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a b s t r a c t 

In the absence of a comprehensive, representative, and attribute-rich population, a spatial microsimulation is 
necessary to simulate or reconstruct a population for use in the analysis of complex mobility on the railways. 
Novel consumer datasets called ‘big-data’ are exhaustive but they only reveal a subset of the wider population who 
consume a specific digital service. Further, big-data are measured for a particular purpose and so do not have the 
broad spectrum of attributes required for their wider application. Harnessing big-data by spatial microsimulation 
has the potential to resolve the above shortcomings. This paper explores the relative merits of different spatial 
microsimulation methodologies, and a case study illustrates how best to simulate a micro-population linking rail 
ticketing big-data with the 2011 Census commute to work data and a National Rail Travel Survey (NRTS). The 
result is a representative attribute-rich micro-level population, which is likely to have a significant impact on the 
quality of inputs to strategic, tactical and operational rail-sector analysis planning models. 
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. Introduction 

Progressively complex societal urban mobility has meant that trans-
ort planners require insights into robust rules governing movement
atterns of people and the interdependencies with demography, mu-
icipal parameters, space and time, in order to provide sustainable ef-
cient services. There is a growing need for novel geographical mod-
lling tools, as well as attribute-rich, comprehensive and representative
ata to assist in such research and decision-making. Today’s wide use
f electronic devices has meant that novel sources of large consumer
atasets are now increasingly readily available, however it is unreal-
stic to expect all the information required to be provided by a single
ataset ( De Montjoye, Hidalgo, Verleysen & Blondel, 2013 ; Lynch, 2008 ;
anyika et al., 2011 ). As such, methods have to be developed to com-

ine various datasets, within mobility analysis frameworks. 
Once the relevant datasets are identified, it is often found that

he process of integration requires adjustments in resolution and in
eographies of scale to maintain consistency between the datasets
 Deming & Stephan, 1940 ). Often one dataset has to be systemati-
ally adjusted to fit the resolution, and system process associated with
ther datasets ( Howe et al., 2008 ; Weber, Mandl & Kohane, 2014 ),
nd the hypothesis is that the adjustment methodology adopted im-
inges on the quality of subsequent postulations based on such in-
egrated data. In this paper, we investigate the different methodolo-
ies for combining disparate datasets to integrate their resolution and
eographies and to simulate a population represented at micro-scale
∗ Corresponding author. 
E-mail address: e.a.odiari@gmail.com (E. Odiari) . 
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i.e. individual/household) levels. A case study illustrates how best to
pply such methodologies to urban mobility in West Yorkshire. The
atasets combined are the 2011 Census interaction data, the National
ail Travel Survey and big railway ticketing data for West Yorkshire
tudy area procured from the Association of Train Operating Compa-
ies’ (ATOCs) Latest Earnings Network Nationally over Night (LENNON)
atabase. 

A LENNON dataset including every railway ticket sold in the UK is
arge and exhaustive of railway passengers ( ORR, 2016 ). However, for
se in research to relate population mobility to demographic and other
ikely drivers of behaviour, LENNON data is lacking because it does not
ontain information on say passenger residence, final destination, nor
oes it identify any socio-demographic and urban morphology charac-
eristics associated with the passenger. In order to use such ticketing
ata for mobility analysis, it would be necessary to combine with other
elevant datasets that contain the sought attributes. The 2011 Census
easures the interaction between each geography (OA, LSOA or MSOA)

one, measuring the volume of passengers commuting from locations of
sual residence to places of work ( Rees, Martin & Williamson, 2002 ;
tillwell & Duke-Williams, 2003 ). These measures are aggregated for a
ange of socio-demographic attributes (age, gender, mode of commute,
ccupation, ethnicity, and the cars, children, and type of household).
he National Rail Travel Survey (NRTS) is another relevant railway pas-
enger survey conducted over 2001 to 2005; it aimed to produce a com-
rehensive picture of weekday rail travel across Great Britain. The NRTS
dentifies places of usual residence and final destination ( DfT, 2013 ), as
ell as a range of social-demographic and, sample passenger train sta-

ion access and egress attributes. Considerations outlined below form
he basis for reconciling NRTS and Census, despite that they were ac-
uired at different times. 
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p  
As discussed, big-data 1 are advantageous in that each set offers a
nique and distinctive view of real events. Combining such datasets re-
eal a more complete picture of reality, and this is a particular advan-
age of big-data which make them attractive for the analysis of a wide
ange of phenomena. The NRTS and Census are random samples of the
K population taken at different times; hence their variables have dif-

erent crystallization times (i.e. times at which they were digitally mea-
ured). Within the time when the 2001/5 NRTS and 2011 Census were
easured, there were increases in passenger volumes, changes in travel

ehaviour, etc., so the datasets have different conditional distributions.
hilst the NRTS is conditional on time (i.e. 2001/5) and a transport-
ode (i.e. train), the Census is conditional on a different time (i.e. 2011)

nd different transport mode (i.e. all modes of transport). This brought
bout reports in the literature ( Gower, 2021 ) that structural changes oc-
urred in the UK rail demand, which resulted in annual sales differential
rowth rates in non-season tickets ( ∼38%) and in season tickets ( ∼26%)
etween 2005 and 2011. Further, in this period, rail commuters were
bserved to travel longer distances but less frequently ( Le Vine, Polak
 Humphrey, 2017 ; ONS-UK, 2013 ). This paper addresses the concern
bout combining such structurally different data like the NRTS and Cen-
us acquired at different times. The hypothesis developed in this paper
s that disparate datasets like the NRTS and Census can be objectively
ombined if they do not represent concept or data drift within the model
evelopment process. Whilst concept drift occurs in a model where prop-
rties of the dependant variable change, data drift occurs where those
f independent variables change. 

Big-data like LENNON 

2 ticketing information are exhaustive, com-
rehensive, and representative of individual-level rail travel within the
K. However, they are not intended to capture information on the UK
opulation and should only be linked to a subset that uses the trains. Ex-
ectedly the distribution of LENNON will be different from that of the
K Census. Each (LENNON or Census) contains data drawn from the

ame population (the UK full joint distribution). Each dataset is con-
eived as a conditional distribution, giving the probabilities contingent
pon other variables. In the instance of the LENNON and Census, the
onditional on the former is ‘mode of travel is by train’, whilst in the
ater the conditional is ‘mode of travel is by all modes’. The Census be-
ng representative of the full UK population joint distribution is taken as
he reference. The Census frequency distribution is made up of 6% rail
ommuters whilst LENNON is 62% rail commuters. In this context, the
travel-purpose’ frequency distributions of the Census and LENNON are

arkedly structurally different. As the Census is the reference, we refer
o LENNON as a conditional distribution of the Census and in so doing
e concede that this does not imply underlying LENNON bias. This ter-
inology is consistently adopted in this paper to highlight the sort of

ssues typically associated with disparate big-datasets. Any dataset that
s not a representative sample of the wider population is a conditional
istribution of the Census. Being a conditional is typical of the nature of
ig-data as they are typically acquired at different times for a specific
urpose. This character of big-data poses challenges in integrating with
1 Big data is a term coined to describe the range of consumer datasets that 
re increasingly readily available from sensors of consumers of digital services. 
he data analysts refer to datasets as being ‘tall’ or ‘fat’ depending respectively 
n whether the data has a commensurately larger number of observations or 
ovariates. Under such conditions, data that is both fat and tall is described as 
big’. Business analysts with an aptness for buzzwords refer to the five ‘V’s, and 
escribe big data as having volume, velocity, variety, veracity and value. 
2 In Geographical Information Systems (GIS), big data refers to data that are 

arge and unstructured that they do not fit on to conventional hardware and soft- 
are information tools. About 1.3bn tickets are sold in the UK mostly recorded 
n LENNON, with over 200 ticket types. This is reflective of volume and vari- 
ty. This dataset is further exhaustive as it is assumed to represents all railway 
ickets sold. The LENNON database is the digital service for recording tickets, 
lbeit tailored to train operating companies (RDG-ATOC). As such, the LENNON 

icking information is classed here as big-data. 
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ther datasets from measured stated surveys; designed to be represen-
ative of the wider population. 

Two broad population simulation strategies exist: the first is popula-
ion synthesis (or reweighting) whereby a seed sample is optimal repli-
ated to fit the dimensions of an aggregate target population. In this
ase, the simulated population created is made up of multiples (weights)
f the seed sample. The second strategy is population reconstruction
hereby a constructed model is used to generate a new population such

hat it fits the dimensions of a target population. In this second strat-
gy the population created has no direct reference to an existing popu-
ation. The population synthesis and reconstruction methodologies are
oth further divided into deterministic and stochastic methodologies. 

The key shortcomings of the existing population synthesis and the
opulation reconstruction strategies are summarized below. First for the
opulation synthesis: 

■ Only the marginal distribution of the target is exploited, and not the
full joint distribution of the target ( Odiari, 2018 ). 

■ Only permits sequential fitting of disparate contingency seed data
( Odiari, Birkin, Grant-Muller & Malleson, 2021 ). 

■ Yields clusters of passengers with same attribute if seed is of small
sample ratio ( Zhu & Ferreira Jr, 2014 ). 

■ Assumes that the seed is representative of the target and has similar
distribution ( Lomax & Norman, 2016 ). 

■ Only a limited number of attributes can be combined due to compu-
tational limitations ( Müller & Axhausen, 2010 ; Odiari, 2018 ). 

■ Does not incorporate a robust statistical strategy for assessing the
errors and uncertainty in results ( Lovelace, Dumont, Ellison &
Zalo ž nik, 2017 ; Whitworth, Carter, Ballas & Moon, 2017 ). 

For the population reconstruction: 

■ Accuracy of the simulated population is dependant on model con-
structed ( Farooq, Bierlaire, Hurtubia & Flötteröd, 2013 ). 

■ The simulated population is not directly related to the actual popu-
lation ( Müller & Axhausen, 2010 ). 

■ Incorporates assumptions inherent in regression models ( Tanton &
Vidyattama, 2010 ). 

In this paper we review and validate the range of population simu-
ation strategies for use to adjust ‘big data’ 3 for consistency with survey
ata 4 and established theory. The science behind the range of popula-
ion simulation methodologies is presented in a practice orientated way,
s a pre-cursor to a case study of, for the first time simulating a repre-
entative population portrayed at micro-scale interacting between zones
nd through the railway network. 

. Literature review 

Census exigencies around confidentiality meant that despite com-
lete counts of the populace, only a small sample of anonymized records
SAR) of cross-tabulations of all individual attributes were released. This
AR data was released alongside comprehensive sets of aggregate tables
ypically limited to only three variables per table ( Williamson, Birkin &
ees, 1993 ). Despite the anonymized data and aggregation in respect of

ndividual privacy, population geographers and transport planners re-
lize that comprehensive and disaggregated records would enable the
onstruction of more detailed pictures of geographic and transport phe-
omena. The need to create such micro-data led to develop the field of
3 Big-data tend to come from consumers of a specific digital service, putting 
ontext on the data. This specific context often makes big-data a specific condi- 
ional distribution of the population of interest. This concept has been adopted 
ithin this paper. 
4 Survey data tend to be regular measured and stated data so they are ran- 
om samples representative of a population of interest. Conventional established 
ethods for integrating datasets are typically based on that each dataset being 

ombined is a representative random sample of the population of interest. 
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tudy of population synthesis and population reconstruction ( Birkin &
larke, 1988 ). 

.1. Population synthesis 

The first application of population synthesis, often ascribed spatial
icro-simulation, was reported in the literature as far back as 1940

 Deming & Stephan, 1940 ). The method was applied to the USA Cen-
us. A synthetic population was formed from an estimate of a combi-
ation of multiples of individuals in a SAR dataset that will best fit the
ggregate values defined in Census tables, using the Lagrange multiplier
onstrained optimization method ( Bertsekas, 2014 ). With the develop-
ent of computers and numerical analysis, instead of solving the linear

quations from the Lagrange multiplier method, iterative methods grad-
ally converging towards an optimum were proposed ( Fletcher, 2013 ;
elley, 1999 ), and it became increasingly more efficient to resort to

hese iterative proportional fitting (IPF) strategies, as they are faster
o compute, less sensitive to numerical and round-off errors and sim-
ler in algebra, than comparative formulations by Lagrange and Fermat
 Fermat, 1891 ; Lagrange, 1867 ). The IPF algorithm has found applica-
ions in diverse fields as economics ( Bacharach, 1970 ), transport engi-
eering ( Fratar, 1954 ; Furness, 1965 ), statistics and computer science
 Lavrakas, 2008 ) under various names. 

In population geography and demography, IPF came to prominence
elatively recently with the range of policy relevant applications and
olutions proffered. First, ( Birkin & Clarke, 1989 ) used IPF to simulate
ndividual and household incomes at small area levels, ( Rees, 1994 ) used
PF to project age and gender structure of urban areas, ( Ballas, Kingston,
tillwell & Jin, 2007 ) addressed in detail the use of spatial micro-
imulation as a framework for decision support for policy analysis, and
 Ballas & Clarke, 2001 ) assessed the impact of aggregate national poli-
ies within segregate local communes. The IPF methods have improved
ith burgeoning use, and while earlier effort concentrated on devel-
ping the microsimulation steps on different platforms, the advent of
uites of statistical software packages like R-studio ( Team, 2016 ) have
nabled an automation of the processes and a look beyond the steps and
tages of iteration onto the characteristics of the solution. Effort latterly
as shifted to concerns of numerical stability and propagation of errors
n IPF methods ( Birkin & Clarke, 1995 ; Wong, 1992 ). Further concerns
elate to converting fractional values to integer counts of individuals,
nd in developing strategies for internally and externally validating IPF
esults ( Lovelace & Ballas, 2013 ; Upton, 1985 ). 

Spatial microsimulation is now considered a mature application
 Lomax & Norman, 2016 ), re-visiting questions like whether we can
e confident that unconstrained attributes are reproduced reliably
y the IPF process, thereby accurately replicating the distribution of
hose attributes not included in the spatial microsimulation ( Birkin &
larke, 2011 ). Further unanswered questions concern whether, more
enchmark constraining variables generally translate to better micro-
imulation results ( Markham, Young & Doran, 2017 ; Smith, Clarke &
arland, 2009 ; Tanton & Edwards, 2012 ; Tanton & Vidyattama, 2010 ),

he effect of the disparity in the distributions of the seed sample and
arget population ( Tanton & Edwards, 2012 ), and the sensitivity of the
ifferent spatial micro-simulation strategies to sample ratios of the seed
ata ( Tanton, 2014 ). These are questions investigated in this paper to
xplore the potential of spatial micro-simulation methods for use in har-
essing mobility (spatial interaction) data acquired from consumers of
igital services provided on the UK railways. 

Apart from the above deterministic (IPF) spatial micro-simulation
trategies which yield the same result on repeat, the alternative strate-
ies are stochastic, typically Monte Carlo Markov chain (MCMC) based
ethods. The MCMC methods are efficient for converging to solutions

f intractable complex constrained optimization problems ( Asmussen &
lynn, 2007 ; Brooks, Gelman, Jones & Meng, 2011 ). Population geog-

aphers have developed a range of MCMC variants to complement tra-
itional deterministic IPF. Some of these methods have been branded
3 
ill-climbing and have been compared to IPF methods ( Kurban, Gal-
agher, Kurban & Persky, 2011 ). The strategies branded simulated an-
ealing have been compared with IPF ( Harland, Heppenstall, Smith &
irkin, 2012 ). Another MCMC based strategy the genetic algorithm,
as used to simulate network traffic by reconciling observed and es-

imated flows, opening the realm for application to transport problems
 Dimitriou, Tsekeris & Stathopoulos, 2006 ). Hill-climbing, simulated an-
ealing and genetic algorithms are local search optimisation methods
hich start with an arbitrary solution to a problem and then iteratively
akes incremental improvements to the solution by sampling alterna-

ives. The objective functions in these methods would be similar, with
lgorithm differences lying in the (stochastic chain) rule for accepting or
ejecting a sample that forms the alternative solution ( Kavroudakis, Bal-
as & Birkin, 2008 ). Other stochastic methods include the Bayesian ex-
ectation maximization (EM) strategy ( Dempster, Laird & Rubin, 1977 )
hich performs optimization by iteratively estimating the maximum

ikelihood. 

.2. Population reconstruction 

The synthetic reconstruction is another spatial micro-simulation
trategy developed in the UK ( Birkin & Clarke, 1988 ; Birkin, Turner &
u, 2006 ), exploiting the probabilistic indicative potentials of the Sam-

le of Anonymized Records (SARs) dataset from the Office for National
tatistics. The synthetic reconstruction methodology is akin to the Gibbs
ampling procedure ( Gelfand, Hills, Racine-Poon & Smith, 1990 ), a vari-
nt of the MCMC. With the advent of novel consumer datasets and so-
alled big data which tend to be a conditional distribution of the wider
opulation, the assumption of normally distributed errors between the
arget and proposal distributions no longer holds as big data tends to suf-
er sample bias ( Kitchin, 2014 ). As a result, deterministic and stochastic
trategies traditionally set up for representative population seed samples
eed to be validated for consumer data which often tend to be a condi-
ional distribution of the target population, and structurally dissimilar
o the conventional seed data. This validation forms the crux of the first
art of this paper. Thereafter, the case study presented in this paper is
he first application of spatial microsimulation to synthesize individual
ailway passengers interacting between geographic locations, using data
rom the Census, the NRTS and comprehensive LENNON ticketing big
ata. 

. Deterministic and stochastic formulation 

Spatial micro-simulation fall in the wider description of constrained
ptimization problems ( Sun & Yuan, 2006 ). The typical aim is to es-
imate a best possible (i.e. optimal) synthetic population limited such
hat the zonal aggregate characteristics (i.e. the constraints) are ful-
lled. The concept of spatial micro-simulation is illustrated in Fig. 1 . In
ractical applications in population and transport geography, the right
able depicts a representative sample taken from the population, each
ow (tuple) an individual with attributes listed in the columns (fields).
n literature, the sample table is severally referred to as seed sample,
ndividual-level data, and survey or simply as the sample. The left in
ig. 1 represents the cross-tabulated form of aggregated zonal popula-
ion attributes. 

Each dimension of the aggregate structure typically represents the at-
ributes of a zone and the categories therein. The vertical grey pillar (on
ts own) could represent the ‘Residence’ variable made up of categories
f geographic zones. If values were included in each cube that made up
he vertical grey pillar, these would be the populations associated with
ach residential zone. A similar description follows for the horizontal
rown pillar which (on its own) represents the ‘Destination’ attributes
nd the zone categories that make up the destinations. The vertical pil-
ar represents a one-dimensional (1 D ) aggregate constraint, just as the
orizontal pillar also forms an (1 D ) aggregate constraint. If the vertical
r horizontal pillars are further sliced along their lengths, they would
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Fig. 1. | Concept of spatial microsimulation depicted by the aggregate marginal totals on the left and the individual-level seed table on the right. 

f  

a  

e  

t  

‘
 

f  

w  

s  

d  

s  

a  

c  

p  

o  

p  

t  

i  

t  

i  

a  

o  

w  

g  

t  

t  

c
 

(  

p  

d  

i  

a  

i  

h  

v  

a  

s  

a  

i  

r  

t  

o  

t  

c  

h  

t
 

t  

u  

c  

a  

v  

w  

s  

t  

g  

i  

t  

i  

i  

T  

f  

a
 

a  

t  

r  
orm a 2D constraint, with the second dimension representing say the
ge variable, sliced into the categories (16–24yrs, 25–34yrs, 35–64yrs,
tc.) that make up the age range within the zone. In this illustration
he blue slab in front represents an aggregate array cross-tabulation of
Residence’ versus ‘Destination’. 

A closer inspection of Fig. 1 however reveals that the blue slab is
urther sliced along the vertical axis, creating the third ‘Age’ variable,
ith categories therein. In such an instance, the blue slab aggregate con-

traint would be an (3 D ) array. The categories making up these ‘Resi-
ence’, ‘Destination’ and ‘Age’ variables are illustrated in the blown up
ection (highlighted in the circle). To further emphasize the nature of the
ggregate data, in the blown up section, for passengers residing in Post-
ode WF110 and working at destinations in Postcode BD88, there are
opulations of 8, 12, 5 and 13 of ages 16–24yrs, 25–34yrs, 35–64yrs and
ver 65yrs respectively. The subsequent slabs coloured green, pink, pur-
le, etc. also represent (3 D ) aggregate constraints (‘Residence’, ‘Destina-
ion’ and a third demographic attribute). As seen, the variables involved
n each slab are ‘Residence’, ‘Destination’, and another demographic at-
ribute. Each of the variables is further sub-divided into categories (typ-
cal of the blown up ‘Age’ variable in the circle). The 2011Census inter-
ction data consists of several 3D arrays (like those in Fig. 1 ) made up
f aggregates for location of usual residence (‘Residence’) and place of
ork (‘Destination’) for a range of socio-demographic attributes (age,
ender, income, mode of commute etc.). These zonal population cross-
able data are also referred to as aggregate, marginal, constraint, count,
arget or Census (as its structural form is typical of published Census
ounts). 

In practice however, the constraints can be any combination of
1 D ),(2 D ),(3 D ), up to nD where (0 ≤ n ≤ ∞). Effectively implying that in
ractice the constraint could be made up of several differently sourced
isparate multi-dimensional arrays. The 2011 Census interaction data
mplies a marginal constraint made up of eight (8) sets of (3 D ) slabs,
 slab for the age, gender, ethnicity, commute mode, occupation (used
n lieu of income), and attributes for cars, children, and type of house-
4 
old, all separately cross-tabulated against the residence and destination
ariables and categories therein ( Upton, 1985 ). The intuition behind cre-
ting a detailed micro-level population from a sample individual-level
eed and zonal aggregates of the population, is that if a zone consists of
n aggregate of say 20 people, with particular zonal characteristic, for
nstance that are mostly aged and on high incomes: then if a seed sample
epresentative of the entire region is available, the zone can be reconsti-
uted from the sample by making an optimized selection of aged people
n high incomes from the sample. To satisfy the constraint of sustaining
he volume of people in the zone, the limited available aged and high in-
ome individuals in the sample might have to be replicated many times,
ence the concept of weights which is indicative of how many times a
ype of individual is replicated to fulfil the synthetic population. 

In our particular case of the Census interaction, the weight assigned
o an individual would be indicative of how representative the individ-
al is of passengers on a particular residence-destination flow. The con-
ept can be extended to other scenarios involving aggregate constraints
nd seed data. It is noteworthy to also point out that in situations in-
olving sample data that are a conditional distribution of the target, the
eight assigned to an individual could also reflect that the measured

eed data did not have a commensurate representative proportion of
hat particular individual when compared to the proportion in the tar-
et population. In essence the adequate population proportion of that
ndividual is ‘missing’ from the sample seed. The difference in the al-
ernative spatial micro-simulation (population synthesis) strategies lies
n the numerical algorithm or probabilistic method adopted for estimat-
ng or calculating the weights assigned to individuals in the seed data.
ypically, the seed sample measures each attribute for each individual
orming a rich variable joint distribution which is limited only by being
 sample, instead of the whole population. 

On the other hand, the aggregate data (like the Census) is
nonymized for confidentiality and the zonal attributes are aggregated
o form a cross tabulation. This cross-tabulation creates the challenge of
elating individuals within an age category say, to the same individual
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Fig. 2. | Process of remodelling the seed-data in spatial microsimulation. 
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ithin the gender, income and the other demographic attribute cate-
ories. The solution is to optimize the choice of individuals to minimize
he difference between the marginal totals of the aggregate data and the
ynthesized population. In other words satisfying the condition that the
icro-population created from the seed have margins adjusted and con-

trained to the aggregate margins, thus minimizing the residual between
he aggregate and the synthesized population marginal. 

Fig. 2 illustrates the procedure of spatial micro-simulation, showing
he re-modelling process of the datasets used. The table of individual-
evel seed data (on the middle left side of Fig. 2 ) is converted into a
inary data table (shown by the bottom left table). The binary table has
ttributes and categories now represented by data columns re-modelled
uch that they are commensurate with the columns within the aggre-
ate zonal data (shown as the top left table). This concept illustrates the
asis for comparison of the two (seed data and aggregate data) tables.
5 
econciliation of the seed and aggregate tables is depicted by the cubic
rray within Fig. 2 (on the right side). For each geographic zone, the
eed is sampled to make up the population of the zone, and this initial
ample is called the proposal distribution. The proposal distribution is
ptimised to yield the synthetic population for a zone. 

In deterministic methods arithmetic fractions of the proposal dis-
ribution are iteratively improved to fit the aggregate constraints. In
tochastic methods, random samples are taken with replacement from
he seed data to improve the objective function (subject to a proposal
istribution), until convergence to the target distribution. As a result
eterministic strategies yield fractions of individuals, while stochastic
rocedures yield integer multiple counts of the individuals in the seed
ample. Widely used deterministic strategies are reported in literature
 Barthelemy, Suesse, Namazi-Rad & Barthelemy, 2016 ; Lovelace & Du-
ont, 2016 ), as well as stochastic strategies ( Kavroudakis, 2015 ). For
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Fig. 3. | Variation in TAE with the number of constraints for the deterministic 
IPF spatial micro-simulation. 

Fig. 4. | TAE from repeated random sets of a fixed number of constraint vari- 
ables for simulated annealing (SA) spatial micro-simulation. 
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uccessful implementation of the deterministic and stochastic proce-
ures, the same set of variables ought to exist within the seed and ag-
regate datasets (top left and bottom left tables in Fig. 2 ). 

. Merits of micro-simulation methods 

The strategy in this paper is to explore the relative merits and
ehaviours of different deterministic and stochastic spatial micro-
imulation methodologies, highlighting the problems in practical im-
lementation and advantages associated with the different strategies.
his is a pre-cursor to practical implementation on the case study of
est Yorkshire UK railways, for the first time simulating representative
obility behaviour of a population of railway passengers at micro-scale

i.e. individual/household levels). The case study illustrates how best to
imulate a micro-population linking big data on rail trip-making with
nformation on socio-demographic characteristics. 

In assessing the controlled behaviour of the deterministic and
tochastic micro-simulation strategies, a subset of the NRTS data (for
est Yorkshire) made up of about 23,000 samples is used. There are a
aximum of eight (8) variables for each individual in the pre-processed
RTS dataset, as such the aggregate constraints are formed by cross-

abulating and aggregating these variables forming sets of (1 D ), (2 D ),
3 D ) up to (8 D ) target constraints. The seed sample on the other hand is
onstructed by taking different random samples from the NRTS dataset
to reflect different sample ratios by taking more or less random sam-
les, to reflect a conditional distribution (which is dissimilar to the tar-
et distribution) by sampling the upper or lower half of the dataset, and
ithout replacement, etc.). 

The NRTS dataset used for the test cases includes variables for pas-
enger residence and destination, mode of commute and a number of
ther demographic attributes (age, gender, cars in household and house-
old type, ethnicity and children in household). The NRTS data is zoned
o geographies of Postcode Sector boundaries. The postcode geography
n the UK was created for the purpose of disseminating postal mail.

ithin this geography, there are 124 Areas, 2987 Districts, 11,192 Sec-
ors and about 2 million Units. As such, on average a Postcode Area will
onsist of 24 Districts, 90 Sectors, and 16,125 Units (each of about 15
ddresses). To manage the computational demands of the spatial micro-
imulation algorithms, the NRTS which was originally zoned to Postcode
ector boundaries were re-zoned to larger Postcode Areas. As such, Post-
ode Sectors, originally 357 were converted to Postcode Areas number-
ng about 5. The re-zoning averts sparse data-frames which compromise
he quality of the results and require special treatment (as discussed in
his paper’s case study). 

As a consequence of re-zonation, remnants of some peripheral Post-
ode Sectors existed. For instance in a geographic location in the north
est corner of the West Yorkshire county, a part sub-set of the Oldham
ostcode Area (OL148, OL138, OL145 etc.) was captured and was in-
luded in the analysis. Similarly, other sub-sections of other Postcode
reas were captured, including Sheffield, York, Harrogate, Blackburn
nd Doncaster (S, YO, HG, BB and DN) respectively. Perhaps these might
ave been removed from the analysis, but they have however been in-
luded to replicate situations where a zone has a commensurately low
umber of counts. In effect, inclusion of these marginal Postcode Sectors
nables an assessment of the sensitivity of the different spatial micro-
imulation strategies to nominally low seed counts. 

This section investigates the impact on the results of four separate
spects of the microsimulation process. Each of the four investigative
spects consisted of several individual distinct runs of the microsimu-
ation procedure using a Monte Carlo experiment (totalling over 500
uns to capture the full spectrum of results), detailed in Section 4.1 to
ection 4.2 . The objectives of each aspect are respectively: 

1) to use a Monte Carlo experiment to investigate the effect of the num-
ber of constraints by increasing these from one through to seven
(which is one less the total of eight variables). 
6 
2) to ascertain ability to predict values of the non-constrained attributes
by using a Monte Carlo experiment to compute the predictive accu-
racies of the methods for those variables not included as constraints.

3) to assess the effect of sample-ratio on simulated population by using
a Monte Carlo experiment to apply different random sample ratios
ranging from 0.05%, to 85%. 

4) and to identify the influence of the nature of the conditional distri-
bution of a seed sample by using a Monte Carlo experiment to recre-
ate by sampling such scenarios where the seed data is increasingly
structurally dissimilar to the target data. 

.1. Effect of number of constraints 

The particular choice set of number of constraint variables would
ary, as for instance there are 8 P 3 ways of choosing a set of three vari-
bles from eight options (assuming order is also important). To capture
he full range of possible choices and thereby objectively establish the
ffect of number of constraint variables, a Monte Carlo sampling was im-
lemented on the choice set of constraints, and on each sample occasion
 distinct run of the microsimulation procedure took place. The densi-
ies of the TAE ’s produced are displayed in Fig. 3 and Fig. 4 . The density
lots are normalized frequency distributions of the TAE values for each
et of constraints. In the deterministic IPF, the scenario of 1 constraint
ields a particularly high TAE which detracts the display, hence it has
een excluded. 

The results show that as the number of constraints increase, the TAE

across all constrained and unconstrained variable reduces as indicated
y a drift of the density plots towards the origin as constraints increase.
he deterministic methods have higher overall TAE values, as a full
olume of the population is not generated whenever the seed sample
s not fully reflective of the variety in the aggregate population. The
tochastic strategies on the other hand produces a full population, with
 broader range of results with lower TAE values, albeit yielding sim-
lated results not reflective of the true distribution of the target pop-
lation. These results may seem counter intuitive at first sight as re-
orted in literature ( Markham et al., 2017 ; Tanton & Edwards, 2012 ;
anton & Vidyattama, 2010 ), as more constraints would imply a more
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Fig. 5. | Total absolute error (TAE) for different number of constraints in the 
IPF deterministic spatial micro-simulation. 

Fig. 6. | Discrepancy in the SA and actual simulated populations. 
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Fig. 7. | Effect of sample ratio on TAE estimates for IPF simulation. 

Fig. 8. | Effect of sample ratio on TAE estimates for SA simulation. 
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ifficult set of constraints to fulfil, and the TAE typically adopted is the
um across constraint tables. However, provided the precautions high-
ighted in Fig. 2 are adhered to such that the sets of variable categories
ithin the seed and aggregate match, the higher the number of cate-
ories would imply a provision for more consistency between the seed
nd aggregate data, thereby yielding lower TAE values. 

.2. Prediction of non-constrained attributes 

The second experiment addresses the question: how well predicted
re the values of those variables not included as constraints in the spa-
ial micro-simulation? If a subset of the variables within NRTS is used
or spatial micro-simulation, how well are the simulated zonal aggre-
ates predicted for those variables not included in the set of aggregate
onstraints used in the micro-simulation procedure? In Fig. 5 and Fig.
 , 1 constraint refers to the categories within the first listed variable i.e.
ousehold children (with the two categories ‘NoChild’ and ‘YesChild’).
 constraints similarly refer to the categories within the first three vari-
bles of household children, ethnicity and household type. These cate-
ories are NoChild, YesChild, Europe, Non-Europe, Household-A, B, C
nd D). Similarly 5 constraints refers to the categories within the first
ve variables (on the horizontal axes of Fig. 5 and Fig. 6 ), i.e. household
hildren, ethnicity, household type, cars and gender. A similarly refer-
nce is made for the case of 7 constraints. In Fig. 5 for the determinis-
ic procedure, whilst the trend of the lines for the different number of
onstraints seems systematic, with higher constraint lines taking lower
ositions reflective of the lower TAE magnitudes for these lines, there
re no systematic trends recorded for those variables not included as
onstraints. 

For the stochastic procedure, it is observed that when the constrained
nd non-constrained variables are compared, the non-constrained ones
re predicted with comparatively lower levels of accuracy. In Fig. 6 ,
hen only one variable is constrained (depicted by the first two orange
ars), the errors are minimal for that constrained variable (in this case
he household children variable). This is reflected in the first two red
7 
AE bars having lowest values at locations between variables ‘NoChild’
o ‘YesChild’. When three (3) constraints are adopted made up of house-
old child, ethnicity and household cars, the TAE’ s are depicted by the
reen bars associated with these variable categories. This is reflected
y the height of the green bars over the range of categories ‘NoChild’
o ‘Household-D’. This trend is continued when there are five (5) and
even (7) constraint variables, reflecting in the blue and the purple TAE
ars having lowest sizes at locations on the x-axis between categorical
ariables ‘Car-0’ to ‘Male’, and ‘Income-10’ to ‘Income-70’ respectively.

.3. Effect of sample-ratio on simulation 

A Monte Carlo sampling was implemented to choose various seed
amples of fixed sample ratio to form the individual-level seed data for
patial micro-simulation. The procedure consisted of randomly selecting
 sample with ratio 𝜈, (0.05% ≤ 𝜈 ≤ 85%) from the full set of NRTS data,
nd repeating this for 250 times for each value of 𝜈, to capture and
verage out any variability due to the choice of particular individuals in
he sample. On each occasion the difference between the simulated and
ctual populations ( TAE ) is computed, yielding the plots in Fig. 7 and
ig. 8 . This is repeated for the deterministic and stochastic spatial micro-
imulation strategies. 

The TAE plot of Fig. 7 below shows that the accuracy of the simu-
ated population from the deterministic method increases with sample
atio, indicated by a drift towards the left of the plots as sample ra-
io increases from 55% to 85%. The deterministic strategy is found to
e highly susceptible to sampling ratios. The procedures fail whenever
he sample ratios are lower than 25%, since at these values many of
he lower population zones do not have adequate representation in the
ample, reflecting where not enough samples were taken to represent
ones. For the stochastic strategies, as the percentage of samples in-
reases, Fig. 8 shows that the scatter in the TAE increases relative to the
AE scatter observed for the deterministic procedure. The TAE values
n the stochastic procedure also show a reduction as the sample ratio
s increased. The stochastic procedures are robust to low sample ratios
ith the procedures running successfully for the clipped NRTS dataset,

or sample ratios as low as 0.05% (as seen in Fig. 8 ). 
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Fig. 9. | Effect of randomness of sample seed on simulated population TAE 
using a deterministic strategy. 

Fig. 10. | Effect of randomness of sample seed on simulated population TAE 
using the SA stochastic spatial micro-simulation. 
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Fig. 11. | Comparison of hill-climbing (HC) and simulated-annealing (SA), both 
stochastic micro-simulation methods. 
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.4. Influence of level of structural dissimilarity in seed sample 

The spatial micro-simulation process typically creates a simulated
epresentative population by combining zonal aggregate data like the
ensus, with an individual-level survey like the NRTS or LENNON tick-
ting data. Traditionally it is assumed that the disparity in the datasets is
ormally distributed ( Ireland & Kullback, 1968 ; Namazi-Rad, Mokhtar-
an & Perez, 2014 ). The robustness of the different deterministic and
tochastic strategies are assessed, when for instance the seed sample is a
tructurally dissimilar representation of the population, typical of ‘big-
ata’ which are exhaustive within a specific coverage, and as such are
ot representative of the entire population. In addition, the effects of

not having enough’ sample data, (whereby the sample does not include
nough information on all the zones) is assessed for both the determin-
stic and stochastic strategies. 

A Monte Carlo experiment is conducted, sampling the seed from the
TRS data and then assessing the performance of the deterministic and

tochastic strategies. The sensitivity of deterministic methods to choice
f seed is depicted in Fig. 9 showing the seed progressing from a ran-
om sample representative of the wider population, to an increasingly
on-representative sample achieved by sampling with replacement and
hen by selecting the first N individuals. As seen from Fig. 10 , seeds
hat are better representative of the wider population produce consis-
ently better TAE values, indicative of a more accurate simulated repre-
entative population. The stochastic procedure is less susceptible to the
uality of the seed data. The TAE distribution depicted in Fig. 10 only
ominally increases as the seed becomes less random, further but-
ressing the robustness of stochastic strategies to changes in the seed
ample. 

.5. Differences within deterministic and stochastic methods 

Reference has been made to the range of deterministic and stochas-
ic strategies; however results are presented for just one of each of these
trategies, i.e. the multi-iterative proportional filling (m-IPF) determin-
stic strategy ( Barthelemy et al., 2016 ), and the simulated annealing
8 
SA) stochastic strategy ( Kavroudakis, 2015 ). This is because these ones
re now the state-of-the-art implementations of the two strategies. Other
ariants exist, for instance the least squares, Chi-squares, maximum like-
ihood deterministic methods, and the hill climbing stochastic proce-
ure. These alternative methods show similar trends, but are less robust
o the range of behavioural attributes investigated and hence not dis-
ussed in detail. For instance, the m-IPF, Chi-squared, least-squared and
aximum likelihood methods when broadly compared revealed stabil-

ty of the iterative proportional fitting, whilst the Chi squares, maxi-
um likelihood and least squares methods did not converge and re-

uired over 500GB RAM and 66 h to run, when compared to extreme
ases of the IPF which converged, requiring 136MGB RAM and 35 hrs
n a 758 GB Arc3-HPC. Fig. 11 shows a comparison of the hill climbing
HC) and simulated annealing (SA) stochastic methods. Whilst the HC
lgorithm consistently produces more accurate simulated populations
han the SA procedure, the HC strategies are subject to a high number
f failures by converging to sub-optimal solutions. This phenomenon
as been reported in literature ( Williamson et al., 1993 ) and is associ-
ted with the definition of the optimization algorithm part of the HC
rocedure. 

. A case study of mobility on West Yorkshire railways 

Having explored the relative merits of the different spatial microsim-
lation methodologies, the case study illustrates how best to simulate
 micro-population linking big-data on rail trip making with informa-
ion on socio-demographic characteristics. The case study combines the
011 Census interaction data with the 2001/2004/2005 National Rail
ravel Survey (NRTS), and the 2011 LENNON ticketing data to create
he mobility behaviour of a population represented at micro-scale. The
RTS does not represent the same year as the Census (and LENNON),
nd as pointed out earlier in the paper, rail demand levels are likely to
e markedly different in different years. Below we detail the basis for
dopting the two datasets (2001/5 NRTS and 2011 Census) within the
odelling framework of spatial microsimulation, despite being acquired

n different years. 
Our hypothesis was that disparate datasets like the 2001/5 NRTS

nd 2011 Census can be combined if they do not present ‘concept’ or
data’ drift within the model where they are used. We explain this by
ssessing the use of such datasets within a spatial interaction model
 Clarke & Birkin, 2018 ), and then within a spatial microsimulation

odel ( Odiari et al., 2021 ): A spatial interaction model will be of the
orm: V ij = P i P j / d ij 

𝛽 , whereby V ij is volume of spatial interaction, P i is
he population at the origin, P j is the population at the destination, d ij 
s the distance between locations i and j , and 𝛽 is the decline in propen-
ity to travel further distances. If the 2001/5 NRTS and 2011 Census are
ombined for use in such spatial interaction model, a change in volumes
f passengers between the periods the datasets were measured would
epresents a ’concept drift’ ( Ž liobait ė, Pechenizkiy & Gama, 2016 ) and a
assenger change in behaviour, resulting in a higher propensity to travel
onger distances would represent a ’data drift’ ( Hofer & Krempl, 2013 ).



E. Odiari and M. Birkin Journal of Urban Mobility 2 (2022) 100027 

T  

p  

t  

t  

n  

i
 

l
r  

f  

e  

u  

d  

a  

T  

a  

t  

t  

c  

o  

t
 

c  

s  

o  

m  

S  

t  

n  

m  

f  

d  

m  

w  

T  

c  

w  

h  

d  

e  

c  

t  

t
 

w  

i  

o  

t  

p  

i  

f  

m  

a  

s  

u  

N  

u  

t  

t  

u  

m  

n  

f  

t  

t  

i

5

 

z  

(  

e  

t  

i  

t  

i  

u  

s  

p  

d  

p  

s
 

c  

fi  

c  

s  

s  

f  

t
 

v  

t  

7  

w  

t  

m  

(  

r  

n  

t  

t  

f  

t  

a  

q
 

b  

m  

c  

‘  

‘  

m  

c  

T  

‘  

f  

s  

‘  

b  

o
 

a  

c  

b  

o  

5 MAUP is the modified area unit problem is the fallacy whereby the result of 
data aggregation is dependent on the mapmakers’ definition of the geography 
boundaries. This phenomenon can be alleviated by using point based measures 
or offsetting by size attributes of the area. 
his is the case because the dependant variable which is the volume of
assengers would have changed, and the independent variable which is
he distance travelled by passengers both would have changed between
he use of the NRTS and Census data. As such, the NRTS and Census can-
ot be objectively combined for development of a conventional spatial
nteraction model. 

On the other hand, a deterministic reweighting spatial microsimu-
ation model will be of the form: W i + 1 = W i ( C ij / S ij ), whereby W i + 1 
epresents a new weight for individual i , and W i is the current weight
or individual i, C ij is element ij within the Census target table, S ij is el-
ment ij within the NRTS seed table. The model is iteratively executed
ntil a prescribed convergence. In this case there would be no concept or
ata drift, as neither properties of the dependant nor independent vari-
bles in the above spatial microsimulation model qualitatively change.
his is the case since the range of attribute categories within the NRTS
nd the Census are the same. The modelling process aims to replicate
he joint distribution of a target population subject to an objective func-
ion. As the 2001/5 NRTS and the 2011 Census have the same variable
ategories, replicating the Census population is limited to the choice
f variable categories embedded in the NRTS. From this point of view,
here is no concept or data drift. 

This explanation is pertinent, forming the basis in this paper, for
ombining the two time-different NRTS and Census datasets within a
patial microsimulation model. The methodology facilitates replication
f the NRTS seed to fit the distribution of a target Census data. Volu-
etric changes in a seed data are independent of the simulated target.

imilarly, particular behavioural changes in the seed data do not affect
he simulated target; more so as behavioural attributes of the seed do
ot form the dependant or independent attributes of interest. In sum-
ary, two datasets that are acquired at different times can be combined

or use in analytics provided the structural difference in the two datasets
oes not present as a concept or data drift with respect to the model. This
eans that the use of either of the 2001/5 NRTS or 2011 Census datasets
ould yield the same result when applied to a microsimulation model.
his is the case here as the NRTS and Census both have the same variable
ategories. However, the two datasets (2001/5 NRST and 2011 Census)
ould not be objectively combined in a spatial interaction model which
as volume of passengers and distance travelled as variables. The two
atasets in such a model would present as a concept and data drift. If
ither the 2001/5 NRTS seed or the 2011 Census target is used to repli-
ate a population of specific joint distribution, the result is in principle
he same. This is the case as the values of the features we define to form
he micro-similation remain the same ( De-Dios-Santos, 2020 ). 

During the first spatial micro-simulation the Census is combined
ith the NRTS data based on shared variable attributes as illustrated

n Fig. 12 (whereby the colour coded lines are used to distinguish sets
f linked variables). For analysing mobility on the railways, it is essen-
ial that the distribution and identity of individuals in the simulated
opulation be known at all stages of the procedure. The distribution of
ndividuals is essential as origin and destination attributes combine to
orm a single unique individual attribute. The individual identity infor-
ation refers to data ID within the NRTS dataset. For example, the first

nd second tuples of information in the NRTS would likely have ID of
ay NRTS-1 and NRTS-2 respectively. Such ID information enables the
nconstrained attributes of an individual to be read from the original
RTS table and then appropriately attached within the simulated pop-
lation. By so doing it is possible to compare for different microsimula-
ion strategies, the volumes of individuals simulated and associated with
hose variables that were not used as constraints in the spatial microsim-
lation. Knowledge of individual ID is sustained by including ID infor-
ation in the Census-NRTS spatial micro-simulation for example, but
ot imposing any constraints on this ID variable. That way identify in-
ormation is carried through the spatial microsimulation procedure, and
his concept is similarly applied in the second spatial micro-simulation
hat links in the variables of the LENNON ticketing information as shown
n Fig. 12 . 
9 
.1. Data pre-processing for micro-scale mobility 

As intimated earlier, the first data pre-processing stage involves re-
oning the Census data from LSOA’s boundaries into Postcode Sectors
or Areas) to enable comparison with the NRTS data and LENNON tick-
ting data which are geocoded as Postcodes. For data pertaining to in-
eractions, the re-zoning requires special consideration in that re-zoning
s performed for the origin variables and then repeated for the destina-
ion variables. Regular square fishnet mesh created across the region of
nterest (West Yorkshire) is used. This in-house procedure precludes the
se of ONS lookup tables by dividing LSOA zones into minute fishnet
quares which are subsequently integrated over the geography of the
articular Postcode boundary. The accuracy of the process is as such
ecided by the granularity of the squares. In practice, the population
roportion of an MSOA and Postcode Sector falling within each fishnet
quare are calculated. 

Coarse fishnet zonation is shown in Fig. 13 for the MSOA and Post-
ode Sectors boundaries associated with West Yorkshire. In practice the
shnets were finer (25 m squares were used in the case study to pre-
lude MAUP 5 phenomena). 25 m was deemed adequate as the unusually
mall Postcode Sectors are LS155 and LS52 ( ∼8000m 

2 ) with rectangular
hapes of about 50 m by 150 m, making a 25 m square fishnet adequate
or re-zonation of West Yorkshire Postcode Sectors, bearing in mind also
hat the average Sector size is 6km 

2 . 
The National Rail Travel Survey (NRTS) and the National Travel Sur-

ey (NTS) ( Wardman, 2006 ) show about 60% of rail travel is attributed
o commuting. Based on the NRTS Overview Report ( DfT-UK, 2010 ),
7% of all passengers who commute by rail travel 5 or more days a
eek, whilst an additional 17% of all passengers who commute by rail

ravel 2–4 days a week. This amounts to a total of 94% of rail com-
uter travelling at least 2 times a week. The purpose of the journey

commute, business or leisure) is as such decided based on passengers
ail travel frequency in addition to their activity at the destination (i.e.
ormal workplace, going to school/college, etc.), unless that destina-
ion is ‘home’ in which case the purpose is defined by the origin of the
rip. These definitions are consistent with the NTS, and form the basis
or the analysis of passenger commuting behaviour reported in the Na-
ional Rail Travel Survey Overview Report ( DfT-UK, 2010 ). These are
dopted in this paper despite that the NRTS does not have an explicitly
uestionnaire on trip purpose. 

A further data pre-processing stage concerned establishing a link
etween journey purposes (and journey frequency) in the NRTS and
ethod of travel to work in the Census (as shown in Fig. 12 ). We define

ategories ‘RC’ and ‘NRC’ to respectively represent ‘rail commuters’ and
not rail commuters’ in the NRTS. We then define categories ‘TC’ and
NTC’ to respectively represent ‘train commuters’ and ‘nom-train com-

uters’ in the Census. We make this distinction in terminology as these
ategories relate to counts which are derived from different sources.
he entire population within the NRTS would fall into either ‘RC’ or

NRC’, and similarly the entire UK population within the Census would
all into either ‘TC’ or ‘NTC’. Essentially then, ‘TC’ represents the Cen-
us population who indicated that they commute to work by rail, and
NTC’ represents everyone else including those who commute to work
y other modes and this does not preclude those who use the rail for
ther purposes. 

As mentioned earlier, within the NRTS, passenger journey purpose
nd train journey frequency in a week would enable the passenger to be
ategorised into commuter by train ( “RC ”) if a passenger states so and
y definition makes the commute journey up to thrice a week. The only
ther alternative category would be non-commuters by train ( “NRC ”),
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Fig. 12. | Relational table for the variables from NRTS, Census and LENNON ticket data. 

Fig. 13. | Coarse mesh zonation for MSOA’s and Postcode Sec- 
tors within West Yorkshire UK. 
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Table 1 

Regression results between Office of National statistics (ONS) Small Area In- 
come Estimates against a range of 2011 Census interaction socio-demographic 
attributes. 

Attribute AIC Deviance/DoF R 2 value Adjusted R 2 p-value 

Social grade 8391.9 8.84 E + 10 0.8347 0.8324 2.2E-16 
Activity 8703.8 25.09 E + 10 0.6965 0.6923 2.2E-16 
NS-Sec class 8447.3 10.31 E + 10 0.8796 0.8737 2.2E-16 
Industry 8476.6 11.12 E + 10 0.8733 0.8637 2.2E-16 
Occupation 8354.1 7.66 E + 10 0.8585 0.8541 2.2E-16 

Source: Regression parameters from a Generalized Linear Model (GLM) and an 
LM model. 
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Fig. 14. | Relationship between Income and Occupation categories utilizing the 
2011 UK Census. 
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ade up of all the other passengers that do not fall in the “RC ” category.
he Census in turn has information on method of travel to work, and
lthough there are several modes of travel to work, these can broadly be
rouped into commute by train ( “TC ”) and every other mode of travel
ould then become by definition the non-commute by train ( “NTC ”). In
 proportional sense ‘TC’ and ‘NTC’ add up to one, forming the entire
K Census population of which the NRTS is a conditional distribution

i.e. a sub-set). The NRTS as a representative survey and as such can be
xpanded thus forming a comprehensive (100%) of the UK population
ho make use of the railways (trains). If that was the case (i.e. 100%
xpansion), we observe that then counts ‘RC’ and ‘TC’ would be exactly
he same, and they both represent the same conditional distribution of
rain commuters. This strategy forms the basis of creating a link between
he NRTS and the Census, to complements the more obvious links shown
n the relational table in Fig. 13 . 

In spatial microsimulation, the sample seed is replicated to fit the
olume and probability distribution of the target. If the seed has age
ategories say 11–30yrs, 31–50yrs, 51–70yrs etc., these are essentially
ultiplied by weights to match the volume and distribution of the tar-

et population. The resulting simulated population would also consist of
xact same age categories 11–30yrs, 31–50yrs, 51–70yrs etc. A person
escribed as a rail commuter (i.e. ‘RC’) within the NRTS, could at an-
ther time also make a non-commute trip by rail. However, they are cat-
gorised as ‘RC’ within the NRTS and by definition are also ‘TC’ within
he Census. As such, ‘RC’ and ‘TC’ are mutually inclusive, and by impli-
ation ‘NRC’ and ‘NTC’ are similarly mutually inclusive. This forms the
asis for relating ‘RC’ to ‘TC’ and similarly relating ‘NRC’ to ‘NTC’, and
n fact adopting the nomenclature ‘TC’ and ‘NTC’ within both the NRTS
nd the Census. During spatial microsimulation the NRTS population
ithin the categories ‘RC’ and ‘NRC’ are replicated respectively to yield

TC’ and ‘NTC’. For brevity we have simply adopted the use of ‘TC’ and
NTC’, just like in the example of the age categories given above where
e did not distinguish between the 11–30yrs, 31–50yrs, etc. within the
RTS and the categories 11–30yrs, 31–50yrs, etc. within the Census. 

.2. Relationship between income and occupation 

Another important pre-processing feature is that we have exploited
he relational structure of the dataset attributes in Fig. 12 to derive a dis-
ggregated ‘quasi-income’ classification for the Census. From the range
f variables: ‘social grade’, ‘economic activity’, ‘NS-Sec’, and ‘industry’
nd ‘occupation’, we check the variable that regresses best with income
rom the 2011 ONS Small Area Income Estimates ( Henretty, 2011 /12). It
s found that ‘occupation’ relates best with the NRTS income, such that
ensus ‘occupation’ can be used as a substitute disaggregated ‘quasi-

ncome’ variable. The procedure to achieve the ‘quasi-income’ variable
s that ‘social grade’, ‘economic activity’, ‘NS-Sec’, and ‘industry’ and
occupation’ variables aggregated from the 2011 Census interaction data
 UKDS, 2011 ) are separately regressed against ( ONS, 2016 ). The results
rom regression are shown in Table 1 for the variables considered. 

Occupation’ was found to relate best to the average zonal weekly
ncome, having one of the highest R 

2 , the lowest AIC ( Akaike, 1987 ),
11 
nd having the most number of levels within the variable with statisti-
ally significant p -values. This formed the basis for combining categories
ithin the occupation variable to inform an estimate of income. The

occupation’ variable also had the added advantage of having only nine
ariables requiring reconciliation with the seven income categories. The
NS-Sec’ and ‘Industry’ which have commensurate R 

2 values have 15 and
1 variables, making them more difficult to reconcile with the seven in-
ome categories. As such, occupation variable was deemed best related,
esulting in the classification shown in Fig. 14 , yielding nine Census oc-
upation categories (reduced to seven) and commensurate with seven
RTS income categories. 

The blue coloured bars represent a unique occupation bracket. The
lternative coloured bars represent groups of occupation categories that
re combined into one new occupation category. For example, the per-
onal services and the elementary occupations have been combined into
ne income bracket, just as the managers and senior officials combined
ith the professional occupations to form the highest income bracket.
s mentioned earlier, this enables the Census occupation categories with
even categories to be related by proxy to the seven NRTS income cat-
gories. The map below in Fig. 15 below validates the combinations
erived as the income distributions are similar when produced from the
mall area income estimates and when derived from occupations. 

.3. Microsimulation of passengers in spatial interaction 

Another practical consideration is that each of the individuals (say
f age25–34 and associated aggregate attribute) are in mobility (by spa-
ially interacting between an origin and destination). As such the indi-
iduals age attribute (age25-34 for instance) is associated with a unique
rigin (out of the N many origins) and a unique destination (out of M
estinations). Additional variability is as such inherently introduced to
hat ag25–34 category due to the association with N origins and M des-
inations. In essence the single attribute category ag25–34 now has N by
 potential variations to it, and so also does all the other attributes and

heir categories. This multiplicity yields a dataset of high dimensional-
ty, in this case by N by M times. Such increases in granularity in the
ggregate dataset requires a commensurate increase in volume of the
ndividual-level seed in order to sustain integrity of the solution (calling
or a need for big data). The individual-level seed is in effect reduced in
ample ratio by N by M times, commensurately affecting the accuracy
nd precision of the results due to effectively reduced sample ratios. 

A further issue arising from an increased variability due to spatial in-
eractions, is that the number of Census variable categories ( ∼2192) may
ot be the same as the number of variable categories in the individual-
evel seed ( ∼1351), indicating that the survey does not have enough
ata, as the seed sample only represented 1351 variables within the
ensus. For example, an NRTS variable category LS-NTC-BB which rep-
esents a passenger who has the behaviour of not commuting by train
NTC), while travelling between Leeds (LS) and Blackburn (BB). Had
he problem not involved spatial interaction and the micro-simulation
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Fig. 15. | Distribution of quasi-income from Census and income from NRTS for West Yorkshire County. 
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Fig. 16. | Distribution of population attributes for NRTS, Census and popula- 
tions simulated by stochastic and deterministic methods (the vertical median 
lines are also indicated). 
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f resulting origin-destination flows (with the complication of associat-
ng each individual attribute to an origin and a destination), then the
ariable categories would be NTC in both the Census and NRTS, and
ould as such have been sufficient for identification purposes. Since in-

eraction is involved however, the seed sample would have to include
 measure of not just NTC, but also of NTC associated with LS and BB.
his subtlety highlights the particular advantage of ‘big data’ in creat-

ng the requisite data volume in spatial micro-simulation of interaction
henomena. 

The deterministic spatial micro-simulation strategy copes with in-
ufficient (non-observed) sample seed by synthesizing lower population
olumes (associated with when the seed does not have the variable cat-
gories to match the aggregate). The stochastic strategy under these cir-
umstances creates a full sub-optimal population. In some instances (as
ecorded in the 2004 NRTS compared with the 2011 Census), a num-
er of individual flows were not captured in the Census. Under these
ircumstances it was appropriate to remove such data values from the
RTS, as the Census was the reference aggregate dataset. 

.4. Linking census and NRTS data 

The 2011 Census interaction data measures area of usual residence
y workplace for a number of separate socio-demographic attributes,
ee Fig. 12 . Linking this Census with the NRTS variables enables the
nteraction between the separate socio-demographic attributes to be es-
ablished, creating representative mobility behaviour of a population
ortrayed at micro-scale with a rich set of attributes. Traditional spatial
icro-simulation strategies for linking and combining datasets are typ-

cally premised on the seed being representative of the aggregate pop-
lation, requiring similar distributions between the datasets. The NRTS
istribution is a subset of the Census, derived by conditioning on ‘travel
y rail’ variable (i.e. ‘NTC’ and ‘TC’). As such, for validation purposes
he resulting simulated populations created by the stochastic and de-
erministic strategies are assessed to see which one better reflects the
istribution of the target Census population. 

The R-script for implementation of spatial microsimulation for both
he deterministic and stochastic strategies is included in the data file
ssociated with this paper. The results presented in Fig. 16 are crucial,
nd illustrates that the deterministic m-IPF strategy produces a synthetic
opulation with similar distribution (and median lines) to the target
ensus. The stochastic strategy on the other hand creates a simulated
opulation distribution (and median line) similar to the NRTS sample
eed, indicative that the proposal distribution from a seed that is struc-
urally dissimilar to the target does not evolve to the target Census distri-
ution during the stochastic spatial micro-simulation process. The deter-
inistic strategy is as such preferred for use in spatial micro-simulation
12 
hen the seed sample is a structurally dissimilar non-representative ran-
om sample of the target population. 

.5. Linking-in LENNON ticketing data 

Once the Census interaction data and NRTS are combined to create a
ynthetic population, the challenge then lies in linking-in the LENNON
icketing data. To curtail the computer memory requirements during the
rst spatial micro-simulation, only the relevant variables in the NRTS
ata where included (these are variables indicated in the top half of the
RTS table in Fig. 12 . To enable a coupling to the LENNON tickets, those
RTS variables in the bottom half of the NRTS table in Fig. 12 which

elate to the LENNON data have to be re-attached to that simulated
opulation created by the first spatial micro-simulation. The attach-
ent is achieved by including the identity (Ind-ID) information for each

eed sample in the NRTS dataset, during the spatial-microsimulation. Al-
hough the identity is included as a seed variable, it is not constrained
y the target aggregate. That way the simulated NRTS-Census data in-
ludes the distribution of the individual identity (Ind-ID) within the spa-
ial micro-population. (The R script implementation of this is available
n request). 

The m-IPF deterministic spatial micro-simulation strategy has been
dopted as this has been shown in the last section ( Fig. 16 ) to be suitable
or combining datasets when the seed is non-representative by not hav-
ng the same distribution as the target data. The results shown in Fig. 17
how the distribution of the simulated NRTS-Census-LENNON mobility
opulation, for two cases: first when the simulated (NRTS-Census com-
ined with LENNON) population is sampled with probability distribu-
ion equal to the spatial micro-simulation weights. As seen from the top
wo plots, the population created has a distribution of variable cate-
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Fig. 17. | Variable categories for NRTS, simulated population and Census show- 
ing similarities in distribution of variable categories. 

Fig. 18. | Density of variables of simulated population (weighted), uniformly 
sampled, and Census populations. 
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Fig. 19. | Population in the BD Postcode Area who use the train service and are 
in closer proximity to the train lines as seen in the map. 

Fig. 20. | Granular query results for Postcode Sectors in the LS Postcode Area, 
illustrating results from spatial micro-simulation. 
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ories similar to the NRTS. In particular notice that the NTC is much
ower than the TC typical of a population of railway passengers where
here are more commuters (TC) than those who do not commute by train
NTC). The lower plot (third from top in Fig. 17 ) of the distribution of
he Census variables shows a noticeable distinction and there are much
igher values of NTC than TC, reflective of the wider population where
ypically only 5% of the population commute by train (TC) whilst the
est commute by alternative modes (NTC). 

A uniform (non-weighted 6 ) sample of simulated population produces
 micro-population with variable distribution akin to that of the wider
ensus population. This is illustrated in the density plot of Fig. 18 with
he median of the uniformly sampled population being similar to that
f the Census, but distinct from population derived using the simula-
ion weights. The results produced validates the m-IPF spatial micro-
imulation methodology as the simulated population replicates the rail-
ays population and then the wider population dependant on whether

ystematic weighted sampling or uniform sampling is adopted. Repre-
6 The weights derived from the second spatial micro-simulation represent 
robabilities, such that a random sample taken from the simulated population 
sing the probability distribution would yield the population of rail passengers 
with a distribution akin to the NRTS), whilst a sample taken assuming uniform 

robability for each simulated population would yield the population of passen- 
ers who commute and those who do not commute by rail (with a distribution 
kin to the Census interaction). 
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13 
entative populations of rail passengers that can be fed through a logis-
ical railways system are created by the weighted systematic sampling,
aking up a volume equal to the number of LENNON tickets sold. 

Validation of cross-tabulated micro-data created 

Typical cross-tabulations resulting from the micro-population cre-
ted are shown in the maps of Fig. 19 and Fig. 20 below. Prior to
patial micro-simulation, only a sub-set i.e. a sample of cross-tabulated
ata is available as the seed. The aggregate data only reveals a global
ross tabulation limited to only three variables from a range of socio-
emographic Census attributes. Spatial micro-simulation combines the
arious attributes in the disparate datasets, and produces a granular
ross-tabulation of the variables. The map in Fig. 19 for example is the
esult of a query on the cross tabulated micro-population, showing the
roportion of people residing in Postcode Sectors in Bradford, commute
o work by rail, have a Rail card, regularly buy a return ticket, travel
ithin 15 miles of their typical residence, earn between £17.5 – £35k

at 2011 rates) per annum, and live in a household with no car and no
hildren. It is seen that Postcode Sectors in the vicinity of the railways
tations (the network), expectedly tend to have a higher number of pas-
engers as they have easier access to the railways network. This is seen
n the left hand side Sectors within the Area, and consist of those pas-
engers who are more likely to use the train based on the proximity and
ccess to rail service from the usual residence. 
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Another result made feasible by the availability of the cross-
abulated micro-population is shown in Fig. 19 , showing the proportion
f people who reside in Postcode Sectors in Leeds (LS), who do not com-
ute to work by rail (NTC), and live in a household with three or more

ars (Car-3 + ). The results are intuitive and this provides some external
alidation of the micro-simulated population. These passengers use the
rain not-for-commute purposes (NTC), and the high volume of passen-
ers simulated for the LS179 Sector near the middle of the map ( Fig. 20 )
re perhaps reflective of an affluent neighbourhood, occupied by house-
olds with 3 or more cars (Car-3 + ), and who do not commute by train
NTC). 

. Synopsis and discussion 

This paper contains novel analysis detailing the relative merits of
ifferent methodologies for spatial microsimulation. Then by using a
ase study to simulate a micro-population linking consumer data on rail
rip-making with information on socio-demographic characteristics, the
obustness of the methodologies developed are tested for application to
ig-data from a disparate source. 

The assessment of the behaviour of deterministic and stochastic
trategies under different circumstances enables an informed choice of
patial micro-simulation method for specific applications. The results re-
iew previously available research that indicates that the more variables
sed in constraining a spatial microsimulation procedure, the worse the
esults. This is the first time the Monte Carlo technique is used to select
roblem scenarios for the spatial micro-simulation. By so doing, the full
ange of scenarios are included in the analysis, producing robust and
onclusive results that reflect better the TAE distribution range of pos-
ible solutions. The Monte Carlo selection process is quite distinct from
onte Carlo procedures applied within some spatial microsimulation

rocedures. Stochastic spatial micro-simulation methods held promise
ecause of the use of MCMC type algorithms. However, the results from
he SA and HC indicate that the exploratory and optimization routines
sed therein need further development. For cases where the seed data
s a conditional distribution and non-representative random sample of
he target distribution, the proposal densities in stochastic spatial micro-
imulation methods have not converged to the target distribution, de-
pite the definition of TAE as the objective function. The internal val-
dation of the procedures is implied by the TAE values derived; how-
ver, this validation heavily impinges on the data pre-processing stage,
hereby the variable categories in the seed and aggregate are required

o match. 
This paper marks the first case study of the application of spatial

icro-simulation to the spatial interaction phenomena within the rail-
ays. The particular difficulties of dealing with non-representative rail-
ays ticketing consumer datasets (big-data) have been addressed. Such
ata are a conditional distribution of the wider Census population and
s such do not have the distribution of a representative random sample
f the population, thereby presenting challenges in use for spatial mi-
rosimulation. The high dimensionality and cross-variability in passen-
er attributes can only be achieved by spatial micro-simulation, thus en-
bling the Census demographic attributes to be combined with network
ariables within the NRTS and LENNON databases, showing previously
navailable variability in passenger attributes. External validation is in-
icated from the intuitive results of queries on the synthetic population,
hich shows that passengers residing or working in the vicinity of the

ail stations inherently have a higher propensity of using the railways. 
A limitation of the case study presented in this paper is that pas-

enger flows considered are simply those emanating from and ending
n West Yorkshire. As such interregional flows are excluded, implying
hat about 60% of actual flows have been analysed. This may affect
ome interesting boundary phenomena like rail-heading, whereby pas-
engers travel further afield to access the rail service across a rail-zone
oundary, in order to restrict travel to one zone and thereby benefit
rom cheaper within-zone fares. The micro-simulation developed in this
14 
aper is applied to rail passengers who are in spatial interaction be-
ween origin and destination points. Conventional microsimulation cre-
tes a synthetic population that is fixed in space by being associated
ith just one location. Hence conventional microsimulation re-creates
ouseholds, zone populations, shoppers, etc. In this paper however, we
re creating a synthetic population interacting (by mobility) between
 journey origin and destination. These result in our use of the term
mobility interaction’ as the simulated synthetic population created are
n mobility by virtue of spatial interaction between origin and destina-
ion points. The consequence of this mobility interaction is to effectively
ncrease the dimensionality of the sample seed which is disaggregation
nto origin-destination pairs. The implication of this for microsimulation
s a requirement for a commensurate increase in sample seed volume to
aintain the variability of the simulated population and preclude the

imulation of clusters of individuals. This augurs well for the advan-
ages of increasingly available volumes of big data (e. g. mobile phone
ata on mobility flows) which when used as seeds in interaction anal-
sis; resolve such dimensionality reduction issues and further enables
he exploration of time-series cross-section (TSCS) phenomena associ-
ted with the nature of the big data phenomena. 

There are current limitations on the scalability of current implemen-
ation of m-IPF strategies. This mainly results from an increase in RAM
equirement as the number of covariates increase in spatial microsim-
lation. The particular implementation presented in the case study in
his manuscript requires two repeats of the m-IPF procedure, the first be-
ween the NRTS and Census, and the second to incorporate the LENNON
icketing data. In order to link the results from each step, ID information
n each simulated passenger has to be incorporated, thereby increasing
he memory requirements for the solution. A further limitation is due
o the R-Studio solution platform adopted which limits the size of data
ables to 2ˆ31. Parallel computing strategies have the potential to limit
ome of these constraints; however these have not yet been explored in
his research. 
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