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Spatial and moderating effects of 1 

greenspace on the association between air 2 

pollution and lung cancer incidence 3 

Abstract 4 

Lung cancer remains the primary cause of death globally. Studies have increasingly 5 

explored the role of greenspace in mitigating lung cancer risks, yet research gaps persist. 6 

First, while the direct spatial effect of greenspace has received attention, its potential 7 

spillover effects, driven by human mobility and air pollution dispersion, remain 8 

underexamined. Second, despite prevalent assertions of greenspace as an air purifier, 9 

the extent to which it moderates the air pollution-lung cancer association has yet to be 10 

fully understood. Third, the evaluation of greenspace's effects, predominately analyzed 11 

linearly a priori, demands exploration into their potential nonlinearity. We utilize three-12 

year lung cancer datasets from 228 counties in China, to investigate greenspace's spatial, 13 

moderating, and threshold effects on lung cancer incidence in relation to air pollution. 14 

Employing spatial econometric and threshold models, our findings indicate that 15 

greenspace reduces lung cancer incidence in both local and neighboring counties. We 16 

also observe a diminution in the detrimental impact of air pollution on lung cancer 17 

incidence in areas with higher greenspace, especially when the Normalized Difference 18 

Vegetation Index surpasses a given threshold (0.38). These insights contribute to an 19 

enhanced understanding of greenspace's role in lung cancer prevention and could 20 

inform policies on greenspace expansion prioritization. 21 

Keywords: greenspace; air pollution; lung cancer; spatial effect; moderating effect 22 
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1 Introduction 24 

Lung cancer, the leading cause of death worldwide, necessitates an intensified 25 

focus on its preventive measures, underscoring its importance as a critical health 26 

priority. In 2018, it accounted for 1.8 million deaths and 2.1 million new cases globally 27 

(WHO., 2020). China, as the most populous nation, contributes over 20% of new global 28 

lung cancer cases and approximately 40% of deaths (Cao, Chen, Yu, Li, & Chen, 2021; 29 

Y. Guo, et al., 2016; S. He, et al., 2020). This significant burden is further compounded 30 

by rapid urban development; the country's swift urbanization in recent decades has led 31 

to several environmental and lifestyle issues, including air pollution, environmental 32 

degradation, and decreased physical activity (Chung, et al., 2021; Sun, Bao, Zhao, Tang, 33 

& Wang, 2021; L. Wang, et al., 2022; L. Wang, Zhao, Xu, Tang, & Jiang, 2016). As a 34 

consequence, projections suggest a rising lung cancer burden in China within the 35 

coming two decades (Cao, et al., 2021). 36 

Lung cancer risk factors include individual behaviors like smoking and alcohol 37 

consumption, lifestyle factors such as unhealthy dietary choices and physical inactivity, 38 

as well as the influence of socioeconomic status and environmental exposure to air 39 

pollution (Barta, Powell, & Wisnivesky, 2019; Chung, et al., 2021; Sun, et al., 2021; L. 40 

Wang, et al., 2022; L. Wang, et al., 2016). Notably, among these, ambient air pollutants 41 

are recognized as one of the most critical determinants (Y. Guo, et al., 2016). 42 

Biologically, these pollutants introduce viruses, bacteria, and harmful gases into the 43 

lungs, triggering chronic low-grade inflammation and oxidative stress, thereby 44 

heightening lung cancer susceptibility (Loomis, et al., 2013; Turner, et al., 2020). 45 

Numerous large-scale epidemiological studies consistently link ambient air pollution 46 

with increased lung cancer incidence and mortality (Yuming Guo, et al., 2015; 47 



 

 

Raaschou-Nielsen, et al., 2013; L. Yang, et al., 2020). For example, a comprehensive 48 

12-year cohort study in northern China associated long-term exposure to PM10, SO2, 49 

and NO2 with higher lung cancer mortality (Chen, et al., 2016). Another study across 50 

75 Chinese communities found that PM2.5 and ozone exposure correlated with increased 51 

lung cancer incidence (Y. Guo, et al., 2016).  52 

The established link between ambient air pollution and increased lung cancer risk 53 

has prompted investigations into mitigating factors of air pollution, notably greenspaces. 54 

These areas, encompassing parks and forests, act as natural filters, efficiently capturing 55 

airborne particulate matter (PM), dust, and pollen. Specific tree species, such as the 56 

London plane tree, demonstrate a capacity for absorbing nitrogen dioxide (NO2) 57 

(Buccolieri et al. 2018), while broader vegetation effectively neutralizes sulfur dioxide 58 

(SO2) (Sarker et al. 2016). Greenspaces' shading effect also reduces high temperatures, 59 

curbing the formation of ground-level ozone (O3) in warm conditions (Knight et al. 60 

2021). Empirically, the Normalized Difference Vegetation Index (NDVI), a metric 61 

assessing vegetation density, is widely employed to measure greenspace exposure; a 62 

close linkage between increased NDVI and air pollution reduction has been observed 63 

in the existing literature (Yu et al. 2021; Thiering et al. 2016). Within this context, the 64 

formulation of health-oriented interventions aimed at augmenting residential 65 

greenspace exposure is gaining recognition in mitigating lung cancer risks and 66 

lessening its associated health burdens (Loomis, et al., 2013). 67 

Greenspaces, which facilitate physical activities (B. Xie, Lu, Wu, & An, 2021; Yu, 68 

et al., 2023) and offer physical and mental health benefits (Lachowycz & Jones, 2013; 69 

Bo Xie, Lu, & Zheng, 2022), have attracted considerable attention from scholars and 70 

public health officials. In light of their potential as environmental interventions, a 71 



 

 

growing body of research has explored the relationship between greenspace exposure 72 

and lung cancer incidence (Markevych, et al., 2017; L. Wang, et al., 2022; Zare 73 

Sakhvidi, et al., 2022). While some suggest a protective role of greenspaces (Huang, et 74 

al., 2022; Lei Yang, et al., 2021), others, including a comprehensive meta-analysis 75 

(Coleman, et al., 2021), along with several case studies (Shao, et al., 2019; Sun, et al., 76 

2021; Xu, Ren, Yuan, Nichol, & Goggins, 2017; Zare Sakhvidi, et al., 2021), report no 77 

significant impact on lung cancer incidence or mortality. Despite these insights, critical 78 

research gaps persist, which may contribute to such inconsistencies and hinder an in-79 

depth understanding of this complex relationship. 80 

First, research has predominately concentrated on the direct impact of greenspace 81 

exposure, examining its correlation with lung cancer incidence within specific spatial 82 

areas (L. Wang, et al., 2016; Lei Yang, et al., 2021). However, the potential spillover 83 

effects of greenspace exposure—its influence beyond immediate geographical 84 

boundaries due to human mobility and the diffusion of air pollution—remain largely 85 

underexplored. This lack of attention to spatial spillover effects hampers the 86 

development of a more comprehensive understanding of the overall health implications 87 

of greenspaces, potentially leading to biased research outcomes (Elhorst, 2010). 88 

Second, the majority of existing literature has viewed greenspace exposure as an 89 

air purifier, suggesting that it may reduce lung cancer risks through lowered levels of 90 

air pollution. However, beyond this mediating linkage, there is limited understanding 91 

of how greenspace moderates the relationship between air pollution and lung cancer 92 

risks. In essence, how air pollution affects lung cancer may vary with the amount of 93 

greenspace exposure. For example, studies have suggested that increased greenspace 94 

exposure may enhance lung function and immune response, thus bolstering resilience 95 



 

 

against air pollutants (Zhang et al. 2023; Sun et al. 2023), which consequently affects 96 

lung cancer risk. Evidence also suggests that greenspaces serve as communal areas, 97 

fostering social interactions and community engagement (Lund 2003). Strong 98 

community ties and collective efficacy enhance health information dissemination, 99 

shaping individual responses to air pollution, such as increased awareness of its adverse 100 

health effects and informed health choices to mitigate exposure like reducing outdoor 101 

activities during periods of high pollution (see Ward et al. (2022) for a review). In 102 

practice, investigating such moderating effect of greenspace helps inform targeted 103 

greenspace planning to mitigate health disparities driven by variations in air pollution 104 

exposure. 105 

Third, while the existing research often assumed a linear relationship between 106 

greenspace and lung cancer risks a priori (E. A. Richardson & Mitchell, 2010; E. A. 107 

Richardson, et al., 2012), this assumption lacks comprehensive validation. Empirically, 108 

recent studies suggest a more complex, nonlinear association not only between 109 

greenspace and lung cancer risk factors but also with various other health outcomes. 110 

For example, Ai et al. (2023)'s study revealed that the expansion of greenspace 111 

(measured by NDVI) only starts to reduce PM2.5 concentrations after exceeding a 112 

specific threshold. Once this point is surpassed, the pollution-reducing impact 113 

intensifies with additional greenspace, up until it reaches another threshold, where the 114 

effects then plateau and remain relatively constant. Similar nonlinearity has also been 115 

observed in the relationship between greenspace exposure and levels of physical 116 

activity (Klompmaker et al. 2018). Moreover, empirical evidence has revealed non-117 

linear relationships between greenspace exposure and various other health outcomes, 118 

such as general health (Huang et. al 2018), hypertension (Wensu, Wenjuan, Fenfen, 119 

Wen, & Li, 2022), and obesity (Ghimire et al. 2017). Therefore, it is reasonable to 120 



 

 

explore the association between greenspace and lung cancer incidence within a 121 

nonlinear analytical framework. Against this backdrop, determining the presence and 122 

nature of threshold effects is crucial for implementing greenspace planning that is both 123 

effective and cost-efficient in mitigating lung cancer risks. 124 

This study aims to examine the comprehensive effects of greenspace exposure on 125 

lung cancer incidence, utilizing panel data from 228 counties in China between 2013 126 

and 2015. It seeks to examine: (1) the direct, spatial, and overall spillover effects of 127 

greenspaces on lung cancer incidence; (2) the moderating role of greenspaces in the 128 

relationship between air pollution and lung cancer incidence; and (3) the presence of a 129 

threshold effect in the greenspace-lung cancer incidence association. A conceptual 130 

framework was developed to elucidate the interactions between greenspaces and lung 131 

cancer incidence (Fig. 1). Our findings could provide in-depth insights into the intricate 132 

dynamics among greenspace, air pollution, and lung cancer incidence, serving as a 133 

foundation for developing effective health-promoting greenspace strategies in 134 

developing countries. 135 

 136 



 

 

Fig.1. Conceptual framework. 137 

2 Methods 138 

2.1 Study area 139 

County-level administrative regions (counties or county-equivalent areas), which 140 

are fundamental urban administrative units in China, served as the study area. 141 

Considering the availability of data for all variables, we selected 228 sample counties 142 

distributed across 30 municipalities, autonomous regions, and provinces (Fig. 2). On 143 

average, new lung cancer cases reported in these selected counties covered 144 

approximately 20% of the total new cases diagnosed in China from 2013 to 2015. Such 145 

large case sizes in the study area ensured the generalizability of the findings. Moreover, 146 

these sample counties consisted of 53% low-income counties and 47% high-income 147 

counties with a balanced distribution of economic levels, which avoided biased results 148 

caused by economic variation. 149 

 150 

Fig. 2. Locations of the 228 sample counties in China. 151 



 

 

2.2 Data collection 152 

Four types of panel data over 3 years were used in this study: lung cancer incidence, 153 

air pollution (PM2.5) exposure, greenspace exposure, and covariates. The summary and 154 

definition for all variables are presented in Table 1. 155 

2.2.1 Incidence of lung cancer 156 

The accurate medical information on lung cancer was gathered from the China 157 

Cancer Registry Annual Report. Cancer registries in 31 provinces submit cancer 158 

registration data to the National Cancer Center Registry of China (NCCR) annually. 159 

These data are collected using active methods (registry personnel investigating the 160 

sources of data) and passive methods (medical institution notification forms forwarded 161 

to the registry, copies of abstracts for studies containing the necessary data). The NCCR 162 

ensures the integrity and credibility of the submitted data by reviewing them against 163 

the Guidelines for Chinese Cancer Registration and the applicable data quality criteria 164 

outlined in the Cancer Incidence in Five Continents Volume published by IARC/IACR. 165 

Quality problems were timely feedback to registries, who then revised and re-submitted 166 

the data to the NCCR, forming a cancer reporting database. The database included the 167 

registry's name and the number of newly diagnosed cancer cases categorized by the 168 

International Classification of Diseases (ICD-10) code at the county or equivalent 169 

geographic unit level. Registries lacking complete lung cancer data for 2013 to 2015 170 

were omitted. Consequently, 228 county-level cancer registries were incorporated into 171 

the final analysis. From this dataset, we extracted data on the number of newly 172 

diagnosed lung cancer cases, as defined by the ICD-10 code for lung cancer (C33-C34), 173 

for each county or equivalent geographic unit. The incidence rate of lung cancer in each 174 

of these areas was determined by dividing the new cases by the total population. 175 



 

 

2.2.2 Air pollution exposure assessment 176 

Research indicates PM2.5 as a key risk factor for non-communicable diseases, 177 

notably lung cancer (Song, et al., 2017). The Global Burden of Disease (GBD) 2017 178 

report (GBD Risk Factor Collaborators, 2018) shows that ambient PM2.5 air pollution 179 

is estimated to account for 14.1% of global lung cancer deaths, second only to tobacco 180 

smoking. East Asia bore the heaviest regional burden of PM2.5 on lung cancer, 181 

contributing to over 50% of the global disability-adjusted life years (DALYs) attributed 182 

to PM2.5-induced lung cancer, with China being the most affected country (Yang et al. 183 

2022). Therefore, the average annual PM2.5 was employed as a surrogate for assessing 184 

air pollution exposure in this study. Other research suggests that exposure to other 185 

ambient air pollutants such as SO2, NO2, and O3 may also significantly contribute to 186 

lung cancer risks (Yang et al. 2016). Therefore, we included SO2 and NO2 in our 187 

sensitivity analyses as adjustments to our model to ensure the robustness of our findings 188 

(see, subsection 2.4.3). PM2.5 data were collected from the China High Air Pollutants 189 

(CHAP) dataset (https://weijing-rs.github.io/product.html). These data are derived and 190 

estimated using the Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-191 

Angle implementation of Atmospheric Correction (MAIAC) algorithm and Space-Time 192 

Extra-Trees (STET) model, which achieved a cross-validation coefficient of 193 

determination ranging from 0.80 to 0.92 (Wei, et al., 2020; Wei, et al., 2021). The PM2.5 194 

data, with a spatial resolution of 1 km, have been extensively utilized in studies related 195 

to air pollution and public health (Feng, et al., 2023; D. He, Lu, Xie, & Helbich, 2022). 196 

2.2.3 Greenspace assessment 197 

Greenspace exposure estimates were based on the NDVI. We obtained NDVI from 198 

Terra MODIS of the National Aeronautics and Space Administration (NASA); the 199 

https://weijing-rs.github.io/product.html


 

 

dataset provided comprehensive coverage of China, capturing spatial details at a 200 

resolution of 250 m and temporal variations over 16 days from 2013 to 2015. The NDVI 201 

values vary between −1 and 1, with higher positive values indicating greater vegetation 202 

coverage and negative values corresponding to areas covered by clouds, water, or snow. 203 

According to Kayyal-Tarabeia, Michael, Lensky, Blank, and Agay-Shay (2022), we 204 

calculated the NDVI values for different months of the year to maximize NDVI contrast 205 

and selected August, the greenest month, as the greenspace exposure. 206 

2.2.4 Covariates 207 

Four types of covariates were selected in this study: individual behavioral 208 

covariates, meteorological covariates, socioeconomic covariates, and built environment 209 

covariates (Table 1). The individual behavioral covariates used in this study were 210 

obtained from The China Health and Retirement Longitudinal Study (CHARLS) 211 

(http://charls.pku.edu.cn/index.htm), published by the Institute of Social Science 212 

Survey of Peking University, Beijing, China. CHARLS is a well-regarded longitudinal 213 

survey capturing a broad range of data, from socioeconomic factors to health conditions 214 

of individuals aged 45 and above in mainland China (Zhao, Hu, Smith, Strauss, & Yang, 215 

2014). Launched in 2011 with biennial or triennial follow-ups, CHARLS has been 216 

instrumental in lung cancer research, especially in integrating representative individual 217 

health-related behavioral characteristics as covariates, enhancing the validity of 218 

research findings (H. Guo, Chang, Wu, & Li, 2019; Huagui Guo, et al., 2021). In our 219 

research, we extracted smoking and drinking rates from the CHARLS Wave 3 survey 220 

as covariates. This survey, conducted in 2015, encompassed 150 cities across 28 of the 221 

30 province-level administrative units in China, involving approximately 21,000 222 

individuals (H. Guo, et al., 2019; Liu, Xu, & Yang, 2018). The data on smoking and 223 



 

 

alcohol consumption were obtained from the health status and function module of the 224 

survey. As CHARLS provides data at the prefectural city level, we assigned the same 225 

smoking and drinking information to all sample counties within the same prefectural 226 

city. We applied the provincial information to the counties for those sample prefecture-227 

level cities not covered by the target prefectural cities in CHARLS.  228 

While CHARLS focused on individuals aged 45 and above, we argue that this may 229 

not significantly undermine the robustness of our findings. The reason is that lung 230 

cancer incidence in China predominantly increases after age 40 (S. Liu, et al., 2018), 231 

with individuals between 50-69 and over 70 accounting for over 80% of cases (Long, 232 

et al., 2023). This age distribution aligns closely with the CHARLS cohort, making it 233 

an ideal source for extracting representative covariates like smoking and drinking rates 234 

from its third wave in 2015. 235 

Rainfall, temperature, and sunshine duration were included as meteorological 236 

covariates in this study. Data were obtained from the National Meteorological Data 237 

Center (http://data.cma.cn/site). 238 

Socioeconomic covariates such as urbanization, gross domestic product (GDP), 239 

proportion of industrial production, and medical supply beds were included as 240 

covariates. These variables were selected to control the impact factors of lung cancer 241 

based on the urban development level, economic status, and medical conditions. 242 

Drawing on prior epidemiological studies (Ge, et al., 2021), we employed annual 243 

average nighttime light as a proxy to assess urbanization. These data were obtained 244 

from the Visible Infrared Imaging Radiometer Suite 245 

(https://ladsweb.modaps.eosdis.nasa.gov/), with higher values indicating higher levels 246 

of urbanization. Data on the GDP, proportion of industrial production, and medical 247 

http://data.cma.cn/site
https://ladsweb.modaps.eosdis.nasa.gov/


 

 

supply beds were extracted from the China City Statistical Yearbook. 248 

Built environments have significant effects on air pollution (Ferm & Sjoberg, 2015; 249 

Pant & Harrison, 2013) and can potentially affect the incidence of chronic non-250 

communicable diseases (Bo Xie, Jiao, An, Zheng, & Li, 2019). We selected population 251 

density and road density as built environment covariates; data were obtained from the 252 

China Statistical Yearbook at the county level. 253 

2.3 Examination of spatial dependency 254 

To avoid endogeneity bias in area-level estimations, we employed the Global 255 

Moran's I statistic to assess the spatial autocorrelation of lung cancer incidence within 256 

counties across the study area. The Global Moran's I value were 0.587, 0.636, and 0.663 257 

in 2013, 2014, and 2015, respectively, illustrating that the incidence of lung cancer in a 258 

county presents a significant and strong spatial autocorrelation with that in adjacent 259 

counties. 260 



 

 

Table 1 261 

Summary statistics for all variables (N=228). 262 

Variable Description Unit Min Ma

x 

Mean SD 

The incidence of lung 

cancer 

Newly diagnosed lung cancer cases 

/the total population in each county 

New cases per 

100,000 person 

0.715 23.1

14 

5.137 2.13

7 

Air pollution Annual average PM2.5 concentration μg/m3 16.42

4 

112.

094 

69.10

2 

19.6

72 

Greenspace Average NDVI value in August —— 0.096 0.73

4 

0.444 0.12

2 



 

 

Individual factors 

  Smoking Smokers/total number of population in 

each county 

% 25.80

0 

58.3

33 

39.58

5 

0.05

3 

Alcohol drinking The number of people who drink more 

than once a month/ total population in each 

county 

% 4.918 56.4

93 

35.58

6 

0.07

5 

Meteorological factors 

Rainfall Annual average rainfall mm 712.60

4 

3422.

926 

1989.

772 

513.

397 

Temperature Annual average temperature ℃ 1.910 32.67 16.89 4.50



 

 

5 0 9 

Sunshine duration Annual average sunshine hours hour 1.140 12.65

2 

5.761 1.98

4 

Social-economic factors 

Urbanization Annual average nighttime light 

intensity  

—— 0.041 73.12

1 

11.23

6 

14.5

44 

GDP Per capita GDP per year 10 thousand yuan 

per person 

0.808 46.77

5 

5.652 3.97

8 

Proportion of industrial 

production 

The proportion of industrial output in 

total output per year 

% 0.061 5.595 1.662 0.81

0 



 

 

Medical supply beds  Medical bed number per 1,000 person counts per 1,000 

person 

11.897 241.6

62 

49.91

1 

26.2

29 

Built environment factors 

Population density Population/total area of the counties  Person per km2 79.000 13971

.000 

3710.

722 

2616

.363 

Road density Road length/total area of the counties  km/km2 0.002 3.902 0.346 0.53

2 

Note: Min = minimum; Max = maximum; SD = standard deviation263 



 

 

2.4 Statistical analysis 264 

2.4.1 Spatial econometric models for panel data 265 

The existence of spatial dependence and autocorrelation violates the hypothesis 266 

that variables are independent of each other (LeSage & Pace, 2009). Therefore, we 267 

constructed spatial econometric models for the panel data to correct the biased and 268 

inconsistent estimations caused by the spatial spillover effect. A general spatial nesting 269 

model was constructed as follows: 270 

           𝑌𝑖𝑡 = 𝜌𝑊𝑌𝑖𝑡 + 𝛼𝐼𝑛 + 𝛽𝑋𝑖𝑡 + 𝑢, 𝑢 = 𝜆𝑊𝜇 + 𝜀     (1) 271 

where, for county i in year t, 𝑌𝑖𝑡 is the n × 1 vector of lung cancer incidence; 272 𝑋𝑖𝑡 is the explanatory variable; 𝛽 is the corresponding coefficients; 𝑊 is an n × n 273 

spatial weight matrix; 𝐼𝑛 is an N × 1 vector which is associated with the constant term 274 

parameter α; 𝜌 denotes the spatial autoregressive coefficient; 𝜆 denotes the spatial 275 

autocorrelation coefficient; 𝜀 denotes a vector of disturbance terms; and 𝑊𝜇 denotes 276 

the interaction effects arising from the disturbance terms across different spatial units. 277 

Based on Eq. (1), when 𝜆 = 0, the model was transformed into a spatial Durbin 278 

model (SDM) containing the spatial lag terms of the dependent and independent 279 

variables: 280 

              𝑌𝑖𝑡 = 𝜌𝑊𝑌𝑖𝑡 + 𝛼𝐼𝑛 + 𝛽𝑋𝑖𝑡 + 𝜃𝑊𝑋𝑖𝑡 + 𝜀     (2) 281 

Based on Eq. (2), when 𝜃 = 0, the SDM could be simplified to a spatial lag model 282 

(SLM) containing the spatial lag terms of the dependent variable. If 𝜃 = −𝜌𝛽, then 283 𝜆 = 𝜌, and we obtained the spatial error model (SEM), which only contained the spatial 284 

lag terms of the error term. To determine which model is more appropriate for 285 



 

 

describing data, the Lagrange multiplier (LM) test, robust Lagrange multiplier (robust 286 

LM) test, and likelihood ratio (LR) test were used (for specific model selection methods, 287 

see Elhorst (2012)). The Hausman test examined fixed effects when individual or time 288 

effects were correlated with regressors (Lee & Yu, 2012). 289 

The advantages of employing spatial econometric models are as follows. First, the 290 

spatially lagged terms 𝑊𝑌𝑖𝑡  and 𝑊𝑋𝑖𝑡  can help explicitly reduce the endogeneity 291 

bias caused by spatial dependence and spatial autocorrelation. Two main approaches 292 

are commonly employed when constructing the spatial weight matrix: neighboring and 293 

distance-based. As there were distances between some sample counties, the diffusion 294 

of air pollutants was not confined by administrative boundaries. Therefore, to account 295 

for possible bias, the reciprocal of the Euclidean distance among counties was used as 296 

an element in our distance weight matrix, according to the equation: 297 

                          𝑊 = {1𝑑   𝑖 ≠ 𝑗0 𝑖＝𝑗              (3) 298 

where d represents the distance of the geometric center between county i and 299 

county j. 300 

Second, spatial econometric models can be employed to calculate the spatial 301 

spillover effects of greenspaces on lung cancer incidence. LeSage and Pace (2009) 302 

defined every average diagonal element of the 𝑊𝑋𝑖𝑡 matrix of 𝑊𝑋𝑖𝑡 as a direct effect. 303 

This term refers to the influence of changes in the independent variable on the 304 

dependent variable of local areas. Moreover, every non-diagonal average element is 305 

defined as the spillover effect, which is interpreted as the impact of the independent 306 

variable on the dependent variable of neighboring areas. Finally, the total effect includes 307 

both the average direct and spillover effects. 308 



 

 

2.4.2 Panel threshold model 309 

To explore the threshold effect of greenspace on lung cancer incidence, the panel 310 

threshold model, which can automatically identify the endogenous features of data, was 311 

employed in this study (Hansen, 1999). 312 

The threshold model is expressed by Eq. (4) and Eq. (5) as follows: 313 

                𝑌𝑖𝑡 = 𝜇𝑖 + 𝛽1𝑋𝑖𝑡 + 𝜀𝑖𝑡， 𝑞𝑖𝑡 ≤ 𝛾                    (4) 314 

                   𝑌𝑖𝑡 = 𝜇𝑖 + 𝛽2𝑋𝑖𝑡 + 𝜀𝑖𝑡， 𝑞𝑖𝑡＞𝛾         315 

 (5) 316 

For county i in year t, 𝑌𝑖𝑡  is lung cancer incidence, 𝑋𝑖𝑡  is the independent 317 

variable, and 𝑞𝑖𝑡 denotes the threshold variable; 𝜇𝑖 represents the individual effect. 318 

Depending on the threshold 𝛾, the observations are categorized into two stages. Each 319 

stage represents a distinct regime with its regression slope, either 𝛽1 or 𝛽2. 320 

2.4.3 Sensitivity analysis 321 

To enhance the robustness of our findings, we performed two types of sensitivity 322 

analyses. First, we employed an alternative weight matrix structure, specifically the 323 

queen contiguity matrix, to ascertain the stability of our model given its distinct weight 324 

matrix configuration. Second, we recalibrated the primary model, incorporating 325 

adjustments for SO2 and NO2 concentrations, to explore the potential confounding 326 

effects of these gaseous pollutants on lung cancer incidence. The data for these 327 

pollutants, with a 10km resolution, were sourced from the Comprehensive Air-quality 328 

Prediction (CHAP) dataset (https://weijing-rs.github.io/product.html). 329 



 

 

3 Results 330 

3.1 Descriptive analysis 331 

 According to the data presented in Table 2, there was no significant variation in 332 

the incidence of lung cancer from 2013 to 2015, whereas the variations in PM2.5 and 333 

NDVI differed significantly. The mean PM2.5 concentration significantly decreased by 334 

36 μg/m3 in absolute terms and 41.2% in percentage terms. The mean NDVI value in 335 

2015 were slightly higher than those in 2013 (0.46 vs. 0.42). 336 

In terms of spatial distribution, a higher incidence of lung cancer was observed in 337 

counties in the eastern region (Fig. 3). Moreover, the concentration of PM2.5 was found 338 

to be higher in the eastern region when compared to both the central and western regions 339 

within the study area (Fig. 4). Fig. 5 shows that the distribution of the NDVI differed 340 

significantly among the three regions in China, with the central region holding the 341 

highest level, followed by the eastern and western regions. 342 

Table 2 343 

The temporal variations of lung cancer incidence, PM2.5 concentration, and the 344 

NDVI. 345 

 

Incidence of lung 

cancer 
PM2.5 NDVI 

 

2

014-

2013 

2

015-

2013 

2

015-

2014 

20

14-

2013  

20

15-

2013 

201

5-2014 

20

14-

2013 

20

15-

2013 

20

15-

2014 



 

 

Z 

value 

-

1.074b 

-

1.489b 

-.

601b 

-

11.887c 

-

13.083c 

-

13.067c 

-

9.012b 

-

10.101b 

-

2.194b 

P 

value 

0.

283 

0.

136 

0.

548 

0.0

00 

0.0

00 

0.0

00 

0.

000 

0.0

00 

0.0

28 

Note: The Wilcoxon signed-rank test was used to examine the temporal variations of variables in 346 

each county from 2013 to 2015. b was based on negative ranks. c was based on positive ranks. 347 

 348 

349 

 350 

a. 2013                 b. 2014                c. 2015 351 

Fig. 3. Spatial distribution of the incidence of lung cancer in 2013-2015. 352 

353 



 

 

 354 

a. 2013                 b. 2014                c. 2015 355 

Fig. 4. Spatial distribution of PM2.5 concentrations in 2013-2015. 356 

357 

 358 

a. 2013                 b. 2014                 c. 2015 359 

Fig. 5. Spatial distribution of the NDVI in 2013-2015. 360 

3.2 Results of basic models 361 

Table 3 presents the estimated results of greenspaces' effects on lung cancer 362 

incidence. The statistical values of the LM and LR tests indicated that the SDM was 363 

deemed more suitable compared to the SLM and SEM in the present study. Furthermore, 364 

according to the Hausman test, fixed effects were more suitable for our research. 365 

Therefore, all models employed in our study incorporate the time-fixed effect. 366 



 

 

The results showed that the direct effect of the NDVI on the incidence of lung 367 

cancer was significantly negative at the 5% significance level. A one-unit increase in 368 

NDVI caused a 2.793% decrease in the incidence of lung cancer. Furthermore, we 369 

found a negative spatial spillover effect of NDVI on the incidence of lung cancer. Every 370 

one-unit increase in NDVI decreased the incidence of lung cancer in the surrounding 371 

counties by 0.593%. 372 

Regarding covariates, the incidence of lung cancer was significantly influenced by 373 

higher rates of smoking and alcohol consumption in counties. Moreover, rainfall and 374 

the proportion of industrial production had direct and spatial spillover effects on lung 375 

cancer incidence. We also found that road density was negatively related to lung cancer 376 

incidence in both local and nearby counties. 377 

Table 3 378 

Spatial econometric models result. 379 

Dependent 

Variable：Incidence of 

lung cancer 

SDM     

Main Wx Direct 

effect 

Indirect 

effect 

Total 

effect 

NDVI -

2.805** 

(1.091

8) 

-

3.350* 

(1.893

0) 

-

2.793** 

(1.133

1) 

-0.593* 

(0.3191) 

-

3.386** 

(1.40

02) 



 

 

Smoking 7.730*

** 

(1.515

5) 

5.317*

* 

(2.747

2) 

7.748*

** 

(1.446

0) 

1.631*** 

(0.5937) 

9.379

*** 

(1.82

03) 

Alcohol drinking 5.573*

** 

(1.079

5) 

6.899*

** 

(2.119

4) 

5.738*

** 

(1.156

8) 

1.218** 

(0.4759) 

6.956

*** 

(1.49

08) 

Rainfall  0.455* 

(0.239

1) 

0.711* 

(0.402

4) 

0.449*

* 

(0.241

0) 

0.096* 

(0.0636) 

0.545

** 

(0.29

75) 

Sunshine duration  0.390 

(0.388

1) 

1.263 

(0.623

7) 

0.403 

(0.385

3) 

0.087 

(0.0921) 

0.490 

(0.47

17) 

Temperature -0.397 

(0.305

0) 

-0.464 

(0.431

0) 

-0.390 

(0.298

7) 

-0.080 

(0.0673) 

-

0.470 

(0.35

98) 



 

 

GDP 0.003 

(0.024

2) 

0.008 

(0.045

3) 

0.004 

(0.026

1) 

0.001 

(0.0059) 

0.005 

(0.03

18) 

Urbanization -0.001 

(0.006

0) 

-0.018 

(0.011

2) 

-0.001 

(0.005

7) 

-0.001 

(0.0013) 

-

0.002 

(0.00

69) 

Proportion of 

industrial production  

0.475*

** 

(0.100

6) 

0.049* 

(0.188

7) 

0.485*

** 

(0.100

2) 

0.103** 

(0.0400) 

0.588

*** 

(0.12

78) 

Medical supply-

beds  

-0.001 

(0.000

5) 

-0.001 

(0.001

5) 

-0.001 

(0.000

5) 

-0.001 

(0.0001) 

-

0.002 

(0.00

06) 

Population density 0.200 

(0.399

5) 

0.747 

(0.726

6) 

0.200 

(0.406

0) 

0.043 

(0.0929) 

0.243 

(0.49

45) 

Road density  - -0.396 - -0.074* -



 

 

0.355** 

(0.170

2) 

(0.285

9) 

0.350** 

(0.179

9) 

(0.0452) 0.424** 

(0.21

92) 

ρ 0.195*

** 

    

σ 3.805*

** 

    

R2 0.128     

N 228     

SEM-LM 0.009*     

SEM-Robust LM 2.158*     

LR test (SDM & 

SEM) 

20.790

** 

    

SLM-LM 2.191*

** 

    

SLM-Robust LM 4.340     

LR test (SDM & 21.330     



 

 

SLM) * 

Hausman test 40.010

*** 

    

Note：*p <0.1; **p <0.05; ***p <0.01. In parentheses denotes the standard error. 380 

“Main” refers to the non-spatial regression coefficient; “Wx” refers to the spatial 381 

regression coefficient. “Direct effect” represents the impacts of variables on the 382 

incidence of lung cancer in local areas; “Indirect effect” represents the impacts of 383 

variables on the incidence of lung cancer in nearby areas. The spatial correlation 384 

coefficient of the dependent variable is denoted as ρ, and the standard error is defined 385 

as σ. 386 

3.3 Moderating effect of greenspace 387 

To examine the moderating effect of greenspace on the relationship between PM2.5 388 

and lung cancer incidence, we added PM2.5 and the interaction term (PM2.5 × NDVI) 389 

into the basic model. Table 4 shows that the negative direct and spatial spillover effects 390 

of NDVI remained significant after controlling for covariates. In addition, there was a 391 

positive direct and spillover effect of PM2.5 on the incidence of lung cancer. 392 

Furthermore, we observed that the interaction term of PM2.5 and NDVI had a significant 393 

negative direct effect on the incidence of lung cancer. That is, a one-unit increase in the 394 

NDVI is associated with a 0.050% decrease in the impact of PM2.5 on the incidence of 395 

lung cancer. However, no spillover effect of the interaction term was observed in this 396 

model. Our sensitivity analyses revealed that after recalibrating the model with the 397 

queen contiguity matrix and incorporating adjustments for SO2 and NO2, the results 398 



 

 

demonstrated substantial consistency (Table S1 in Supplementary Material). 399 

Table 4 400 

Tests for the moderating effect of greenspace. 401 

Dependent 

Variable： Incidence 

of lung cancer 

SDM     

Main Wx Direct 

effect 

Indirect 

effect 

Total 

effect 

NDVI -

3.056*** 

(1.090

8) 

-

3.587* 

(1.929

9) 

-

3.047** 

(1.132

2) 

-0.646* 

(0.3266) 

-

3.693** 

(1.40

21) 

PM2.5 0.020*

** 

(0.006

8) 

0.002*

* 

(0.010

5) 

0.020*

** 

(0.006

6) 

0.004** 

(0.0019) 

0.024

*** 

(0.00

81) 

PM2.5×NDVI -

0.053* 

(0.034

4) 

-0.034 

(0.067

8) 

-

0.050* 

(0.033

2) 

-0.010 

(0.0077) 

-

0.060* 

(0.04

01) 



 

 

Covariates √     

ρ 0.194*

** 

    

σ 3.755*

** 

    

R2 0.169     

N 228     

SEM-LM 0.035*     

SEM-Robust LM 2.838*     

LR test (SDM & 

SEM) 

21.180

* 

    

SLM-LM 3.215*     

SLM-Robust LM 6.018*

* 

    

LR test (SDM & 

SLM) 

21.360

* 

    



 

 

Hausman test 31.940

*** 

    

Note：*p <0.1; **p <0.05; ***p <0.01. In parentheses denotes the standard error. 402 

3.4 Threshold of moderating effects 403 

We developed two models to examine whether there was a significant threshold 404 

effect on the incidence of lung cancer. Model 1 in Table 5 shows that the total effect of 405 

the NDVI did not exhibit a significant threshold. However, the single and double 406 

thresholds in Model 2 passed the 5% significance test, suggesting significant double 407 

thresholds for NDVI's moderating effect. 408 

The NDVI moderated the relationship between PM2.5 and the incidence of lung 409 

cancer in the three stages (Table 6). When the NDVI value was less than 0.38, the 410 

interaction term did not significantly impact lung cancer incidence. When the NDVI 411 

was between threshold values of 0.38 and 0.4, the interaction term was negatively 412 

associated with the incidence of lung cancer. Specifically, with a one-unit increase in 413 

NDVI, the positive effect of PM2.5 on lung cancer incidence decreased by 0.139%. 414 

Finally, when the NDVI was higher than a threshold value of 0.4, the negative effect of 415 

the interaction term on lung cancer incidence remained significant. However, the extent 416 

of the moderating effect decreased significantly compared with that in the second stage. 417 

Table 5 418 

Tests for the threshold effect of the NDVI. 419 



 

 

Threshol

d 

F 

statistic 

P 

value 

10% 5% 1% 

Threshold test of the total effect (model 1) 

Single 14.870 

0.15

0 

16.52

1 

18.55

9 

24.45

5 

Double 6.770 

0.58

6 

14.63

6 

16.16

0 

19.96

7 

Triple 4.820 

0.83

0 

16.10

5 

19.74

7 

25.13

6 

Threshold test of the moderating effect (model 2) 

Single 13.140* 

0.07

0 

11.730 

15.01

8 

19.04

4 

Double 

17.540*

* 

0.02

6 

12.27

7 

15.58

9 

19.72

7 

Triple 14.100 

0.25

3 

20.78

7 

29.95

8 

32.98

0 

Note: *p <0.1; **p <0.05; ***p <0.01. 420 

Table 6 421 



 

 

The threshold value and parameter estimation of the moderating effects of 422 

greenspace. 423 

Dependent 

Variable： 

Incidence of 

lung cancer 

Threshold Coefficient 
T 

statistic 

PM2.5×NDVI 

NDVI≤0.38 0.002 0.260 

0.38＜NDVI

≤0.4 

-0.139*** 

-

4.080 

NDVI＞0.4 -0.013*** 

-

2.820 

Note: *p <0.1; **p <0.05; ***p <0.01. 424 

4 Discussion 425 

4.1 Associations between greenspace, PM2.5, and lung cancer 426 

This study found that greenspace exposure is a protective factor against lung cancer. 427 

To date, only a few studies have reported the preventive effects of greenspace on lung 428 

cancer. A cohort study from Taiwan, China, revealed a significant relationship between 429 

an increment of 0.1 units in NDVI and a hazard ratio (HR) of 0.95 in lung cancer risks 430 

(Huang, et al., 2022). Another cohort study conducted in Tel Aviv, Israel, over a 21-year 431 



 

 

follow-up period, involving 144,427 participants, revealed a beneficial correlation 432 

between higher residential greenness and lower incidence of lung cancer (Kayyal-433 

Tarabeia, et al., 2022). We obtained consistent results at the national scale, as noted in 434 

previous studies. This finding provides evidence that greenspace intervention is a useful 435 

avenue for reducing the incidence of lung cancer. 436 

The effects of greenspace on health outcomes in previous ecological studies are 437 

often simplified to a direct one-to-one relationship at the area level, which might report 438 

biased findings. For example, a comprehensive ecological study from the United 439 

Kingdom found no relationship between greenspace and lung cancer mortality (E. A. 440 

Richardson & Mitchell, 2010). Similarly, an urban study conducted in New Zealand 441 

failed to provide evidence that greenspace influences lung cancer mortality (E. 442 

Richardson, Pearce, Mitchell, Day, & Kingham, 2010). Although these studies observed 443 

consistent results at the local level across different countries, they do not fully capture 444 

the comprehensive health impact of greenspace, especially when considering the 445 

presence of spillover effects that align with the direction of the direct effects (Benjamin-446 

Chung, et al., 2018). In our study, we go beyond previous studies that typically consider 447 

the direct effects of greenspace on lung cancer and adopt spatial econometric models to 448 

investigate the presence and extent of spatial spillover effects. The results from the 449 

SDM showed that the total protective effect of greenspace involved both direct and 450 

indirect effects (i.e., spatial spillover effect). These findings reveal that exposure to 451 

greenspaces can mitigate the risk of lung cancer not only in local counties but also in 452 

neighboring ones. Remarkably, the protective effects of greenspace from nearby 453 

counties account for 20% of the benefits derived from local greenspace. Increasing 454 

greenspace not only provides health benefits to residents who lived in local counties 455 

but also extends its impact to individuals who do not directly receive the greenspace 456 



 

 

intervention. Our findings highlight the importance of synergistically scaling up or 457 

subsidizing greenspace interventions nationally. 458 

Two potential reasons have been proposed in this study to explain the spatial effects 459 

of greenspace on lung cancer incidence. A plausible explanation is that greenspaces in 460 

local counties may deposit and filter PM2.5 diffused from adjacent counties by chemical, 461 

biological, and physical effects (Markevych, et al., 2017; Zare Sakhvidi, et al., 2022), 462 

thereby decreasing the harmful effects of PM2.5. Moreover, most existing studies on 463 

cancer incidence failed to consider the greenspace exposure changes caused by human 464 

mobility across the geographical boundary (Gailey, McElroy, Benmarhnia, & Bruckner, 465 

2021; Namin, Zhou, Neuner, & Beyer, 2021). In China, straddle and circle mobility 466 

among counties (such as inter-city commuting and hukou-based migrant) is widespread. 467 

This large-scale individual mobility involving approximately 18% of the country's total 468 

population may lead to continuous variations in residents' exposure to greenspace (Mai 469 

& Wang, 2022; Namin, et al., 2021). Under this scenario, the health benefits derived 470 

from greenspace may not solely originate from the local area but should encompass the 471 

cumulative effect of local and nearby counties. Our findings on spatial spillover effects 472 

emphasize the need for future studies to estimate greenspace exposure using the 473 

mobility-based approach in similar countries with high internal mobility levels to 474 

provide more comprehensive insights into the health effects of greenspace. 475 

Second, recent epidemiological studies have shown that greenspace may moderate 476 

the effect of PM2.5 on health outcomes. For example, a nationwide modeling study from 477 

China suggested that areas with higher levels of greenspace exhibited stronger 478 

protective effects against tuberculosis in the presence of PM2.5 compared to areas with 479 

lower levels of greenspace (Zhu, et al., 2022). Similarly, an ecological study conducted 480 



 

 

in Greece reported that areas with greater greenness had lower PM2.5 effects on 481 

cardiovascular mortality (Kasdagli, Katsouyanni, de Hoogh, Lagiou, & Samoli, 2021). 482 

Our estimated results suggest that greenspace can moderate the relationship between 483 

PM2.5 and lung cancer incidence, which is in accordance with previous studies 484 

(Coleman, et al., 2021; Kasdagli, et al., 2021). In other words, the positive effects of 485 

PM2.5 on the incidence of lung cancer decreased in greener counties.  486 

However, a moderating greenspace effect was observed only after the NDVI 487 

exceeded a certain threshold. According to Table 6, when the NDVI exceeded 0.38, 488 

greenspace was conducive to reducing the positive effect of PM2.5 on the incidence of 489 

lung cancer. Furthermore, when the NDVI increased to 0.4, the strength of the 490 

moderating effect decreased. Recent studies conducted in developed countries have 491 

observed similar nonlinear effect trends. For example, evidence from a national cohort 492 

of Canadian adults showed no significant relationship between PM2.5 and non-493 

accidental and cardiovascular mortality in the two greenest quintiles (Crouse, et al., 494 

2019). Research comprising 5.5 million cancer patients and survivors across 14 states 495 

and metropolitan regions in the United States has found that an increase in county-level 496 

PM2.5 is associated with a heightened risk of cardiopulmonary mortality in regions with 497 

low levels of NDVI. In contrast, areas with high levels of greenness were almost 498 

immune to any variations in PM2.5 levels and did not pose any relative risk (Coleman, 499 

et al., 2021). Our findings differed slightly from those of previous studies. Results in 500 

our study emphasize the existence of a certain threshold value that may trigger the 501 

potential emergence of the moderating effect of greenspace. This finding implies that 502 

compared to developed countries, local governments in developing countries need to 503 

prioritize policy interventions focusing on expanding greenspaces to generate positive 504 

health effects even in counties with high air pollution. 505 



 

 

Third, we comprehensively controlled for individual, meteorological, 506 

socioeconomic, and built environment factors, thus avoiding potential biases and giving 507 

more realistic results. Smoking and alcohol consumption were seldom incorporated in 508 

previous ecological studies, although they are crucial contributors to respiratory 509 

diseases like lung cancer (Lin, Murray, Cohen, Colijn, & Ezzati, 2008). In our research, 510 

these two factors based on data derived from CHARLS were introduced to the models. 511 

The results showed that they were positively correlated with the incidence of lung 512 

cancer, which is consistent with the results of previous studies (WHO., 2020). 513 

Regarding meteorological factors, we found that rainfall was positively related to the 514 

incidence of lung cancer, perhaps owing to condensation nuclei in microdroplets of 515 

rainfall water that carried air pollutants and damaged human lungs (Clauss, Mayes, 516 

Hilton, & Lawrenson, 2005; Javorac, et al., 2021). Furthermore, our findings indicate a 517 

positive correlation between the proportion of industrial production and the incidence 518 

of lung cancer, which is consistent with previous studies (López-Cima, et al., 2013; 519 

Lopez-Cima, et al., 2011). For built environment factors, the results suggest a negative 520 

correlation between road density and the incidence of lung cancer, which is inconsistent 521 

with the findings of other studies (Bechle, Millet, & Marshall, 2011; Chawinska, 522 

Tukiendorf, & Miszczyk, 2014; Sun, et al., 2021). A plausible explanation is that high 523 

road density in Chinese counties may decrease per capita emissions by discouraging 524 

car usage and promoting walking as a mode of transportation (Brownstone & Golob, 525 

2009), thereby reducing the risk of lung cancer. 526 

4.2 Policy implications 527 

This study has several policy implications that can facilitate greenspace 528 

construction and lung cancer prevention in China and other developing countries. First, 529 



 

 

urban planners should note the strong spillover effects of greenspace, which can reap 530 

the health benefits that transcend the local population. Consequently, there is a pressing 531 

need to prioritize and allocate resources to support the expansion of greenspace at a 532 

national level, aiming to optimize health outcomes for a broader population. 533 

Second, we found a moderating effect of greenspaces on the association between 534 

PM2.5 and lung cancer incidence, providing new evidence and insights for central and 535 

local governments to enhance the understanding of greenspace-related health benefits. 536 

Although the government has taken proactive measures to control air pollution, PM2.5 537 

will likely continue to contribute significantly to the high burden of lung cancer. 538 

Therefore, policymakers and urban planners should pay attention to the mitigating 539 

function of greenspaces in lung cancer associated with air pollution. Specifically, 540 

policymakers can use NDVI as a crucial quantitative indicator and incorporate it into 541 

lung cancer resilience strategies and urban planning policies. The critical greenspace 542 

value, where the moderating effect was significant, could be considered the basic 543 

requirement for regional greenspace construction. 544 

Third, to improve our understanding of the threshold value of the moderating effect 545 

of greenspace, we calculated the proportion of counties in which the NDVI value was 546 

less than 0.38, even in the greenest season, and presented their spatial distribution (see 547 

Fig. S1 and Table S2). In over 20% of the counties, NDVI was found to have no 548 

moderating effect on the relationship between PM2.5 and lung cancer incidence. 549 

Therefore, the policymakers should provide more resources (e.g., financial investment 550 

to expand greenspace and mitigate air pollution) for these counties to reduce lung 551 

cancer risks at both the local and national levels. 552 



 

 

4.3 Strengths and limitations 553 

This study makes three contributions to the existing literature. First, this study 554 

considered greenspaces' direct and spatial spillover effects simultaneously, avoiding the 555 

estimated bias caused by ignoring spatial autocorrelation in previous studies. More 556 

importantly, our study provides insights for policymakers to develop broader regional 557 

policies to improve greenspaces. Second, we explored the moderating impact of 558 

greenspace on the link between PM2.5 and lung cancer incidence after controlling for 559 

drinking and alcohol drinking factors, extending our knowledge of how residing in 560 

greener areas may contribute to better health outcomes. In most developing countries, 561 

people are simultaneously exposed to greenspaces and high levels of air pollution. 562 

Given this widespread issue, our findings can help local governments in China and 563 

similar developing countries realize that greenspace intervention effectively prevents 564 

health problems caused by high air pollution concentrations. Third, this study examined 565 

the nonlinear trend in the health effects of greenspaces, which could guide the 566 

implementation of greenspace interventions to improve health outcomes. 567 

This study is subject to several limitations. First, due to data constraints and privacy 568 

laws in China, we did not include detailed sociodemographic details such as age and 569 

sex for individuals with lung cancer. Second, while our reliance on smoking and alcohol 570 

consumption rates from the CHARLS datasets, targeting those aged 45 and above, 571 

aligns with the age bracket most affected by lung cancer in China, it may not fully 572 

represent younger demographics, potentially affecting the generalizability of our 573 

findings. Also, our method of assigning uniform health-related behavior information to 574 

counties within the same prefectural cities or provinces might not account for local 575 

behavioral differences. Third, although we investigated the relationship between PM2.5, 576 



 

 

greenspace exposure, and lung cancer, and enhanced our findings by adjusting for SO2 577 

and NO2, our approach might not capture all air pollutant factors influencing lung 578 

cancer. Addressing these data limitations in future studies would be beneficial. Fourth, 579 

our study did not account for the cumulative effects of greenspace and PM2.5 exposure 580 

on lung cancer incidence, potentially introducing uncertainty regarding threshold levels. 581 

It is advisable for future research to re-examine our findings using longitudinal data 582 

over an extended period, which would better facilitate the modeling of cumulative 583 

exposure to greenspace and PM2.5. 584 

5 Conclusions 585 

This study provides robust evidence to explore the spatial effect of greenspaces on 586 

the incidence of lung cancer in developing countries, using panel data from 2013 to 587 

2015. The results of spatial econometric models showed that greenspace has a negative 588 

direct effect and a spatial spillover effect on the incidence of lung cancer. Moreover, a 589 

negative moderating effect of greenspace on the relationship between PM2.5 and the 590 

incidence of lung cancer was identified. Furthermore, the moderating effect of 591 

greenspaces became significant when it was greater than 0.38. This study suggests that 592 

investment in greenspaces can be an effective intervention strategy for reducing the 593 

incidence of lung cancer in China. 594 

 595 
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