱̅𝜋𝑝𝑛𝑀𝑆ℓ−1(𝑠𝑘𝑛𝑝 )) , 𝑇𝐷(𝜆)𝒱̅𝜋𝑝𝑛𝑀𝑆ℓ−1(𝑠𝑘𝑛𝑝 ) + 𝛼ℓ−1 (ℛ(𝑠𝑘𝑝, 𝑎𝑘𝑛𝑝ℓ ) + 𝒱̅𝜋𝑝𝑛𝑀𝑆ℓ−1(𝑠𝓀+1,𝑛𝑝 ) − 𝒱̅𝜋𝑝𝑛𝑀𝑆ℓ−1(𝑠𝑘𝑛𝑝 )) , 𝑇𝐷(0)                     (42) 

The procedures of the multi-scenario exploration and rolling ADP framework are summarized in Table 4. 

Table 4 The pseudo-code of the multi-scenario exploration and rolling ADP framework 

Algorithm 3: Multi-scenario exploration and rolling ADP framework 

1: Initialize 𝒱̅1(𝑠𝑘𝑝), ∀𝑘 ∈ 𝐾𝑝, ∀𝑝 ∈ 𝑃 
2: Set the iteration counter ℓ = 1, and set the maximum number of iterations ℒ 

3: for 1 ≤ 𝑝 ≤ |𝑃| do 

4:    for 1≤ 𝑛 ≤ |𝑁| do 

5:       for 1 ≤ ℓ ≤ |ℒ| do 
6:          for 1 ≤ 𝑘 ≤ 𝒦 do 

7:         Make the sample decision 𝑎𝑘𝑛𝑝ℓ  using Eq. (41) under the future demand scenario 𝑄𝑛𝑝, and transition the 
state through 𝑆𝑘  

8:         end for 

9:         Calculate the estimate and update the value function approximation using Eq. (42) 
10:      end for 
11:         Solve the optimal policy 𝜋𝑝𝑛𝑀𝑆 in scenario 𝑛 

12:    end for 

13: 
        Identify the optimal policy 𝜋𝑝𝑀𝑆  using Eq. (29) from the candidate policy set {𝜋𝑝1𝑀𝑆 , … , 𝜋𝑝| |𝑀𝑆 }, and 

transition the state variable based on this policy by 𝑆𝑃 

14:    if 𝑠1𝑝+1 ≠ 𝑠𝒦𝑝  (Incomplete execution) then 
15:        Roll the value function of 𝑠1𝑝+1 using Eq. (40) 
16:    end if 

17: end for 

5.2. Stepsizes of ADP 

The setting of stepsizes is vital to ADP. Although the algorithm is theoretically convergent, in practice, 

inappropriate stepsizes can even lead to the failure in the convergence of the approximation of the value function. 

In this study, we use the three stepsize rules proposed by Powell (2007): fixed stepsize, Harmonic stepsize, and 

bias-adjusted Kalman filter (BAKF) stepsize, as listed in Table 5. 
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Table 5 Three stepsizes and their rules 

Stepsize Fixed Harmonic BAKF 

Rule 𝛼ℓ−1 = {1, ℓ = 1𝛼, otherwise 𝛼ℓ−1 = 𝛼𝛼 + ℓ − 1 𝛼ℓ−1 = 1 − (𝜎2)ℓ(1 + 𝜆ℓ−1)(𝜎2)ℓ + (𝛽ℓ)2 
BAKF is a stochastic stepsize rule that can self-adjust based on the difference between the approximate value 

and the actual value. 𝛽ℓ is a deviation estimate on the 𝓋̂ℓ(𝑠𝑘𝑝):  𝛽ℓ = 𝔼[𝓋̂ℓ(𝑠𝑘𝑝)] − 𝓋̂ℓ+1(𝑠𝑘𝑝) (43) (𝜎2)ℓ denotes the variance estimate for 𝓋̂ℓ(𝑠𝑘𝑝):  (𝜎2)ℓ = 𝔼[(𝓋̅ℓ(𝑠𝑘𝑝) − 𝓋̂ℓ(𝑠𝑘𝑝))2] (44) 

5.3. Approximation strategy 

Approximation strategies are generally classified into three categories: lookup table, parametric representation, 

and nonparametric representation (Powell, 2007). Among them, parametric representation is widely used for policy 

function approximation, so we only discuss lookup tables and nonparametric representation typified by a neural 

network (Kool et al., 2018). Since the new batch of requests alters the current environment, in each period, the 
DAR optimization needs an offline simulation to re-find the optimal policy.  In this study, we use the lookup table 

strategy instead of the neural network. There are two primary reasons for this: (a) Short training time. We can find 

the optimal policy within short computational time by the lookup table, while the neural network requires long 

training time such that a quick response service is difficult to achieve; (b) Periodic sparse requests. In practice, 

dynamic requests in each period are often sparse, leading to a small training set. However, since training the neural 

network relies on a huge number of samples, the neural network may have poorer training results compared to the 

lookup table with periodic sparse requests. 

 

6. Computational experiments and application 

6.1. Performance indicators  

To validate the advantages of our model, the following indicators are provided in this paper in addition to the 

total cost defined in the previous section. 

6.1.1. Service level indicators 

(1) Response rate (RR): The ratio of served requests over the entire planning horizon. 𝑅𝑅 = (1− 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ) × 100% (45) 

(2) Lateness rate (LR): The ratio of late-served requests over the entire planning horizon. 𝐿𝑅 = ( 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑡𝑒 𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 − 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠) × 100% (46) 

(3) Average late time (ALT): The total late time can be calculated for all late-served requests. Dividing the 

total late time by the number of served requests yields the average late time. 𝐴𝐿𝑇 = 𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑡𝑒 𝑡𝑖𝑚𝑒𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 − 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 (47) 

6.1.2. Operational efficiency indicators 

(1) Effective average user cost (EAUC): Average cost of serving one request. 
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𝐸𝐴𝑈𝐶 = 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 − 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 (48) 

(2) Effective average passenger mileage (EAPM): Average mileage of serving one request. 𝐸𝐴𝑃𝑀 = 𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 − 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 (49) 

(3) Mileage utilization rate (MUR): The running mileage without passengers is called unloaded mileage. The 

mileage utilization rate reflects the operational efficiency of the policy, which can be calculated as follows: 𝑀𝑈𝑅 = 𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑙𝑒𝑎𝑔𝑒 − 𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑙𝑒𝑎𝑔𝑒 × 100% (50) 

6.2. Numerical test 

6.2.1. Benchmark instances 

The well-known Sioux Falls network is used for validating the effectiveness of the proposed model. As shown 

in Fig. 8, the network has 24 stops and 38 links. There are two depots (green node) located at stop 1 and stop 2. The 

numbers on the links represent the lengths of the road section. Each stop can be used as both pick-up and drop-off 
stops. The vehicle’s travel speed is constant. There are a total of 8 homogeneous vehicles of the same capacity, with 

4 vehicles in each depot. To mimic the real scene, we randomly sample 118 time points from the real-world request 

information (‘Shared Bus’ project in Guangzhou, see Section 6.3) as the request’s submission time during the entire 

planning horizon (7:30-21:00), and choose two stops from the Sioux Falls network as their pick-up and drop-off 

stops to simulate the many-to-many characteristics of DAR service. The results are shown in Appendix A. The 

pick-up time window of each request is set by adding a random time interval to its submission time for not less than 

10 minutes. Each OD demand is generated following a normal distribution with a mean value of 𝜇 = 2.542 and a 

variance of 𝜖2 = 1.1552 according to the historical data (see Section 6.3). As a result, the number of passengers for 
each request is generated based on the distribution. The other default parameters are listed in Table 6, except where 

they are in the sensitivity test. 

 
Fig. 8 Sioux Falls network 

Table 6 Parameter values in the numerical test 

Parameters Values Units 𝑇 20 𝑚𝑖𝑛 
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𝑇̃ 10 𝑚𝑖𝑛 𝓈 30 𝑘𝑚 ∙ ℎ−1 ℒ 1000 - 𝜆 0.9 - 𝜀 2.5 - 𝑐max 15 𝑝𝑎𝑥 ∙ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒−1 𝑡max 240 𝑚𝑖𝑛 ℯ 0.1 𝑚𝑖𝑛 ∙ 𝑝𝑎𝑥−1 𝛽𝑓 50 ¥ ∙ 𝑡𝑟𝑖𝑝−1 𝛽𝑣 1 ¥ ∙ 𝑡𝑟𝑖𝑝−1 𝛽𝑒 1 ¥ ∙ 𝑡𝑟𝑖𝑝−1 𝛽𝑙 2 ¥ ∙ 𝑡𝑟𝑖𝑝−1 

6.2.2. The effect of pruning strategies 

To examine the power of the pruning strategies proposed in Section 4.4 and how they expedite the dynamic 

programming (DP), we plot how the state space grows with the number of nodes before and after adding the 

pruning strategies. Although the numbers of nodes for the DAR problem in each period are different, the problem-

solving is the same, so we compare the state space under different numbers of nodes. 

 

Fig. 9 State space with and without pruning strategies 

Fig. 9 shows the state space of the DP corresponding to the optimal solution with and without pruning 

strategies. The DP requires a large memory. Our preliminary experiment shows that the memory occupancy 

exceeds 32 GB when the number of nodes is 26. Therefore, we set the maximum number of nodes as 24. It can be 

seen that the state space increases exponentially from 5 (the number of nodes is 2) to 1.68 × 108 (the number of 
nodes is 24) without pruning strategies. However, after adding pruning strategies, the state space increases only 

from 5 to 694437, which drops by 99.59% when the number of nodes is 24. This result verifies that the pruning 

strategies can dramatically reduce the state space of DP. Since the state space of the problem is not complex when 

the number of nodes is small, the states satisfying the pruning strategies are sparse. As a result, the effect of pruning 

strategies is not quite outstanding when the number of nodes is small. For example, when the number of nodes is 4, 

the state space only decreases by 27.78% from 18 to 13. As the number of nodes increases, the available space for 

pruning strategies grows quickly. The number of nodes can even reach thousands in actual operation, which implies 
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promising application results of pruning strategies. 

6.2.3. Algorithm tuning 

Unlike the rule of BAKF stepsize that can be adjusted adaptively according to the value function iteration, the 

stepsize in the 𝑇𝐷(𝜆) is a fixed hyperparameter, which needs to be optimized before the commencement of the 

learning process. In this section, we divide the stepsize with the interval of 0.1 and set 50 random seeds for each 

stepsize. 

 

Fig.10 Tuning of the stepsize of 𝑇𝐷(𝜆) algorithm 

Fig. 10 shows the tuning results, where the horizontal axis and vertical axis represent the stepsize values and 

six indicators, respectively. We notice that the performance of the six indicators first improves and then deteriorates 

as 𝛼 increases, which indicates the existence of optimal values. Specifically, the EAUC reaches a minimum value 

of 45.16 when 𝛼 = 0.4 ; the EAPM reaches a minimum value of 19.30 when 𝛼 = 0.4 ; the MUR reaches a 

maximum value of 60.45% when 𝛼 = 0.1; the RR reaches a maximum value of 70.42% when 𝛼 = 0.4; the LR 

reaches a minimum value of 36.27% when 𝛼 = 0.5; and the ALT reaches a minimum value of 2.25 when 𝛼 = 0.3. 

It can be seen that 𝛼 = 0.4 outperforms in terms of EAUC, EAPM, and RR, but performs worse in terms of MUR, 

LR, and ALT. Since serving more requests under fixed fleet size tends to induce a higher time window penalty, a 

large RR can increase the LR and ALT. Since the LR and ALT can decrease under the operation with demand 

prediction (see Section 6.2.5), we emphasize less on the MUR, LR, and ALT in the selection of the optimal stepsize. 

As a result, we choose 𝛼 = 0.4 as the optimal stepsize. 

6.2.4. Algorithm comparisons 

In this section, we compare 6 algorithms, including 𝑇𝐷(𝜆) with three stepsize rules, 𝑇𝐷(0), ADP proposed by 

Çimen and Soysal (2017), and Q-network. We set 50 random seeds for each algorithm with and without pruning 

strategies. For all experiments, the problems are solved on an Inter(R) Core(TM) i9-10900 CPU @ 2.80GHz core 
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processor, 32GB RAM, and the system is Windows 10 system, using Python 3.7. The results are shown in Table 7. 

Table 7 shows the comparative results of different algorithms, along with the number of vehicles employed 

and the average computational time. As we can see, compared to those without pruning strategies, the indicator 
values of the algorithms with pruning strategies improve considerably. As validated in Section 6.2.2, the pruning 

strategies reduce significantly the state space of the DAR problem and the resulting solution time of DP. Since the 

ADP is iterated through the sample decisions and the exploration of ADP is stochastic, the improvements in the 

average computational time of different algorithms vary from 4.79% to 19.25%. Meanwhile, the pruning strategies 

can eliminate the interference of unreasonable decisions and guide the ADP to the decision space with high quality. 

The ALT of each algorithm is smaller than the maximum allowable late time 𝑇̃ = 10  min. The average 

computational time of the first five algorithms 𝑡𝐵 is significantly smaller than 𝑇 = 20 min, which suggests that the 

received requests can be quickly responded to and meet the immediacy requirement of DAR service. However, the 

average computational time of the classical Q-Network algorithm reaches 195.11s. If the vehicle executes the 

decision after computation, the state can be quite different such that the expected results of policy cannot be 
achieved. This indicates that it is reasonable to use the lookup table strategy instead of the neural network strategy 

(see Section 5.3). Among the algorithms with a lookup table strategy, we select 𝑇𝐷(𝜆) with fixed stepsize having 

the best performance for problem-solving. 

Table 7 Comparative results of different algorithms 

Algorithm  

(with pruning strategies) 

Employed 

vehicles 

EAUC 

(¥) 

EAPM 

(km) 

MUR 

(%) 

RR 

(%) 

LR 

(%) 

ALT 

(min) 

Average 𝒕𝑩 (s) 𝑇𝐷(𝜆)-Harmonic 8 48.57 20.32 54.92 64.41 38.47 2.32 12.26 𝑇𝐷(𝜆)-Fixed 8 45.16 19.30 59.49 70.42 37.71 2.32 12.51 𝑇𝐷(𝜆)-BAKF 8 45.41 19.86 56.55 70.34 35.08 2.21 13.22 
Çimen and Soysal (2017) 8 46.20 19.76 59.38 69.49 40.17 2.41 9.56 𝑇𝐷(0) 8 47.98  20.96  53.36  68.64  41.02  2.49  12.20  

Q-Network 8 44.86  19.64  57.58  71.19 38.47  2.19  195.11  

Algorithm 

(without pruning strategies) 

Employed 

vehicles 

EAUC 

(¥) 

EAPM 

(km) 

MUR 

(%) 

RR 

(%) 

LR 

(%) 

ALT 

(min) 
Average 𝒕𝑩 (s) 𝑇𝐷(𝜆)-Harmonic 8 49.69  21.33  54.92  64.41  39.32  2.35  13.62  𝑇𝐷(𝜆)-Fixed 8 46.89  19.75  56.70  67.80  40.25  2.42  13.14  𝑇𝐷(𝜆)-BAKF 8 47.58  21.01  53.78  67.80  35.59  2.23  14.15  

Çimen and Soysal (2017) 8 48.49  21.26  59.38  67.80  41.19 2.45  10.32  𝑇𝐷(0) 8 50.22  23.06  53.36  68.64  42.12  2.54  13.30  
Q-Network 8 45.30  20.04  57.58  71.19  39.32  2.21  241.62  

6.2.5. Comparison between operation with and without demand prediction  

In this section, we compare the overall performance of policies under two different types: operation without 

demand prediction 𝜋 and operation with demand prediction 𝜋𝑀𝑆, both of which adopt 𝑇𝐷(𝜆) with fixed stepsize 

under the optimal stepsize 𝛼 = 0.4. Table 8 shows the optimal schedule for each vehicle, along with the six 

indicators and the number of vehicles employed. The schedule includes the visited stops and the holding time at the 

depot and stops. For example, the schedule of the 2nd trip of vehicle 5 under 𝜋 is ②2(10:08:30)→(20.00 min)→6

→19→7→8→15→1→2, where 2(10:08:30) and (20.00 min) indicate that the departure time from depot 2 is 

10:08:30 and the holding time is 20 minutes, respectively. To ease the representation, only the departure times from 
the depot are provided, and the arrival time at each subsequent stop can be calculated straightforwardly.  

Table 8 Vehicle schedules of 𝜋 and 𝜋𝑀𝑆 
Vehicle ID 𝜋 𝜋𝑀𝑆 

1 
①1(07:20:00)→18→16→5→19→20→1→5→11→10→1 

②1(15:20:00)→1→15→2→8→19→11→19→14→7→
①1(07:24:00)→24→15→16→6→8→5→9→10→3→12→6→19

→(19.90 min)→8→15→13→9→20→1 
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(8.00 min)→12→3→15→1→21→19→1 

③1(20:40:00)→5→3→1 
②1(14:12:18)→10→15→1 

③1(16:40:00)→6→12→(20.00 min)→(1.60 min)→17→1→5→
10→23→(20.00 min)→1 

④1(20:47:30)→5→3→1 

2 

①1(07:40:00)→21→1→15→6→(1.40 min)→6→8→14→
5→10→12→3→19→(20.00 min)→17→15→1 

②1(17:04:00)→24→11→1 

③1(18:08:54)→24→13→24→1→16→10→1 

①1(07:26:00)→13→24→12→2→9→6→18→1→22→7→1→
(20.00 min)→14→8→22→13→3→14→8→12→1 

②1(16:49:00)→(20.00 min)→11→22→13→4→14→17→6→7

→18→7→6→5→10→12→10→9→2→1 

3 

①1(07:40:00)→24→2→16→9→8→18→21→24→22→1 

②1(17:20:00)→1→22→1 

③1(18:20:00)→22→20→1 

④1(19:20:00)→23→1 

⑤1(20:20:00)→23→22→12→3→1 

①1(07:20:00)→8→11→23→24→13→(4.80 min)→1→20→24

→11→19→17→15→7→8→1 

②1(17:04:00)→(4.00 min)→14→11→16→7→6→4→(7.20 min)

→3→15→1→19→14→13→1→ 

4 

①1(07:40:00)→19→6→(5.20 min)→17→9→5→4→6→
18→1→23→11→22→8→1 

②1(19:20:00)→24→23→1 

③1(19:52:36)→5→12→10→9→1 

①1(07:20:00)→18→16→5→16→19→15→20→5→11→10→1 

②1(18:00:00)→24→13→12→21→24→23→1 

③1(20:00:00)→7→19→1 

5 

①2(07:40:00)→8→24→18→2 

②2(10:08:30)→(20.00 min)→6→19→7→8→15→1→2 

③2(15:20:00)→7→14→2 

④2(17:08:00)→11→16→2 

⑤2(18:00:00)→4→14→17→1→2 

⑥2(19:17:24)→5→23→2 

⑦2(20:22:00)→7→6→19→23→2 

①2(07:22:00)→(2.00 min)→10→12→(5.20 min)→3→9→(1.60 
min)→16→8→7→24→2 

②2(16:44:00)→(4.00 min)→24→11→(20.00 min)→4→22→14

→20→6→10→6→23→2 

6 

①2(07:40:00)→22→23→12→3→9→16→7→2 

②2(12:00:00)→7→8→2 

③2(12:48:12)→22→13→2 

④2(15:40:00)→6→3→(4.00 min)→11→22→(7.60 min)

→22→13→2 

⑤2(19:00:00)→7→18→(5.20 min)→7→5→14→13→2 

①2(07:22:00)→(2.00 min)→10→24→19→14→18→23→11→
22→8→(6.00 min)→15→2→8→19→11→19→(20.00 min)→1→
22→2 

②2(18:08:36)→6→3→(7.20 min)→10→9→5→19→(9.20 min)

→22→12→2 

7 
①2(07:40:00)→10→24→2 

②2(18:00:00)→6→4→3→(11.90 min)→2 

③2(20:20:00)→10→2 

①2(07:20:00)→21→1→22→23→16→23→21→24→6→(8.00 

min)→7→14→6→3→2 

②2(17:20:00)→20→15→(1.40 min)→24→16→6→18→2 

③2(21:00:00)→8→19→2 

8 

①2(07:40:00)→10→12→14→17→2 

②2(09:01:42)→2→14→20→11→(2.00 min)→14→8→9

→20→(2.00 min)→14→12→2 

③2(17:00:00)→6→12→3→10→2→22→2 

④2(19:40:00)→6→10→15→2 

①2(07:40:00)→19→6→(9.20 min)→6→5→14→17→2→14→
23→18→1→15→2 

②2(18:00:00)→12→19→17→7→17→2 

③2(20:12:06)→10→15→2 

 Employed vehicles and trips 
EAUC 

(¥) 

EAPM 

(km) 

MUR 

(%) 

RR 

(%) 

LR 

(%) 

ALT 

(min) 𝜋 8 vehicles and 33 trips 43.86 19.49 56.37 73.73 31.69 2.20 𝜋𝑀𝑆 8 vehicles and 21 trips 34.56 19.00 61.44 90.99 1.30 0.20 

Note. The prediction error ratio is set as 𝐴 = 5% (see Section 6.2.6.3) for the 𝜋𝑀𝑆 

The results show that, given the same number of vehicles employed, the total trip length under 𝜋𝑀𝑆  is 

approximately 2-3 times longer than that under 𝜋, such that the number of trips is considerably reduced under 𝜋𝑀𝑆. 

For example, the numbers of trips under 𝜋 and 𝜋𝑀𝑆 are 33 and 21, respectively. In comparison, the number of trips 

under 𝜋𝑀𝑆  decreases by 36.36%. Fewer trips under the same fleet size indicate a more cost-effective policy, 
resulting in higher MUR (5.07% improvement) and RR (17.26% improvement). We also notice that the EAPM 

under 𝜋𝑀𝑆 decreases by 2.51%, but the EAUC decreases by 21.20%. The difference between the two indicators is 

caused by the power of 𝜋𝑀𝑆 in reducing the time penalty cost, which is evidenced by the LR (30.39% reduction) 

and ALT (2.00 minutes reduction). In particular, the LR and ALT are even reduced to 0. 

6.2.6. Sensitivity analysis 

In this section, we conduct sensitivity analysis of key operational parameters of our model to compare the 

overall performance of policies for 𝜋 and 𝜋𝑀𝑆: the period time interval 𝑇, the degree of dynamism 𝛿, the prediction 

error ratio, and the cancellation ratio.  
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6.2.6.1. Impact of the period time interval 𝑇 

Fig. 11 shows the impact of the period time interval 𝑇 on the system performance. As we can see, both 𝜋 and 𝜋𝑀𝑆 are sensitive to the change of 𝑇. There is an inflection point for each indicator under 𝜋, which corresponds to 

its optimal value. However, as 𝑇 increases, the EAUC, EAPM, LR and ALT under 𝜋𝑀𝑆  decrease by 15.71%, 

13.87%, 9.38% and 93.22%, respectively, whereas the MUR and RR increase by 5.46% and 11.00%, respectively. 

There are two primary reasons for the difference in inflection points between 𝜋 and 𝜋𝑀𝑆. First, a larger 𝑇 indicates 
that more requests can be planned simultaneously at the expense of less flexibility in policy adjustment, such that 

there is an inflection point. More specifically, when 𝑇 is smaller than the inflection point, more requests can be 

planned together at each decision epoch, which improves the optimality gradually; when 𝑇 is greater than the 

inflection point, despite the larger number of observed requests, the policy adjustment frequency in response to 

newly received requests is also reduced, which in turn degrades the optimality. Second, under 𝜋𝑀𝑆, since future 

demand is considered, the negative impact of the reduced frequency of policy adjustments can be effectively 

eliminated. Therefore, there is no inflection point in 𝜋𝑀𝑆 . Typically, when 𝑇 equals half of the entire planning 

horizon, the prediction horizon equals the other half of the entire planning horizon, such that the system can 

observe all requests, i.e., the multi-period local optimization can be upgraded to the global optimization that can 

solve the problem to optimality.  

 

Fig. 11 Sensitivity to 𝑇 

6.2.6.2. Impact of the degree of dynamism 

Since our model can handle dynamic requests, it is interesting to investigate how the degree of dynamism 

affects the system performance. In line with Lund et al. (1996), the degree of dynamism is defined as the ratio 

between the number of dynamic requests and the total number of requests, of which dynamic requests are collected 
after the start time of period 1 during operation (see Fig. 1). We randomly select a specific number of requests from 

Appendix A as dynamic requests, while the remaining requests are considered static requests pre-collected before 
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operation. Note that dynamic requests participate in the periodic update of historical data in the prediction model. 

 

Fig. 12 Sensitivity to the degree of dynamism 

Fig. 12 illustrates the impact of 𝛿 on the system performance. A greater degree of dynamism means a larger 
number of dynamic requests that should be processed in an online fashion. As the degree of dynamism grows, the 

performance under 𝜋𝑀𝑆 deteriorates slightly. Going from EAUC to RR (except for LR and ALT), the indicator 

values under 𝜋𝑀𝑆 deteriorate by 3.58%, 4.35%, 3.42%, and 5.00%, respectively. However, the performance under 𝜋 deteriorates even more significantly. Going from EAUC to ALT, the indicator values deteriorate by 22.27%, 

6.89%, 6.55%, 15.55%, 21.16%, and 69.86%, respectively. This is explainable by the fact under 𝜋𝑀𝑆, the impact 

can be mitigated by revealing future information. Moreover, there is a performance gap between the policy under 𝜋 

and 𝜋𝑀𝑆, and the gap increases with a higher degree of dynamism. This is because a larger number of dynamic 

requests that involve rolling updates can improve the prediction accuracy, leveraging the efficacy of 𝜋𝑀𝑆. 

6.2.6.3. Resilience testing on the impact of prediction errors 

While it is shown that the prediction of future demand improves the system performance to a large extent, it is 
not uncommon for the service provider to encounter the issue of prediction reliability. The question remains open 

whether the predictive optimization model can outperform the model without prediction in the presence of 

prediction errors. We assume that predicted demand biases the actual demand uniformly, and the prediction error is 

a random variable following a uniform distribution with an interval length depending on 𝜖. Eq. (51) represents the 

number of passengers for selected OD pairs with prediction errors, which equals the total number of requests 

multiplied by a ratio 𝐴. A larger value of 𝐴 indicates larger prediction errors and larger number of selected OD pairs. 

In the real world, the number of passengers for each request of DAR services is usually less than 4, that is, the error 

between the predicted and actual values will not exceed 4. As 𝐴 increases by 10%, the prediction error increases by 

1.155. Therefore, the error range from 0 to 4 can be converted to the grey area in Fig. 13. In other words, the 
resilience testing covers all possible cases in real-world operations.  
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𝑞̃𝑖𝑗𝑝 = {𝑞𝑖𝑗𝑝 − ∆ if 𝑞𝑖𝑗𝑝 − ∆≥ 0∆ − 𝑞𝑖𝑗𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , ∀𝑝 ∈ 𝑃 ∆~𝑈[−10𝐴𝜖, 10𝐴𝜖] 𝑞𝑖𝑗𝑝~𝑁[𝜇, 𝜖2], ∀𝑝 ∈ 𝑃 (51) 

 

Fig. 13 Sensitivity to prediction errors 

Fig. 13 presents the impact of 𝐴 on the system performance, where the horizontal lines correspond to the 

indicator values under 𝜋 with default parameter settings. To examine the benefit of prediction error correction, the 

results of the prediction-failure-risk-aware policy 𝜋𝑀𝑆  are benchmarked with its simplified version without 

awareness of prediction failure risk 𝜋𝑀𝑆− , i.e., operation with demand prediction but without prediction error 

correction. Results show that degradation of the prediction accuracy undermines the overall performance of 𝜋𝑀𝑆. 

Specifically, as 𝐴 increases from 10% to 100%, the values of EAUC, EAPM, LR, and ALT increase by 11.60%, 

9.19%, 0.92%, and 65.11%, respectively, whereas the value of RR decreases by 7.74%. Despite the imperfect 

prediction accuracy, 𝜋𝑀𝑆 outperforms by far 𝜋. Going from EAUC to ALT, the optimal indicator values (𝐴 = 10%) 

under 𝜋𝑀𝑆 are improved by 25.83%, 6.51%, 5.42%, 25.04%, 29.99%, and 85.85%, respectively, compared to 𝜋. 

Notably, the prediction-failure-risk-aware policy 𝜋𝑀𝑆 outperforms the policy 𝜋𝑀𝑆− without awareness of prediction 

failure risk, and the gaps between them are larger with a higher value of 𝐴. This suggests that the correction 

mechanism is effective in eliminating the negative impact of prediction errors, especially when prediction errors are 

large. In addition, the gap of the EAPM between 𝜋 and 𝜋𝑀𝑆 gradually narrows as 𝐴 increases, while the values of 

EAPM under both operations are nearly identical when 𝐴 = 100% . In this vein, we anticipate that when 𝐴 

increases to a certain threshold, the prediction errors may counteract the look-ahead advantage of demand 

prediction, or even weaken the performance of 𝜋𝑀𝑆. Hence, it is beneficial to improve demand prediction accuracy. 

6.2.6.4. Impact of the cancellation ratio 
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As the provision of cancelled requests is a new feature in our study, the impact of cancellation on the policy 

deserves some discussion. To this end, we define the cancellation ratio as the percentage of all requests that are 

cancelled temporarily by passengers. Since the request is cancelled by the passenger, it is removed from the 

calculation process of the indicators. 

 

Fig. 14 Sensitivity to the cancelled request ratio under different values of 𝐴 

Fig. 14 shows the impact of the cancellation ratio on the system performance under different prediction error 

ratios 𝐴. As the cancelled request ratio increases, the number of requests received by the platform decreases, 

leading to a considerable increase in EAUC and EAPM, since the total cost and total mileage are shared by less 

served requests. For example, when the cancelled request ratio is 0.9, the EAUC under 𝜋𝑀𝑆 increases from 36.14 to 

263.29 (average value for different values of 𝐴), while that under π increases from 46.90 to 303.98. Compared to 𝜋, 

the peak value of EAUC under 𝜋𝑀𝑆 decreases by 13.39%. This suggests that demand prediction can hedge against 

the negative effects of request cancellation, which is also supported by the results of EAPM. As the cancelled 
request ratio increases, the MUR under both operations decreases substantially, while the percentage of detour 

mileage (the ratio between detour mileage and total mileage) increases significantly. This is because cancelling 

requests results in a large number of detour mileage and resulting unloaded mileage. As the cancelled request ratio 

increases from 0.1 to 0.9, the RRs under 𝜋 and 𝜋𝑀𝑆 increase by 12.45% and 8.01% (average value for different 

values of A), which is because cancelling requests releases fleet resources, allowing for serving more requests. 

 

6.3. Case study 

6.3.1. Case description 

In this section, we report on the applicability of our model and algorithm through a real-world bus network, 

i.e., Guangzhou Higher Education Mega Center, and compare the performance of both operations with and without 

demand prediction with that of state-of-the-practice. At present, 68 pick-up stops and 100 drop-off stops have been 

set up in this area for the ‘Shared Bus’ project. Fig. 15 shows the DAR vehicle and the distribution of stops and 

depots in this area. The demand and operation data are provided by a local bus company.  
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(a) DAR vehicle 

  

(b) Distribution of bus stops and depots 

Fig. 15 ‘Shared Bus’ project in Guangzhou Higher Education Mega Center 

6.3.2. Comparisons of prediction model performance 

Based on the historical data, we predict the number of passengers for each OD pair from June 21, 2021, to July 

1, 2021, by using the ‘LSTM+Quantile+Copula’ model proposed in Section 4.3. Fig. 16 shows five prediction 
curves at 5%, 25%, 50%, 75%, and 95% quantile levels, where prediction curves at the 5% and 95% quantile levels 

cover almost the historical data. This indicates the practical significance of the empirical distribution 𝐹(𝑞𝑖𝑗𝑝 ) in Eq. 

(31). We perform random sampling from the quantile coverage area, which can reduce the huge deviation in a 

single prediction curve due to the sparse request data. 

To evaluate the forecasting performance of the proposed prediction models, a few benchmark models are 
adopted, including the ‘LSTM+Quantile+Copula’ model, the ‘LSTM+Quantile’ model, the ‘LSTM’ model, and the 

tensor decomposition model. The principle of the tensor decomposition model is to decompose the sparse tensor by 

estimating the missing part in the matrix, which can well address the issue of sparse data.  

 

Fig. 16 Results of predicted demand for a typical OD pair by using ‘LSTM+Quantile+Copula’ model 

We predict requests in the ‘Shared Bus’ project from August 25, 2021, to August 31, 2021, using the above 

prediction models. The prediction results are provided in Table 9, where the prediction performance ranks as 

follows: ‘LSTM+Quantile+Copula’ model > tensor decomposition model > ‘LSTM+Quantile’ model > ‘LSTM’ 
model. This result demonstrates that the proposed prediction model outperforms the traditional tensor 
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decomposition model. Meanwhile, the Copula function is vital to the prediction model. Although the tensor 

decomposition model outperforms the ‘LSTM+Quantile’ model for each indicator, the ‘LSTM+Quantile’ model 
with the Copula function, in turn, outperforms the tensor decomposition model. This reinforces the message that the 

Copula function can fully capture the spatial characteristics of the sparse demand data and improve prediction 
accuracy. Moreover, the quantile regression mitigates the sparsity effect of the data. As a result, the 

‘LSTM+Quantile’ model outperforms the ‘LSTM’ model. 

Table 9 Prediction performance of four prediction models 

Model MSE RMSE MAE MAPE (%) 

LSTM+Quantile+Copula 0.3871 0.6222 0.1663 5.37 

LSTM+Quantile 1.0036 1.0018 0.4308 14.33 

LSTM 1.2342 1.1110 0.5352 17.91 

Tensor decomposition 0.4742 0.6886 0.1675 6.55 

6.3.3. Results and discussion 

Fig. 17 shows the performance of the state-of-the-practice, the operation without demand prediction 𝜋, and the 

operation with demand prediction 𝜋𝑀𝑆  using four prediction models. Compared to 𝜋, the 𝜋𝑀𝑆  can improve the 

EAUC, EAPM, and MUR. Note that the LR and ALT under both 𝜋 and 𝜋𝑀𝑆 even decrease to 0 and late arrivals are 

eliminated. Interestingly, the RR under 𝜋𝑀𝑆 is approximately 1%-3% lower than that under 𝜋, which is counter-

intuitive at first sight. However, this is reasonable since the request data in actual operation are so sparse that the 
prediction error ratio can be even higher than 100%, even though Fig. 13 shows that the improvement by prediction 

is significant when the prediction error ratio does not exceed 100%. The system performance under four 𝜋𝑀𝑆 

follows generally the prediction performance ranks in Table 9, with only a few exceptions. For example, the tensor 

decomposition model for Aug. 29 performs slightly worse than other models in terms of EAUC. This anomaly is 

possible because the performance fluctuates slightly as the prediction errors increase. 

Next, we compare the 𝜋 and 𝜋𝑀𝑆  to state-of-the-practice with respect to six indicators and fleet size. We 

observe that 𝜋 and 𝜋𝑀𝑆 outperforms by far state-of-the-practice for all indicators. In comparison, the improvement 

by 𝜋𝑀𝑆 (‘LSTM+Quantile+Copula’) over 7 days on average are as follows: the EAUC decreases by 38.85%, the 
EAPM decreases by 19.32%, the MUR increases by 6.38%, the RR increases by 10.69%, the LR decreases by 

14.46%, and the ALT decreases by 1.81 minutes. Commendably, the 𝜋𝑀𝑆 can save fleet size (23% improvement) 

and resulting investment, which reveals better overall delivery efficiency and service quality. 

We also compare DP-based methods with a representative metaheuristic, i.e., genetic algorithm (GA). The 

results show that both 𝜋 and 𝜋𝑀𝑆 outperform GA for all indicators. In comparison, the improvements by 𝜋 over 7 

days on average are as follows: the EAUC decreases by 16.67%, the EAPM decreases by 9.54%, the MUR 

increases by 2.67%, the RR increases by 7.63%, the LR decreases by 10.17%, and the ALT decreases by 1.24 
minutes. These improvements are even more outstanding when demand prediction is considered. 

Compared to the ‘LSTM+Quantile’ model, the improvements by the ‘LSTM+Quantile+Copula’ model over 7 

days are as follows: the EAUC increases by 3.86%, the EAPM decreases by 1.65%, the MUR increases by 0.87%, 

which indicates that considering the effect of spatial demand correlation can improve the service efficiency of 𝜋𝑀𝑆. 

Compared to the ‘LSTM’ model, the overall improvements by the ‘Quantile+LSTM’ model over 7 days are as 

follows: the EAUC decreases by 0.39%, the EAPM decreases by 0.53%, and the MUR increases by 0.37%. Since 

the interval estimation of the quantile regression can overcome the prediction uncertainty of the sparse request data, 
the prediction deviation caused by the default values and the abnormal peaks can be mitigated. Therefore, we can 

replace the point estimation of the ‘LSTM’ model with interval estimation to resolve the challenge of sparse request 

data. 

In conclusion, we suggest that the policy 𝜋𝑀𝑆 with the ‘LSTM+Quantile+Copula’ prediction model has the 
best performance, which achieves a win-win situation for both users and operators.  
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Fig. 17 Results of the case study 

7. Conclusion 

The DAR service is an essential component of the multimodal transit system. Distinct from prior research, we 

investigate a prediction-failure-risk-aware online DAR scheduling problem with stochastic and correlated 

customers. Request selection and cancellation are also explicitly considered. The problem is formulated as a MDP 

model and solved by the ADP algorithm. We propose a demand prediction model that can capture the unique 

characteristics of DAR travel demand (i.e., uncertainty, sparsity, and spatial demand correlation) by 

comprehensively using deep quantile regression, Copula function joint distribution, and scenario sampling 
approach. Commendably, we propose several families of pruning strategies based on model properties to reduce 

unnecessary and incorrect decisions. Furthermore, we introduce a prediction error correction mechanism to 

eliminate prediction errors and rectify policies promptly. In addition, the value function rolling method and multi-

scenario exploration method are proposed within the ADP framework, to tackle the challenges of deviation in 

iteration between adjacent periods and identify the optimal policy from multiple future demand scenarios.  

Our model is validated by the Sioux Falls network and a real-world case study in Guangzhou, China. We 
provide 6 indicators to investigate the performance of the operation with and without demand prediction for various 

operational settings. A list of new insights and their practical implications are drawn, as follows: (1) the pruning 

strategies can improve both solution quality and computation efficiency for ADP; (2) the operation with demand 

prediction can always find high-quality solutions efficiently by serving more requests with fewer fleet sizes and 

delays; (3) the operation with demand prediction performs more robust against the changes of operational settings 

than operation without demand prediction. Since more global information can be observed under operation with 
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demand prediction, superior performance can be maintained in complex and dynamic environments. As such, the 

operation with demand prediction can hedge against the impact of request cancellation; (4) there is a trade-off 

between planning for more requests simultaneously and less flexibility in policy adjustment, whereas an operation 

with demand prediction can mitigate the negative impact of reduced frequency of policy adjustments; (5) 
incorporating demand forecasting and spatial correlation into the DAR operation can increase the system profit and 

improve its operational performance. The improvement due to prediction is significant even when the prediction is 

imperfect. 

For future work, more exogenous factors and solution approaches can be embedded in our modeling 

framework. For instance, while this paper primarily focuses on the dynamic DAR problem with a single-vehicle 

type, it might be interesting to explore the heterogeneous dynamic DAR problem with different vehicle types and 
capacities. In addition, as our proposed ADP is a generation methodological contribution, it is worth investigating 

its application to problems in other fields. 
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Appendix A: Request data in the numerical test 

 

No. Submission time Pick-up time window Pick-up stop Drop-off stop 
The number of 

passengers  
No. Submission time Pick-up time window 

Pick-up 

stop 
Drop-

off stop 
The number 

of passengers 
1 7:15:39 7:50-7:59 19 6 4 60 11:44:12 12:00-12:09 7 8 2 
2 7:17:13 7:40-7:49 18 16 4 61 11:46:08 12:00-12:09 13 9 2 
3 7:22:05 7:50-7:59 10 12 4 62 11:51:03 12:10-12:19 14 8 4 
4 7:22:16 7:40-7:49 24 9 4 63 12:33:17 12:50-12:59 22 13 4 
5 7:23:27 7:40-7:49 8 24 1 64 12:51:55 13:10-13:19 9 20 1 
6 7:26:17 7:40-7:49 21 1 1 65 13:00:55 15:10-15:19 14 12 1 
7 7:30:54 7:50-8:06 15 6 2 66 14:19:10 14:30-14:39 10 15 4 
8 7:31:01 8:30-8:39 12 9 1 67 14:22:50 14:40-14:49 3 8 2 
9 7:31:44 7:50-7:59 2 10 2 68 15:01:59 15:20-15:29 1 15 4 

10 7:31:46 7:50-7:59 24 2 3 69 15:06:18 15:20-15:29 7 14 3 
11 7:32:27 8:00-8:09 22 23 1 70 15:15:08 15:30-15:39 15 2 2 
12 7:35:22 7:50-7:59 10 24 1 71 15:26:20 15:40-15:49 6 3 3 
13 7:36:20 7:50-7:59 13 12 4 72 15:36:33 15:50-15:59 8 19 4 
14 7:41:02 8:00-8:09 20 6 2 73 15:57:13 17:00-17:09 11 22 4 
15 7:45:09 8:00-8:09 11 13 4 74 15:59:39 17:20-17:29 14 7 2 
16 7:46:24 8:10-8:19 5 20 3 75 16:00:22 16:30-16:39 11 19 2 
17 7:47:23 8:30-8:39 17 4 4 76 16:41:12 17:20-17:29 22 13 1 
18 7:49:14 8:20-8:29 3 9 3 77 16:51:06 17:20-17:29 11 16 1 
19 7:49:52 8:00-8:09 2 11 1 78 16:52:58 17:10-17:19 6 12 2 
20 7:50:52 8:40-8:49 16 21 3 79 16:55:39 17:20-17:29 24 11 4 
21 7:50:59 8:10-8:19 13 20 3 80 17:05:45 17:20-17:29 1 22 3 
22 7:52:50 8:40-8:49 19 5 3 81 17:06:40 17:20-17:29 22 13 3 
23 7:54:21 8:30-8:39 24 18 3 82 17:31:31 17:50-17:59 20 15 3 
24 7:58:19 8:10-8:19 13 20 1 83 17:38:40 18:30-18:39 12 21 2 
25 7:58:32 8:20-8:29 23 13 1 84 17:47:23 18:10-18:19 10 2 4 
26 8:00:29 8:20-8:29 16 5 4 85 17:47:41 18:00-18:09 3 22 3 
27 8:01:57 8:30-8:39 6 14 4 86 17:49:14 18:00-18:09 6 4 1 
28 8:02:34 8:30-8:39 16 20 1 87 17:52:21 18:10-18:19 24 13 1 
29 8:04:59 8:30-8:39 2 14 1 88 17:54:10 18:10-18:19 4 14 4 
30 8:05:31 8:30-8:39 5 14 4 89 17:55:03 18:30-18:39 22 20 4 
31 8:07:36 8:30-8:39 8 10 3 90 17:56:35 18:10-18:19 6 3 1 
32 8:10:01 8:30-8:39 17 9 4 91 18:01:21 18:20-18:29 12 19 4 
33 8:10:04 8:30-8:39 16 15 1 92 18:10:19 18:40-18:49 3 15 4 
34 8:12:15 8:30-8:39 3 9 1 93 18:14:04 18:30-18:39 17 1 2 
35 8:16:59 8:40-8:49 14 17 3 94 18:15:08 18:30-18:39 24 16 2 
36 8:23:08 8:40-8:52 5 12 3 95 18:23:53 19:00-19:09 7 17 2 
37 8:23:39 8:40-8:49 5 12 4 96 18:31:01 18:50-18:59 1 10 3 
38 8:32:55 8:50-8:59 5 18 1 97 18:34:47 18:50-18:59 17 7 3 
39 8:34:35 8:50-8:59 2 14 3 98 18:42:47 19:00-19:09 7 18 4 
40 8:45:24 9:10-9:19 16 7 3 99 18:43:16 19:00-19:09 10 9 3 
41 8:46:27 9:00-9:09 19 14 4 100 18:55:35 19:10-19:19 6 18 3 
42 8:50:39 9:10-9:19 1 11 4 101 18:56:22 19:10-19:19 5 23 1 
43 8:51:33 9:10-9:19 23 21 2 102 19:03:41 19:20-19:29 23 1 2 
44 8:52:41 9:10-9:19 8 24 3 103 19:06:34 19:20-19:29 1 19 3 
45 8:54:19 9:20-9:29 6 1 2 104 19:14:56 19:30-19:39 24 23 2 
46 8:56:43 9:20-9:29 20 11 3 105 19:15:02 19:30-19:39 7 5 2 
47 8:58:39 9:30-9:39 3 19 1 106 19:21:35 19:40-19:49 14 13 4 
48 9:05:27 9:20-9:29 23 24 2 107 19:21:36 19:40-19:49 5 19 1 
49 9:11:18 9:30-9:39 24 19 2 108 19:28:50 19:40-19:49 6 10 3 
50 9:12:38 9:30-9:39 18 22 1 109 19:34:15 19:50-19:59 5 12 1 
51 9:15:11 9:30-9:39 23 18 1 110 20:06:42 20:40-20:49 10 2 2 
52 9:25:23 9:40-9:49 24 6 4 111 20:07:38 20:20-20:29 23 3 3 
53 9:32:26 10:10-10:19 6 19 4 112 20:09:53 20:20-20:29 10 15 4 
54 9:37:00 9:50-9:59 11 10 1 113 20:17:41 20:30-20:39 22 12 4 
55 9:59:09 10:10-10:19 23 11 4 114 20:19:00 20:30-20:39 7 19 1 
56 10:05:41 10:50-10:59 22 8 1 115 20:31:26 20:50-20:59 10 9 1 
57 10:37:04 10:50-10:59 17 15 1 116 20:32:54 20:50-20:59 5 3 2 
58 10:39:39 11:00-11:09 7 1 2 117 20:32:58 20:50-20:59 6 23 3 
59 10:52:23 11:10-11:19 8 15 3 118 20:37:18 20:50-20:59 8 19 2 


