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fairness: Heuristics-guided multi-agent reinforcement learning with 
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b. Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, United Kingdom 

 

Abstract: Flexible bus is a class of demand-responsive transit that provides door-to-door service. It is gaining popularity 

now but also encounters many challenges, such as high dynamism, immediacy requirements, and financial sustainability. 

Scientific literature designs flexible bus services only for reservation demand, overlooking the potential market for immediate 

demand that can improve ride pooling and financial sustainability. The increasing availability of historical travel demand data 

provides opportunities for leveraging future demand prediction in optimizing fleet utilization. This study investigates 

prediction failure risk-aware dynamic scheduling flexible bus services (FBS) with hybrid requests allowing for both 

reservation and immediate demand. Equity in request waiting time for immediate demand is emphasized as a key objective. 

We model this problem as a multi-objective Markov decision process to jointly optimize vehicle routing, timetable, holding 

control and passenger assignment. To solve this problem, we develop a novel heuristics-guided multi-agent reinforcement 

learning (MARL) framework entailing three salient features: 1) incorporating the demand forecasting and prediction error 

correction modules into the MARL framework; 2) combining the benefits of MARL, local search algorithm, and imitation 

learning (IL) to improve solution quality; 3) incorporating an improved strategy in action selection with time-related 

information about spatio-temporal relationships between vehicles and passengers to enhance training efficiency. These 

enhancements are general methodological contributions to the artificial intelligence and operations research communities. 

Numerical experiments show that our proposed method is comparable to prevailing benchmark methods both with respect to 

training stability and solution quality. The benefit of demand prediction is significant even when the prediction is imperfect. 

Our model and algorithm are applied to a real-world case study in Guangzhou, China. Managerial insights are also provided. 
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1. Introduction 

Public transportation plays an important role in urban mobility and development. Its operation usually compromises 

between the level of service and economic viability. Although conventional fixed-line bus services are cost-efficient in high-

demand areas, it is not affordable in low-density demand areas. Recently, the advent of information technology has enabled 

demand-responsive mobility services and spawned a new generation of the travel industry, such as Uber, Lyft, and Didi 

Chuxing. Despite being convenient and offering a direct door-to-door service, taxis and ride-hailing have high operation and 

environmental costs. With a larger capacity and ease of sharing rides, flexible bus services bridge the transportation gap, 

providing customized services to passengers at a relatively low price. 

Successful implementation of flexible bus services (FBS) encounters many challenges. In addition to high dynamism 

and immediacy requirements, FBS are facing the barriers of low occupancy numbers and strong dependence on public funding 

(Schasché et al., 2022). Nowadays, FBS is growing in a competitive market with car-hailing as their main rival. FBS usually 

operate under a reservation request mode, where time windows should be specified in advance. Customers today, however, 

have higher expectations, preferring easy-to-use service delivery allowing for issuing riding requests in real-time and getting 

aboard as soon as possible, similar to the immediate demand serviced by taxis and car-hailing. Therefore, it becomes essential 

to raise the user acceptance of FBS and increase ride pooling because it affects their profitability and long-term survival.  

In an attempt to improve the utilization of public transport, integrated passenger-freight transport was recently presented 

as a solution (Cavallaro and Nocera, 2023; Fehn et al., 2023; Donne et al., 2023; He et al., 2023). Inspired by the integrated 

passenger-freight transport research, the hybrid request mode allowing for both reservation and immediate demand is one 

appealing solution for raising user acceptance and improving ride pooling for FBS. Under the hybrid request mode, customers 

can choose either the reservation request pattern or the immediate request pattern. Different to the traditional reservation 

request, the immediate request does not need to specify time windows, similar to taxi-like ad hoc services. Such a hybrid 

request mode can attract more users, which will enable service improvement and initiate a virtuous cycle further attracting 

new users. Realizing the potential benefits of this request option, a few on-demand transit platforms offered immediate request 

options, enabling trip behavior to book ride services in real-time. For example, an emerging shuttle service platform in 

Guangzhou, called Cheying Net, has launched services with hybrid requests by making the running states of en-route buses 

transparent to the users on the App interface. 

Scientific literature focuses on the FBS optimization problem with reservation requests, overlooking the potential hybrid 

request mode that can optimize their utilization. This study envisions an emerging FBS with such hybrid requests. The problem 

jointly optimizes vehicle routing, timetable, holding control, and passenger assignment. Seeking effective solutions for this 

problem is difficult in two ways. First, the service provider wants to optimize both the service level and operation cost. 

However, in this hybrid request mode, the minimum-cost operation can raise the unfairness issue for immediate requests. For 

example, vehicles are more likely to serve the high-demand area under minimum-cost operation, such that the waiting time 

for requests in the low-demand area will be relatively long, leading to passengers’ dissatisfaction and degradation of the level 

of service, among other disappointing consequences. As such, a fundamental question for FBS management with hybrid 

requests is how to make a trade-off between the economic viability of the system and maintaining good service for passengers, 

and the trade-off between different groups of passengers. Second, since the immediate requests are highly stochastic, this 

problem often handles travel demand that reveals over time and requires decision-making considering stochastic future 

requests. The service provider must make a decision for already known demand, and anticipate its impact on the future for 
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which requests are not yet accessible. Therefore, an efficient approach that can maximize long-term rewards and that can 

make dynamic decisions is highly desired for dynamic FBS.  

Traditionally, dynamic FBS optimization problems are usually addressed by the repetitive one-period static model and 

construction insertion heuristics, without leveraging historical demand data. Unfortunately, traditional methods are generally 

sub-optimal because they fail to consider the future dynamics and measures of the whole system. For the dynamic FBS 

services with hybrid requests, it is significant to find high-quality solutions promptly in response to the time-varying 

environment considering stochastic future requests. An emerging technique to address complex sequential decision-making 

problems is reinforcement learning (RL). Despite its outstanding exploration ability and generalizability, there are significant 

drawbacks when applying traditional RL methods to solve our problem: (a) The training process is usually time-consuming; 

(b) Despite the capability of solving large-scale dynamic optimization problems, the solution quality is unstable and still not 

comparable to those of the exact algorithms and the state-of-the-art heuristic algorithms; (c) They do not leverage historical 

demand data for future demand prediction to further improve foresight in the planning scheme. These issues, while secondary 

to the RL community, are central to the operations research and transportation science community that has been widely 

investigating them. Imitation learning (IL) is a supervised learning method for learning skills via observations of an expert 

demonstration, which avoids complicated reward design and large-scale random exploration (Delgado and Oyedele, 2022). 

In the policy evaluation process, the actions are based on the observations, which can not only enhance the training stability 

but also avoid the policy evaluation outside the observations, so that the best policy in the behavioral strategy library can be 

learned. However, the IL is inherently flawed since the actions are taken within the observations, which limits the 

generalizability and is difficult to outperform the original behavioral policy. As such, performance dramatically decreases 

when deployed to unseen environments and is inconsistent against varying conditions. 

Unlike traditional model-driven approaches relying on many heuristic assumptions and equations, we formulate the 

dynamic FBS optimization problem as a Markov decision process in an unknown environment (i.e., model-free). The problem 

is solved by a multi-agent deep reinforcement learning (MARL) approach algorithm that learns and responds to the prevailing 

traffic conditions without requiring an underlying system model. To overcome the drawbacks of traditional RL approaches, 

we propose a novel MARL approach integrating IL and local search heuristics to combine the benefits of each algorithm. The 

local search algorithm for expert demonstration is devised based on the characteristics of the problem. Furthermore, an 

improved strategy to enhance exploration efficiency for agents in the training process is also proposed. Our approach not only 

improves the solution quality by the local search algorithm but also enables RL to learn the better solution samples obtained 

by the local search algorithm with the mechanism of imitation learning, thus essentially improving the performance of RL. 

Commendably, by leveraging the historical travel demand data in future demand prediction, we embed a look-ahead policy 

and prediction error correction mechanism into the newly developed MARL framework for moving beyond FBS into a 

prediction failure risk-aware operation mode. Our model and algorithm are applied to a real-world case study in Guangzhou, 

China. Managerial insights are also provided. 

 

2. Literature review 

In this section, we summarize the literature regarding demand-responsive transit. In particular, we compare with existing 

studies on solution approaches, to further highlight the contributions of this paper. 
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2.1. The demand-responsive transit problem 

The demand-responsive transit (DRT) problems have drawn much research attention in the field of shared mobility and 

public transportation. The first trial of on-demand flexible buses, called dial-a-ride services, was provided to the elderly and 

disabled in the USA in 1970 and was first formulated by Psaraftis in 1980 (Psaraftis, 1980). Later, its application was extended 

to other areas, such as patient transportation (Lim et al., 2017), first-mile feeder services (Ren et al., 2022), and last-mile 

feeder services (Shehadeh et al., 2021). For an overview of research on DRT problems, see Ho et al. (2018) and Vansteenwegen 

et al. (2022). The DRT problem is a variant of vehicle routing problems with pickup and delivery. Compared to ride-hailing 

services, the DRT operates with the following unique features: (a) fixed terminals (depots) are processed; (b) the stopping 

locations are selected from candidate stop locations, and (c) the vehicle trajectory is closed-loop to pull out and pull in the 

vehicle. According to request availability, the DRT problem can be categorized into static and dynamic versions. For the 

dynamic version, the vehicle routes are dynamically modified based on the en-route pop-up passenger requests. According to 

the demand distribution, the DRT service network includes many-to-one (Jiang et al., 2020), one-to-many (Wang, 2019), and 

many-to-many (Daganzo, 1978) patterns. The many-to-one and one-to-many patterns correspond to the feeder service for 

first-mile and last-mile commuters, respectively (Montenegro et al., 2021). In comparison, the many-to-many pattern is more 

generalized in that each node can act as both the pick-up and drop-off point. 

Early studies on DRT feature homogeneous vehicles (Psaraftis, 1980; Desrosiers et al., 1986). Subsequent research has 

extended to considering more realistic and complex factors. To meet diverse travel demands (e.g., patient transportation, and 

wheelchair requirements), some researchers investigated the dial-a-ride problem with heterogeneous vehicles (Detti et al., 

2017; Braekers et al., 2014; Masmoudi et al., 2016). Masson et al. (2014) presented a dial-a-ride problem with transfers. They 

showed that introducing transfer points can save operation costs by up to 8%. Posada et al. (2017) integrated the dial-a-ride 

service with fixed bus routes, where passengers may change vehicles during their journey. To improve the service quality, 

Braekers and Kovacs (2016) presented a multi-period dial-a-ride problem considering driver consistency. Molenbruch et al. 

(2017) introduced horizontal cooperation in the dial-a-ride service, in which passenger requests can be exchanged between 

providers to jointly plan vehicle routes. Tong et al. (2017) designed customized bus services considering passenger-to-vehicle 

assignment and vehicle routing. Lyu et al. (2019) proposed a solution framework for DRT service network design associated 

with bus stop locations, routing, and timetabling. Recently, Wu et al. (2024) investigated a dynamic dial-a-ride problem 

considering spatial demand correlation and request canceellation via approximate dynamic programming and scenario 

approach. 

In terms of demand patterns, one category of research designed flexible bus services using parsimonious continuous 

models, assuming uniformly distributed demand across space (Daganzo, 1978; Diana et al, 2006; Quadrifoglio and Li, 2009; 

Kim and Schonfeld, 2014, 2015; Chen and Nie 2017a, b; Zhang et al, 2017). There are also a handful of works focusing on 

designing flexible bus services under stochastic demand. For instance, Lee et al. (2021) optimized zonal-based flexible bus 

services considering stochastic demand. The problem is formulated as a two-stage stochastic programming model with 

recourse. Later, Lee et al. (2022) extended their work to consider time-dependent travel time and dynamic demand. 

2.2. Solution approach 

Common approaches for DRT problems can be classified into exact algorithms (Braekers and Kovacs, 2016; 

Schenekemberg et al., 2022) and heuristic algorithms (Masmoudi et al., 2016, 2017; Montenegro et al., 2021; Ren et al., 2022). 

Although the problem can be solved to its global optimal solution by exact algorithms (e.g., branch-and-cut, branch-and-
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price), the computation burden is very large such that they do not scale well for large systems and real-time decision-making. 

As such, exact algorithms can be only applied to the static DRT problem. Heuristic algorithms can generally provide feasible 

solutions within an acceptable time (Braekers et al., 2014; Wu et al., 2021; Wu and Li, 2024). However, such model-based 

algorithms rely heavily on problem characteristics and prior knowledge, which are easily affected by parameter estimation, 

modelling error, and problem size, and have low adaptability to random dynamic complex environments.  

Reinforcement learning (RL) has been applied in logistics and transportation services for various contexts, such as taxi 

dispatching (Lin et al., 2018; Mao et al., 2020; Liu et al., 2022), bike-sharing repositioning (Li et al., 2018), and train control 

(Wang et al., 2023). Yan et al. (2022) reported that RL applications excel in solving combinatorial optimization problems with 

high performance compared to exact algorithms or heuristic algorithms, including the traveler salesman problem (Bello et al., 

2016; Nazari et al., 2018; Kool et al., 2019; Drori et al, 2020) and vehicle routing problem (Chen and Tian, 2019; Kalakanti 

et al., 2019). Some studies (Joe and Lau, 2020; Zhang et al., 2023) addressed the methods for solving routing problems of 

dynamic scenarios. Recently, there has been an interest in using RL approaches to solve dial-a-ride problems associated with 

ridesharing issues. Oda and Joe-Wong (2018) proposed a DQN-based framework to learn the optimal zone for idle vehicles, 

and Singh et al. (2019) extended this approach to accommodate multiple riders in a ridesharing vehicle. However, these studies 

used a decentralized training process, where each vehicle independently learns its own DQN problem without communication 

with other vehicles, reducing the reliability and stability of the training process. Zhou et al. (2022) developed a multi-agent 

reinforcement learning (MARL) framework with centralized training and decentralized execution (CTDE) to solve the 

dynamic electric vehicle dispatching problem. However, these studies only use standard RL approaches to address the targeted 

problems, which still face challenges related to the drawbacks of RL, such as slow convergence. To address this issue, Zhao 

et al. (2020) proposed a hybrid framework for solving the vehicle routing problem, which improves the initial solution 

obtained by the RL approach through a local search method. Additionally, Ahamed et al. (2021) proposed a centralized 

approach that combines heuristic rules to solve the medium-scale and large-scale crowdsourced urban delivery problem. 

Despite the improvements in algorithm performance seen in these studies, they have not fundamentally enhanced the learning 

policy of RL structures with valuable heuristic experiences or addressed the drawbacks of standard RL approaches. 

2.3. Objectives and contributions 

A few gaps are identified from the literature. First, existing studies only address reservation requests specifying time 

windows, overlooking the potential hybrid request mode that can optimize their utilization. Second, traditional research 

predominantly focuses on assigning vehicles only to currently known requests without leveraging the historical demand data. 

The historical travel demand data from the day-to-day operation can be used to predict future demand and dispatch vehicles 

preemptively, which contributes to improving service quality and system efficiency. Third, although substantial research effort 

has been made to dynamic FBS optimization problems, existing research usually relies on the repetitive one-period static 

model and construction insertion heuristics, which are sub-optimal since they fail to consider the future dynamics and 

measures of the whole system.  

In this study, we set out to investigate prediction failure risk-aware dynamic scheduling flexible bus services with hybrid 

requests and fairness considerations, using a novel multi-agent deep reinforcement learning framework integrating with 

imitation learning and heuristics. Overall, our study makes contributions to the problem as well as the general methodology 

of the RL: 
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First, we investigate dynamic scheduling flexible bus services with hybrid requests that can potentially increase ride 

pooling and resulting profitability, a topic with limited research attention. Our problem jointly optimizes vehicle routing, 

timetable, holding control, and passenger assignment, which is a new generalization to the DRT problem where hybrid 

requests, multiple visits, and future predicted demand are explicitly considered. 

Second, we devise a novel representation of system states and actions to characterize this stochastic dynamic problem. 

Our work goes beyond the simple adoption of the MARL in the existing literature, by making three methodological 

contributions as follows: 

 In terms of improving the foresight of planning, we enhance the RL framework by embedding the module of demand 

forecasting to leverage historic demand data and account for anticipated future demand. We achieve this by 

designing a rolling optimization framework incorporating demand prediction method and prediction failure risk-

aware decision-making mechanism for prediction errors. 

 In terms of improving exploration, we not only propose a pruning strategy to reduce action space to a feasible 

compact space, but also develop a novel representation of the state of each agent with time-related information 

indicating how emergent for a specific bus to serve a request. Such representation highlights the spatio-temporal 

relationship in the vehicle-passenger matching process and further allows for an improved strategy to help buses 

heuristically search out valuable experiences as soon as possible. 

 In terms of improving training, we integrate our proposed MARL framework with Variable Neighborhood Descent 

algorithm (VND) and imitation learning (IL). Three customized operators are designed in the VND algorithm, where 

the novel concept of ‘entropy’ is applied to guide the applications of the three operators to improve solution quality. 

This method can leverage the information provided by VND to infer more valuable and representative decisions.  

Third, we conduct extensive numerical experiments and real-world applications to verify our model and solution 

approach and derive significant managerial insights.  

The rest of this paper is organized as follows. In Section 3, we describe the benefits and challenges of operation with 

demand prediction. In Section 4 the model is presented, followed by the integrated RL method in Section 5. In Section 6 

computational experiments and a real-world application are conducted and managerial insights are provided. At last, the 

concluding remarks are provided.  

 

3. Benefits and challenges of operation with demand prediction 

Scientific literature predominantly focuses on scheduling FBS with currently known requests, overlooking the 

importance of future requests that can optimize their utilization. For example, we consider a vehicle and two requests, request 

1 and request 2. Request 1’s presence is known but far from the vehicle. Request 2 is located between the vehicle and request 

1, but is unknown at this time. Without demand prediction, the platform would reject request 1 due to high costs. Conversely, 

if the presence of request 2 can be anticipated, it turns out that a more profitable plan can be expected that serves request 2 

first and request 1 later. The example shows that integrating demand prediction into the schedule is essential to make 

informative decisions. 

However, this is a particularly difficult task since any prediction model is difficult to provide a perfect prediction. In 

practice, prediction errors can exist in the future demand due to its stochastic attributes. The outputs of the prediction models 
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(e.g., machine learning models) can also be variable due to unavoidable learning errors. The presence of prediction errors 

could undermine the quality of the planned scheme. For instance, the waste of capacity might arise because any request does 

not occur as predicted. It may cause a failed planning scheme due to an unsuccessful match between the predicted requests 

and buses. Therefore, to warrant the benefits of demand prediction, it is imperative to develop a prediction error correction 

mechanism to eliminate prediction errors and rectify the policies promptly. 

 

4. Problem formulation 

4.1. Problem description, assumptions, and notations 

The FBS service area is modelled as a directed network 𝒢(𝒮,𝒜). 𝒮 = 𝐼 ∪ 𝐽 denotes the set of nodes, where 𝐼 = {𝑖|𝑖 =1,2, ⋯ , |𝐼|} and 𝐽 = {𝑗|𝑗 = |𝐼| + 1, |𝐼| + 2,⋯ , |𝐼| + |𝐽|} denote the set of physical bus stops and depots, respectively. Each 

node denotes a physical stop where vehicles pick up/drop off passengers. The links of the network represent the road segments 

between stops. 𝐾 = {𝑘|𝑘 = 1,2, … , |𝐾|} denotes the set of vehicles. 𝒜 denotes the set of arcs between nodes in 𝒮.  

In terms of requests, both reservation and immediate requests include the information about the desired pick-up stop 𝑖𝑛𝑝 ∈ 𝐼, drop-off stop 𝑖𝑛𝑑 ∈ 𝐼, the number of passengers 𝑞𝑛 and desired departure time windows [𝑡𝑛𝑒 , 𝑡𝑛𝑙 ]. By dividing operation 

duration into multiple periods, the service provider pre-collects reservation requests and allocates them into corresponding 

periods before operation. In this study, the reservation requests are collected one day in advance (before operation). During 

operation, with the joining of newly immediate requests, the service provider needs to dynamically accommodate them into 

the planning of the latest period. The immediate requests can be rejected to avoid over-allocation of fleet resources to ensure 

the economic viability of the FBS operation and excessive waiting time for passengers as a quitting mechanism. 

The service provider wants to optimize both the level of service and operation cost. However, the objectives of the service 

level and operation cost may be competing, in that, a lower operation cost can result in more time window deviation and even 

request rejection. Moreover, due to the spatio-temporal randomness of immediate requests, the passenger waiting time for 

certain immediate requests can vary largely, raising the issue of unfairness. To this end, we investigate the prediction failure 

risk-aware dynamic scheduling flexible bus services with hybrid requests and fairness considerations, leveraging historical 

requests in future demand prediction. Since the holding actions can increase the flexibility of planning routes, vehicle holding 

is allowed at both depots and immediate bus stops. The problem jointly optimizes vehicle routing, timetable, holding control 

and the selection of immediate demand. The dual objectives are (a) minimizing total system cost, and (b) optimizing waiting 

time fairness for immediate requests. 

To facilitate model development, the following assumptions are made.  

(1) Multi-period optimization is applied to plan the flexible bus operations throughout the time horizon. However, we do 

not limit each bus to return to any depot at the end of each period except the last period.  

(2) In each period, the buses depart from and return to the depots. This is done primarily for crew scheduling where the 

continuous work duration should be limited to avoid potential fatigue and traffic safety issues. 

(3) Each stop can be visited by multiple vehicles multiple times in each period. 

(4) All vehicles are homogeneous with the same capacity. 

(5) The service provider is allowed to reject immediate requests. 

Table 1 provides the notations and definitions primarily used in the model. 
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Table 1 Notations primarily used in the model and algorithm 

Symbols Definitions 

Sets and indices 𝐼 Set of stops, 𝐼 = {𝑖|𝑖 = 1,2,⋯ , |𝐼|}. 𝐽 Set of depots, 𝐽 = {𝑗|𝑗 = |𝐼| + 1, |𝐼| + 2,⋯ , |𝐼| + |𝐽|}. 𝐾 Set of buses, 𝐾 = {𝑘|𝑘 = 1,2,⋯ , |𝐾|}, where 𝑘 denotes the index of a bus. 𝐺 Set of periods, 𝐺 = {𝑔|𝑔 = 1,2,⋯ , |𝐺|}, where 𝑔 denotes the index of a period. 𝑁𝑔 

Set of riding requests in period 𝑔, which represents the set of reservation requests 𝑁𝑔̇ and the set of 

immediate requests 𝑁𝑔̈, i.e., 𝑁𝑔 = 𝑁𝑔̇ ∪𝑁𝑔̈. 𝑁𝑔 = {𝑛|𝑛 = 1,2,⋯ , |𝑁𝑔|}, where 𝑛 denotes the index of a 

request. 𝑁𝑔 Set of predicted requests in period 𝑔.  𝑇 Set of time intervals, 𝑇 = {𝑡|𝑡 = 1,2,⋯ , |𝑇|}. 𝜏 Index of training step. 

FBS model with demand prediction 𝓇𝑔,𝑘 Planned route of bus 𝑘 of period 𝑔. 𝐶𝑔𝑓 Operation cost of period 𝑔. 𝐶𝑔𝑢 User cost of period 𝑔, including both the time windows penalty and rejection penalty cost. 𝜁𝑔 Fairness indicator of immediate requests waiting time of period 𝑔. 𝑖𝑛𝑝 Pick-up stop of request 𝑛. 𝑖𝑛𝑑  Drop-off stop of request 𝑛. 𝐷𝐼𝑆(∙,∙) Distance from one node to another. 𝑡𝑛𝑒 Earliest departure time for reservation request or the submission time for immediate request 𝑛 ∈ 𝑁𝑔. 𝑡𝑛𝑙  Latest departure time for request 𝑛 ∈ 𝑁𝑔 , ∀𝑔 ∈ 𝐺. 𝑊𝑛 Waiting time for request 𝑛 ∈ 𝑁𝑔, ∀𝑔 ∈ 𝐺. 𝑡𝑛𝑝 Pick-up time of request 𝑛. 𝑡𝑛𝑑 Drop-off time when request 𝑛 was delivered. 𝑡𝑛𝑏 Rejection time for immediate request 𝑛 ∈ 𝑁𝑔̈ , ∀𝑔 ∈ 𝐺. 𝑞𝑛 The number of passengers for request 𝑛. 𝑞̃𝑛 Predicted number of passengers for request 𝑛. 𝑦𝑛𝑏 
Binary variable to determine whether request 𝑛 is rejected, 𝑦𝑛𝑏 = 1 represents request 𝑛 is rejected; 

otherwise 𝑦𝑛𝑏 = 0 represents request 𝑛 is accepted. 𝑖𝑔,𝑡,𝑘 Location of bus 𝑘 at time interval 𝑡 of period 𝑔. 𝑧𝑔,𝑡,𝑘 The number of onboard passengers of bus 𝑘 at time interval 𝑡 of period 𝑔. 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙  Arrival timestamp of bus 𝑘 after it finishes the decision made at interval 𝑡 of period 𝑔.    𝑁𝛼(𝑖𝑔,𝑡,𝑘) Set of on-board requests when bus 𝑘 arrives at location 𝑖𝑔,𝑡,𝑘 at time interval 𝑡 of period 𝑔. 𝑍 Vehicle capacity. 𝐻 Period length. 𝛼 
Tardiness coefficient, representing the ratio between the planned in-vehicle travel time and direct (shortest 

path) travel time is not greater than 𝛼. 𝛽 Scaled coefficient for fairness rewards to cost rewards. 𝛿𝑏 Unit rejection penalty cost. 𝛿𝑙 Unit late arrival penalty cost. 𝛿ℋ Unit holding time penalty cost. 𝛿𝑓 Unit mileage cost. 𝜌 The weight of the objective. 𝑣𝑒𝑙 Average running speed. 

Integrating RL and local search framework 𝑆𝑔,𝑡  State at time interval 𝑡 of period 𝑔, including the vehicle state of each bus 𝑆𝑔,𝑡,𝑘𝐾 , ∀𝑘 ∈ 𝐾 and the request 

state 𝑆𝑔,𝑡,𝑛𝑁 , ∀𝑛 ∈ 𝑁. 𝑜𝑔,𝑡,𝑘  Local state of bus 𝑘 at time interval 𝑡 of period 𝑔. 𝜉𝑔,𝑡,𝑛𝑝
/𝜉𝑔,𝑡,𝑛𝑑

 
Time-related information of request 𝑛 at time interval 𝑡 of period 𝑔, indicating the urgency that picking 

up/delivering 𝑛, which is independent for each bus 𝑘 ∈ 𝐾.  𝑎𝑔,𝑡,𝑘 
Action of bus 𝑘 at time interval 𝑡 of period 𝑔, including movement action 𝑎𝑔,𝑡,𝑘ℳ ∈ {𝑖𝑛𝑝 , 𝑖𝑛𝑑 , 𝑗} and holding 

time action 𝑎𝑔,𝑡,𝑘ℋ ∈ ℝ. 𝐴̂𝑔,𝑡,𝑘 Valid action space of bus 𝑘 at time interval 𝑡 of period 𝑔. 
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𝑅𝑔,𝑡 Reward at time interval 𝑡 of period 𝑔, including cost reward and fairness reward. 𝜋𝜃𝑔 Policy of period 𝑔, which is characterized by a neural network with parameter of 𝜃𝑔. 𝑄𝑡𝑜𝑡/𝑄𝑘 Joint/decomposed (of bus 𝑘) Q function network.  𝛤 Exploration function to obtain action under the improved ϵ-greedy strategy. ℓ The service loop by separating a complete route in the local search framework. 𝜇1, 𝜇2, 𝜇3 Entropy metrics indicating the potential to improve solution quality in local search framework. ∆(𝓇)/∆(ℓ)/∆(𝑛)  Duration of the route 𝓇/ loop ℓ/request 𝑛.  𝒩𝓃(∙) Neighborhood of a solution when 𝓃 opt is applied in local search framework. 𝑒𝑅𝐿/𝑒𝐿𝑆 Experience tuple of RL/Local search algorithm. 

L Loss function including TD-error loss 𝐿𝑇𝐷 and imitation learning loss 𝐿𝐼𝐿. 𝜍 Margin function to avoid zero-value in IL. 𝛾 Discount factor on future rewards. 𝜖1, 𝜖2 Initial exploration rates used in improved ϵ-greedy strategy. 𝜏max𝜖1 , 𝜏max𝜖2  Maximum decay steps for 𝜖1 and 𝜖2 used in the exploration rate decay mechanism. 𝜏max𝑅𝐿 /𝜏max𝐿𝑆  Maximum steps/iterations of RL/Local search algorithm. 𝜔𝑅𝐿/𝜔𝐼𝐿 Batch size of RL/IL algorithm. 

 

4.2. Preliminaries 
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Fig. 1 Rolling horizon planning framework 

The whole planning framework is illustrated in Fig. 1. Specifically, to handle the high dynamism of the problem, as 

shown in Fig. 1(a), a rolling horizon method is employed to transform the problem into a series of interdependent sub-

problems. The whole planning horizon is divided into |𝐺| periods with a length of 𝐻. The set of requests corresponding to 
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each period 𝑔  is 𝑁𝑔  , including 𝑁̇𝑔  (the set of reservation requests collected before the time horizon) and 𝑁̈𝑔   (the set of 

immediate requests submitted during the planning horizon and incorporated into the planning stage of period 𝑔). Note that, 

under the operation with demand prediction, the immediate requests of 𝑁̈𝑔  are predicted to be submitted within period 𝑔, 

while under the operation without demand prediction, they are submitted before period 𝑔 but incorporated into 𝑁̈𝑔  at the 

planning stage of period 𝑔. Then, to construct the MDP model, each period 𝑔 ∈ 𝐺 is divided into |𝑇| time intervals. Each 

agent in MDP makes the decision only at the beginning of each time interval. Therefore, the maximum number of decisions 

for each vehicle in one period is |𝑇|. We set the duration of the optimization execution stage as buffer time (𝐵𝑇), during which 

the system plans for the next period. In addition, to tackle the possible issues that may arise in the dynamic scheduling process, 

we also propose the rejection mechanism for immediate requests (Fig. 1(b)) and correction mechanism for prediction errors 

(Fig.1(c)), which will be described as follows. 

4.2.2. Rejection mechanism for immediate requests 

Period

Reservation requests 

Immediate requests 

Passenger demand

Reservation requests 

Immediate requests 

Vehicle capacity: 10

Full!

Full!

Execution route Removed route Rejected route

Reservation requests 

Immediate requests 

 

Fig. 2 Illustration of request insertion and rejection 

Fig. 1(b) presents the rejection mechanism for immediate requests. Within the context of the rolling planning approach 

that incorporates the insertion of new immediate requests, the process of rejecting requests can become complex. Fig. 2 

provides a toy example of the request insertion and rejection operations in our approach. In period 𝑔, a bus with a capacity of 

10 seats is scheduled to serve two reservation requests (requests 1 and 2) in the order by the planned route. Moving into period 𝑔 + 1 , with the joining of two immediate requests (requests 3 and 4), the system needs to adjust the original route to 

accommodate these new requests. However, due to capacity constraints, the bus can only accommodate request 3 in this 

period, leaving request 4 pending, despite the geographical proximity of their pick-up locations. In period 𝑔 + 2, the service 

provider has two options: 1) integrating request 4 in the current period, incurring additional waiting time for request 4 and 

extra costs for the bus to detour; or 2) rejecting request 4, thereby incurring a rejection penalty cost. While both options 

compromise the solution quality relative to the initial route for  𝑔 + 1, it is rational for the service provider to opt for the 

alternative with the lower additional cost (including possible late arrival penalty for in-planned reservation requests, since 
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they cannot be rejected). In this scenario, rejecting request 4 is deemed more advantageous. Thus, the system opts to reject 

request 4, accepting the penalty for rejection. Upon rejection, the rejected time 𝑡4𝑏  for request 4 is set to (𝑔 + 1) ∙ 𝐻, i.e., the 

beginning of 𝑔 + 2, and the binary variable 𝑦𝑛𝑏 is set to 1, which means the request 4 has been marked as rejected. 

In summary, there are two main advantages to introducing a rejection mechanism for immediate requests: 1) for 

passengers, it includes a quitting mechanism to avoid excessively long waiting times for immediate requests, and 2) for the 

service provider, it enables the potential to improve solution quality, albeit at a cost, by avoiding detours that deviate 

significantly from the original route. 

4.2.3. Correction mechanism for prediction errors 

As shown in Fig. 1(c), the correction of prediction errors takes place once any request is submitted not as predicted. 

Whether the predicted immediate request 𝑛 is submitted as predicted could not be verified until its predicted submission time. 

Therefore, if bus 𝑘 is planned to pick up request 𝑛 but arrives at its pick-up stop 𝑖𝑛𝑝 before its submission time 𝑡𝑛𝑒, then bus 𝑘 

will hold at 𝑖𝑛𝑝 till 𝑡𝑛𝑒, and verify whether request 𝑛 is submitted at 𝑡𝑛𝑒. If request 𝑛 is submitted as predicted, then the pick-up 

time of request 𝑛, 𝑡𝑛𝑝  equals to 𝑡𝑛𝑒; otherwise, the prediction errors about request 𝑛 occur and the correction is required.  

In general, there are three types of prediction errors of request 𝑛 , which are: 1) incorrect number of passengers, 2) 

incorrect submission time, and 3) incorrect stops. The condition triggering correction is whether the constraints are violated, 

which can be derived from planned routes of the existing scheme and updated information of request 𝑛. Once the constraints 

are not met due to the prediction errors, the corresponding correction is required to ensure the effectiveness of the planned 

scheme. Suppose the predicted number of passengers of request 𝑛 is 𝑞̃𝑛, its actual number of passengers is 𝑞𝑛, and it is planned 

to be assigned to bus 𝑘 . When 𝑞̃𝑛 ≠ 𝑞𝑛 , it is required to identify whether the capacity of bus 𝑘  still meets the capacity 

constraint (Section 4.5.1), not only when picking up request 𝑛 but also within the following route of the planned scheme. If 

the capacity of bus 𝑘 in the updated route still meets the capacity constraint, the service provider could execute the existing 

scheme; otherwise, bus 𝑘  could not serve request 𝑛  as expected, which means the existing scheme failed and the 

corresponding correction is necessary to ensure an effective schedule. The correction begins with searching out whether any 

buses in operation can serve request 𝑛, which involves a special operation (specified in Appendix B). If there is not any bus 

that could serve request 𝑛, it will be incorporated into the requests set for the next period.  

4.2.4. Over-period compensation 

1 2

3 4 5 62

Period 1

Period 2

Service stop
Route duration 
within period

Over-period timePlanned route 
of period  

Fig. 3 Illustration of over-period compensation 

The rolling horizon framework, however, introduces another issue in that the duration of some planned routes might be 

beyond the length of the period, which we call ‘over-period’. To address this issue, we propose a mechanism of over-period 

compensation. For each bus 𝑘 ∈ 𝐾, in each period we initialize a variable 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙  to denote the timestamp when bus 𝑘 finishes 

the current decision at time interval 𝑡, so when the period 𝑔 ends (i.e., 𝑡 = |𝑇|), 𝑡𝑔,|𝑇|,𝑘𝑎𝑟𝑙  is its route duration. If 𝑡𝑔,|𝑇|,𝑘𝑎𝑟𝑙 > 𝑔 ∙ 𝐻, 
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then the duration of 𝓇𝑔,𝑘 is over-period. In this case, we update the information about when bus 𝑘 could be employed in the 

next period 𝑔 + 1 , i.e., add 𝑡𝑔,|𝑇|,𝑘𝑎𝑟𝑙   to the initialization of the next period. Fig. 3 illustrates the process of over-period 

compensation: the route of bus 𝑘 in period 1 ends before 𝐻 (𝑡1,|𝑇|,𝑘𝑎𝑟𝑙 < 𝐻), so period 1 is not over-period. However, since the 

route duration in period 2 exceeds 2𝐻  (i.e., 𝑡2,|𝑇|,𝑘𝑎𝑟𝑙 > 2𝐻 ), the over-period time 𝑡2,|𝑇|,𝑘𝑎𝑟𝑙 − 2𝐻  needs to be added to the 

beginning of period 3 for bus 𝑘. The specifics of over-period compensation will be described in Section 5.3.2.  

4.3. Cost formulation 

4.3.1. The operation cost 

The operation cost is associated with the running mileage and holding time of buses, which can be calculated as follows: 

 𝐶𝑔𝑓 =∑∑[𝛿𝑓 ∙ 𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑔,𝑡+1,𝑘) + 𝛿ℋ ∙ 𝑎𝑔,𝑡,𝑘ℋ ]|𝑇|
𝑡=1

|𝐾|
𝑘=1   (1) 

where 𝑎𝑔,𝑡,𝑘ℋ  means the holding time of bus 𝑘 at time interval 𝑡 of period 𝑔. 

4.3.2. The user cost 

The user cost consists of the late arrival as time windows penalty cost and rejection penalty cost. If the vehicle arrives 

later than the latest departure times, the penalty cost is proportional to the length of the deviation time. In addition, since the 

service provider is allowed to actively reject immediate requests, extra penalty costs will occur for each rejected request. 

Therefore, the user cost can be calculated as follows: 

 𝐶𝑔𝑢 = (1 − 𝑦𝑛𝑏) ∙ 𝛿 𝑙 ∑ 𝑞𝑛 ∙ max{𝑡𝑛𝑝 − 𝑡𝑛𝑙 , 0}𝑛∈𝑁𝑔 + 𝑦𝑛𝑏 ∙ 𝛿𝑏 ∑ 𝑞𝑛𝑛∈𝑁̈𝑔  (2) 

where 𝑦𝑛𝑏 = 0 represents request 𝑛 is accepted; otherwise, request 𝑛 is rejected to be served. 

4.4. Objectives 
4.4.1. First objective: minimizing the system cost 

The first optimization objective of our model is to minimize the total system cost of each period. 

 min(𝐶𝑔𝑓 + 𝐶𝑔𝑢) , ∀𝑔 ∈ 𝐺 (3) 

4.4.2. Second objective: optimizing the fairness of request waiting time 

Mitigating the unfairness of waiting time for immediate requests is essential for FBS with hybrid requests. Concerning 

the request rejection mechanism, for the rejected immediate request 𝑛 ∈ 𝑁̈𝑔  with 𝑦𝑛𝑏 = 1 , if any, its rejected time is the 

beginning of the period 𝑔, i.e., 𝑡𝑛𝑏 = (𝑔 − 1) ∙ 𝐻. Under operation without demand prediction, request 𝑛 was submitted before 

period 𝑔 and incorporated into the planning of period 𝑔, i.e., 𝑡𝑛𝑒 < 𝑡𝑛𝑏 . In this case, the waiting time for request 𝑛 is 𝑡𝑛𝑏 − 𝑡𝑛𝑒 . 

However, under the operation with demand prediction, request 𝑛 is predicted to be submitted within period 𝑔, i.e., 𝑡𝑛𝑒 > 𝑡𝑛𝑏 =(𝑔 − 1) ∙ 𝐻, which means in actual operation it will be rejected right after its submission, so its corresponding waiting time 

is 0. Thus, the waiting time of 𝑊𝑛 is calculated as follows:  
 𝑊𝑛 = {𝑡𝑛𝑝 − 𝑡𝑛𝑒 , 𝑦𝑛𝑏 = 0max{(𝑡𝑛𝑏 − 𝑡𝑛𝑒), 0},   𝑦𝑛𝑏 = 1 (4) 

When the fairness of request waiting time is not considered, it is likely to induce long waiting times for some requests 

but short waiting times for others due to the service provider’s pursuit of lower costs, which can in turn result in passenger 

dissatisfaction. From the perspective of the users, the waiting time for each request is expected to be as equal as possible to 

avoid unfairness. Essentially, a greater variance in waiting time indicates worse fairness for immediate requests. Therefore, 
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we introduce a fairness indicator 𝜁𝑔 = ∑ |𝑊𝑛 −𝑊𝑔̅̅ ̅̅ |𝑛∈𝑁𝑔 |𝑁𝑔|⁄  to measure the degree of fairness in the waiting time for all 

requests. A lower value of 𝜁𝑔  implies a better degree of fairness of period 𝑔 . As a result, the second objective function 

considering the fairness indicator is formulated as follows: 

 min 𝜁𝑔 = ∑ |𝑊𝑛 −𝑊𝑔̅̅ ̅̅ |𝑛∈𝑁𝑔 |𝑁𝑔|⁄ , ∀ 𝑔 ∈ 𝐺 (5) 

4.5. Constraints  
4.5.1. Vehicle capacity constraints 

The vehicle capacity constraints must be satisfied when bus 𝑘 ∈ 𝐾 visits each stop, as follows: 

 𝑧𝑔,𝑡,𝑘 ≤ 𝑍,∀𝑡 ∈ 𝑇, ∀ 𝑔 ∈ 𝐺, ∀𝑘 ∈ 𝐾 (6) 

4.5.2. The movement constraints 

For each bus 𝑘, it must complete serving all requests within the time horizon (|𝐺| ∙ 𝐻). Moreover, those buses in operation 

need to return to one of the depots before the end of the time horizon, as follows: 

 ∑∑𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑔,𝑡+1,𝑘)𝑣𝑒𝑙|𝑇|
𝑡=1

|𝐺|
𝑔=1 +∑∑𝑎𝑔,𝑡,𝑘ℋ|𝑇|

𝑡=1
|𝐺|
𝑔=1 ≤ |𝐺| ∙ 𝐻, ∀𝑘 ∈ 𝐾 (7) 

 𝑖|𝐺|,|𝑇|,𝑘 = 𝑗, ∀𝑘 ∈ 𝐾, ∃𝑗 ∈ 𝐽 (8) 

where ∑ ∑ 𝑎𝑔,𝑡,𝑘ℋ|𝑇|𝑡=1|𝐺|𝑔=1  is the total holding time of the bus within the planning horizon; 𝑖|𝐺|,|𝑇|,𝑘 denotes the location of bus 𝑘 

when the time horizon is over. 

4.5.3. Tardiness coefficient constraints 

If each bus 𝑘 ∈ 𝐾 is allowed to be shared by as many passengers as possible, the vehicle utilization can be improved at 

the expense of longer detour time, which degrades passenger experience. For this reason, we introduce the tardiness coefficient 

constraint such that the travel time of each request must be no greater than 𝛼 times the shortest time of that request, that is, 

  𝑡𝑛𝑑 − 𝑡𝑛𝑝 ≤ 𝛼 ∙ 𝐷𝐼𝑆(𝑖𝑛𝑝, 𝑖𝑛𝑑)𝑣𝑒𝑙 , ∀𝑛 ∈ 𝑁𝑔, ∀𝑔 ∈ 𝐺 (9) 

 

5. MARL-based multi-objective optimization 

This section solves the above multi-objective optimization problem using the multi-agent reinforcement learning (MARL) 

framework, where each vehicle is considered an agent. The MARL model can learn the correlation between the behavior of 

agents and the reward according to the environment, to maximize rewards. The application of MARL needs to define the 

Markov Decisions Process (MDP) with the core elements, such as the state, action, and reward, as well as the Bellman 

Equation for optimization. 

5.1. State 

In MARL, the state is a representation of the environment at a specific time interval, providing the relevant information 

required for every agent to make decisions and take action. In this paper, we design two state representations, which are global 

state and local state, respectively. The global state records all information during each interaction between agents and the 

environment, which is necessary for state transition and calculating rewards. On the other hand, the local state leverages 
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valuable time-related information, which helps each agent to make valuable decisions in the exploration based on their 

perspectives.  

5.1.1. Global state 

The global state is introduced to characterize all the agents and the environment, which is the key variable for making a 

decision and obtaining the reward generated during state transition. The global state 𝑺 can be represented by (1) the vehicle 

state 𝑺𝑉 and (2) the request state 𝑺𝑁, i.e., 𝑺 = {𝑺𝐾, 𝑺𝑁}. Let 𝑺𝑔,𝑡 denote the global state at time interval 𝑡 of period 𝑔. Similarly, 

we introduce 𝑺𝑔,𝑡𝐾  and 𝑺𝑔,𝑡𝑁  to represent vehicle state and requests state at time interval 𝑡 of period 𝑝 respectively. Since our 

model is based on a MARL framework, we consider each vehicle as an agent, and the vehicle state 𝑆𝑔,𝑡𝐾  includes the state 

information of each agent, i.e., 𝑺𝑔,𝑡𝐾 = {𝑠𝑔,𝑡,1𝐾 , 𝑠𝑔,𝑡,2𝐾 , … , 𝑠𝑔,𝑡,|𝐾|𝐾 }. For a given agent 𝑘 ∈ 𝐾, its corresponding vehicle state 𝑆𝑔,𝑡,𝑘𝐾  

is defined as follows: 

 𝑠𝑔,𝑡,𝑘𝐾 : {𝑖𝑔,𝑡,𝑘 , 𝑧𝑔,𝑡,𝑘 , 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 }, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾 (10) 

where 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙  denotes the arrival timestamp of bus 𝑘 after it finishes the decision made at interval 𝑡 of period 𝑔. Whether bus 𝑘 

can be employed in the scheduling decision process is identified by the relationship between the value of 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙  and the current 

time, i.e., (𝑔 − 1) ∙ 𝐻 + (𝑡 − 1) ∙ 𝐻 |𝑇|⁄ , where 𝐻 |𝑇|⁄  is the length of each time step. Specifically, if 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 ≤ (𝑔 − 1) ∙ 𝐻 +(𝑡 − 1) ∙ 𝐻 |𝑇|⁄ , bus 𝑘 can be employed; otherwise, it needs to skip the current decision process. 

Similarly, the request state 𝑺𝑔,𝑡𝑁  of all requests at time interval 𝑡 of period 𝑔 can be expressed as [𝑠𝑔,𝑡,1𝑁 , 𝑠𝑔,𝑡,2𝑁 , … , 𝑠𝑔,𝑡,|𝑁|𝑁 ], 
and state 𝑠𝑔,𝑡,𝑛𝑁  of a particular request 𝑛 is defined as follows: 

 𝑠𝑔,𝑡,𝑛𝑁 : {𝑣𝑛 , 𝑡𝑛𝑝 , 𝑡𝑛𝑑}, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, ∀𝑛 ∈ 𝑁𝑔 (11) 

where 𝑣𝑛 is the state variable to represent the index of the bus assigned for request 𝑛 at the current time; 𝑡𝑛𝑝  and 𝑡𝑛𝑑 denote the 

state variable to represent the pick-up time and drop-off time of request 𝑛 at the current time.  

5.1.2. Local state with time-related information 

Although the global state contains comprehensive information, it fails to capture the time-related information about the 

spatio-temporal relationships between passengers and vehicles, limiting the agents’ ability to directly utilize this crucial 

information. For instance, in the initial stage of training when the value of each decision is unknown, requests with different 

departure time windows are treated equally, and real-time distances between vehicles and requests are ignored. Therefore, in 

order to better utilize this time-related information, we design a novel representation of the local state for each separated agent. 

This representation not only provides individual insights for each agent to make decisions but also allows for an improved 

exploration strategy (which will be described in Section 6.2). Specifically, let 𝑜𝑔,𝑡,𝑘 denote the local state of agent 𝑘 at time 

interval 𝑡 of period 𝑔, as defined below: 

 𝑜𝑔,𝑡,𝑘 = {𝑖𝑔,𝑡,𝑘 , 𝑧𝑔,𝑡,𝑘 , 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 , 𝜉𝑔,𝑡,1𝑝 , 𝜉𝑔,𝑡,1𝑑 ,⋯ , 𝜉𝑔,𝑡,𝑛𝑝 , 𝜉𝑔,𝑡,𝑛𝑑 ,⋯⏞                  2|𝑁𝑔|  } , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾 (12) 

 𝜉𝑔,𝑡,𝑛𝑝 = {𝑡𝑛𝑙 − [𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 + 𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑛𝑝) 𝑣𝑒𝑙⁄ ], 𝑣𝑛 = ∅ℳ, 𝑣𝑛 ≠ 𝑘 ∩ 𝑣𝑛 ≠ ∅ (13) 

 𝜉𝑔,𝑡,𝑛𝑑 = {𝑡𝑛𝑝 + 𝛼 ∙ [𝐷𝐼𝑆(𝑖𝑛𝑝, 𝑖𝑛𝑑) 𝑣𝑒𝑙⁄ ] − [𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 +𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑛𝑑) 𝑣𝑒𝑙⁄ ], 𝑣𝑛 = 𝑘 ∩ 𝑡𝑛𝑑 = ∅ℳ,  𝑣𝑛 ≠ 𝑘 ∪ 𝑡𝑛𝑑 ≠ ∅ (14) 

where the definitions of 𝑖𝑔,𝑡,𝑘 , 𝑧𝑔,𝑡,𝑘, 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙  are the same as Eq.(10); 𝜉𝑛𝑝 and 𝜉𝑛𝑑 denote the time-related information of request 
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𝑛, ∀𝑛 ∈ 𝑁𝑔  observed by agent 𝑘, indicating how urgent it needs to be picked up or delivered, from the perspective of bus 𝑘. 

In Eq.(13), 𝑣𝑛 = ∅  means request 𝑛  is still not assigned to any vehicle, in which case 𝜉𝑔,𝑡,𝑛𝑝 = 𝑡𝑛𝑙 − [𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 +𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑛𝑝) 𝑣𝑒𝑙⁄ ] is the remaining time from the current location of 𝑘 to the pick-up stop of request 𝑛 before any time 

windows penalty cost occurs, indicating the urgency for bus 𝑘 to pick up request 𝑛; In Eq.(14), 𝑣𝑛 = 𝑘 ∩ 𝑡𝑛𝑑 = ∅ means bus 𝑘  has picked up request 𝑛  but not delivered it yet, in this case, 𝜉𝑔,𝑡,𝑛𝑑 = 𝑡𝑛𝑝 + 𝛼 ∙ [𝐷𝐼𝑆(𝑖𝑛𝑝, 𝑖𝑛𝑑) 𝑣𝑒𝑙⁄ ] − [𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 +𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑛𝑑) 𝑣𝑒𝑙⁄ ] is the remaining time from the current location of bus 𝑘 to the drop-off stop of request 𝑛 before breaking 

the tardiness constraint, indicating the urgency of request 𝑛 to be delivered by bus 𝑘. If request 𝑛 is assigned to other agents 

(i.e., 𝑣𝑛 ≠ 𝑘 ∩ 𝑣𝑛 ≠ ∅ in Eq. (13)), or served by 𝑘 but has already dropped off (i.e., 𝑣𝑛 ≠ 𝑘 ∪ 𝑡𝑛𝑑 ≠ ∅ in Eq. (14)), the values 

of 𝜉𝑔,𝑡,𝑛𝑝  and 𝜉𝑔,𝑡,𝑛𝑑  are set to be a very large number ℳ, which implies that the urgency of picking up or delivering request 𝑛 

is almost zero for bus 𝑘 because it no longer requires service. In summary, the dimension of 𝑜𝑔,𝑡,𝑘 is 2|𝑁𝑔| + 3. 

5.2. Action 

5.2.1. Action space 

In this section, we further describe how to define the action space and how agents utilize the local state with time-related 

information to decide and select an action, i.e., given 𝑜𝑔,𝑡,𝑘 , in general, the corresponding action space 𝐴𝑔,𝑡,𝑘  of agent 𝑘 , 

containing every possible action, i.e., 𝑎𝑔,𝑡,𝑘 ∈ 𝐴𝑔,𝑡,𝑘, can be defined as follows: 

 𝑎𝑔,𝑡,𝑘 = {𝑎𝑔,𝑡,𝑘ℳ ∈ {𝑖𝑛𝑝, 𝑖𝑛𝑑 , 𝑗}, 𝑎𝑔,𝑡,𝑘ℋ ∈ ℝ: 𝑛 ∈ 𝑁𝑔 , 𝑖𝑛𝑝 ∈ 𝐼, 𝑖𝑛𝑑 ∈ 𝐼, 𝑗 ∈ 𝐽}, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 (15) 

where 𝑎𝑔,𝑡,𝑘ℳ  is the movement action indicating the next move of bus 𝑘 at time interval 𝑡 of period 𝑔, including visiting pick-

up/drop-off stop and returning to depot; 𝑎𝑔,𝑡,𝑘ℋ  denotes the holding time of bus 𝑘 before its movement of 𝑎𝑔,𝑡,𝑘ℳ . The holding 

time is only considered when bus 𝑘 decides to pick up a request, i.e., 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑝 . In such case, the corresponding optimal 

holding time can be calculated as follows:  𝑎𝑔,𝑡,𝑘ℋ∗ = argmin𝑎𝑔,𝑡,𝑘ℋ {𝛿ℋ ∙ max{(𝑡𝑛𝑒 − 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 −𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑛𝑝) 𝑣𝑒𝑙⁄ , 0)} , 𝛿 𝑙𝑞𝑛 ∙ max{(𝑡𝑛𝑙 − 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 −𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑛𝑝) 𝑣𝑒𝑙⁄ , 0)}} (16) 

where the optimal holding time (𝑎𝑔,𝑡,𝑘ℋ∗ ) before picking up any request aims to minimize the user cost of time windows violation. 

When bus 𝑘 is going to deliver a request or return to the depot, the holding time is set to 0 since there is no penalty cost 

associated with it. In summary, the dimension of the whole action space is determined by the request set of each period 𝑁𝑔 , 

which is, 2|𝑁𝑔| for picking up and delivering action, plus |𝐽| for returning to depot action and 1 for 𝑎ℋ, i.e., 2|𝑁𝑔| + |𝐽| + 1. 

Based on the aforementioned definition, the schedule of bus 𝑘 in period 𝑔 can be represented by the sequential decisions 

output by MDP, i.e., the sequential recording of a series of actions of the whole period. For example, if the sequential actions 

recording of bus 𝑘  is ({𝑎ℳ = 𝑖1𝑝, 𝑎ℋ = 3}, {𝑎ℳ = 𝑖2𝑝, 𝑎ℋ = 0}, {𝑎ℳ = 𝑖2𝑑 , 𝑎ℋ = 0}, {𝑎ℳ = 𝑖1𝑑 , 𝑎ℋ = 0}, {𝑎ℳ = 𝑗, 𝑎ℋ =0}), the dispatching process is that bus 𝑘 first holds at its origin for 3 minutes (because 𝑎ℋ = 3) then heads to the pick-up 

stop of request 1, and immediately visits the pick-up stop of request 2, drop-off stop of request 2, followed by the drop-off 

stop of request 1, and finally returns to the depot 𝑗. 
5.2.2. Pruning of action space 

Due to the model assumptions and constraints, not every action in the whole action space is valid. If no modification 

for action space is adopted, these invalid actions will be included in the output of the neural network since the structure of the 

devised neural network remains unchanged throughout the training process. The presence of invalid actions not only enlarges 

the scale of state-action pairs which would demand a longer training period, but also leads to poor solution quality, even 

failing to find a feasible solution. For this reason, instead of repairing solutions for a feasible one, we develop a weight pruning 
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method to modify the action space to reduce the search space while ensuring the feasibility of model constraints during the 

training of the deep neural network. This method could effectively improve training performance. There are four pruning 

operations applied in the action space of bus 𝑘 when 𝑜𝑔,𝑡,𝑘 is given, including pruning subject to visiting orders, tardiness 

constraints, movement constraints, and capacity constraints, which will be described in Appendix A. After the pruning of 

action space, we could obtain a modified action space 𝐴̂𝑔,𝑡,𝑘 for bus 𝑘 that only contains the valid actions, so-called ‘valid 

action space’. 

5.3. State transition 

In this section, we will discuss two types of state transition under different conditions, namely, state transition between 

time intervals and state transition between periods. The former is the state changes caused by the decisions of agents between 

two adjacent time intervals, while the latter is the changes in the information caused by the transition of two adjacent periods. 

5.3.1. State transition between time intervals 

When state transition occurs from 𝑡 to 𝑡 + 1 in period 𝑔, the state information needs to be updated according to previous 

actions selected by all the agents. Given 𝑎𝑔,𝑡,𝑘 , the vehicle state of bus 𝑘 , 𝑠𝑔,𝑡,𝑘𝐾   can be updated to 𝑠𝑔,𝑡+1,𝑘𝐾 : {𝑖𝑔,𝑡+1,𝑘 , 𝑧𝑔,𝑡+1,𝑘 , 𝑡𝑔,𝑡+1,𝑘𝑎𝑟𝑙 }  via Eqs. (17)-(19). Then, the corresponding updating to get 𝑠𝑔,𝑡+1,𝑛𝑁   is determined by 𝑠𝑔,𝑡+1,𝑘𝐾  and 𝑎𝑔,𝑡,𝑘, i.e., if 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑝 , update 𝑣𝑛 ← 𝑘, 𝑡𝑛𝑝 ← 𝑡𝑔,𝑡+1,𝑘𝑎𝑟𝑙 ; if 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑑, update 𝑡𝑛𝑑 ← 𝑡𝑔,𝑡+1,𝑘𝑎𝑟𝑙 . In addition, we can 

update the local state with time-related information 𝑜𝑔,𝑡,𝑘 → 𝑜𝑔,𝑡+1,𝑘 derived from 𝑠𝑔,𝑡,𝑘𝐾 , ∀𝑘 ∈ 𝐾 and 𝑠𝑔,𝑡+1,𝑛𝑁 , ∀𝑛 ∈ 𝑁. 

 𝑖𝑔,𝑡+1,𝑘 = {  
  𝑖𝑛𝑝, 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑝𝑖𝑛𝑑 , 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑑𝑗, 𝑎𝑔,𝑡,𝑘ℳ = 𝑗𝑖𝑔,𝑡,𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (17) 

 𝑧𝑔,𝑡+1,𝑘 = {𝑧𝑔,𝑡,𝑘 − 𝑞𝑛 , 𝑎𝑔,𝑡,𝑘 = 𝑖𝑛𝑝𝑧𝑔,𝑡,𝑘 + 𝑞𝑛 , 𝑎𝑔,𝑡,𝑘 = 𝑖𝑛𝑑𝑧𝑔,𝑡,𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (18) 

 𝑡𝑔,𝑡+1,𝑘𝑎𝑟𝑙 = 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 +𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑔,𝑡+1,𝑘) 𝑣𝑒𝑙⁄ + 𝑎𝑔,𝑡,𝑘ℋ∗
 (19) 

5.3.2. State transition between periods 

In the rolling horizon framework, the state transition between periods can be described as the state transition from the 

ending time 𝑡 = |𝑇|  of period 𝑔  to the start time 𝑡 = 1  of period 𝑔 + 1 , where 𝑔 + 1 ≤ |𝐺| . At this phase, the rejection 

mechanism for the immediate requests and over-period compensation are considered.  

When the transition from 𝑔 to 𝑔 + 1 occurs, if there is no over-period request or route, we can simply initialize the state 

variable via 𝑆𝑔,|𝑇|𝐾  and 𝑁𝑔+1; otherwise, we need to identify (1) whether there are still unassigned requests of 𝑁𝑔 , and (2) 

whether each bus 𝑘 ∈ 𝐾 could complete its route 𝓇𝑔,𝑘 before the ending of period 𝑔 to update 𝑡𝑔+1,1,𝑘𝑎𝑟𝑙 . In case (1), for each 

unassigned request 𝑛, if 𝑛 ∈ 𝑁̈𝑔, it will be considered whether to be rejected or incorporated into the next period: the system 

will try to insert request 𝑛 to the original plan of period 𝑔 + 1, and it could be incorporated into the 𝑔 + 1 only if the decrease 

in quality of modified planning scheme is lower than the penalty for rejecting request 𝑛, otherwise, it will be rejected, i.e., 

record 𝑦𝑛𝑏 = 1 and 𝑡𝑛𝑏 = (𝑔 − 1) ∙ 𝐻; if 𝑛 ∈ 𝑁̇𝑔, incorporate it into the requests set of the next period, i.e., 𝑁𝑔+1 ← 𝑁𝑔+1 ∩{𝑛} , and update 𝑆𝑔+1,1𝑁   via the updated 𝑁𝑔+1 . By this means, the maximum waiting time for an immediate request 𝑛  is 

determined by the rejection penalty cost, i.e., if within a potential route the equation there exists 𝛿 𝑙(𝑡𝑛𝑝 − 𝑡𝑛𝑙 )𝑞𝑛 > 𝛿𝑏𝑞𝑛, it 

will be rejected by the service provider and unable to be incorporated into the next period, to avoid excessive waiting time, 
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as a quitting mechanism for immediate requests. When it comes to the last period, i.e., 𝑔 = |𝐺|, if there is any reservation 

request 𝑛 ∈ 𝑁̇|𝐺| that is not served, we need to remove the immediate request with the largest user cost from 𝑁̈|𝐺| as rejection, 

and then redo the planning again. This rejection operation for immediate requests would continue until all reservation requests 

could be served, to ensure their priority.  

And in case (2), we could update 𝑠𝑔+1,1,𝑘𝐾  via Eqs.(20)-(22), where 𝑖𝑔,|𝑇|,𝑘 and 𝑧𝑔,|𝑇|,𝑘  denote the ending location and on-

board passenger of period 𝑔, respectively; and if 𝑡𝑔,|𝑇|,𝑘𝑎𝑟𝑙 > (𝑔 + 1) ∙ 𝐻, which means route 𝓇𝑔,𝑘 is over-period, then inherit 𝑡𝑔,|𝑇|,𝑘𝑎𝑟𝑙  to the next period; otherwise, initialize 𝑡𝑔+1,1,𝑘𝑎𝑟𝑙  as (𝑔 + 1) ∙ 𝐻, the beginning of period 𝑔 + 1. 

 𝑖𝑔+1,1,𝑘 = 𝑖𝑔,|𝑇|,𝑘  (20) 

 𝑧𝑔+1,1,𝑘 = 𝑧𝑔,|𝑇|,𝑘  (21) 

 𝑡𝑔+1,1,𝑘𝑎𝑟𝑙 = max{𝑡𝑔,|𝑇|,𝑘𝑎𝑟𝑙 , (𝑔 + 1) ∙ 𝐻} (22) 

5.4. Reward function design 

In the MARL model, the reward can be obtained once a state transition takes place. The reward function is essential to 

the objective optimization and the convergence of the training results. For the dual objectives of our model, we set two 

corresponding reward functions, including the cost reward 𝑅𝐶 and fairness reward 𝑅𝜁 , and introduce a weighting factor 𝜌 to 

calculate the total reward function. Therefore, the reward 𝑅(𝑆𝑔,𝑡+1|𝑆𝑔,𝑡)  after the state transition from 𝑆𝑔,𝑡  to 𝑆𝑔,𝑡+1  is 

formulated as follows: 

 𝑅(𝑆𝑔,𝑡+1|𝑆𝑔,𝑡) = 𝜌 ∙ 𝑅𝐶(𝑆𝑔,𝑡+1|𝑆𝑔,𝑡) + (1 − 𝜌) ∙ 𝑅𝜁(𝑆𝑔,𝑡+1|𝑆𝑔,𝑡) (23) 

5.4.1. Cost reward 𝑅𝐶  

We now apply the system cost analysis to the reinforcement learning framework. The transportation cost during state 

transition is generated once the position of each vehicle changes, that is, 

 𝐶𝑔,𝑡,𝑘𝑓 = [𝛿𝑓 ∙ 𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑔,𝑡+1,𝑘) + 𝛿ℋ ∙ 𝑎𝑔,𝑡,𝑘ℋ ] (24) 

To calculate the reward of user cost at time interval 𝑡 of period 𝑔, we need to identify the request served at 𝑡, which is 

determined by the movement action selected by each bus. The user cost at time interval 𝑡 of period 𝑔 can be calculated as 

follows:  

 𝐶𝑔,𝑡𝑢 = 𝛿𝑏∑ 𝑞𝑛𝑦𝑛𝑏𝑛∈𝑁𝑔 + {𝛿 𝑙∑ 𝑞𝑛(1 − 𝑦𝑛𝑏)𝑛∈𝑁𝑔 (𝑡𝑔,𝑡,𝑛𝑝 − 𝑡𝑛𝑙 ), ∃𝑎𝑔,𝑡,𝑘ℳ = 𝑝𝑛 ∩ 𝑡𝑔,𝑡,𝑛𝑝 > 𝑡𝑛𝑙0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (25) 

where the condition ∃𝑎𝑔,𝑡,𝑘ℳ = 𝑝𝑛 guarantees that the late arrival penalty for request 𝑛 (if any) can only be calculated once in 

a period since the movement of 𝑝𝑛 can only be served by one vehicle in our model. 

As a result, the cost reward 𝑅𝑝,𝑡𝐶  at time interval 𝑡 of period 𝑔 can be calculated as follows: 

 𝑅𝑔,𝑡𝐶 = −(∑∑𝐶𝑔,𝑡,𝑘𝑓𝑘∈𝐾𝑡∈𝑇 +∑𝐶𝑔,𝑡𝑢𝑡∈𝑇 ) (26) 

5.4.2. Fairness reward 𝑅𝜁 
In this study, the fairness reward 𝑅𝜁  is obtained by recursion of the fairness indicator 𝜁𝑔, which is determined by the 

requests waiting time throughout the time intervals of a period. According to Eq. (4), the waiting time of request 𝑛 by time 

interval 𝑡 of period 𝑔 can be calculated as follows: 
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 𝑊𝑔,𝑡,𝑛 = {𝑡𝑛𝑝 − 𝑡𝑛𝑒 , 𝑦𝑛𝑏 = 0 ∩ 𝑡𝑛𝑝 ≠ ∅max{(𝑔 ∙ 𝑡 ∙ 𝐻 |𝑇|⁄ − 𝑡𝑛𝑒), 0}, 𝑦𝑛𝑏 = 0 ∩ 𝑡𝑛𝑝 = ∅max{(𝑡𝑛𝑏 − 𝑡𝑛𝑒), 0}, 𝑦𝑛𝑏 = 1  (27) 

Due to the division of time intervals and the response times of different intermediate requests distributed over different 

time intervals, we need to calculate the average waiting time of immediate requests 𝑊̅𝑔,𝑡, as well as the fairness indicator 𝜁𝑔,𝑡 
at each time interval 𝑡. As a result, the fairness indicator 𝜁𝑔,𝑡 at time intervals 𝑡 of period 𝑔 can be obtained as follows: 

 𝑊̅𝑔,𝑡 = ∑ 𝑊𝑔,𝑡,𝑛𝑛∈𝑁𝑔|𝑁𝑔|  (28) 

 𝜁𝑔,𝑡 = ∑ |𝑊𝑔,𝑡,𝑛 − 𝑊̅𝑔,𝑡|𝑛∈𝑁𝑔 |𝑁𝑔|  (29) 

As shown in Eq.(29), a smaller value of 𝜁𝑔,𝑡 implies the less variance in the distribution of request waiting time in period 𝑔, i.e., the better degree of fairness for passengers. Evidently, we expect to obtain the smallest value of 𝜁𝑔,|𝑇| at the end of 

period 𝑝, i.e., the best degree of fairness for all the immediate requests of period 𝑔. However, a sparse reward issue can take 

place in the training process if the fairness reward is simply calculated at time interval |𝑇|. For this reason, we devise a 

recursively computed fairness reward function for each time interval, which is expressed as follows: 

 𝑅𝑔,𝑡𝜁 = −(𝜁𝑔,𝑡 − 𝜁𝑔,𝑡−1) ∙ 𝛽 (30) 

We adopt the method of objective weighting to address the multi-objective optimization problem, which scalarizes the 

vector of objectives into a single objective. Note that there might be a large gap between the value of 𝑅𝑔,𝑡𝐶  and 𝑅𝑔,𝑡𝜁  due to 

different attributes. To ensure their calculation results have the same order of magnitude and facilitate a comprehensive 

weighted cost reward, 𝑅𝜁  requires to be multiplied by a factor 𝛽. For the optimization of the second objective, if the value of 𝜁𝑔,𝑡 is smaller than the value of 𝜁𝑔,𝑡−1, a positive reward is given, which indicates the trend of improving fairness; otherwise, 

a negative reward is given to punish the trend of impairing fairness. In this way, we can optimize the fairness by the long-

term cumulative reward in period 𝑔. 

5.4.3. Optimization objectives in RL 

Bellman Equation is the key to optimizing the MDP, which includes the definitions of policy function 𝜋 and state-action 

value function 𝑄, called Q function. The policy function 𝜋 indicates which action should be selected when a certain state is 

given, i.e., 𝐴 = 𝜋𝜃𝑔(𝑆𝑔,1)  (In deep reinforcement learning, the policy function is usually characterized by a deep neural 

network with the parameter 𝜃𝑔 ). Since we divide the time horizon into |𝐺|  periods and separately optimize the MDP 

constructed for each period, we need to set |𝐺| deep neural networks for optimization, and the parameter of each period 𝑔 ∈𝐺  is 𝜃𝑔 . The Q function is the value estimation of the state-action pair, which measures the expected cumulative return 

according to the policy function. Specifically, when 𝑆𝑔,𝑡 and 𝜋𝜃𝑔 are given, the value of the Q function is the cumulative 

reward obtained after performing 𝐴𝑔,𝑡  according to policy 𝜋𝜃𝑔, that is: 

 𝑄(𝑆, 𝐴) = 𝔼𝜋𝜃𝑔  {𝑅𝑔,𝑡|𝑆 = 𝑆𝑔,𝑡 , 𝐴 = 𝐴𝑔,𝑡} = 𝔼𝜋𝜃𝑔  {∑ 𝛾𝑡1𝑅𝑔,𝑡+𝑡1|𝑆 = 𝑆𝑔,𝑡 , 𝐴 = 𝐴𝑔,𝑡𝑡+𝑡1=|𝑇|𝑡1=1 }  (31) 

where 𝛾 is the discount factor. In general, the optimization of MDP can be described as: for 𝑆𝑔,𝑡 at any time interval 𝑡 ∈ 𝑇, 

find a policy that could maximize the Q function values for the rest of the state-action pairs. However, in our model, we need 
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to optimize the planning scheme of the whole period 𝑔 ∈ 𝐺, so we need to find an optimal policy 𝜋𝜃𝑝∗  to maximize the value 

Q function from 𝑡 = 1 to 𝑡 = |𝑇|, that is: 

 𝜋𝜃𝑝∗ = argmax𝜃𝑔 𝑄 (𝑆 = 𝑆𝑔,1, 𝐴 = 𝜋𝜃𝑔(𝑆𝑔,1)) (32) 

 

6. New MARL architecture 

Due to the spatial and temporal randomness of immediate requests, the planning time is crucial for solving the dynamic 

scheduling problem. To speed up the planning process, we introduce a MARL framework based on centralized training and a 

decentralized execution approach (CTDE), regarding each vehicle as an agent of the RL environment, which enables 

simultaneous training and planning of multiple vehicles to accelerate the training process. However, the solution quality has 

been a concern in terms of optimality in many RL approaches. To further improve the solution quality, as shown in Fig. 4, we 

propose an integrated architecture integrating the MARL framework with the local search, which entails three salient features: 

1) incorporating an effective demand prediction approach into MARL training, enhancing foresight in the planning of each 

period; 2) improving the classic exploration strategy in traditional RL approaches by leveraging time-related information in 

local state representation; 3) integrating the MARL framework with the local search strategy using imitation learning, where 

the concept of ‘entropy’ is proposed to guide the applications of three designed operators.  

For each period, specifically, we initialize the RL environment based on the scenario whether demand prediction is 

applied or not. Once the environment is initialized, the MARL framework uses the improved 𝜖-greedy strategy to guide every 

agent to explore and interact with the environment, when the pruning method of action space (Section 5.2.2) is applied to 

reduce the space size and ensure each action is valid. The sequential actions, as well as other information, are recorded and 

stored in a RL buffer. As mentioned in Section 5.2.1, the FBS schedule solution can be formed by sequential actions. Therefore, 

during RL training we could sample the sequential actions of the best solution to form a RL-based solution as the input to the 

VND algorithm (will be described in Section 6.3) and yield an improved solution. This solution needs to be converted to the 

sequential transition as a form of RL and stored in a local search buffer. Then from RL and local search buffers, we can sample 

the experience for training, using the integrated loss function designed in Section 6.4. Once the training is over, we can output 

the best solution and perform prediction error, if a prediction model is applied. Finally, the output solution as the initial solution 

is enhanced once again by the local search method, before moving into the next period. 
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Fig. 4 The architecture of the integrated algorithm 

6.1. Rolling VDN algorithm incorporating demand prediction 

The value decomposition networks (VDN) algorithm (Peter et al., 2018) is one of the most prevalent algorithms to solve 

MARL problems, which is based on the CTDE approach. This algorithm regards ‘team reward’ in a fully centralized 

framework, characterizing team reward with a joint Q function 𝑄𝑡𝑜𝑡, however, allows each agent 𝑘 ∈ 𝐾 to make decisions 

with its local Q function 𝑄𝑘 which could be decomposed from  𝑄𝑡𝑜𝑡 by linear summation. In this paper, each Q function is 

characterized by a neural network. Before the training of period 𝑔, for each agent 𝑘 ∈ 𝐾 we initialize a local Q function 𝑄𝑘 

characterized by 𝜃𝑔,𝑘. To save the computational resource, the parameter 𝜃𝑔,𝑘 is shared by every agent 𝑘 ∈ 𝐾. Given that we 

use the local state with time-related information to represent the state information, let the joint state be 𝑶 = (𝑜1, 𝑜2,⋯ , 𝑜|𝐾|) 
and joint action be 𝑨 = (𝑎1, 𝑎2,⋯ , 𝑎|𝐾|) , the joint network is available by the linear summation of every 𝑄𝑘 , i.e., 𝑄𝑡𝑜𝑡(𝑶,𝑨) = ∑  |𝐾|𝑘=1 𝑄𝑘(𝑜𝑘 , 𝑎𝑘). Therefore, the input vector of 𝑄𝑘 of period 𝑔 can be characterized by 𝑜𝑔,𝑡,𝑘with a dimension 
of 2|𝑁𝑔| + 3 (described in Section 5.1.2). The output of the 𝑄𝑘 is characterized by action space. Since the holding time of 

each decision is determined by Eq. (16), the output of the network is only determined by the movement actions, which is 𝑎𝑔,𝑡,𝑘ℳ ∈ {𝑖𝑛𝑝, 𝑖𝑛𝑑 , 𝑗} with dimension of 2|𝐼| + |𝐽| (described in Section 5.2.1). 

Therefore, we can get the 𝑄𝑡𝑜𝑡 for training and 𝑄𝑘 for each agent to make decisions, which is key to the CTDE approach, 
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and our objective function for each period can be transferred as follows: 

 𝜋𝑔∗ = argmax𝜃𝑔 𝑄𝑡𝑜𝑡(𝑶𝑔,1, 𝜋𝑔(𝑶𝑔,1)|𝜃𝑔) =argmax𝜃𝑔,𝑘 ∑ |𝐾|
𝑘=1 𝑄𝑘(𝑜𝑔,0,𝑘 , 𝜋𝑔,𝑘(𝑜𝑔,0)|𝜃𝑔,𝑘) (33) 

Since the rolling horizon scheme and demand prediction are introduced, period transitions and predicted demand should 

be incorporated into the optimization for each period. As a result, Eq.(33) can be further translated into: 

 𝜋𝑔∗ = {  
  argmax𝜃𝑔,𝑘 ∑  |𝐾|𝑘=1 𝑄𝑘(𝑜𝑔,1,𝑘 , 𝜋𝑔,𝑘(𝑜𝑔,1)|𝑁𝑔 ∩ 𝑁𝑔, 𝜃𝑔,𝑘) , 𝑔 = 1
argmax𝜃𝑔,𝑘 ∑  |𝐾|𝑘=1 𝑄𝑘(𝑜𝑔,1,𝑘 , 𝜋𝑔,𝑘(𝑜𝑔,1)|𝑜𝑔−1,|𝑇|,𝑘 , 𝑁𝑔 ∩𝑁𝑔, 𝜃𝑔,𝑘) , 𝑔 > 1 (34) 

Concerning the experience replay mechanism, in each interaction of the agent with the environment, we record a 

transition tuple ℯ = (𝑶𝑔,𝑡 , 𝑨𝑔,𝑡 , 𝑅𝑔,𝑡 ,𝑶𝑔,𝑡+1, 𝑨̂𝑔,𝑡+1) as the experience transitions, and store it into a buffer of fixed size, named 

‘RL buffer’. 

6.2. Improved ϵ-greedy strategy in action selection via time-related information 

In this section, we proposed a novel strategy that could utilize the time-related information to improve the exploration 

efficiency in the RL training course. In general, RL training contains two main processes: exploitation and exploration. During 
exploitation, how agent 𝑘 selects an action is based on the policy 𝜋𝜃𝑔 characterized by the parameter of a deep neural network 𝜃𝑔, which is proper for maximizing the expected return at the current moment because 𝜋𝜃𝑔 could return the 𝑎𝑔,𝑡,𝑘 with the 

largest reward while 𝑜𝑔,𝑡,𝑘 is given. However, it could only exploit the current experience samples, which might be insufficient 

to search out the global optimum. Exploration involves randomly selecting unknown actions from the state-action space, apart 

from the known state-action distribution. By exploring the entire state-action space we can gather as many experience samples 

as possible, increasing the likelihood of finding the global optimum. The goal of exploration is to maximize the expected 

return over the long term, ensuring that the agent explores different possibilities and avoids getting stuck in local optima.  

6.2.1. Limitations of the classic ϵ-greedy strategy 

Both exploitation (for maximizing immediate rewards) and exploration (for discovering better long-term outcomes) are 

crucial for RL training, but agents can only choose one action at a time, creating a trade-off. The 𝜖-greedy algorithm addresses 

this by allowing agents to explore randomly or exploit with the highest reward, based on a probability 𝜖 (𝜖 ≤ 1). Exploration 

rate decay can also be applied, starting with a high 𝜖 and decreasing it as training progresses. This strategy allows agents to 

focus more on exploration in the early stages of training and shift their focus towards exploitation later. However, as an 

important decision-making factor, time-related information has not been considered in the exploration of the classic 𝜖-greedy 

method, whereas ignoring such important information might lead to additional exploration time. 

6.2.2. Improved ϵ-greedy strategy 

To enhance the efficiency of exploration, we improve the traditional ϵ-greedy strategy by incorporating time-related 

information. Specifically, we can get time-related information on each request for bus 𝑘  when 𝑜𝑔,𝑡,𝑘  is given, i.e., 

𝜉𝑔,𝑡,1𝑑 , 𝜉𝑔,𝑡,1𝑑 , … , 𝜉𝑔,𝑡,𝑛𝑝 , 𝜉𝑔,𝑡,𝑛𝑑 ,⋯⏞                  2|𝑁𝑔|
, by Eqs.(13)-(14), which indicates the urgency of picking up or delivering each request by bus 𝑘, respectively. As mentioned in Section 5.1.2, a smaller value of 𝜉𝑔,𝑡,𝑛𝑝  or 𝜉𝑔,𝑡,𝑛𝑑  indicates the greater urgency to pick up or 

deliver request 𝑛. Concerning only the time-related information, for bus 𝑘, it should serve the request with the greatest urgency 

(denoted as 𝑛∗) as soon as possible. However, we also need to identify whether serving the request 𝑛∗ is a valid action, i.e., 
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to identify whether 𝑝𝑛∗ ∈ 𝐴̂𝑔,𝑡,𝑘 or 𝑑𝑛∗ ∈ 𝐴̂𝑔,𝑡,𝑘. If serving request 𝑛 (picking up or delivering) is not a valid action, then bus 𝑘 needs to randomly select an action from the valid action space 𝐴̂𝑔,𝑡,𝑘. Thus, let 𝛤(𝑜𝑔,𝑡,𝑘) denote the function to obtain an 

action according to the time-related information of 𝑜𝑔,𝑡,𝑘, which is defined by Eqs.(35)-(36). 

 𝑛∗ = argmin𝑛 {min{𝜉𝑔,𝑡,𝑛𝑝 , 𝜉𝑔,𝑡,𝑛𝑑 }} (35) 

 𝛤(𝑜𝑔,𝑡,𝑘) = {𝑖𝑛∗𝑝 , 𝜉𝑔,𝑡,𝑛∗𝑝 ≠ℳ ∩ 𝜉𝑔,𝑡,𝑛∗𝑝 < 𝜉𝑔,𝑡,𝑛∗𝑑 ∩ 𝑝𝑛∗ ∈ 𝐴̂𝑔,𝑡,𝑘𝑖𝑛∗𝑑 , 𝜉𝑔,𝑡,𝑛∗𝑑 ≠ℳ ∩ 𝜉𝑔,𝑡,𝑛∗𝑑 < 𝜉𝑔,𝑡,𝑛∗𝑝 ∩ 𝑑𝑛∗ ∈ 𝐴̂𝑔,𝑡,𝑘𝑅𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝐴̂𝑔,𝑡,𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (36) 

Heuristically, incorporating time-related information could facilitate agents to make relatively more reasonable decisions 

compared to random exploration, especially at the beginning of the training. However, in the long run, relying only on time-

related information to make a decision is myopic since it does not help agents foresee how current decisions will affect the 

future return, which is why random exploration is still necessary. To incorporate both exploration mechanisms, we follow the 𝜖-greedy algorithm and set two initialized exploration rates, 𝜖1 and 𝜖2, at the beginning of the training, respectively, where 𝜖1 + 𝜖2 ≤ 1. Regarding the exploration rate decay mechanism, let 𝜏 denote the current training step, and then 𝜖1(𝜏) and 𝜖2(𝜏) 
are the exploration rates of 𝜖1 and 𝜖2 at 𝜏, respectively, which could instruct how bus 𝑘 selects an action. As a result, the 

strategy of selecting a movement action is represented as follows: 

 𝑎𝑔,𝑡,𝑘ℳ  = {  
  𝑅𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝐴̂𝑔,𝑡,𝑘 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖1(𝜏)Γ(𝑜𝑔,𝑡,𝑘), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖2(𝜏)argmax𝑎∈𝐴𝑔,𝑡,𝑘 𝑄(𝑜𝑔,𝑡,𝑘 , 𝑎𝑔,𝑡,𝑘) , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖1(𝜏) − 𝜖2(𝜏) (37) 

where argmax𝑎∈𝐴𝑔,𝑡,𝑘 𝑄(𝑜𝑔,𝑡,𝑘 , 𝑎𝑔,𝑡,𝑘) denotes the greedy action which could bring the largest expected return at the current moment, 

as exploitation.  

Although the exploration based on the time-related information can greatly contribute to the search for relatively good 

experience samples at the beginning, this effect will diminish as the training step increases since it could only explore a limited 

state-action space. For this reason, we make 𝜖2 begin to decay at first while remaining 𝜖1 unchanged. 𝜖1 begins to decay after 𝜖2 decays to zero, assuming that the largest decay steps of 𝜖1 and 𝜖2 are 𝜏max𝜖1  and 𝜏max𝜖2  respectively, where 𝜏max𝜖1 > 𝜏max𝜖2 . Let 𝜏 denote the current train step, then the corresponding exploration rates of 𝜖1(𝜏) and 𝜖2(𝜏) under decay mechanism can be 

calculated as follows: 

 𝜖2(𝜏) = 𝜖2 ∙ (1 − min{ 𝜏𝜏max𝜖2 , 1}) (38) 

 𝜖1(𝜏) = 𝜖1 ∙ (1 − min{max{𝜏 − 𝜏max𝜖2 , 0}𝜏max𝜖1 , 1}) (39) 

6.3. Mechanism of local search heuristics 

Local search algorithms have a good exploitation capability to find a better solution. Given this fact, we can enhance the 

solution quality by applying a local search method to improve the quality of the initial solution generated by RL. The key to 

the local search method is to design the local search operator to perform neighborhood move operations. The conventional 

random search operator tends to take up too many computational resources resulting in inefficient search. To improve 

computational efficiency, we design three neighborhood operators along with the concept of ‘entropy’ to guide the applications 

of these operators and measure their potential to improve solution quality. 
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6.3.1. Service loop 

For the dynamic scheduling problem, the route length might be very long, possibly due to the large number of requests 

that each bus needs to serve in a period. Moreover, a neighborhood move can easily violate the constraints, such that the 

feasibility check of a neighborhood move is very time-consuming. To reduce the computation complexity and simplify the 

process of neighborhood move, we introduce a strategy that divides a completed route into several relatively short routes as 

basic units to perform neighborhood move, called ‘service loops’ represented by ℓ, which is similar to the sequence introduced 

in Section 5.2.2.2. Each service loop forms when a bus temporarily finishes its current task without carrying any request 

before going to the next pick-up stop. To illustrate, a completed route 𝓇 = (𝑖1𝑝, 𝑖2𝑝, 𝐼2𝑑 , 𝑖1𝑑 , 𝑖3𝑝, 𝑖4𝑝, 𝑖3𝑑 , 𝑖5𝑝, 𝑖4𝑑 , 𝑖5𝑑), can be divided 

into two service loops, that is ℓ1 = (𝑖1𝑝, 𝑖2𝑝, 𝐼2𝑑 , 𝑖1𝑑) and ℓ2 = (𝑖1𝑑 , 𝑖3𝑝, 𝑖4𝑝, 𝑖3𝑑 , 𝑖5𝑝, 𝑖4𝑑 , 𝑖5𝑑). Note that we add 𝑖1𝑑 to the beginning of ℓ2 since each loop should contain the original and destination stops. 

6.3.2. Priority lists designed based on entropy metrics 

Instead of performing neighborhood move opt on random routes or requests, we propose an efficient policy based on 

priority rules. To find out performing neighborhood move on which request, loop or route is most likely to increase the 

cumulated reward obtained by RL, we separately measure and rank their potential in cost saving or fairness improvement, 

then construct three priority lists corresponding to requests, loops and routes respectively before performing neighborhood 

move. Specifically, to quantify the potential of individual routes, loops, and requests in improving the solution quality, we 

introduce the concept of ‘entropy’, represented by 𝜇1, 𝜇2, and 𝜇3, respectively. A higher entropy value indicates a higher 

potential to improve the solution quality. The three entropy metrics are formulated as follows: 

 𝜇1(𝑘) = −𝜌 ∙ 𝑐(𝓇𝑘) + (1 − 𝜌) ∙ ∑ (𝑊𝑛 − 𝑊̅) ∙ 𝛽𝑛∈𝑁(𝓇𝑘) |𝑁(𝓇𝑘)|⁄∆(𝓇𝑘)  (40) 

 𝜇2(ℓ) = −𝜌 ∙ 𝑐(ℓ) + (1 − 𝜌) ∙ ∑ (𝑊𝑛 − 𝑊̅) ∙ 𝛽𝑛∈𝑁(ℓ) |𝑁(ℓ)|⁄∆(𝜂𝜈)  (41) 

 𝜇3(𝑛) = −𝜌 ∙ 𝑐(𝑛) + (1 − 𝜌) ∙ (𝑊𝑛 − 𝑊̅) ∙ 𝛽∆(𝑛)  (42) 

where ∆(𝓇𝑘), ∆(ℓ) and ∆(𝑛) denote the duration of route 𝓇𝑘, loop ℓ and request 𝑛, which can be derived from the route 

sequence. 𝑁(𝓇𝑘) and 𝑁(ℓ) are the request sets of 𝓇𝑘 and ℓ. 𝑐(𝓇𝑘), 𝑐(ℓ) and 𝑐(𝑛) denote the cost associated with route 𝓇𝑘, 

loop ℓ  and request 𝑛 , respectively, where 𝑐(𝓇𝑘)  and 𝑐(ℓ)  can be easily calculated because no shared trip exists between 

different routes or loops. However, the calculation of transportation cost caused by a single request might be complicated due 

to the presence of the shared trip, which is not exclusive to one request, but shared with two or even more requests. In this  

case, the converted trip distance of request 𝑛 should be counted as the summation of the average distance of the shared trips 

and the distance of the exclusive trip. Let 𝑁ℓ𝛼(𝓍) denote the on-board request set by bus visiting stop 𝓍 in the loop ℓ, then the 

number of onboard requests by stop 𝓍 can be calculated recursively by Eq.(43), where ∑ ∑ 1𝑖=𝓍𝑖∈ℓ,𝑖=𝑖𝑛𝑝𝑛∈𝑁(ℓ)  is the recursive 

number of the picked-up requests by visiting stop 𝓍 in loop ℓ, and ∑ ∑ 1𝑖=𝓍𝑖∈ℓ,𝑖−=𝑖𝑛𝑑𝑛∈𝑁(ℓ)  is the recursive number of the drop-

off requests by visiting stop 𝓍 (Note that 𝑖− represents the stop preceding 𝑖 in ℓ). Since the average distance of a shared trip 

between two adjacent stops 𝒾− and 𝒾 is the distance between them divided by |𝑁ℓ𝛼(𝓍)|, the cost of request 𝑛 in loop ℓ can be 

calculated by Eq.(44), where 𝑎ℋ(𝑖)  denotes the holding time before visiting stop 𝑖 . Note that, assuming a loop ℓ =(𝑖1𝑑 , 𝑖2𝑝, 𝑖3𝑝, 𝑖2𝑑 , 𝑖3𝑑) , since 𝑖1𝑑  is the ending stop of preceding loop as the beginning stop of loop ℓ , request 1  will not be 

incorporated in 𝑁(ℓ). 
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 |𝑁ℓ𝛼(𝓍)| = ∑ ∑ 1𝑖=𝓍
𝑖∈ℓ,𝑖=𝑖𝑛𝑝𝑛∈𝑁(ℓ) − ∑ ∑ 1𝑖=𝓍

𝑖∈ℓ,𝑖−=𝑖𝑛𝑑𝑛∈𝑁(ℓ)  (43) 

 𝑐(𝑛) = ∑ 𝐷𝐼𝑆(𝑖−, 𝑖) ∙ 𝛿𝑓 + 𝛿ℋ𝑎ℋ(𝑖)|𝑁ℓ𝛼(𝑖)|𝑖=𝑖𝑛𝑑
𝑖−∈ℓ,𝑖∈ℓ,𝑖=𝑖𝑛𝑝 + 𝑞𝑛𝛿𝑙 ∙ max{(𝑡𝑛𝑝 − 𝑡𝑛𝑙 ), 0} (44) 

It is worth noting that each entropy metric is designed in line with the reward function defined in this paper, but is divided 

by a duration time, indicating how much reward increases in unit operation time. In general, due to the side effects, a larger 

value of entropy indicates a greater likelihood of increasing reward when performing neighborhood moves. Therefore, we 

first construct priority list 1 in descending order of 𝜇1(𝑘) (𝑘 ∈ 𝐾). Then we construct a priority list 2 in descending order 

of 𝜇2(ℓ), and finally construct a priority list 3 in descending order of 𝜇3(𝑛).  
6.3.3. Local search strategy 

As shown in Fig. 5, we define three types of opts of neighborhood move, i.e., intra-loop move, inter-loop move, and 

insert-rejected-request move. The intra-loop move is for adjusting the visiting sequence inside a loop, while the inter-loop 

move is for adjusting sequences between different loops. And insert-rejected-request move is for accommodating a rejected 

request into a possible loop. We have summarized the local search procedures in Appendix B, which could return an improved 

solution. 
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Fig. 5 Illustration of three neighborhood move opts 

According to the devised opts, we propose a local search strategy based on Variable Neighborhood Descent (VND) 

algorithm. Given an initially planned scheme of a period, i.e., the initial solution 𝑥0, as well as the maximum iterations as stop 

criterion, the VND algorithm can be specified as follows: 
VND 

Input: 𝑥0: initial solution; 𝜏𝐿𝑆: stop criterion of maximum iterations;  
Output: 𝑥: output solution. 
1: // 𝒩𝓃(𝑥): the neighborhood of solution 𝑥 when 𝓃 opt is applied; 𝑅(𝑥): the objective value of solution 𝑥 

2: 𝑥 ← 𝑥0; 
3: 𝜏 ← 1; 
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4: Set neighborhood structure 𝒩1 of Inter-loop move, 𝒩2 of Intra-loop move and 𝒩3 of Insert-rejected-request 
move; 

5: repeat 
6:     𝓃 ← 1 ; 
7:     repeat  
8:         Find the best neighbor 𝑥1 in 𝒩𝓃(𝑥) with the largest 𝑅(𝑥1); 
9:         If there exists 𝑥1 and 𝑅(𝑥1) > 𝑅(𝑥), set 𝑥 ← 𝑥1, 𝓃 ← 1; otherwise, set 𝓃 ← 𝓃 + 1; 
10:     until 𝓃 > 3 

11:     𝜏 ← 𝜏 + 1; 
12: until 𝜏 > 𝜏𝐿𝑆 
13: Return 𝑥 

where the objective value 𝑅(𝑥) can be calculated as follows: 

 𝑅(𝑥) = 𝜌 ∙ (𝐶𝑓 + 𝐶𝑢) + (1 − 𝜌) ∙ 𝜁 ∙ 𝛽 (45) 

Once an improved solution 𝑥 is obtained, if any, we need to convert 𝑥 to an experience similar to that in RL. 𝑥 contains 

the planned routes of all buses, which can derive the actions of agents at each time interval, called ‘local search guided actions’. 

Thus, we need to initialize an RL episode for period 𝑔 and each agent can only select actions based on local-search-guided 

actions until the end of the episode. Similar to the experience replay mechanism in RL, for each interaction between agents 

and the environment, a transition ℯ = (𝑶𝑔,𝑡𝐿𝑆 , 𝑨𝑔,𝑡𝐿𝑆 , 𝑅𝑔,𝑡𝐿𝑆 , 𝑶𝑔,𝑡+1𝐿𝑆 , 𝑨̂𝑔,𝑡𝐿𝑆 )𝐿𝑆 (Note that in local search experience, we need to record 𝑨̂𝑔,𝑡𝐿𝑆 , rather than 𝑨̂𝑔,𝑡+1 in RL experience, for calculating the loss in Section 6.4), as a local search transition, is recorded and 

stored in a local search buffer of fixed size. 

6.4. Loss function design 

TD-error is the error in estimating the state value function with experiences in training, which is one of the main loss 

functions. We could sample a batch of experiences with size 𝜔𝑅𝐿 from the RL buffer each time and calculate the MSE loss 

function of TD-error by Eqs.(46)-(48). 

 𝑒𝑅𝐿 = (𝑂𝑔,𝑡 , 𝐴𝑔,𝑡 , 𝑅𝑔,𝑡 , 𝑂𝑔,𝑡+1, 𝐴̂𝑔,𝑡+1) (46) 

 𝑇𝐷𝑒𝑅𝐿 = 𝑅𝑔,𝑡 + 𝛾 ∙∑ max𝑎∈𝐴𝑔,𝑡+1𝑄𝑘(𝑜𝑔,𝑡+1,𝑘 , 𝑎𝑔,𝑡+1,𝑘 , 𝜃𝑔′ )|𝐾|
𝑘=1 −∑𝑄𝑘(𝑜𝑔,𝑡,𝑘 , 𝑎𝑔,𝑡,𝑘 , 𝜃𝑔) |𝐾|

𝑘=1  (47) 

 𝐿𝑇𝐷 = 1𝜔𝑅𝐿 ∑ 𝑇𝐷𝑒𝑅𝐿2𝜔𝑅𝐿
𝑒𝑅𝐿=1  (48) 

where 𝑂𝑔,𝑡  contains the local state of all agents, i.e., 𝑂𝑔,𝑡 = [𝑜𝑔,𝑡,1, 𝑜𝑔,𝑡,2,⋯ 𝑜𝑔,𝑡,|𝐾|], as well as 𝐴𝑔,𝑡 , 𝑂𝑔,𝑡+1 and  𝐴̂𝑔,𝑡+1;  𝜃𝑔′  is 

the parameter of the target network when the Double DQN is used, which will be updated via 𝜃𝑔 at regular intervals. 

To improve the training performance of the RL algorithm, we utilize local search experiences to supervise the training 

process to converge to the better solution obtained by the local search algorithm, i.e., the mechanism of imitation learning. A 

batch of experiences with the size of 𝜔𝐿𝑆 are sampled from the local search buffer, which can be used to calculate the imitation 

learning loss 𝐿𝐼𝐿 by Eqs.(49)-(51). 

 𝑒𝐿𝑆 = (𝑶𝒈,𝒕𝑳𝑺 , 𝑨𝑔,𝑡𝐿𝑆 , 𝑅𝑔,𝑡𝐿𝑆 , 𝑶𝑔,𝑡+1𝐿𝑆 , 𝑨̂𝑔,𝑡𝐿𝑆 ) (49) 



26 

 

 𝐿𝐼𝐿 = 1|𝜔𝐼𝐿| ∑ ∑{max𝑎∈𝐴𝑔,𝑡[𝑄𝑘(𝑜𝑔,𝑡,𝑘 , 𝑎𝑔,𝑡,𝑘 , 𝜃𝑔) + 𝜍(𝑎𝑔,𝑡,𝑘𝐿𝑆 , 𝑎𝑔,𝑡,𝑘)] − 𝑄𝑘(𝑜𝑔,𝑡,𝑘 , 𝑎𝑔,𝑡,𝑘𝐿𝑆 , 𝜃𝑔)}|𝐾|
𝑘=1

|𝜔𝐼𝐿|
𝑒𝐿𝑆=1  (50) 

 𝜍(𝑎𝑔,𝑡,𝑘𝐿𝑆 , 𝑎𝑔,𝑡,𝑘) = {0.8, argmax𝑎∈𝐴𝑔,𝑡 [𝑄𝑘(𝑜𝑔,𝑡,𝑘 , 𝑎𝑔,𝑡,𝑘 , 𝜃𝑔)] ≠ 𝑎𝑔,𝑡,𝑘𝐿𝑆0, argmax𝑎∈𝐴𝑔,𝑡 [𝑄𝑘(𝑜𝑔,𝑡,𝑘 , 𝑎𝑔,𝑡,𝑘 , 𝜃𝑔)] = 𝑎𝑔,𝑡,𝑘𝐿𝑆  (51) 

where 𝜍(𝑎𝑔,𝑡,𝑘𝐿𝑆 , 𝑎𝑔,𝑡,𝑘)  is the margin function designed to avoid the zero value of the loss function when argmax𝑎∈𝐴𝑔,𝑡,𝑘 [𝑄𝑘(𝑜𝑔,𝑡,𝑘 , 𝑎𝑔,𝑡,𝑘 , 𝜃𝑔)] = 𝑎𝑔,𝑡,𝑘𝐿𝑆 .  

In summary, the total loss function is calculated as follows: 

 𝐿 = 𝐿𝑇𝐷 + 𝐿𝐼𝐿 (52) 

 

7. Numerical experiments 

This section illustrates the implementation of our proposed algorithm for the numerical test and case study. In the 

numerical test, the well-known Sioux Falls network is adopted. In the case study, we assess the applicability of our model and 

algorithm in a real-world ‘Shared Bus’ project implemented in the Guangzhou Higher Education Mega Center, Guangdong 

province, China. All experiments are conducted on a PC with Inter (R) Core (TM) i9-10900 CPU @ 2.80GHz core processor, 

Nvidia 2080 GPU, 32GB RAM, and the system is Windows 10 system, using Python 3.7. 

7.1. Evaluation indicators 

To better evaluate the optimization performance of our proposed algorithm on the multi-period problem, we have 

designed the following evaluation indicators: 

(1) Effective average user cost (EAUC): This indicator represents the average cost of serving each passenger. In the 

presence of rejection mechanisms, it is reasonable to distribute the cost of rejections among the accepted passengers. Therefore, 

we use EAUC as a cost evaluation indicator instead of the total cost. Additionally, EAUC can provide a reference for the 

service provider’s pricing decisions. EAUC can be calculated as follows: 

 𝐸𝐴𝑈𝐶 = ∑ (𝐶𝑔𝑓 + 𝐶𝑔𝑢)𝑔∈𝐺∑ ∑ 𝑞𝑛 ∙ (1 − 𝑦𝑛𝑏)𝑛∈𝑁𝑔𝑔∈𝐺  (53) 

(2) Weighted average fairness indicator (WAFI): This indicator is one of the objectives of our optimization model. As 

mentioned in Section 4.4.2, 𝜁𝑔 represents the degree of fairness in the waiting time for the requests of period 𝑔.  However, 

since our model applies a rolling horizon framework and the second objective aims to minimize 𝜁𝑔, 𝜁𝑔 can only reflect the 

fairness of a particular period rather than the entire planning horizon. To evaluate fairness more comprehensively, we calculate 

the weighting factor for each period based on the number of passengers with immediate requests within each period, as follows: 

 𝑊𝐴𝐹𝐼 = ∑ ∑ 𝑞𝑛𝑛∈𝑁𝑔 ∙ ζ𝑔∑ ∑ 𝑞𝑛𝑛∈𝑁𝑔𝑔∈𝐺𝑔∈𝐺   (54) 

(3) Average late arrival time (ALAT): This indicator represents the average delay in arrival time for each passenger and 

is an important indicator of service quality. Note that in some cases, a request may be rejected after its latest expected departure 

time, which is also considered a late arrival. Therefore, ALAT can be calculated as follows: 
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 𝐴𝐿𝐴𝑇 = ∑ ∑ 𝑞𝑛 ∙ [max{𝑡𝑛𝑝 − 𝑡𝑛𝑙 , 0} ∙ (1 − 𝑦𝑛𝑏) +max{𝑡𝑛𝑏 − 𝑡𝑛𝑙 , 0} ∙ 𝑦𝑛𝑏]𝑛∈𝑁𝑔𝑔∈𝐺 ∑ ∑ 𝑞𝑛𝑛∈𝑁𝑔𝑔∈𝐺 ∙ (1 − 𝑦𝑛𝑏)  (55) 

(4) Response rate (RR): This indicator is the ratio between the number of successfully served requests and all requests 

during operation. 

 𝑅𝑅 = (1 − ∑ ∑ 𝑦𝑛𝑏𝑛∈𝑁𝑔𝑔∈𝐺∑ ∑ 1𝑛∈𝑁𝑔𝑔∈𝐺 ) ∙ 100% (56) 

7.2. Numerical test 
7.2.1. Experimental setup 

As depicted in Fig. 6, the Sioux Falls network consists of 24 stops, with stop 0 serving as a depot, and the remaining 23 

stops acting as intermediate stops. To better simulate travel demand characterized by urban residents, we introduce a central 

area (highlighted in orange) within the road network with a higher density of travel demand. 

For the single-period problem, we consider a static problem of medium size, and randomly generated 10 instances with 

30 requests over one hour. In a static problem instance, the origin and destination of each request are randomly generated 

among the service stops. However, we do not consider the influence of the ‘central area’ in the static problem. The expected 

earliest departure time ( 𝑡𝑛𝑒 ) for request 𝑛  is randomly drawn from a uniform distribution within a 1-hour range, i.e., 𝑡𝑛𝑒~ 𝑼(0, 60), while the latest departure time (𝑡𝑛𝑙 ) is obtained by adding a random value drawn from a uniform distribution of 

1 to 15 to the expected earliest departure time. The number of required seats for each request is a random integer within the 

range of 1 to 3. 
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Fig. 6 Sioux Falls Network 

In the multi-period problem, we considered a dynamic scenario. As for request generation, we assume that the number 
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of requests generated from the stop 𝑖1 to 𝑖2 within the planning horizon follows a Poisson distribution with an index 𝜆𝑖1,𝑖2, i.e., |𝑁𝑔|~ 𝑷(𝜆𝑖1,𝑖2). In this case, if the origin 𝑖1 is in the central area, 𝜆𝑖1,𝑖2 is set to 0.2; otherwise, 𝜆𝑖1,𝑖2 is set to 0.16. The type 

of each generated request (reservation or immediate request) is determined by a random number with a probability of 0.5. The 

generation of the required number of seats for each request, the expected departure time window for each reservation request, 

as well as the submission time and the latest departure time for an immediate request, are similar to those in the single-period 

problem instance. Based on these assumptions, we generated an instance with 86 requests over three hours, and 50% of them 

were reservation requests. 

We assume that the number of time intervals of each period (|𝑇|) is 30, the average speed of each vehicle (𝑣𝑒𝑙) is 30 

km/h, the associated unit transportation and penalty cost coefficients 𝛿𝑓 , 𝛿𝐻 ,  𝛿 𝑙 and 𝛿𝑏  are 1.2 ¥/𝑘𝑚 , 0.5 ¥/𝑚𝑖𝑛,  0.5 ¥/(𝑚𝑖𝑛 ∙ 𝑝𝑎𝑥) and 10 ¥/𝑝𝑎𝑥, respectively, the tardiness coefficient (𝛼) is 2.5, and the weight of the cost objective (𝜌) is set 

to 0.8. The scaled coefficient of two types of rewards (𝛽) is set to 20, which is empirically obtained through the trial-and-error 

method by running preliminary experiments with different values of 𝛽, such that the EAUC and WAFI indicators have the 

same order of magnitude in multi-objective optimization. In the principle of objective weighting, the value of 𝛽 could be 

flexibly tuned through additional tests or sensitivity analysis in other applications. These values serve as the default settings 

unless specifically indicated otherwise. 

Regarding the hyperparameter values, we employ 2-layer fully connected RNN networks as our deep neural network 

architecture, with each hidden layer consisting of 64 neurons. Additionally, we set the number of training steps (𝜏max𝑅𝐿 ) to 8000, 

the iterations of local search algorithm (𝜏max𝐿𝑆 ) to 2000, the learning rate to 0.01, the discount factor (𝛾) to 0.95, the initial 

exploration rates (𝜖1 and 𝜖2) to 0.4 and 0.6, respectively, and the corresponding decay steps (𝜏max𝜖1  and 𝜏max𝜖2 ) to 4000 and 8000 

(as described in Section 5.2.3). For experience replay, we set the size of the RL buffer and local search buffer to 5000 and 

2000, respectively, and the mini-batch size for 𝜔𝑅𝐿 and 𝜔𝐿𝑆 to 32. The interval for updating the target network is set to 100. 

The RMS optimizer is adopted in our experiments. 

7.2.2. Discussion of the single-period problem 

The capability to solve the single-period problem is basic to measure one algorithm’s performance. In this section, we 

evaluate our proposed algorithm’s performance to solve the single-period problem in terms of assessing training evolution. 

In addition, we explore the benefits of the novelties introduced in this paper, including the integration with IL and local search 

method (Section 6.3 and 6.4) and the improved 𝜖-greedy strategy (Section 6.2).  

7.2.2.1. Assessing DRL training 

Training is the cornerstone of MARL because it determines the ultimate solution quality. In this subsection, we evaluate 

the training process of the proposed MARL algorithm in this paper, which applies the CTDE framework (described in Section 

6.1) to train each agent. In comparison, we also introduce a decentralized MARL framework, which individually trains the 

policy for each agent. Both algorithms are applied to solve 3 randomly generated medium-size instances mentioned in Section 

7.2.1. In addition, since bi-objective optimization is one of the main focuses of this paper, it is necessary to assess the effect 

of different reward weights (𝜌) on the algorithm performance. Therefore, we evaluate the performance under different values 

of 𝜌, i.e., 𝜌 = 0, 𝜌 = 0.5 and 𝜌 = 1. 

To validate the stability of the above algorithms and reduce random errors, we employed 10 different random seeds to 

initialize the neural network for each instance during the training process and obtained 10 sets of results for each algorithm.  

We calculated the average value of the results from these 10 experiments as the output value for each instance. This approach 
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helps to account for the variability introduced by random initialization and provides a more robust assessment of the 

performance (which will be continuously conducted in the following experiments).  

Fig. 7 presents the training evolution of CTDE and the decentralized framework-based MARL algorithm. The graph 

demonstrates the consistent superiority of our proposed algorithm (CTDE) over the decentralized algorithm in almost all 

instances except for instance 1 which exhibits a closer performance between both algorithms when 𝜌 is set to 0.5 and 1, 

indicating a comparable convergence in cumulative reward. Nevertheless, our proposed algorithm exhibits remarkable 

performance across the rest of the instances and maintains its superiority when various objective weights are incorporated.  

Regarding training stability, the curves of CTDE of all instances consistently ascend and converge to a stable level after 5000 

steps, regardless of the value of 𝜌. Conversely, the Decentralized algorithm often fails to achieve convergence in a majority 

of instances (5 out of 9). This observation reveals the robust scalability of our proposed algorithm, which ensures consistent 

and reliable training performance. In terms of convergence value, measured as the average cumulative reward during the final 

500 training steps, a notable gap is observed between CTDE and Decentralized. On average, CTDE achieves convergence 

values that are 61.23%, 32.24% and 32.1% on average higher when 𝜌 is set to 0, 0.5 and 1, respectively. This signifies the 

superior convergence capability of our proposed algorithm for searching for an improved solution. Furthermore, an interesting 

observation arises as the difference between the two curves tends to widen with decreasing 𝜌 values. This finding suggests 

the effectiveness of our algorithm in addressing fairness objectives and providing optimal solutions in scenarios where fairness 

considerations are critical. 

 

Fig. 7 Evolution of training process (10 random seeds) 

Fig. 8 illustrates the training evolution of our proposed algorithm solving instance 1, as measured by four evaluation 
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indicators described in Section 7.1. All four indicators exhibit a favourable optimization trend as the training progresses. 

Regarding the EAUC and WAFI indicators, they initially show fluctuations within the first 4000 steps and then rapidly 

converge to values of 6.268 and 3.485, representing a reduction of 36.66% and 68.32% compared to their initial values 

respectively. The result shows that our algorithm is effective in solving the dual-objective optimization problem for cost 

savings and fairness improvement simultaneously. Meanwhile, the evaluation indicators for service quality (the ALAT and 

RR) improve significantly. Specifically, ALAT decreases from its highest value of approximately 6.059 minutes to 0.142 

minutes, while RR increases from its lowest value of approximately 58% to 96%.  

 

Fig. 8 Evolution of evaluation indicators solving instance 1 (10 random seeds) 

7.2.2.2. Algorithmic comparison 

To validate the effectiveness of heuristics-guided DRL, we conduct the ablation study by comparison among the 

following models. All three algorithms are applied to solve 10 randomly medium-size instances following the method 

mentioned in Section 7.2.1. The instances were generated to have no differences other than random effects. 

1． Heuristics-guided DRL refers to the DRL combining IL with local search methods, augmented with the improved 𝜖-

greedy strategy leveraging the time-related information to guide the exploration during DRL training. 

2． DRL represents the traditional DRL without IL and local search methods. 

3． Local search refers to the heuristics described in Section 6.3.3. 

4． Heuristics-guided DRL with classic 𝝐-greedy strategy refers to the DRL combining IL with local search methods, but 

without the improved 𝜖-greedy strategy. The classic 𝜖-greedy strategy is widely used in most RL studies (Lowe et al., 

2017; Mao et al., 2020; Ahamed et al., 2021), such as Q-learning and traditional DRL. 

The study compares the heuristics-guided DRL with two benchmarks, namely DRL and local search, on problems of the 

10 instances and shows that the method provides objective values that are on average 25.7% better than DRL and 43.4% better 

than local search, respectively. This result highly demonstrates the added benefit of integrating IL and local search methods 

with DRL. 

We also compare the heuristics-guided DRL to the version with the classic ϵ-greedy strategy. The result shows that 

heuristics-guided DRL with the improved ϵ-greedy strategy provides the objective value that is on average 52.1% better than 

that with the classic ϵ-greedy strategy. This demonstrates the effectiveness of introducing the designed improved ϵ-greedy 

strategy. 

7.2.3. Discussion of the multi-period problem 

To verify the effectiveness of our proposed algorithm in addressing the multi-period problem as a dynamic scenario, we 
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first generated 10 instances based on parameters of Poisson distribution in Section 7.2.1 and applied our proposed algorithm 

to solve them. We focus on examining the benefits of using the operation that incorporates demand prediction methods 

(referred to as ‘with prediction’). As a comparison, we also solve the same instance using the approach that does not 

incorporate demand prediction (referred to as ‘without prediction’). Note that in the numerical tests, due to the lack of 

historical data, we are unable to perform proper demand prediction. Hence, we assume that the immediate requests in the 

generated instances as perfect demand predictions with no prediction error. In the multi-period problem experiment, the 

default value of period length (𝐻) is set to 30 minutes, and the values of the other parameters are set to their default values in 

Section 7.2.1 unless specifically indicated otherwise. 

We analyze the results of three indicators and the average planning time for each period when solving the multi-period 

problem with and without demand prediction. In this experiment, we used 10 random seeds to initialize the DNN network, 

and the results are listed in Appendix C. The results demonstrate that the operation with demand prediction consistently 

outperforms the operation without demand prediction across all 10 seeds. Significant reductions of 58.4%, 73.4%, and 94.6% 

are observed in EAUC, WAFI, and ALAT, respectively. These highlight the advantages of incorporating demand prediction 

in terms of cost reduction, passenger fairness improvement, and service quality enhancement when the prediction method 

achieves sufficient accuracy. The substantial improvement can be attributed to the larger scale effect and the ability to 

anticipate future demands provided by the demand prediction mechanism. Note that the planning time for each period in the 

operation with demand prediction is longer compared to the operation without demand prediction (12.88s on average). This 

is due to the additional computational time required for correcting prediction errors, involving neighborhood moving and 

feasibility checking, which is performed when each immediate request is submitted (even though in perfect prediction 

instances neighborhood moving is ignored, feasibility checking is still carried out throughout the entire planning stage). In 

addition, no significant difference can be observed in RR between the two operations, which implies that the operation with 

prediction can significantly improve the other three indicators to a greater extent while ensuring a high response rate. 

7.2.4. Sensitivity analysis 

A series of sensitivity analyses are conducted to examine the model performance under different situations. Three critical 

factors impacting the model performance are studied: the period length (𝐻), the weight of the cost objective (𝜌), and the 

prediction error ratio (𝜓). 

7.2.4.1. Sensitivity analysis to the period length 𝐻 

 

Fig. 9 Sensitivity to the period length 

Fig. 9 illustrates the impact of different period lengths for time horizon division on system performance under operations 

with and without demand prediction. While the differences in RRs are trivial, the gaps of EAUC, WAFI, and ALAT between 
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operations with and without demand prediction are generally larger as 𝐻 increases. There is an inflection point for EAUC. As 𝐻 increases from 5 to 10, EAUC decreases slightly by 1.56%, while increasing by 114.3% as 𝐻 further increases to 50. It is 

because a larger 𝐻 allows more requests to be planned simultaneously at the expense of less flexibility in schedule adjustment, 

such that the negative impact of reduced frequency of schedule adjustment outweighs the benefit of centralized planning when 𝐻 exceeds a threshold. On the contrary, EAUC decreases as 𝐻 grows when demand prediction is considered. There are two 

reasons for this. First, demand prediction can mitigate the negative impact of the reduced frequency of schedule adjustments. 

Second, a longer look-ahead length (𝐻) allows for considering a larger amount of system information for the near future. 

Similarly, WAFI and ALAT increase considerably with a higher value of 𝐻, whereas the changes are trivial when demand 

prediction is considered. This is because the immediate requests cannot be served in time under a low frequency of schedule 

adjustment.  

7.2.4.2. Sensitivity analysis to the objective weight 𝜌 

 

Fig. 10 Sensitivity to the objective weight 

Fig. 10 presents the impact of the objective weight 𝜌 on the four indicators. Eq. (29) shows that as 𝜌 increases, the cost 

objective will be more emphasized. Typically, when 𝜌 = 0 , only fairness optimization is considered; when 𝜌 = 1 , cost 

optimization is emphasized exclusively. The differences in RRs between both operations are trivial. As 𝜌 increases, EAUC 

decreases while WAFI increases, which indicates the trade-off between costs and fairness. The magnitude of changes in EAUC 

and WAFI are different. Specifically, when 𝜌 increases from 0 to 1, EAUC reduces exponentially by 17%. WAFI increases 

slightly by 1.523% as 𝜌 increases from 0 to 0.5, whereas it increases significantly by 42.66% when 𝜌 increases to 1. Based 

on these results, when the operation with prediction is adopted, it appears that setting 𝜌 to 0.5 could yield a good trade-off 

between the two objectives, since it can quickly reduce EAUC without significant increase in WAFI. ALAT without prediction 

reduces considerably as 𝜌 increases, whereas the change is trivial under the operation with prediction. This is mainly because 

cost optimization contributes to reducing time windows penalty cost, and emphasizing fairness more would deteriorate this 

indicator. However, introducing the prediction approach could mitigate this negative effect.  

7.2.4.3. Sensitivity to the prediction error parameter 𝛹 

While it is shown that demand prediction improves the system performance to some extent, it is not uncommon for the 

service provider to encounter the issue of information reliability. The question remains open whether the predictive 

optimization model can outperform the model without prediction in the presence of prediction errors. To measure the impact 

of prediction errors on the operation, we modify the generated request set to simulate the scenario with prediction errors. We 

assume that the predicted number of passengers of immediate requests generated in the numerical test is 𝑞̃𝑛, and the actual 

number of passengers for each request (𝑞𝑛) equals 𝑞̃𝑛 plus an random error term ∆~𝑁(0,Ψ𝜎0), represented by Eq.(57), where 
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𝛹 denotes the demand prediction error parameter and 𝑞̃𝑛(𝛹) denotes the actual number of passengers of request 𝑛 with 𝛹.  

 𝑞𝑛(𝛹) = {𝑞̃𝑛 + 𝜎, 𝑞̃𝑛 + 𝜎 ≥ 00, 𝑞̃𝑛 + 𝜎 < 0 , 𝜎~𝑁(0,𝛹𝜎0), ∀𝑛 ∈ 𝑁̈𝑔 , 𝑔 ∈ 𝐺 (57) 

Fig. 11 presents the impact of demand prediction errors on system performance, where the horizontal lines correspond 

to the indicator values without prediction. To examine the benefit of prediction error correction, the results of prediction 

failure-aware policy, referred to as ‘Prediction + Correction’, are benchmarked with its simplified version without prediction 

error correction. As we can see, the operation incorporating a prediction method (no matter with or without correction 

mechanism) outperforms by far the operation without prediction at the expense of a slight reduction of RR, which validates 

the benefits of introducing demand prediction method. Under the operation with prediction, the indicators appear to deteriorate 

as 𝛹  increases, especially when 𝛹  increases from 0 to 0.1. Nevertheless, EAUCs, WAFIs and RRs with prediction error 

correction are consistently better than those without prediction error correction, and the gaps between them appear to be larger 

with a higher value of 𝛹, particularly for EAUCs and ALATs. This indicates that the prediction error correction mechanism 

contributes to alleviating the negative impact of prediction errors. The differences in WAFIs are not outstanding, which implies 

that the impact of prediction errors on fairness is limited.  

 

Fig. 11 Sensitivity to the prediction error parameter 

7.2.5. Benchmarking with state-of-the-practice methods under different problem sizes 

The problem instances, ranging from small to large, include Case 1 with 12 requests and 1 bus, Case 2 with 91 requests 

and 12 buses, Case 3 with 180 requests and 25 buses, and Case 4 with 302 requests and 30 buses. These instances, generated 

randomly for generality, span a 90-minute duration divided into three periods under a rolling planning framework, effectively 

gauging the algorithm’s performance across diverse problem scales. 

For comparison, we employ the commercial solver Gurobi and the genetic algorithm (GA, Tan et al., 2001). The settings 

of crossover rate and mutation rate of GA are set to 0.8 and 0.2, respectively.  The variable neighborhood search (VNS) 

method is adopted as another benchmark, which includes three specified neighborhood opts described in Section 6.3.3, and 

two additional opts of random move for ‘intra-loop’ and ‘inter-loop’ are designed to increase search potential. The maximum 

iterations of GA and VNS are set to 1000. Another benchmark, the traditional DRL without enhancement by IL and Local 

search is also applied here as a benchmark, which works well in recent pickup and delivery problem studies (Singh et al., 

2019; Ahamed et al., 2021; Liu et al., 2022). All algorithms are measured by the objective value calculated by Eq. (45) and 

four indicators described in Section 7.1, in addition to average computational time and training time per period (for DRL-

based algorithms only). The average computational time is the actual execution time for real-time implementation in the 

rolling planning framework. 
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Table 2 reports the performance comparison of five algorithms for solving four cases. It can be seen that our proposed 

algorithm (DRL + IL + Local search) outperforms other benchmarks in terms of objective and computational time in all cases 

except for case 1, where all algorithms obtain the optimal solution. As the problem size increases, the performance gap 

between the heuristic and DRL-based methods widens significantly. For instance, in Case 2, our algorithm’s objective value 

is notably lower than that of GA and VNS by 29% and 27.8%, respectively, and this gap expands to 43% in Case 4, 

underscoring the DRL-based algorithm’s advantage for large-scale challenges. In addition, DRL-based algorithms 

demonstrate superior RR compared to heuristic methods.  The RRs of GA in Case 2 and Case 3 are quite low, at 54.7% and 

51.5% respectively, which might have a serious impact on actual operation. The RRs of VNS in Case 2 and Case 3 reach 

nearly 100%, very close to that of our proposed algorithm. However, the gap widens in Case 4 by 13.2%, where GA is unable 

to obtain a feasible solution. This indicates that the DRL-based algorithms have better performance in solving the dynamic 

schedule problem in the hybrid-request context. The difference between GA and VNS in RR might be attributed to the 

introduction of a customized operation VNS, ‘Inject-Rejected-Request move’ is designed for VNS to reduce the rejected 

requests. 

Furthermore, another advantage of DRL-based algorithms is less computational time. Even in Case 4 with the largest 

request size, the average computational time of our proposed algorithm is only 5.49s, while that of VNS reaches 540s, which 

is 100 times greater, and GA is unable to solve Case 4 within 1000s. Furthermore, by comparing the result of ‘DRL + IL + 

Local search’ with traditional DRL, it is evident that our proposed integration framework keeps consistent superiority for 

Cases 2, 3 and 4, with a reduction in the objective value of 8.7%, 8.8% and 14.7% respectively, despite the training time is 

increased when integrating IL and local search method, which are 3.6%, 3.9%, 7.3% and 6.5% among four cases. In fact, 

since the service provider can apply a well-trained network in real-world applications, the cost of the increase in training time 

can be neglected.  

In conclusion, our proposed algorithm not only effectively reduces objective value across varying problem sizes but also 

maintains high computational efficiency and adaptability. Although the training time of the algorithm increases with the size 

of the problem, its performance in terms of the key indicators highlights its considerable potential and effectiveness in tackling 

real-world challenges across various settings. 

Table 2 Performance comparison of different problem sizes 

Case Algorithm Case 1 Case 2 Case 3 Case 4 
Objective value Gurobi 124.6 / / / 

 GA 124.6 857.2 1696 / 
 VNS 124.6 843.1 1342 3148 
 DRL 124.6 666.7 1112 2105 
 DRL + IL+ Local search 124.6 608.6 1014 1795 

EAUC (CNY) Gurobi 4.089 − − − 
 GA 4.089 10.27 10.41 − 
 VNS 4.089 5.703 4.504 7.044 
 DRL 4.089 4.326 3.731 4.34 
 DRL + IL+ Local search 4.089 3.984 3.422 3.649 

WAFI Gurobi 2.75 − − − 
 GA 2.75 2.329 2.597 − 
 VNS 2.75 5.617 4.27 6.576 
 DRL 2.75 4.514 3.889 5.327 
 DRL + IL+ Local search 2.75 3.846 3.461 4.363 

ALAT (min) Gurobi 4.321 − − − 
 GA 4.321 0.7445 0.2662 − 
 VNS 4.321 2.35 1.275 4.467 
 DRL 4.321 2.109 1.368 2.622 
 DRL + IL+ Local search 4.321 1.586 1.004 1.708 
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RR (%) Gurobi 100% − − − 
 GA 100% 54.72% 51.45% − 
 VNS 100% 98.2% 99.2% 86.7% 
 DRL 100% 99.9% 100% 98.5% 
 DRL + IL+ Local search 100% 100% 100% 99.9% 

Average computational time per period (sec)  Gurobi 0.16 − − − 
 GA 0.74 30.1 74.3 − 
 VNS 0.24 32.4 110 540 
 DRL 0.07 0.56 0.73 4.28 
 DRL + IL+ Local search 0.16 0.7 1.29 5.49 

Average training time per period (sec) Gurobi − − − − 
 GA − − − − 
 VNS − − − − 
 DRL 5.61 87.8 234 489 
 DRL + IL+ Local search 5.8 90.7 251 521 

Note: A solution could not be obtained within 1000s or the data is not available is marked as ‘−’  
7.3. Case studies 

7.3.1. Real-world application of demand prediction model 

In this section, we introduce a real-world application for forecasting demand. Long Short-Term Memory (LSTM) 

recurrent neural networks have established a strong foothold in the realm of time series forecasting due to their exceptional 

ability to model sequential data and capture long-term dependencies (Wang et al., 2019). Their architecture is specifically 

advantageous in learning from and remembering information over extended periods, which is crucial for accurate predictions 

in dynamic systems like transportation. The specific description of the prediction model is detailed in Appendix D. 

7.3.2. Case description 

In this section, we report on the applicability of our algorithm via a real-world bus network, Guangzhou Higher Education 

Mega Center, and compare the performance of our algorithm with the state-of-the-practice and other approaches from the 

literature. At present, 68 pick-up stops and 100 drop-off stops have been set up in this area for the ‘Share Bus’ project. Fig. 

12 shows the interface of the App and the operation of the flexible bus service, and Fig. 13 shows the distribution of stops in 

the area. The operation of ‘Shared Bus’ project is of FBS operation, which means the scheduled routes of buses are not fixed 

and dynamically changed in response to the upcoming requests. The information on riding requests and vehicle operation is 

provided by the local bus company. The operation duration is from 8:00 to 21:00, which is quite long for static optimization. 

To align with our FBS framework, we formulate this case study as a multi-period problem, set the period length 𝐻 to 30 

minutes, and assume the requests of the first period are reservation requests, while the rest are regarded as immediate requests. 

The other model parameters are set following the default values in Section 7.2.1, except for the fleet size |𝐾| and the objective 

weight 𝜌, which is set to 5 and 0.5 in this case.  

 

(a) Interface of App 

 

(b) Vehicle employed 
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Fig. 12 ‘Share Bus’ application in Guangzhou Higher Education Mega Center 

 

Fig. 13 Spatial distribution of bus stops 

As mentioned in Section 7.3.1, the historical data for a total of 21 days from Aug. 3 to Aug. 24, 2021, which is provided 

by the ‘Shared Bus’ project, is used as the training set to predict the immediate requests from Aug. 25 to Aug. 31, and the 

historical data for those 7 days is used as the testing set. The average number of passengers in those 7 days is 117. As for the 

prediction model, we set the prediction length to 15 minutes for predictions. Note that a predicted request is not identical to 

an actual request, because the predictions could only estimate the number of passengers departing from one stop to another 

within the prediction interval, without precise departure time windows, while that of an actual request is deterministic. To this 

end, we assume the predicted demand from one stop to another within a certain prediction interval as one request, whose time 

window spans the whole prediction interval. In other words, if a request is generated within the prediction interval as predicted, 

and the number of passengers is correctly forecasted, we call it a successful prediction, otherwise, it is a failed predicted 

request. Given that prediction errors are inevitable in real-world operations, implementing a correction mechanism for these 

errors is crucial to maintaining the effectiveness of our proposed algorithm. By this means, we need to recalculate the relevant 

indicators after each correction. This correction would not lead to a serious impact, as demonstrated in Section 7.2.4.3, our 

proposed algorithm has shown better performance than that without a demand prediction model, even with a significant 

prediction error parameter. However, evaluating the performance of the prediction model is essential for further analysis and 

operational improvements. To this end, we employ two classic evaluation metrics, mean squared error (MSE) and mean 

absolute error (MAE), commonly used in prediction studies, and introduce failed prediction ratio (FPR) as an additional 

measure of the accuracy of our model. These three metrics are calculated as follows: 

 𝑀𝑆𝐸 = 1∑ ∑ 1𝑛∈𝑁̃𝑔𝑔∈𝐺 ∑ ∑(𝑞𝑛 − 𝑞̃𝑛)2𝑛∈𝑁̃𝑔𝑔∈𝐺  

𝑀𝐴𝐸 = 1∑ ∑ 1𝑛∈𝑁̃𝑔𝑔∈𝐺 ∑ ∑|𝑞𝑛 − 𝑞̃𝑛|𝑛∈𝑁̃𝑔𝑔∈𝐺  

𝐹𝑃𝑅 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 × 100% 

(58) 

7.3.3. Results and discussion 

Table 3 demonstrates the request size and result of the measurement of prediction metrics from Aug. 25 to Aug. 31. The 

model demonstrates a capacity for reasonable accuracy on certain days, as evidenced by lower MSE, MAE and FPR, 

particularly on Aug. 27. However, the highest MSE reaches to 0.3134, recorded on Aug. 28, just one day after its best recording, 
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indicating variability in the model’s prediction accuracy across different days. Even with prediction error, the average FPR of 

seven days is 14.6%, which is still not greater than the high-setting prediction error parameters in Section 7.2.4.3.  

Based on the predicted demand, we applied our proposed algorithm and two other well-performed benchmarks 

(individual DRL and Local search methods) discussed in Section 7.2. Three algorithms are performed with demand prediction, 

which are referred to as ‘DRL + IL + Local Search + LSTM’, ‘DRL + LSTM’, and ‘Local search + LSTM’, respectively. In 

addition, we compare them with our proposed algorithm without a demand prediction model (referred to as ‘without 

prediction’), to solve the actual optimization problem for those 7 days. For each period, we set the training steps to 5000.  

As measured by the four evaluation indicators described in Section 7.1, the results also are compared with the results of 

the historical operation provided by ‘Shared Bus’ project (referred to as ‘existing approach’), which is claimed using hybrid 

heuristic algorithms including GA. Without loss of generality, we set 10 random seeds for each designed algorithm.  

Table 3 Demand prediction metrics from Aug. 25 to Aug. 31 

Date Aug. 25 Aug. 26 Aug. 27 Aug. 28 Aug. 29 Aug. 30 Aug.31 

Request size 105 113 113 67 74 113 101 

MSE 0.2381 0.2832 0.115 0.3134 0.1622 0.2655 0.2376 

MAE 0.1429 0.1947 0.0796 0.2239 0.1081 0.1593 0.1584 

FPR (%) 11.43 17.7 8.85 25.37 13.51 11.5 13.86 

Table 4 reports the results of the overall objective value on average of each test day. Despite the slight increase in planning 

time, our proposed algorithm reaches the best performance in terms of objective value, with gaps of 5.9%, 7.5%, 13.3% and 

50.1%, compared to other results respectively.  The average planning time is approximately 20 seconds for each period. Note 

that the experiments were conducted using a personal computer. Service providers usually have more powerful servers that 

can computer 10-20 times faster. Therefore, the results can scale to operational durations with immediacy requirements.    

Fig. 14 presents the specific performance result of each algorithm and state-of-the-practice. Evidently, our proposed 

algorithm keeps its superiority over other approaches, with the best results of indicators throughout the seven days. Compared 

to the ‘actual data’, all our designed algorithms improve the EAUC, WAFI, ALAT and RR indicators considerably. Among 

them, the EAUC indicators witness the average reductions in 7 days of 24.3%, 19.7%, 18.8% and 19.3% respectively, while 

the WAFI indicators of those drop by 76.1%, 72.8%, 73.4% and 69.7%, respectively. The ALATs decrease by 87.6%, 86.1%, 

79.2% and 73.5%, while the RRs increase to almost 100%. These improvements highlight the promising application results 

of our approaches. Interestingly, we observe that the ALAT indicators of the ‘Local search + LSTM’ and ‘without prediction’ 

approaches on Aug. 26 are approximately 0.266 and 0.402 minutes higher than that of the ‘actual data’. However, this trade-

off is reasonable as it significantly improves the response rate for passengers. In fact, on that day, the RR indicators of these 

two approaches reached almost 100%, whereas the RR of the actual data remains the lowest value at 74.8%.  

We proceed to evaluate the advantages of introducing demand prediction operation. By comparing the ‘DRL + IL + Local 

Search + LSTM’ with ‘without prediction’, the improvements of the four indicators by the former in 7 days are reported as 

follows: the EAUC decreased by 6.1%; the WAFI decreased by 21.1%; the ALAT decrease by 53.3%, and the RR slightly 

drop by 0.04%. This result shows that incorporating demand prediction greatly improves cost and fairness indicators while 

reducing late arrival time, all with a negligible impact on the response rate. 
Table 4 Metrics of the objective value and planning time of the case study 

Algorithm Objective value (on average) Average planning time per period (sec) 
DRL + IL + Local search + LSTM 456.5 21.2 
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DRL + LSTM 483.6 18.1 

Local search + LSTM 490.9 11.2 

Without prediction 517.3 19.5 

Existing approach 685 − 

 

Fig. 14 Results of the case study 

8. Concluding remarks 

The flexible bus service is an essential component of the multimodal transit system. In this paper, we investigate 

prediction failure risk-aware dynamic scheduling FBS with hybrid requests and fairness considerations. The problem is 

formulated as a multi-objective sequential decision process and addressed by a new MARL framework integrating imitation 

learning and heuristics. The demand forecasting and prediction error correction modules are embedded into the MARL 

framework to enhance the foresight of the planned scheme. Furthermore, we leverage the valuable time-related information 

about the real-time spatio-temporal relationship between operating vehicles and passengers, and further propose an improved 

ϵ-greedy strategy to improve exploration efficiency. In addition, we integrate the MARL framework with a local search and 

the IL approach. In particular, three customized operators and the ‘entropy’ metric are proposed in the local search method. 

This combination not only utilizes the great exploration capability of the RL but also the exploitation capability of the local 

search method, to further improve the performance in improving solution quality.  

Our model is validated by the Sioux Falls network and a real-world case study in Guangzhou. We provide four evaluation 

indicators to investigate the performance of our proposed algorithm as well as several benchmarks solving both single-period 

and multi-period problems for various operational settings. The results highlight the benefits of our proposed method: 1) it is 

comparable to the prevailing RL approaches as well as other benchmarks in terms of solution quality in both static and 

dynamic scenarios; 2) incorporating demand prediction method into the flexible bus operation can increase the system’s profit 

and improve its service level for passengers. The improvement due to prediction is significant even when the prediction is 
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imperfect because the correction mechanism for prediction errors ensures the effectiveness of our algorithm.   

The results also can provide several useful managerial implications to the service provider. First, despite the presence of 

potential prediction errors, the service provider should operate with demand prediction by leveraging the historical travel 

demand data to yield a foresighted scheme, while striving to enhance prediction accuracy. Second, the time-related 

information about the real-time spatio-temporal relationship between operating vehicles and requests is valuable, since it 

provides excellent guidance in the dynamic scenario. Third, the important operational settings affect the outcome of our 

algorithm essentially: 1) there is a trade-off between the request scale and flexibility of route adjustment frequency due to 

different period lengths in dynamic planning, whereas the operation with demand prediction could resolve this conflict more 

compatibly; 2) there is a trade-off between cost objective and fairness objective in the hybrid request mode, and in practice, 

the service provider can weigh the objectives based on the relative importance between different groups of passengers.  

Our approach has the potential to act as a generic methodology for solving a wide range of similarly structured dynamic 

optimization problems in other application fields. In subsequent work, more exogenous factors and solution approaches can 

be embedded in our modelling framework. For instance, while this paper primarily focuses on the dynamic scheduling 

problem with a single-vehicle type, it might be interesting to explore the heterogeneous dynamic scheduling problem with 

different vehicle types and capacities. Another extension to consider is to combine the present modelling framework with 

pricing optimization in reaction to passengers’ willingness to pay, to further increase ride pooling and improve profitability. 
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Appendix A. Pruning of action space 

A1. Pruning subject to visiting orders 

It is necessary to conduct the pruning method on action space subject to visiting orders to avoid the waste of redundant 

and invalid decisions. First, to ensure that a certain request cannot be assigned to more than one bus, at the decision phase for 

any bus 𝑘 ∈ 𝐾, 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑝  can be considered as a valid action only when 𝑡𝑛𝑝 = ∅, i.e., request 𝑛 has not been picked up by 

any bus yet. Second, we need to ensure that the delivery of a request must come after its pick-up event, i.e., for a request 𝑛, 

its delivery must come after its pick-up. In this case, we can define 𝑁𝛼(𝑖𝑔,𝑡,𝑘) as the set of on-board requests for bus 𝑘 arriving 

at 𝑖𝑔,𝑡,𝑘. Therefore, for bus 𝑘, if request 𝑛 ∈ 𝑁𝛼(𝑖𝑔,𝑡,𝑘), then delivering request 𝑛 (i.e., the action 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑑) is considered a 

valid action for bus 𝑘 at that moment. On the other hand, if request 𝑛 does not belong to 𝑁𝑔,𝑡,𝑘𝛼 , the action of 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑑 is 

removed from 𝐴̂𝑔,𝑡,𝑘. 

A2. Pruning subject to tardiness constraints 

The sequence of pick-up and drop-off stops of any vehicle is subject to the tardiness constraint (Section 4.5.3). 

Specifically, if |𝑁𝛼(𝑖𝑔,𝑡,𝑘)| = 0, i.e., there is an on-board request with bus 𝑘, then no pruning subject to the tardiness constraint 

is required. If |𝑁𝛼(𝑖𝑔,𝑡,𝑘)| ≠ 0, for any unassigned or unfinished request, whether it can be served (including pick-up and 

delivery) by bus 𝑘  is determined by its present location 𝑖𝑔,𝑡,𝑘 , 𝑁𝛼(𝑖𝑔,𝑡,𝑘)  and the pick-up time of the related requests of 
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𝑁𝛼(𝑖𝑔,𝑡,𝑘). There are two scenes to identify whether bus 𝑘 can visit a stop to serve request 𝑛: 

Scene 1: To identify whether 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑝 is a valid action for bus 𝑘 when request 𝑛 has not been assigned to any vehicle 

yet, i.e., 𝑛 ∉ 𝑁𝛼(𝑖𝑔,𝑡,𝑘). In this situation, if there exists a trip sequence ℓ that accommodates every request of 𝑁𝛼(𝑖𝑔,𝑡,𝑘) and 

request 𝑛 could satisfy the tardiness constraint, then 𝑖𝑛𝑝 could be a valid action for bus 𝑘. The beginning stop of the sequence 

is certain, i.e., 𝑖𝑛𝑝, the pick-up stop of request 𝑛. Specifically, considering a possible sequence  ℓ = (𝑖𝑛𝑝, ⋯ , 𝑖𝑛𝑑 ,⋯⏞    |𝑁𝛼(𝑖𝑔,𝑡,𝑘)|+1), the 

pick-up time and drop-off time of every request including 𝑛 can be derived from the route sequence and previous information 

(where the pick-up time of all requests is known except request 𝑛). If there exists a sequence ℓ which satisfies Eqs. (59)-(61), 

then 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑝 is valid for bus 𝑘 at time interval 𝑡 of period 𝑔; otherwise, it should be removed from 𝐴̂𝑔,𝑡,𝑘. 

 𝑡𝑛𝑝 = 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 + 𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑛𝑝) 𝑣𝑒𝑙⁄ + 𝑎𝑔,𝑡,𝑘ℋ∗
 (59) 

 𝑡𝑛1𝑑 = 𝑡𝑛𝑝 + ∑ 𝐷𝐼𝑆(𝑖−, 𝑖)𝑣𝑒𝑙𝑖=𝑖𝑛1𝑑
𝑖−∈ℓ,𝑖∈ℓ , ∀𝑛1 ∈ 𝑁𝛼(𝑖𝑔,𝑡,𝑘) ∩ {𝑛} (60) 

 𝑡𝑛1𝑑 − 𝑡𝑛1𝑝 ≤ 𝐷𝐼𝑆(𝑖𝑛1𝑝 , 𝑖𝑛1𝑑 )𝑣𝑒𝑙 ∙ 𝛼, ∀𝑛1 ∈ 𝑁𝛼(𝑖𝑔,𝑡,𝑘) ∩ {𝑛} (61) 

where 𝑖− denotes the stop preceding 𝑖 in sequence ℓ; Eq. (59) calculates the pick-up time for request 𝑛 if 𝑎𝑔,𝑡,𝑘ℳ = 𝑝𝑛; Eq. (60) 

calculates the drop-off time of requests of 𝑁𝛼(𝑖𝑔,𝑡,𝑘) ∩ {𝑛} delivered by bus 𝑘 following sequence ℓ; Eq. (61) is set to ensure 

that the travel time of each request of 𝑁𝛼(𝑖𝑔,𝑡,𝑘) ∩ {𝑛} meets the tardiness constraint. 

Scene 2: To identify whether 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑑 is a valid action for bus 𝑘 when request 𝑛 has been assigned to bus 𝑘 but not 

delivered yet, i.e., 𝑛 ∈ 𝑁𝛼(𝑖𝑔,𝑡,𝑘). In this situation, we only need to consider the sequence ℓ for delivering 𝑁𝛼(𝑖𝑔,𝑡,𝑘) that 

could satisfy the tardiness constraint. Similarly, assuming the beginning stop of ℓ is 𝑖𝑔,𝑡,𝑘, if there is no feasible sequence ℓ =
(𝑖𝑔,𝑡,𝑘 , ⋯ 𝑖𝑛𝑑 ,⋯⏞    |𝑁𝛼(𝑖𝑔,𝑡,𝑘)|) that could satisfy Eqs. (62)-(63) then 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑑 is invalid for bus 𝑘 at present, which should be removed 

from 𝐴̂𝑔,𝑡,𝑘. 

 𝑡𝑛1𝑑 = 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 + ∑ 𝐷𝐼𝑆(𝑖−, 𝑖)𝑣𝑒𝑙𝑖=𝑖𝑛1𝑑
𝑖−∈ℓ,𝑖∈ℓ , ∀𝑛1 ∈ 𝑁𝛼(𝑖𝑔,𝑡,𝑘) (62) 

 𝑡𝑛1𝑑 − 𝑡𝑛1𝑝 ≤ 𝐷𝐼𝑆(𝑖𝑛1𝑝 , 𝑖𝑛1𝑑 )𝑣𝑒𝑙 ∙ 𝛼, ∀𝑛1 ∈ 𝑁𝛼(𝑖𝑔,𝑡,𝑘)  (63) 

To find out such a possible sequence, we could enumerate the possible permutations of the drop-off stops of 𝑁𝛼(𝑖𝑔,𝑡,𝑘) ∩{𝑛}  if scene 1 is considered, where the complexity is 𝑂 ((|𝑁𝛼(𝑖𝑔,𝑡,𝑘)| + 1)!), or the drop-off stops of 𝑁𝛼(𝑖𝑔,𝑡,𝑘) if scene 2 is 

considered, where the complexity is 𝑂(|𝑁𝛼(𝑖𝑔,𝑡,𝑘)|!).  
A3. Pruning subject to movement constraints 

Due to the presence of the movement constraint (Section 4.5.2), each bus needs to complete its route in period 𝑔 before 

the period is over. This involves the available decision of whether bus 𝑘 could visit a new stop or just hold temporarily, rather 

than return to the depot at a particular time interval, which is determined by 𝑖𝑔,𝑡,𝑘, 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙  and 𝑁𝛼(𝑖𝑔,𝑡,𝑘). As mentioned in A2, 

the possible incoming sequence of bus 𝑘 comes from the permutations of 𝑁𝑔,𝑡,𝑘𝛼 ∩ {𝑛} if it decides to pick up an unassigned 

request 𝑛, or the permutations of 𝑁𝛼(𝑖𝑔,𝑡,𝑘) if it decides to deliver one of its incomplete requests. In this situation, we need to 
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consider three scenes to identify the feasibility of the movement constraint when 𝑜𝑔,𝑡,𝑘 is given.  

Scene 1: To identify whether bus 𝑘 could pick up request 𝑛. In this case, if there exists a sequence ℓ accommodating 

𝑁𝛼(𝑖𝑔,𝑡,𝑘) ∩ {𝑛} with 𝑖𝑛𝑝 as the beginning stop, i.e., ℓ = (𝑖𝑛𝑝, ⋯ , 𝑖𝑛𝑑 ,⋯⏞    |𝑁𝛼(𝑖𝑔,𝑡,𝑘)|+1) that could satisfy Eq. (64), which means bus 𝑘 

could finish the delivery of ℓ and return to any depot before the end of the period |𝐺|, then 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑝 is a valid action for bus 𝑘; otherwise,  it is removed from 𝐴̂𝑔,𝑡,𝑘. 

 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 +𝐷𝐼𝑆(𝑖𝑔,𝑡,𝑘 , 𝑖𝑛𝑝)𝑣𝑒𝑙 + 𝑎𝑔,𝑡,𝑘ℋ∗ + ∑ 𝐷𝐼𝑆(𝑖−, 𝑖)𝑣𝑒𝑙𝑖−∈ℓ,𝑖∈ℓ +𝐷𝐼𝑆(ℓ−1, 𝑗)𝑣𝑒𝑙 ≤ |𝐺| ∙ 𝐻, ∃𝑗 ∈ 𝐽 (64) 

where ℓ−1 denotes the ending stop of ℓ. 

Scene 2: To identify whether bus 𝑘 could deliver request 𝑛. In this case, if there exists a sequence ℓ accommodating 

𝑁𝛼(𝑖𝑔,𝑡,𝑘) with 𝑖𝑔,𝑡,𝑘 as the beginning stop, i.e., ℓ = (𝑖𝑔,𝑡,𝑘 ,⋯ 𝑖𝑛𝑑 ,⋯⏞    |𝑁𝛼(𝑖𝑔,𝑡,𝑘)|) that could satisfy Eq. (65), then  𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑑  is a valid 

action for the bus; otherwise, 𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑑 needs to be removed from 𝐴̂𝑔,𝑡,𝑘. 

 𝑡𝑔,𝑡,𝑘𝑎𝑟𝑙 + ∑ 𝐷𝐼𝑆(𝑖−, 𝑖)𝑣𝑒𝑙𝑖−∈ℓ,𝑖∈ℓ +𝐷𝐼𝑆(ℓ−1, 𝑗)𝑣𝑒𝑙 ≤ |𝐺| ∙ 𝐻, ∃𝑗 ∈ 𝐽 (65) 

Scene 3: To identify whether the bus could return to the depot at present. For any employed bus 𝑘,  it is only allowed to 

return to the depot when it completes its route of the period and the period is nearly over, because frequent travel of returning 

to the depot of a bus will increase the unnecessary system cost. To this end, we presumably set ∀𝑗 ∈ 𝐽 as invalid actions. 

However, if neither Eq. (64) nor Eq. (65) is satisfied, then we set 𝑎𝑔,𝑡,𝑘ℳ = ∀𝑗 as the only valid actions of bus 𝑘 at present.  

Since we have enumerated all the possible sequences in A2, the computation time of pruning subject to the movement 

constraint takes only a constant time. 

A4. Pruning subject to capacity constraints 

As far as the capacity constraint (Section 4.5.1) is concerned, whether bus 𝑘 could pick up an unassigned request 𝑛 is 

only determined by 𝑧𝑔,𝑡,𝑘, the present number of onboard passengers of bus 𝑘 and 𝑞𝑛, and the reserved seats of the request 𝑛. 

If Eq. (66) is satisfied, then 𝑖𝑛𝑝 is a valid action subject to the capacity constraint; otherwise,  𝑎𝑔,𝑡,𝑘ℳ = 𝑖𝑛𝑝 needs to be removed 

from 𝐴̂𝑔,𝑡,𝑘. 

 𝑧𝑔,𝑡,𝑘 + 𝑞𝑛 ≤ 𝑍 (66) 

 

Appendix B. Local search procedures 

B1. Intra-loop move 

Step 1: Select a loop 

Select a route 𝓇𝑘 via 𝓇𝑘 = argmax𝑘′∈𝐾 𝜇1(𝑘′) from priority list 1. Then from priority list 2 select a loop ℓ of route 𝓇𝑘 via 

ℓ = argmaxℓ′∈𝓇𝑘 𝜇2(ℓ′). 
Step 2: Examine the move of requests in the selected loop 
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Select a request 𝑛  from priority list 3 via 𝑛 = argmax𝑛′∈ℓ 𝜇3(𝑛′) . Enumerate all feasible moves of 𝑛 . To illustrate, 

considering loop sequence ℓ = (𝑖1𝑝,⋯ , 𝑖𝑛−1𝑝 , 𝑖𝑛−1𝑑 , 𝑖𝑛𝑝, 𝑖𝑛𝑑), first move (𝑖𝑛𝑝, 𝑖𝑛𝑑) to the ending position of ℓ (where it already is) , 

then move 𝑖𝑛𝑝 to an earlier position once at a time, until 𝑖𝑛𝑝 is right before 𝑖1𝑝. For each move of 𝑖𝑛𝑝, check the feasibility of 

having 𝑖𝑛𝑑 stay at its initial place, and move it to one position once at a time, until 𝑖𝑛𝑑 reaching right after 𝑖𝑛𝑝. For each feasible 

move of (𝑖𝑛𝑝, 𝑖𝑛𝑑), calculate the route reward.  

Remove 𝑛 from the priority list 3. Repeat the above steps for the rest of the requests in ℓ. 

Step 3: Identify the best move of (𝑖𝑛𝑝, 𝑖𝑛𝑑).  
Among all solutions after the feasible moves in Step 2, if any, select one with the largest reward. If the new move yields 

a better solution than the original one, output the new solution; otherwise, stop the neighborhood move process and output 

the original solution. Remove ℓ from priority list 2 and repeat the above steps until priority list 2 is empty. 

B2. Inter-loop move 

The inter-loop move involves the change in a request and a loop. Thus, another potential metric 𝜇4(ℓ, 𝑛) of loops is 

introduced to indicate which loop has the priority to accommodate the new request 𝑛, which can be calculated as follows: 

 𝜇4(ℓ, 𝑛) = 1|𝑁(ℓ)| ∙ ∑ (𝑡𝑛1𝑙 − 𝑡𝑛1𝑝 )𝑛1∈𝑁(ℓ) − 1|𝑁(ℓ)| ∙ ∑ [𝐷𝐼𝑆(𝑖, 𝑖𝑛𝑝)]𝑖∈𝑁(ℓ) 𝑣𝑒𝑙⁄  (67) 

where ∑ (𝑡𝑛1𝑙 − 𝑡𝑛1𝑝 ) |𝑁(ℓ)|⁄𝑛1∈𝑁(ℓ)  is the average remaining slack time of each request of the loop ℓ in terms of reducing the 

late penalty, indicating how much time of ℓ could be adjusted to accommodate a new request. 1|𝑁(ℓ)| ∙ ∑ [𝐷𝐼𝑆(𝑖, 𝑖𝑛𝑝)]𝑖∈𝑁(ℓ) 𝑣𝑒𝑙⁄  

indicates the average travel time from each stop in ℓ to the pick-up stop of the request 𝑛. Therefore, their difference, i.e., the 

value of 𝜇4(ℓ, 𝑛), can measure the potential of inserting a particular request 𝑛 into loop ℓ. Similarly, the new priority list 4 

can be constructed by calculating and ranking 𝜇4(ℓ, 𝑛) of every loop when request 𝑛 is given. Therefore, the inter-loop move 

options can be specified as follows: 

Step 1: Select a request 

Select a request 𝑛 from priority list 3 via 𝑛 = argmax𝑛′ 𝜇3(𝑛′). 
Step 2: Select a loop and insert the selected request into it 

Select a loop ℓ (except the loop which previously included request 𝑛) from the priority list 4 via ℓ = argmaxℓ′ ,𝑛∉ℓ′ 𝜇4(ℓ′, 𝑛). 
Insert 𝑛 into the ending position of ℓ. 

Step 3: Examine all the feasible move 

Considering moving (𝑖𝑛𝑝, 𝑖𝑛𝑑) to the ending position of ℓ, then perform Step 2 of the Intra-loop move, but only on request 𝑛. If there is any feasible move, calculate the reward; otherwise, remove ℓ from priority list 4 and repeat the above steps 

until priority list 4 is empty. 

Step 4: Identify the best move of (𝑖𝑛𝑝, 𝑖𝑛𝑑).  
Among all feasible moves in Step 3, if any, select the one with the largest reward increase; otherwise, stop and output 

the original solution. Remove 𝑛 from priority list 3 and repeat the above steps until priority list 3 is empty. 

B3. Insert-rejected-request move 

The insert-rejected-request move involves inserting a rejected request into an existing loop. The procedure is specified 

as follows: 
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Step 1: Select a rejected request  

Select a rejected request 𝑛 with the largest rejection penalty cost, i.e., 𝑛 = argmax𝑛′ 𝑞𝑛′ ∙ 𝛿𝑏. 

Step 2: Select a loop and insert the rejected request into it 

Select a loop ℓ from the priority list 4 via ℓ = argmaxℓ′,𝑛∉ℓ′ 𝜇4(ℓ′, 𝑛). Insert 𝑛 into the ending position of ℓ. 

Step 3: Examine all the feasible moves and identify the best move as Step 3 and Step 4 of the Inter-loop move. 

 

Appendix C. Comparison of indicators using operation with and without demand prediction (10 random seeds) 

 With prediction Without prediction 

Seed 
EAUC 

(CNY) 
WAFI 

ALAT 

(min) 

RR 

(%) 

Planning time per 

period (s) 

EAUC 

(CNY) 
WAFI 

ALAT 

(min) 

RR 

(%) 

Planning time per 

period (s) 

1 2.998 2.298 0.3933 100 33 7.358 9.937 9.006 100 20 

2 3.195 2.81 0.5978 100 32.83 7.288 10.289 9.194 100 19.5 

3 3.06 2.331 0.4775 100 32.5 7.472 9.295 9.279 100 19.17 

4 3.12 2.348 0.382 100 32 7.299 9.648 9.188 100 19.83 

5 3.331 3.263 0.8736 100 32.67 7.567 9.935 9.642 100 19.83 

6 2.892 2.285 0.3708 100 32.5 7.478 9.588 9.582 100 20 

7 3.068 2.447 0.3966 100 32.83 7.562 9.478 9.473 100 20.17 

8 3.14 2.714 0.648 100 32.83 7.638 9.575 9.552 100 19.67 

9 3.082 2.547 0.419 100 32.83 7.285 9.548 9.145 100 19.83 

10 3.134 2.662 0.5028 100 32.83 7.655 9.348 9.382 100 20 

Average 3.102 2.571 0.5061 100 32.68 7.460 9.664 9.344 100 19.8 

 

Appendix D. Description of the prediction model 

For the prediction model, we harness the LSTM model to forecast OD demand. We commence by aggregating time series 

demand data at each stop, representing it as a vector of length 𝒯  (in this case we set 𝒯 = 7 ), where 𝓋𝑖𝑡−𝒯~𝑡 =(𝓆𝑖𝑡−𝒯 , 𝓆𝑖𝑡−𝒯+1,⋯ , 𝓆𝑖𝑡). Here, 𝓆𝑖𝑡  denotes the number of passengers departing from stop 𝑖 during time interval 𝑡. Then, we 

utilize the LSTM model with the input vector 𝓋𝑖𝑡−𝒯~𝑡   to obtain the hidden state vector of stop 𝑖  by ℎ𝑖𝑝,𝑡 =𝐿𝑆𝑇𝑀(𝓋𝑖𝑡−𝒯~𝑡 , ℎ𝑖𝑝,𝑡−1), where ℎ𝑖𝑝,𝑡  captures the OD information from stop 𝑖 up to 𝑡 , as encoded in the memory of LSTM. 

Furthermore, to construct the predicted OD demand matrix, we define a learnable transition matrix 𝒲 to capture the transition 

probabilities of OD traffic demand. Consequently, we can predict the demand from stop 𝑖 to 𝑗 at 𝑡 + 1, expressed as 𝓆̃𝑖,𝑗𝑡+1 =(𝒲ℎ𝑖𝑝,𝑡)𝑇ℎ𝑗𝑝,𝑡 . The predicted OD demand matrix 𝒬̃𝑡+1  is obtained by computing 𝓆̃𝑖,𝑗𝑡+1  for every pair of stops. The 

optimization of the LSTM and 𝒲 is conducted through gradient descent by minimizing the mean squared error loss function, 

formalized as 𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 1|𝒬𝑡+1|×𝒩∑ ||𝒬𝑡+1 − 𝒬̃𝑡+1||𝒩1 , where 𝒬𝑡+1 is the real value of the OD demand matrix at 𝑡 + 1, and 𝒩 is the size of the training sample. 
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