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Abstract
We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent
random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes
rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust
and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs.
We present an error analysis and study the benefits of utilizing Newton–Cotes rules versus the fast Fourier transform (FFT)
for numerical integration, showing that although there can be efficiency benefits to using FFT, Newton–Cotes rules tend to
preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with
both known and unknown rare-event probabilities showcase the method’s performance and support our theoretical findings.

Keywords Rare events · Discrete convolution · Newton–Cotes rules · FFT

Mathematics Subject Classification 60E05 · 65G50 · 90-04

1 Introduction

For a sequence of non-negative and independent continuous
randomvariables (RVs) X1, X2, . . . , Xn , we seek to estimate
the probability of failure

α = P

(
n∑

i=1

Xi < γ

)

with low relative error for small values of γ > 0. Left-tail
rare-event problems of this kind are used for instance to esti-
mate the outage probability in wireless communications, as
is described further in the next paragraph. Our quite straight-
forward deterministic method approximates the density of
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∑n
i=1 Xi through iterative numerical convolution, and we

show both theoretically and in numerical experiments that
this approach is robust and that it performs very well in terms
of accuracy and efficiency.

The main inspiration for our approach is Keich (2005),
Wilson andKeich (2016), where a similar approach is studied
for approximating the density of a sum of independent and
identically distributed (i.i.d.) discrete RVs. The approaches
are similar in how rounding errors propagate in computations
of linear convolutions and both can be combinedwith the fast
Fourier transform to speed up computations of linear convo-
lutions, at the price of introducing more rounding errors. A
notable difference is that for continuous RVs, the periodicity
of convolutions of densities can be utilized to produce high-
order convergence rates in the numerical integration. It is not
clear if periodicity can be exploited to improve tractability
also for discrete RVs.

Right and left tails of sums of RVs have gained significant
attention in the literature due to their broad range of applica-
tions. In financial engineering, for example, the value at risk
for a portfolio based on multiple assets can be represented as
the cumulative distribution function (CDF) of sums of RVs
(Asmussen et al. 2016). In the performance analysis of wire-
less communication systems, the outage probability/capacity
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can be expressed as theCDFof sums ofRVs corresponding to
either the fading channel envelopes or channel gains (Rached
et al. 2016; Beaulieu and Xie 2004). Further applications
extend to insurance risk and queueing systems. Within the
Cramer-Lundberg model, the total sum of claims is modeled
by a random sum of independent RVs, and the ruin probabil-
ity is defined as the probability that this sum exceeds a large
threshold (Asmussen and Glynn 2007).

Generally, a closed-form expression of the CDF of sums
of RVs does not exist for most of the distributions. This is for
instance the case for the Log-Normal distribution which has
attracted a substantial interest (Asmussen et al. 2016; Fur-
man et al. 2020; Gulisashvili and Tankov 2016; Rached et al.
2016; Beaulieu and Xie 2004; Beaulieu and Gan 2019; Nor-
man 2020; Zhu et al. 2020; Amar et al. 2023; Asmussen and
Glynn 2007). Although several closed-form approximations
have been devised, their accuracy is not guaranteed and may
degrade for specific parameter choices (Beaulieu and Xie
2004; Norman 2020; Zhu et al. 2020; Jingxian et al. 2005;
Saberali and Beaulieu 2012; Beaulieu and Rajwani 2004;
José 2009; Xiao et al. 2019; Thanh et al. 2015; Asmussen
et al. 2019). Furthermore, these closed-form approximations
are not generic, as they are generally tailored to specific distri-
butions. Efficient numerical methods have been proposed in
the literature to approximate the distributions of sums of RVs
(Di Renzo et al. 2009; Guruacharya et al. 2016; Senaratne
and Tellambura 2009; Beaulieu 2008; Furman et al. 2020;
Tellambura and Annamalai 1999; Tellambura and Senaratne
2010; Senaratne and Tellambura 2009). For instance, in Di
Renzo et al. (2009), Smolyak’s algorithm, belonging to the
family of numerical integration methods on sparse grids,
has been developed for the accurate analysis of correlated
Log-Normal power sums. Convenient numerical methods
for Log-Normal characteristic functions have also been pro-
posed, as seen in Beaulieu (2008); Senaratne and Tellambura
(2009); Tellambura and Senaratne (2010). In Guruacharya
et al. (2016), the authors used a saddle point approximation to
evaluate the outage probability of wireless cellular networks.
However, this method assumes the existence of the cumulant
generating function, a requirement that is not met by many
practical distributions, including the Log-Normal distribu-
tion. A general numerical approach, presented in Senaratne
and Tellambura (2009), has also been developed for comput-
ing wireless outages. Similar to Guruacharya et al. (2016),
this approach is general, provided that the moment generat-
ing function is known.

Monte Carlo (MC) methods are versatile tools employed
to provide approximations of the CDF or complementary
CDF of sums of RVs. However, it is widely recognized
that naive MC simulations are computationally expensive,
especially when addressing the right and left tails of sum
distributions (Kroese et al. 2011). To mitigate this com-
putational inefficiency, various efficient variance reduction

techniques have been proposed. While much of the existing
research has concentrated on the right tail of the sumdistribu-
tion (Asmussen and Glynn 2007; Nadhir et al. 2017; Rached
et al. 2018; Juneja and Shahabuddin 2002; Asmussen et al.
2011; Asmussen and Kroese 2006; Asmussen and Kortschak
2012; Asmussen and Binswanger 1997; Karthyek Rajhaa
and Juneja 2012), the left tail region, which is the primary
focus of this work, has only recently gained attention. In
Asmussen et al. (2016), the authors utilized the exponen-
tial twisting technique, a well-known importance sampling
scheme, to efficiently estimate the left tail of sums of i.i.d.
Log-Normal RVs. Additionally, in Rached et al. (2016), two
generic importance sampling schemes based on the hazard
rate twisting technique of Juneja and Shahabuddin (2002)
were proposed to estimate the tail of the CDF of indepen-
dent RVs. These algorithms have proven to be efficient for
a wide range of well-known distributions within the context
of wireless communication systems. An efficient importance
sampling scheme has also been developed for the left tail
of correlated Log-Normals Gulisashvili and Tankov (2016).
This scheme was further enhanced in Alouini et al. (2018),
where importance sampling and control variates were com-
bined to achieve a further reduction in variance. Recently,
state-dependent importance sampling has been proposed
using a stochastic optimal control formulation (Amar et al.
2023). This generic approach has been found to be efficient
when considering rare event quantities that take the form
of an expected value of some functions applied to sums of
independent RVs.

The rest of this paper is organized as follows. Section2
describes the numerical method for estimating left-tail rare
events. Section3 presents error and cost analysis of the rare-
event estimation method both when using Newton–Cotes
rules and FFT numerical integrators for discrete convolu-
tion. Section4 studies themethod numerically on a collection
of rare-event problems, and compares its performance to the
saddle-point method for sums of Log-Normal RVs. Section5
summarizes our findings and discusses possible future exten-
sions.

2 The numerical method

In this section we construct an iterative Newton–Cotes
quadrature method for approximating linear convolutions of
probability densities, and ultimately the probability of fail-
ure. For the sake of streamlining the exposition, we will
restrict ourselves to the setting with i.i.d. RVs, but an exten-
sion to independent (and not identically distributed) RVs
is exemplified in Sect. 4.3. Let f : [0,∞) → [0,∞)

denote the probability density function (PDF) of the i.i.d.
RVs X1, . . . , Xn . We consider the problem of estimating the
rare event
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α = P

(
n∑

i=1

Xi < γ

)
=
∫ γ

0
fSn (x) dx

for small values of γ > 0, where fSn is the PDF of
Sn = ∑n

i=1 Xi . For simplicity, we will make the assump-
tion that f (0) := limx↓0 f (x) = 0 throughout this section,
and describe the extension to settings when f (0) �= 0 in
Eq. (9).

2.1 Numerical integration

The first step in our deterministic approach for estimating
α by discrete linear convolution is to observe that due to
the independence and identical distribution of X1, . . . , Xn ,
the PDF of Sn := ∑n

i=1 Xi is equal to the n-fold linear
convolution of the density f :

fSn = f ∗n := n-fold convolution of f .

In particular, we have that

fS2(x) = f ∗ f (x) =
∫ x

0
f (y) f (x − y) dy,

and for any integers k, �, n ≥ 1 such that n = k + �, it holds
that

fSn (x) = f ∗k ∗ f ∗�(x) =
∫ x

0
f ∗k(y) f ∗�(x − y) dy. (1)

This means that the probability of failure can be expressed
as

α = P

(
n∑

i=1

Xi < γ

)
=
∫ γ

0
f ∗n(x) dx,

and that a good approximation of α can be obtained from a
good approximation of f ∗n .

The second step is to approximate f ∗n on [0, γ ] by numer-
ical integration. Since f (0) = 0, any integrand of the form
g(y; x) = f ∗k(y) f ∗�(x − y) is periodic on [0, x] for any
x ∈ [0, γ ], as

g(0; x)= f ∗k(0) f ∗�(x)=0, and g(x; x)= f ∗k(x) f ∗�(0)=0.

Conveniently, the trapezoidal rule yields a high order of con-
vergence for sufficiently smooth periodic integrands, and it
is therefore a suitable quadrature rule for linear convolution
of (1), as described through the following steps: Consider
the uniform mesh

x j = jh j = 0, 1, . . . , N with h = γ

N
,

and the discrete function

f̄ (x j ) := f (x j ) j = 0, 1, . . . , N .

Let the discrete approximation of f ∗2 be given by the trape-
zoidal rule/discrete linear convolution

f̄ �2(xk) = h
k∑
j=0

f̄ (x j ) f̄ (xk − x j ) k = 0, . . . , N . (2)

The operator notation � represents discrete linear convo-
lution scaled by the step-size factor h. It is introduced
to distinguish discrete linear convolution from continuous-
space linear convolution, which we denoted by ∗. To define
higher-order discrete convolutions we proceed as follows:
for any two R

N+1-vectors ḡ1 = (ḡ1(x0), . . . , ḡ1(xN )) and
ḡ2 = (ḡ2(x0), . . . , ḡ2(xN )), let

(ḡ1 � ḡ2)(xk) := h
k∑
j=0

ḡ1(x j )ḡ2(xk − x j ).

It then holds that � is an associative operation, as for any
ḡ1, ḡ2, ḡ3 ∈ R

N+1,

(
ḡ1 � (ḡ2 � ḡ3)

)
(xk)=h2

∑
j1+ j2+ j3=k

ḡ1(x j1)ḡ2(x j2)ḡ3(x j3)

=
(
(ḡ1 � ḡ2) � ḡ3

)
(xk),

This shows that f̄ �n is a well-defined operation for any n ≥
2, since it does not matter which order the convolutions are
taken in. So for any n > 2 and mesh point xk ,

f̄ �n(xk) = ( f̄ �(n−1) � f̄ )(xk) = ( f̄ �(n−2) � f̄ �2)(xk)

= · · · = ( f̄ � f̄ �(n−1))(xk)

= hn−1
∑

j1+···+ jn=k

f̄ (x j1) · · · f̄ (x jn ) . (3)

2.2 Efficient computation of f̄�n

In this section we describe the sequence of discrete convolu-
tions used to compute f̄ �n efficiently. This matters for the
performance of the method when implemented on a com-
puter.

Let m ∈ N denote the largest integer such that m ≤
log2(n) and for � = 2, . . . ,m, we minimize the number of
convolutions through computing

f̄ �2�

(xk) = h
k∑
j=0

f̄ �2�−1
(x j ) f̄

�2�−1
(xk − x j )

k = 0, . . . , N . (4)
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If 2m = n, then the above computation represents discrete
approximation f̄ �n of the density of

∑n
j=1 X j , otherwise

we obtain the approximation by

f̄ �n(xk) = h
k∑
j=0

f̄ �2m (x j ) f̄
�(n−2m )(xk − x j )

k = 0, . . . , N ,

where f̄ �(n−2m ) is computed in at most m − 1 steps by a
similar iterative application of the Trapezoidal rule.

Lastly, the probability of failure is also approximated by
a suitable closed Newton–Cotes formula:

ᾱN :=
N∑
j=0

w j f̄
�n(x j ), (5)

where the weights sum to the the length of the interval [0, γ ],
meaning

∑N
j=0 w j = γ , and we restrict ourselves to the

class of Newton–Cotes formulas with non-negative weights,
which means formulas with degree d ≤ 8, see Remark 1 for
an explanation of Newton–Cotes formulas. See Theorem 1
for further details on how to choose the Newton–Cotes rule.
Since it holds that f̄ � j (0) = 0 for any j ≥ 1, all of the
numerical integration above can be viewed as applications
of the Trapezoidal rule.

Remark 1 Newton–Cotes formulas are a set of rules for inte-
grating a function f over an interval [a, b] using interpolating
polynomials. The degree d of the Newton–Cotes rules refer
to the number of interpolating points used in the calculation.
The formulas are divided into two types, closed and open,
with the distinction being that the closed rules utilize the
function values at the endpoints of the interval whereas the
open types do not. Our later convergence results in Lemma 1
and Theorem 1 apply to all Newton–Cotes rules that exclu-
sively have non-negative weights, and for any degree d ≤ 8,
one can find a rule that satisfies this property. In Table 1 we
present some commonly used Newton–Cotes formulas. We
refer the reader to Süli and Mayers (2003, Chapter 7) for
further details.

Remark 2 Note that the final integral estimating the probabil-
ity ᾱN from the discrete convolution f̄ �n , see (5), can benefit
fromRichardson extrapolation as it produces approximations
that are similar to applying a higher-degree Newton–Cotes
formula, and the computations on different resolutions can
also be used for a posteriori error estimation.

Remark 3 The assumption that f (0) = 0 is not so restric-
tive as it for instance is satisfied by many distributions used
in wireless communications. A non exhaustive list of some
commonly used distributions having the previous assumption
satisfied is in Table 2.

Remark 4 For the simpler setting when f is a probability
mass function instead of a probability density function, a
similar approach to approximating the density of sums Y1 +
· · · + Yn where Yk

iid∼ f through FFT-based convolution has
been studied in Wilson and Keich (2017).

2.3 Implementations of discrete linear convolution

There are two standard approaches to implement the above
discrete linear convolution (4) in most programming lan-
guages, with different strengths and weaknesses:

(1) Direct convolution: For each k = 0, 1, . . . , N com-
pute the RHS sliding sum of (4). In Matlab, this can
be achieved by calling the conv() function as follows:

fBar_2l = conv(g,g);
fBar_2l = fBar_2l(1:N+1)*h;

for an input vector g := f̄ 2
�−1� ∈ R

N+1. The compu-
tational cost of this function call, measured in number
of floating point operations is O(N 2), which is quite
high. But Theorem 2 and our numerical experiments in
Sect. 4.1 show that direct convolution is accurate even
for very rare events and it does not appear sensitive to
round-off errors.

(2) FFT-based convolution: The second approach is to
append/pad N zeros to the vector f �2�−1 ∈ R

N+1, and
use the fast Fourier transform (FFT) to compute the linear
convolution as follows:

f̄ �2�−1 = [ f̄ �2�−1
(x0), . . . , f̄ �2�

(xN ), 0, . . . , 0︸ ︷︷ ︸
N

]

f̄ �2� = IFFT(FFT( f̄ �2�−1
). ^2) × h

f̄ �2� = [ f̄ �2�

(x0), . . . , f̄ �2�

(xN )] .

(6)

which in Matlab takes the form

g = [g zeros(1,N)];
fBar_2l = ifft(fft(g).ˆ2)*h;
fBar_2l = fBar_2l(1:N+1);

An advantage with this approach is that the computa-
tional cost of the three assignments (6) is O(N log(N )),
which for large N will be far lower than the cost of direct
convolution. A downside is that FFT-based convolution
can be very sensitive to rounding errors when the float-
ing point precision is low. This is because a computer
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Table 1 Explicit Newton–Cotes formulas

Name Degree Formula

Trapezoid 1 h
(
1
2 ( f̄ �n(x0) + f̄ �n(xN )) +∑ j∈{1,2,...,N−1} f̄ �n(x j )

)
Simpson 2 h

3

(
f̄ �n(x0) + f̄ �n(xN ) + 4

∑
j∈{1,3,...,N−1} f̄ �n(x j ) + 2

∑
j∈{2,4,...,N−2} f̄ �n(x j )

)
Boole’s 4 2h

45

(
7
(
f̄ �n(x0) + f̄ �n(xN )

)+ 32
∑

j∈{1,3,...,N−1} f̄ �n(x j ) + 12
∑

j∈{2,6,...,N−2} f̄ �n(x j ) + 14
∑

j∈{4,8,...,N−4} f̄ �n(x j )
)

Table 2 Some common PDF
satisfying f (0) = 0

Fading type PDF

Rayleigh 2x
�

exp
(
− x2

�

)
Nakagami-m 2mm

�m�(m)
x2m−1 exp

(−m
�
x2
)

Rice 2(K+1)x
�

exp
(−K − K+1

�
x2
)
I0

(
2
√

K (K+1)
�

x

)

Weibull k
(

β
�

)k
xk−1 exp

(
−
(
xβ
�

)k)
, β = �

(
1 + 1

k

)
Log-normal 1

xσ
√
2π

exp
(
− (log(x)−μ)2

2σ 2

)

Generalized Gamma
p( β

�
)d

�( d
p )

xd−1 exp
(
−(

β
�
x)p
)
, β = �

(
d+1
p

)
�
(
d
p

)

κ − μ
2μ(K+1)

1+μ
2 xμ

�
1+μ
2 κ

μ−1
2

exp
(−μK − K+1

�
μx2

)
Iμ−1

(
2μ
√

K (K+1)
�

x

)

Here �(·) and Iξ (·) respectively denote the Gamma function and the modified Bessel function of the first
kind and order ξ (Gradshteyn and Ryzhik 2007), while the κ − μ distribution is commonly used in wireless
communication (Michel 2007)

only can represent a finite number of floats with the pre-
cision dictating how many unique numbers that can be
represented. Rounding errors occur when a number or
the result of a calculation can not be represented exactly
on a computer and instead is rounded to the nearest float-
ing point number.When doing repeated calculations with
rounded numbers, rounding errors may propagate. Our
theoretical investigations in Sect. 3.1 and our numerical
experiments in Sect. 4.1 both indicate that the FFT-based
method is more sensitive to rounding errors than the one
based on direct convolution.

Remark 5 The method straightforwardly extends to settings
where X1, . . . , Xn are independent but not identically dis-
tributed, cf. (9).

3 Theoretical results

In this section we first prove that f̄ �n(xk) → f ∗n(xk) and
that ᾱN → α as N → ∞ and obtain convergence rates
for these results in Lemma 1 and Theorem 1, respectively.
Thereafter, we bound the relative approximation error of
fl[ᾱN ] ≈ ᾱN for direct convolution in terms of the floating-
point precisionmachine epsilon inLemma2.This leads to the

upper bound for the computable approximation fl[ᾱN ] ≈ α

that is described in Theorem 2. A similar results for FFT-
based convolution is given in Theorem 3. Finally, we bound
the computational cost of our method in Theorem 4 and com-
bine the results on error and cost to compare the efficiency
of direct convolution and FFT-based convolution in (16).

Let C2p
0 ([0, γ ]) denote the set of 2p times continuously

differentiable functions on [0, γ ] for which f (k)(0) = 0 for
all integers k between 0 and p∗ := max(2p − 3, 0) and
let C2p

0,per([0, γ ]) ⊂ C2p
0 ([0, γ ]) denote the subset of such

functions that also are periodic on [0, γ ] up to the p∗-rd
derivative, meaning that f (k)(0) = f (k)(γ ) for all integers k
between 0 and p∗.

The first lemma provides a convergence rate for f̄ �m(xk)
→ f ∗m(xk) as N → ∞. It does not take rounding errors
into account.

Lemma 1 Let f ∈ C2p
0 ([0, γ ]) for some integer p ≥ 1 and

let f �n(xk) for n ≥ 2 be defined by (3). Then, there exists a
constant C1 > 0 that depends on p such that

| f̄ �n(xk) − f ∗n(xk)|
≤ (1 + xk)

n−2C1C2(n, xk)N
−2p for all k = 0, 1, . . . , N ,

(7)
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where

C2(n, xk) :=
max

m=2,...,n
max

x j1+···+x jm−1=xk
max

0≤y≤x j1∣∣∣∣ d2pdy2p
f ∗(n+1−m)(y) f (x j1 − y)

∣∣∣∣
m−1∏
�=2

f (x j� )

with the conventions that
∏m−1

�=2 f (x j� ) ≡ 1 when m = 2
and f ∗1 = f .

Proof Assume that (7) holds for all 2 ≤ n ≤ n̄ for some n̄ ≥
2. Recalling from (3) that f̄ �(n̄+1)(xk) = ( f̄ �n̄ � f̄ )(xk)
and also that f̄ (x j ) = f (x j ) for all j = 0, 1, . . . , N , we
obtain

| f̄ �(n̄+1)(xk) − f ∗(n̄+1)(xk)|

= h

∣∣∣∣∣∣
k∑
j=0

f̄ �n̄(x j ) f̄ (xk− j ) − f ∗n̄(x j ) f (xk− j )

∣∣∣∣∣∣
+
∣∣∣∣∣∣h

k∑
j=0

f ∗n̄(x j ) f (xk− j ) −
∫ xk

0
f ∗n̄(y) f (xk − y)dy

∣∣∣∣∣∣
=: I + I I .

For the first term,

I = h

∣∣∣∣∣∣
k∑
j=0

f̄ �n̄(x j ) f̄ (xk− j ) − f ∗n̄(x j ) f (xk− j )

∣∣∣∣∣∣
≤ h

k∑
j=0

| f̄ �n̄(x j ) − f ∗n̄(x j )| f (xk− j )

≤ hC1(1 + xk)
n̄−2

k∑
j=0

C2(n̄, x j ) f (xk− j )

≤ (k − 1)h × (1 + xk)
n̄−2C1C2(n̄ + 1, xk)N

−2p

≤ xk(1 + xk)
n̄−2C1C2(n̄ + 1, xk)N

−2p,

where the penultimate inequality follows from the change of
subindex in xk− j = x jm and

f (xk− j )C2(n̄, x j )

= f (xk− j ) max
m=2,...,n̄

max
x j1+···+x jm−1=x j

max
0≤y≤x j1∣∣∣∣ d2pdy2p

f ∗(n̄+1−m)(y) f (x j1 − y)

∣∣∣∣
m−1∏
�=2

f (x j� )

≤ max
m=2,...,n̄

max
x j1+···+x jm=xk

max
0≤y≤x j1∣∣∣∣ d2pdy2p

f ∗(n̄+1−m)(y) f (x j1 − y)

∣∣∣∣
m∏

�=2

f (x j� )

= max
m=3,...,n̄+1

max
x j1+···+x jm−1=xk

max
0≤y≤x j1∣∣∣∣ d2pdy2p

f ∗(n̄+2−m)(y) f (x j1 − y)

∣∣∣∣
m−1∏
�=2

f (x j� )

≤ C2(n̄ + 1, xk) .

The second term is the quadrature error of the com-
posite Trapezoidal rule applied to the integrand g(y) =
f ∗n̄(y) f (xk − y). Thanks to g ∈ C2p

0,per([0, xk]), we obtain
that

I I ≤ C1 max
0≤y≤xk

∣∣∣∣ d2pdy2p
f ∗n̄(y) f (xk − y)

∣∣∣∣ N−2p

≤ C1C2(n̄ + 1, xk)N
−2p,

for the constant C1 > 0 introduced above. This yields,

| f̄ �(n̄+1)(xk) − f ∗(n̄+1)(xk)|
≤ (1 + xk)

n̄−1C1C2(n̄ + 1, xk) .

We next verify that (7) holds for n = 2. Since f̄ �2(xk)
is the composite Trapezoidal rule approximation of f ∗2(xk),
as is apparent from

| f̄ �2(xk) − f ∗2(xk)|

=
∣∣∣∣∣∣h

k∑
j=0

f (x j ) f (xk− j ) −
∫ xk

0
f (y) f (x − y)dy

∣∣∣∣∣∣ ,

and f ∈ C2p
0 ([0, γ ]) implies that g(y) := f (y) f (xk − y)

belongs to C2p
0,per([0, xk]), it follows from Süli and Mayers

(2003, Chapter 7.6) that

| f̄ �2(xk) − f ∗2(xk)|
≤ C1 max

0≤y≤xk

∣∣∣∣ d2pdy2p
f (y) f (xk − y)

∣∣∣∣︸ ︷︷ ︸
=C2(2,xk )

N−2p,

for the constant C1 > 0 introduced above. The proof follows
by induction. ��

The next theorem proves a convergence rate for αN → α

as N → ∞ in the setting of no rounding errors.

Theorem 1 Let f ∈ C2p
0 ([0, γ ]) for some integer p ≥ 1,

and let r ≤ 2p be the order of convergence for the Newton–
Cotes rule with non-negative weights that is used to compute
ᾱ in (5). Then there exist a constant C3 > 0 that depends on
r such that

|ᾱN − α| ≤ γC1C2(n, γ )N−2p + C3 max
x∈[0,γ ]
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∣∣∣∣ drdxr
f ∗n(x)

∣∣∣∣ N−r , (8)

where C2(n, γ ) := maxk=0,...,N (1 + xk)n−2C2(n, xk), and
the constant C1 and the mapping C2(n, xk) are defined in
Lemma 1.

Proof For a closed Newton–Cotes formula with convergence
rate r ≤ 2p, it follows by Isaacson andKeller (2012, Chapter
7.1.1) that

∣∣∣∣∣∣α −
N∑
j=0

w j f
∗n(x j )

∣∣∣∣∣∣ ≤ C3N
−r .

The triangle inequality and the non-negativity of the weights
w j yield the final bound

|α − ᾱN | =
∣∣∣∣∣∣α −

N∑
j=0

w j f̄
�n(x j )

∣∣∣∣∣∣
≤
∣∣∣∣∣∣α −

N∑
j=0

w j f
∗n(x j )

∣∣∣∣∣∣
+

N∑
j=0

w j | f ∗n(x j ) − f̄ �n(x j )|

≤ C3 max
x∈[0,γ ]

∣∣∣∣ drdxr
f ∗n(x)

∣∣∣∣ N−r

+
N∑
j=0

w j (1 + xk)
n−2C1C2(n, x j )N

−2p

≤ C3 max
x∈[0,γ ]

∣∣∣∣ drdxr
f ∗n(x)

∣∣∣∣ N−r

+ γC1C2(n, γ )N−2p
��

Remark 6 If f /∈ C2p
0 [0, γ ], but we have f ∈ C2[0, γ ]

(which is the case if e.g. f (0) �= 0 or f ′(0) �= 0), then
the slightly altered direct convolution (compare to (4))

f̄ �2�

(xk) = h
k−1∑
j=1

f̄ �2�−1
(x j ) f̄

�2�−1
(xk − x j )

+h
f̄ �2�−1

(x0) f̄ �2�−1
(xk) + f̄ �2�−1

(xk) f̄ �2�−1
(x0)

2
(9)

lead to the error bounds as in Lemma 1 and Theorem 1
with p = 1. For these cases it is possible to achieve faster
convergence by using higher-order Newton–Cotes formulas.
However, one then needs to be aware of the fact that the mesh
will decrease in size for each convolution.

3.1 Rounding errors

In practice, approximations ofα are computed using floating-
point arithmeticwhere a float is represented by x = s×b×2e

with sign s (1-bit), the significand b ∈ [1, 2) and exponent
e. The standard IEEE 754 64-bit floats, for example, has
p = 53-bit significand precision (52-bits stored) and 11-bit
exponent. For estimating rounding errors in relative error, the
machine epsilon ε = 2−p, which is equal to half the distance
between the number 1 and the closest floating point number
to 1, is important. For an x ∈ R, let fl[x] denote the closest
number to x among the floating point numbers. Then it holds
that |x − fl[x]| ≤ (1 + ε)|x |.

More generally, we let fl[ᾱN ] denote the value of ᾱN that
is obtained when all underlying arithmetic operations are
computed with the given floating point precision, and thus
possibly all being subject to rounding errors, and similarly
also for fl

[
f̄ �n(xk)

]
. Observe that this notation is recursive, it

assumes that a quantity is computed in a uniquely specified
manner (otherwise it would not be clear how to estimate
rounding errors), and it is extremely compact, as is illustrated
when applying it to the formula (4):

fl
[
f̄ �2�

(xk)
]

= fl

⎡
⎣fl[h]fl

⎡
⎣ k∑

j=0

fl
[
fl
[
f̄ �2�−1

(x j )
]
fl
[
f̄ �2�−1

(xk − x j )
]]⎤⎦

⎤
⎦.

Lemma 2 (Rounding error direct convolution) Let ᾱN be
computed by direct convolution, fl[ᾱN ] be computed with
floating point arithmetic with machine epsilon ε > 0 and
let n be the number of i.i.d RVs in the underlying sum. Fur-
thermore, set m̄ = �log2(n)�. Assume that for each x in
the codomain of f we have |fl[x] − x | ≤ xcε for some
c ∈ (0, 1]. Moreover, assume that N ≥ 210, ε ≤ 2−53 and
that 22m̄+2Nε < 1/10. Then it holds that

|fl[ᾱN ] − ᾱN | ≤ 4ᾱNnNε.

Proof We begin the proof by looking at some results from
Keich (2005) showing how rounding errors propagate when
adding and multiplying already estimated values. Assume
that we have a set of non-negative real numbers A =
{a1, a2, . . . , aN } that are estimated by use of floating point
arithmetic with an arbitrary number of operations used for
calculating the approximations. We denote the estimated
values Ã = {ã1, ã2, . . . , ãN } and have that the absolute accu-
mulated error of our estimates ãi can be bounded by some
constant ca > 0, giving |ãi − ai | ≤ |ai | caε. Moreover,
let fl[h] be our floating point estimation of the step length
h ∈ R>0 with |fl[h] − h| ≤ hε. Based on the proof of Keich
(2005, Lemma 3), it is straightforward to check that
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∣∣fl[fl[h]ãi ã j ]− hai a j
∣∣

≤ hai a j
[
2+2ca+

(
1+4ca + c2a

)
ε+(2ca+2c2a

)
ε2+c2aε

3
]
ε,

(10)

for i, j ∈ {1, 2, . . . , N }. Then, by letting Sk =∑k
j=0 ha jak− j

, k ∈ {1, 2, . . . , N } we have from Keich (2005, Lemma 2)
that∣∣∣∣∣∣fl
⎡
⎣ k∑

j=0

fl
[
fl[h]ãi ãk− j

]⎤⎦− Sk

∣∣∣∣∣∣
≤ Sk

[
k + 2 + 2ca + (1 + 4ca + c2a

)
ε

+(2ca + 2c2a
)
ε2 + c2aε

3
]
ε(1 + kε), (11)

when (10) holds for each term in the sum and
(
N +

cha j ak− j

)
ε < 1, where

cha j ak− j = 2 + 2ca + (1 + 4ca + c2a
)
ε + (2ca + 2c2a

)
ε2 + c2aε

3.

Note that (11) only holds as long as all terms of Sk have the
same sign, which in our case is non-negative. For simplicity,
we will bound the rounding error of all Sk by inserting N
instead of k in (11), yielding∣∣∣∣∣∣fl
⎡
⎣ k∑

j=0

fl
[
fl[h]ãi ãk− j

]⎤⎦− Sk

∣∣∣∣∣∣
≤ Sk

[
N + 2 + 2ca + (1 + 4ca + c2a

)
ε + (2ca + 2c2a

)
ε2

+c2aε
3
]
ε(1 + Nε)

for all k ∈ {0, 1, . . . N }.
We now move on to prove the following statement by

induction on l:∣∣∣fl[ f̄ �2l (xk)
]

− f̄ �2l (xk)
∣∣∣ ≤ f̄ �2l (xk)(2

l+1 − 2)Nε. (12)

For l = 1 we first observe that from (10) and our assump-
tions we have

∣∣fl[h f̄ (x j ) f̄ (xk− j )
]− h f̄ (x j ) f̄ (xk− j )

∣∣
≤ h f̄ (x j ) f̄ (xk− j )[2 + 2c + (1 + 4c + c2)ε

+ (2c + 2c2)ε2 + c2ε3]ε
≤ h f̄ (x j ) f̄ (xk− j )5ε.

Then, from (11) we have that∣∣∣fl[ f̄ �2(xk)
]

− f̄ �2(xk)
∣∣∣ ≤ f̄ �2(xk)(N + 5)(1 + Nε)ε

≤ f̄ �2(xk)
(
N + 5 + N 2ε + 5Nε

)
ε

≤ f̄ �2(xk)2Nε,

as we needed to show.
Assume now that (12) holds for some q ∈ N\{0}, that is∣∣∣fl[ f̄ �2q (xk)

]
− f̄ �2q (xk)

∣∣∣ ≤ f̄ �2q (xk)(2
q+1 − 2)Nε

Furthermore, assume that given some value for N our q sat-
isfies 22q+2Nε < 1/10. Then we have from (11) that∣∣∣fl[ f̄ �2q+1

(xk)
]

− f̄ �2q+1
(xk)

∣∣∣
≤ f̄ �2q+1

(xk)

[
N + 2 + 2

(
2q+1 − 2

)
N

+
(
1 + 4

[
2q+1 − 2

]
N +

[
2q+1 − 2

]2
N 2
)

ε

+
(
2
[
2q+1 − 2

]
N + 2

[
2q+1 − 2

]2
N 2
)

ε2

+
(
2q+1 − 2

)2
N 2ε3

]
ε(1 + Nε)

≤ f̄ �2q+1
(xk)

[
2 +

(
2q+2 − 3

)
N + ε + 1

10
+ N

10

+ ε

10
+ 2Nε

10
+ Nε2

10

]
ε(1 + Nε)

≤ f̄ �2q+1
(xk)

[(
2q+2 − 5

2

)
N + N

10

]
ε

≤ f̄ �2q+1
(xk)

(
2q+2 − 2

)
Nε.

Proceeding with the last step we need to calculate the
accumulated rounding error for ᾱN = ∑N

j=0 w j f̄ �n(x j ).
We then set m = �log2(n)�. Next we need to consider two
separate cases, one where m = log2(n), and the alternative
case m < log2(n). In the former case we have

ᾱN =
N∑
j=0

w j f̄
�2log2(n)

(x j ) =
N∑
j=0

w j f̄
�2m (x j ).

In the latter case we calculate f̄ �2m (x j ) and f̄ �(n−2m )(x j ),
which can be done in at most m − 1 steps. We then have that
f̄ �n(x j ) = f̄ �2m (x j ) � f̄ �n−2m (x j ), which would have

an error bounded by f̄ �2m+1
. Therefore, by setting m̄ =

�log2(n)�, we have that the error of f̄ �n(x j ) is bounded by

the error of f̄ �2m̄ (x j ).
Moving on we have from Keich (2005, Lemma 3), the

bound (12) and from our assumptions that

∣∣fl[w j f̄
�n(x j )

]− w j f̄
�n(x j )

∣∣
≤ w j f̄

�2m̄ (x j )[2 +
(
2m̄+1 − 2

)
N

+
(
1 +

(
2m̄+2 − 4

)
N
)

ε
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+
(
2m̄+1 − 2

)
Nε2]ε

≤ w j f̄
�2m̄ (x j )

[
2 +

(
2m̄+1 − 2

)
N + ε + 1

10
+ ε

10

]
ε

≤ w j f̄
�2m̄ (x j )

[(
2m̄+1 − 2

)
N + 3

]
ε.

Then, by Keich (2005, Lemma 2) we get the following
bound for the rounding error of ᾱN :

|fl[ᾱN ] − ᾱN | ≤ ᾱN

[(
2m̄+1 − 2

)
N + N + 3

]
(1 + Nε)ε

≤ ᾱN

[(
2m̄+1 − 1

)
N + 3 + N

10
+ 3Nε

]
ε

≤ ᾱN2
m̄+1Nε

≤ 4ᾱNnNε

which is what we set out to prove. ��
This leads to our main convergence result.

Theorem 2 (Approximation error direct convolution) Let the
assumptions in Theorem 1 and Lemma 2 hold. Then it holds
that

|fl[ᾱN ] − α| ≤ (1 + 4nNε)
(
γC1C2(n, γ )N−2p

+C3 max
x∈[0,γ ]

∣∣∣∣ drdxr
f ∗n(x)

∣∣∣∣ N−r
)

+ 4αnNε,

for all integers n and N such that N ≤ ε/C5 and (4n)2Nε <

1/10.

The result follows from Lemma 2 and Theorem 1 and using
the triangle inequality.

We continue with a lemma needed for the proceeding
result. The lemma is a version of Keich (2005, Lemma 5)
and the proof of our lemma is based on the one given in the
cited paper. Note first that the discrete version f̄ of f can
be associated with a vector q ∈ R

N≥0 by letting qi = f̄ (xi ).
Then we let

‖q‖1 :=
N∑
i=1

|qi | and ‖q‖∞ := max
1≤i≤N

|qi | .

We also need to define the DFT and IDFT operators, denoted
DN and D−1

N respectively. Let

DN ,k, j = e
ik j2π
N , and D−1

N ,k, j = 1

N
e

−ik j2π
N .

Wewill denote the operators by D and D−1 when the dimen-
sion is clear from the context. We are then ready to proceed
with the lemma.

Lemma 3 Let q ∈ R
N≥0 where the numerical approximation

fl[q] ∈ R
N satisfies |qi − fl[qi ]| ≤ qi cδε for some cδ ∈

(0, 1] and let k = �log2(N )� + 1. Assume that fl
[
q�2

]
is

computed by the method described in (6), that 13kε ≤ 1 as
well as |fl[h] − h| = 0, i.e. that we are able to accurately
represent the constant h = γ

N numerically. Furthermore, we
also assume that fl[D]fl[q] and its square can be calculated
exactly with floating point arithmetic, that is fl[D]fl[q] =
fl[fl[D]fl[q]] and (fl[D]fl[q])2 = fl

[
(fl[D]fl[q])2

]
. Then

∥∥∥fl[q�2
]

− q�2
∥∥∥∞ ≤ 2h(cδ + 9k)ε ‖q‖21 + chε2,

where c > 0 is a constant depending on k and ‖q‖21 capturing
higher-order terms of ε.

Proof Let q ∈ R
2k≥0 be a zero-padded version of our original

q ∈ R
N≥0. Note that we for simplicity collect all higher-order

terms of ε in constants c j throughout this proof. We then
have that

‖fl[D]fl[q] − Dq‖∞ ≤‖D(fl[q] − q)‖∞ + ‖(D − fl[D])fl[q]‖∞
≤‖fl[q] − q‖1 + 6kε ‖fl[q]‖1
≤cδε ‖q‖1 + 6kε(1 + cδε) ‖q‖1
≤(cδ + 6k)ε ‖q‖1 + c1ε

2

where, for the first inequality, we have used the triangle
inequality and the transition from the first to the second line
holds due to the fact that ‖Dx‖∞ ≤ ‖x‖1 , x ∈ R

2k and
Keich (2005, Lemma 4) together with our assumption on
13kε. The jump from the second to the third line comes from
our assumptions on the differences |qi − fl[qi ]| ≤ qi cδε as
this implies

‖fl[q] − q‖1 =∑2k
i=0 |fl[q(xi )] − q(xi )| ≤∑2k

i=0 q(xi )cδε

≤ cδε ‖q‖1 ,

and further

‖fl[q]‖1 =
2k∑
i=0

|fl[q(xi )]| ≤
2k∑
i=0

(|fl[q(xi )] − q(xi )| + q(xi ))

≤‖fl[q] − q‖1 + ‖q‖1 = (1 + cδε) ‖q‖1 .

The final transition follows by choosing an appropriate con-
stant c1. Let now r(x) = [(Dq)(x)]2 and similarly fl[r(x)] =
[(fl[D]fl[q])(x)]2, where we have used our assumption stat-
ing that the multiplication of fl[D], fl[q] and the square of
their product can be represented exactly in floating point
arithmetic. Then, we have

‖r − fl[r ]‖1 ≤ 2k
∥∥∥(Dq)2 − (fl[D]fl[q])2

∥∥∥∞
≤ 2k

(∥∥∥(Dq)2 − (fl[D]fl[q])(Dq)

∥∥∥∞
123
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+
∥∥∥(fl[D]fl[q])(Dq) − (fl[D]fl[q])2

∥∥∥∞
)

≤ 2k
(‖Dq‖∞ ‖Dq − fl[D]fl[q]‖∞ .

+‖fl[D]fl[q]‖∞ ‖Dq − fl[D]fl[q]‖∞
)

≤ 2k
(‖q‖1 + ‖fl[D]fl[q]‖∞

) ‖Dq − fl[D]fl[q]‖∞
≤ 2k

(
2 ‖q‖1 + ‖Dq − fl[D]fl[q]‖∞

) ‖Dq − fl[D]fl[q]‖∞
≤ 2k

(
2 ‖q‖1 + (cδ + 6k)ε ‖q‖1 + c1ε

2
) (

(cδ + 6k)ε ‖q‖1 + c1ε
2
)

≤ 2k
(
2(cδ + 6k)ε ‖q‖21

+(cδ + 6k)2ε2 ‖q‖21
)

+ c2ε
2 + c3ε

3 + c4ε
4

≤ 2k2(cδ + 6k)ε ‖q‖21 + c5ε
2

where we have used the triangle inequality, the bound found
above and absorbed the higher-order term in ε by an appro-
priate constant c5. We also have the following inequality

‖r‖1 =∑2k
i=0[Dq(xi )]2 ≤∑2k

i=0 ‖Dq‖2∞ = 2k ‖Dq‖2∞
≤ 2k ‖q‖21 ,

which we use in order to show that

‖fl[r ]‖1 ≤
2k∑
i=0

(|fl[r(xi )] − r(xi )| + r(xi ))

≤ ‖fl[r ] − r‖1 + ‖r‖1
≤ 2k2(cδ + 6k)ε ‖q‖21 + c5ε

2 + 2k ‖q‖21
= 2k[1 + 2(cδ + 6k)ε] ‖q‖21 + c5ε

2.

Moving on, we have∥∥∥D−1r − fl
[
D−1

]
fl[r ]

∥∥∥∞ ≤
∥∥∥D−1(r − fl[r ])

∥∥∥∞
+
∥∥∥(D−1 − fl

[
D−1

]
)fl[r ]

∥∥∥∞

≤ ‖r − fl[r ]‖1
2k

+ 6kε ‖fl[r ]‖1
2k

≤ 2(cδ + 6k)ε ‖q‖21 + c6ε
2

+ 6kε[1 + 2(cδ + 6k)ε] ‖q‖21 + c7ε
3

≤ 2(cδ + 9k)ε ‖q‖21 + c8ε
2

where again, in the first inequality, we have used the triangle
inequality followed by the fact that

∥∥D−1x
∥∥∞ ≤ ‖x‖1

N , x ∈
R
2k andonce againweuseKeich (2005, Lemma4) to proceed

from the first to the second line. The transition to the last line
is done by choosing an appropriate constant c8. Finally, we
have that∥∥∥fl[q�2

]
− q�2

∥∥∥∞
=
∥∥∥fl[h] (fl[D−1

] [
(fl[D]fl[q])2

])
− h

(
D−1

[
(Dq)2

])∥∥∥∞
=
∥∥∥fl[h] (fl[D−1

]
fl[r ]

)
− h

(
D−1r

)∥∥∥∞

≤ 2h(cδ + 9k)ε ‖q‖21 + c8hε2,

for a suitable constant c8 that depends on cδ, k and ‖q‖21. ��
The next Lemma shows that FFT-based convolution may be
more sensitive to rounding errors, since we can only bound
its absolute error.

Lemma 4 (Rounding error FFT-based convolution) Let ᾱN

be computed byFFT-based convolutionwith n = 2m,m ∈ N,
let fl[αN ] be computed with floating point arithmetic with
machine epsilon ε > 0. Assume further that fl

[
f (x j )

] =
f (x j ) for j ∈ {0, 1, . . . , N } with N = 2r , r ∈ N, and
that 2m ≤ r . Then, when disregarding higher-order epsilon
terms, we have∥∥∥fl[ f �2m

]
− f �2m

∥∥∥∞ ≤ 18hc log2(nN ) log2(n)ε ‖ f ‖n1

where c = max{1, γ }.
Proof Note that by applying recurrently the triangle inequal-
ity and by our assumption that fl[ f ] = f we have

∥∥∥fl[ f �2m
]

− f �2m
∥∥∥∞

≤
m−1∑
i=0

∥∥∥∥∥∥fl
[
fl
[
f �2m−i−1]�2

]�2i

−
(
fl
[
f �2m−i−1]�2

)�2i
∥∥∥∥∥∥∞

For the sake of lighter notation we let gi = fl
[
f �2i

]
, as we

then can rewrite the right-hand side of the equation above as

m−1∑
i=0

∥∥∥∥fl[g�2
m−i−1

]�2i −
(
g�2
m−i−1

)�2i
∥∥∥∥∞

. (13)

We now need to find an expression for each term in the
sum above. First, for readability we introduce the short-
hand notation ḡ:=g�2

m−i−1 for some arbitrary value of i ∈
{1, . . . ,m−1} and let ḡ be zero-padded such that ḡ ∈ R

2r+i
.

Note then that

‖Dfl[ḡ]‖∞ = ‖Dfl[ḡ] − Dḡ + Dḡ‖∞
≤ ‖Dfl[ḡ] − Dḡ‖∞ + ‖Dḡ‖∞
≤ ‖fl[ḡ] − ḡ‖1 + ‖ḡ‖1 . (14)

Furthermore, we have that

∥∥∥(Dfl[ḡ])2
i − (Dḡ)2

i
∥∥∥∞ ≤

∥∥∥(Dfl[ḡ])2
i − (Dfl[ḡ])2

i−1(Dḡ)
∥∥∥∞

+
∥∥∥(Dfl[ḡ])2

i−1
(Dḡ) − (Dfl[ḡ])2

i−2(Dḡ)2
∥∥∥∞

+ · · · +
∥∥∥(Dfl[ḡ])(Dḡ)2

i−1 − (Dḡ)2
i
∥∥∥∞

≤
(∥∥∥(Dfl[ḡ])2

i−1
∥∥∥∞ +

∥∥∥(Dfl[ḡ])2
i−2(Dḡ)

∥∥∥∞
+ · · · +

∥∥∥(Dfl[ḡ])(Dḡ)2
i−2
∥∥∥∞
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+
∥∥∥(Dḡ)2

i−1
∥∥∥∞

)
‖D(fl[ḡ] − ḡ)‖∞

≤
(

‖Dfl[ḡ]‖2i−1∞ + ‖Dfl[ḡ]‖2i−2∞ ‖Dḡ‖∞

+ · · · + ‖Dfl[ḡ]‖∞ ‖Dḡ‖2i−2∞ + ‖Dḡ‖2i−1∞
)

‖fl[ḡ] − ḡ‖1 .

Then from (14) and Lemma 3 we have that

‖Dfl[ḡ]‖s∞ ≤ (‖fl[ḡ] − ḡ‖1 + ‖ḡ‖1)s
≤
(
18h(r + i + 1)ε ‖gm−i−1‖21 + chε2 + ‖ḡ‖1

)s
.

Thus, we end up with ‖Dfl[ḡ]‖s∞ ≤ ‖ḡ‖s1 + cε, where c
captures all terms multiplied with ε. Then we can write

∥∥∥(Dfl[ḡ])2
i − (Dḡ)2

i
∥∥∥∞ ≤

(
‖ḡ‖2i−1

1 + ‖ḡ‖2i−1
1 + · · ·

+ ‖ḡ‖2i−1
1 + ‖ḡ‖2i−1

1 + cε

)
2i ‖fl[ḡ] − ḡ‖∞

≤ 2i ‖ḡ‖2i−1
1 2i18h(r + i + 1)ε ‖gm−i−1‖21 + cε2

≤ 18h22i ‖gm−i−1‖2i+1−2
1 (r + i + 1)ε ‖gm−i−1‖21 + cε2

≤ 18γ (r + i + 1)ε ‖gm−i−1‖2i+1

1 + cε2,

where c is a constant capturing the higher-order terms in ε

that we adjust appropriately from line to line and from our
assumption that 2m ≤ r we have 22i h ≤ γ as well as the

fact that
∥∥∥g�2

m−i−1

∥∥∥
1

≤ ‖gm−i−1‖21. We can then show that

∥∥∥fl[ḡ]�2i − ḡ�2i
∥∥∥∞ =

∥∥∥hD−1
[
(Dfl[ḡ])2

i − (Dḡ)2
i
]∥∥∥∞

≤ h

∥∥∥(Dfl[ḡ])2
i − (Dḡ)2

i
∥∥∥
1

2i+r

≤ h
∥∥∥(Dfl[ḡ])2

i − (Dḡ)2
i
∥∥∥∞

≤ 18hγ (r + i + 1)ε ‖gm−i−1‖2i+1

1 + cε2.

We can now apply this inequality in order to get bounds
on the terms in the sum in (13). Consider first the term in
(13) where i = 0, by applying Lemma 3 we have

∥∥∥fl[g�2
m−1

]
−
(
g�2
m−1

)∥∥∥∞ ≤ 18h(r + 1)ε ‖gm−1‖21 .

Then, moving on to the case i ≥ 1 we have from the bound
above that

∥∥∥∥fl[g�2
m−i−1

]�2i −
(
g�2
m−i−1

)�2i
∥∥∥∥∞

≤ 18hγ (r + i + 1)ε ‖gm−i−1‖2i+1

1 + cε2.

By inserting the above estimates in (13) we achieve the esti-
mate

∥∥∥fl[ f �2m
]

− f �2m
∥∥∥∞ ≤ 18h(r + 1)ε ‖gm−1‖21

+
m−1∑
i=1

18hγ (r + i + 1)ε ‖gm−i−1‖2i+1

1 + cε2

≤ 18h(r + 1)ε ‖gm−1‖21

+ 18hγ (r + m)ε

m−1∑
i=1

‖gm−i−1‖2i+1

1 + cε2.

Thus, when only considering the leading term in ε we get

∥∥∥fl[ f �2m
]

− f �2m
∥∥∥∞ ≤ 18h log2(nN )ε

(∥∥∥fl[ f �2m−1
]∥∥∥2

1

+γ

m−1∑
i=1

∥∥∥fl[ f �2m−i−1
]∥∥∥2i+1

1

)
.

By now recursively applying this relation on the norms on
the left hand side and ignoring higher-order terms in ε we
are able to rewrite the equation above as

∥∥∥fl[ f �2m
]

− f �2m
∥∥∥∞ ≤18h log2(nN )ε

⎛
⎝‖ f ‖2m1 + γ

m−1∑
i=1

‖ f ‖2m1

⎞
⎠

≤18hc log2(nN ) log2(n)ε ‖ f ‖n1 ,

where c = max{γ, 1}. ��

We are then ready to prove the following theorem, giving
a bound on the error of performing convolution using FFT.

Theorem 3 (Approximation error FFT-based convolution)
Let the assumptions in Theorem 1 and Lemma 4 hold. Then
it holds that

|fl[ᾱN
]− α| ≤ γC1C2(n, γ )N−2p + C3 max

x∈[0,γ ]

∣∣∣∣ drdxr
f ∗n(x)

∣∣∣∣ N−r

+18hc log2(nN ) log2(n)ε ‖ f ‖n1).

Proof The result follows directly from Theorem 1 and
Lemma 4. ��

3.2 Computational cost

In this section we compare the computational cost and
accuracy of direct-based convolution against FFT-based con-
volution as a function of the numerical resolution N and the
number of RVs n. We restrict ourselves to settings where the
lemmas and theorems in Sect. 3 apply.
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Theorem 4 The computational cost of computing ᾱN ,
counted in the number of floating point operations, is

COST(ᾱN ) =
{
O(log2(n)N2) when using direct convolution

O(log2(n)N log2(N )) when using FFT-based convolution.

Proof Recall that m denotes the largest integer such that
m ≤ log2(n). For each � = 1, . . . ,m and k = 0, 1, . . . , N ,

the computation f̄ �2�
(xk) = f̄ �2�−1 � f̄ �2�−1

(xk) costs
O(N ). The cost of computing f̄ �n thus becomes O(mN 2)

and computing ᾱ adds an additional (relatively speaking, neg-
ligible) cost ofO(N ). The upper bound in cost for FFT-based
convolution follows by a similar argument. ��

When disregarding factors of log2(N ) in the cost estimate
and also disregarding rounding errors, we obtain the follow-
ing relation between cost and absolute approximation error:

|ᾱN−α| ≤
{

Ĉ
(COST)r/2

when using direct convolution
Ĉ

(COST)r
when using FFT-based convolution.

(15)

Supposing further that there exists a constant C > 0 such
that

(1 + 4nNε)
(
γC1C2(n, γ )Nr−2p + C3 maxx∈[0,γ ]

∣∣∣ drdxr f ∗n(x)
∣∣∣)

α
≤ C

holds for all relevant γ, n, N and ε, we obtain the following
error estimate for the relative error of approximating α:

|ᾱN − α|
α

≤
{
CN−r+nNε for direct convolution

CN−r+C6
hc log2(nN ) log2(n)‖ f ‖n1ε

α for FFT-based convolution.

(16)

We note that when α � 1, the result indicates that for a given
resolution N , the relative error may be substantially smaller
for direct-based convolution than for FFT-based convolution,
precisely as we observe in the numerical examples in Sect. 4.

4 Numerical experiments

To verify numerically that the proposedmethod produces sat-
isfactory results and to confirm that the theoretical error rate
identified in the previous section holds in practice, we con-
ducted a series of experiments. First, in Sect. 4.1 we compare
the FFT implementation of the convolution method with the
direct method in terms of how well they are able to approxi-
mate the rare-event probability of a sumofRVs.As the results
from the first experiment shows that the direct method gives

low rounding errors, we run the rest of the experiments using
the direct method only. In Sect. 4.2, we look at how well the
convolution method estimate the CDF for the sum of RVs for
which the distribution of the sum is indeed known. Then, in
Sect. 4.3, we consider the Log-Normal distribution with two
goals in mind: 1) We want to explore the convergence prop-
erties of the convolution method and check if we empirically
are able to observe the theoretical convergence rate as given
by Theorem 1, 2) We compare the calculated estimates of
the CDF with approximations calculated using an alternative
method, in this instance a saddlepoint method presented in
Asmussen et al. (2016). Then, in the last Sect. 4.4 we look at
how the convolution method performs when approximating
the CDF for the sum of RVs for other distributions where the
distribution of the sum is not known.

4.1 Comparison of direct- and FFT-based
convolution

In this section, we compare the performance of direct con-
volution and FFT-based convolution for left-tail rare-event
estimation. In agreement with the theoretical results in
Sect. 3.1, we show that FFT-based convolution is more sensi-
tive to rounding errors than direct convolution in two problem
settings where α � 1.

4.1.1 Log-Normal distribution

We estimate the probability of Y = ∑16
i=1 Xi ≤ γ , where

Xi for i = 1, 2, · · · , 16 are i.i.d Log-Normal(0, 1/64) with
density denoted by f . The large variation in magnitude for
the density of Y is illustrated in the left plot of Fig. 1, where
we numerically have computed p(y) := f̄ �16(y) over the
interval y ∈ [8, 16] using N = 106 quadrature points. The
density is computed by direct convolution with Matlab’s
conv() function and 64-bit floating point precision, and by the
FFT-based method for a range of different floating point pre-
cisions, using the multiple precision toolbox (LLCAdvanpix
2006). We observe that the higher the precision, the better
the FFT-based convolution approximates the direct convo-
lution’s density, and that FFT introduces an approximation
error that is proportional to the machine epsilon. This is con-
sistent with the observations inWilson andKeich (2017). For
reference, we note that the machine epsilon is approximately
1.19× 10−7 for 32-bit floats, 2.22× 10−16 for 64-bit floats,
1.93 × 10−34 for 128-bit floats, and 1.81 × 10−71 for 256-
bit floats. Table 3 presents the relative error |α − fl[ᾱN ]|/α
for different values of γ using 64-bit precision direct convo-
lution and FFT-based convolution for a range of precisions.
All methods use N = 106 quadrature points. The pseudo-
reference solution is computed using N = 221 quadrature
points with 512-bit precision FFT-based convolution. The
FFT-based convolution only approximates the rare eventwell
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Fig. 1 Left: The probability density function p(y) = f̄ �16(y) for direct convolution and FFT-based convolution for the rare-event problem studied
in Sect. 4.1. Right: The runtime for direct convolution and FFT-based convolution for the rare-event problem studied in Sect. 4.1

Table 3 Comparison of the relative error |fl[ᾱN ]− α|/α for sums of Log-Normal-distributed RVs using 64-bit direct convolution, the saddlepoint
method (computed with 512-bit floating bit precision) and FFT-based convolution computed with four different floating point precisions

γ Ref. Sol. CDF Dir. Conv Saddlp FFT 32-bit FFT 64-bit FFT 128-bit FFT 256-bit

8.8 2.05×10−83 4.99×10−13 4.90×10−06 4.92×10+75 1.67×10+67 3.58×10+49 1.48×10+11

9.6 1.02×10−61 5.77×10−13 5.46×10−06 5.34×10+53 1.27×10+45 1.25×10+28 1.01×10−10

10.4 1.04×10−44 5.47×10−13 5.61×10−06 1.66×10+37 2.23×10+28 1.02×10+11 2.24×10−28

11.2 1.76×10−31 6.00×10−13 5.24×10−06 1.74×10+24 2.94×10+15 1.56×10−03 1.46×10−40

12 2.45×10−21 5.81×10−13 4.27×10−06 4.83×10+13 3.20×10+04 1.91×10−13 1.16×10−50

12.8 9.81×10−14 5.74×10−13 2.72×10−06 1.96×10+05 2.37×10−03 1.87×10−20 3.80×10−59

13.6 3.03×10−08 5.97×10−13 6.88×10−07 5.38×10+00 1.23×10−08 3.93×10−26 1.79×10−63

14.4 1.63×10−04 6.02×10−13 1.66×10−06 3.01×10−03 4.37×10−13 1.09×10−29 5.45×10−68

when α is much larger than the machine epsilon for the float-
ing point precision.

Our numerical studies indicate that FFT-based convolu-
tion is much more sensitve to rounding errors than direct
convolution, but it may still be useful in computations when
the number of quadrature points N is large since the method
has a lower asymptotic computational cost than direct con-
volution, cf. Theorem 4. The right plot in Fig. 1 measures the
computational cost of the two convolution methods in run-
time, displays cost rates that are consistent with Theorem 4,
and shows that for all considered floating point precisions,
FFT-based convolution will eventually, for sufficiently large
N , outperform direct convolution in terms of runtime.

4.1.2 Lévy distribution

We next estimate the probability of Y = ∑16
i=1 Xi ≤ γ ,

with Xi , i = 1, 2, · · · , 16 are i.i.d. Lévy(0, 0.1) whose
density is denoted by f (given in Table 5). This is a sta-
ble distribution, which is very suitable for validation of the
numerical methods since its density and CDF are known:

Y ∼ Lévy(0, 25.6) and α = P(Y ≤ γ ) = erfc(
√
12.8/γ ).

The large variation in magnitude for the density of Y is illus-

Fig. 2 The probability density function to Y = ∑16
i=1 Xi where Xi

are i.i.d. Lévy distributed RVs. The density is computed by the exact
formula, by direct convolution and FFT-based convolution
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Table 4 Comparison of the
relative error |fl[ᾱN ] − α|/α for
sums of Lévy-distributed RVs
using 64-bit direct convolution
and FFT-based convolution
computed with four different
floating point precisions

γ α = P(Y ≤ γ ) Dir. Conv FFT 32-bit FFT 64-bit FFT 128-bit FFT 256-bit

0.05 2.33×10−113 6.74×10−13 7.82×10+68 6.12×10+50 2.16×10+33 1.58×10−04

0.1 1.28×10−57 6.78×10−13 7.45×10+25 6.05×10+15 3.58×10−02 7.47×10−27

0.2 1.12×10−29 6.05×10−13 1.15×10+09 2.61×10−02 3.45×10−18 9.20×10−29

0.5 8.34×10−13 4.24×10−13 2.68×10−02 1.51×10−10 6.18×10−28 1.54×10−31

1 4.20×10−07 2.80×10−13 4.95×10−05 1.24×10−13 2.22×10−32 1.11×10−34

trated in Fig. 2, where we compare the exact density of Y to
numerical approximations using N = 106 quadrature points.

The density is computed numerically by direct convolu-
tion using 64-bit precision and FFT-based convolution for a
range of floating point precisions. Remarkably, direct convo-
lution agrees well with the exact density over the full range of
values displayed, while FFT-based convolution agrees well
only when the precision is sufficiently high.

Table 4 presents the relative error |α−fl[ᾱN ]|/α for differ-
ent values of α using 64-bit precision direct convolution and
FFT-based convolution for a range of precisions. All numer-
ical methods use N = 106 quadrature points. The reference
solution is computed by the exact CDF, α = erfc(

√
12.8/γ )

with 512-bit floating point precision. We again observe that
FFT-based convolution only approximates the rare eventwell
when α is much larger than the floating point precision
machine epsilon.

4.2 Estimating the �2 and Lévy distributions with
direct convolution

There exist several probability distributions for which the
closed-form of the distribution of the sum Y = ∑n

i=1 Xi

is known, given that the RVs Xi are all independent. If for
example Xi is Chi-squared distributed with ri degrees of
freedom (Xi ∼ χ2(ri )) for i ∈ {1, 2, . . . , n} we have that

Y ∼ χ2

(
n∑

i=1

ri

)
.

Thus, to check empirically that the algorithm presented in
this paper indeed is able to accurately calculate the PDF and
the CDF of the sum of RVs we check against distributions
where the resulting distribution is known. We chose to do
numerical experiments with the Chi-squared (χ2) and Lévy
distributions. The PDFs are given in Table 5. In the case
of the Lévy distribution if we let Xi ∼ Lévy(μi , ci ) with
μi ∈ (−∞,∞), ci > 0 for i ∈ {1, 2, . . . , n} we have that

Y ∼ Lévy

⎛
⎝ n∑

i=1

μi ,

(
n∑

i=1

√
ci

)2
⎞
⎠ .

Table 5 Probability density function for the Chi-squared and Lévy dis-
tributions

Distribution Parameters PDF

Chi-squared (χ2) df ∈ N
1

2df/2�(df/2)
xdf/2−1e−x/2

Lévy c > 0
√

c
2π

e− c
2x

x3/2

For these experiments we are estimating the value α =
FY (γ ), γ = xn with x = 0.05 and n = 16, i.e.

α = FY (0.8) = P(Y ≤ 0.8) = P

(
16∑
i=1

Xi ≤ 0.8

)

where FY is the CDF of Y = ∑16
i=1 Xi with the RVs

Xi , i ∈ {1, 2, . . . , 16} all independent. The estimates ᾱ are
calculated using equation (5) with Boole’s rule as the closed
Newton–Cotes formula in the last step (see Table 2 for an
overview of the weights).

In the left plot of Fig. 3 we display the relative error
δ = |α−ᾱ|

α
as a function of the mesh size N when estimating

α with Xi ∼ χ2(df) for a number of different parameter
values df. Note that the legend also display the value of
α, showing that we indeed are estimating rare events. It is
apparent from the figure that there is a large difference in
the convergence rate depending on the value of df, with the
convolution method converging faster to the correct value
of α when the value of df increase. It is straight forward to

check that f ′
3(x)

x→0−−−→ ∞, f ′
2(0) = c1, f ′

4(0) = c2 and
f ′
6(0) = 0 for some constants c1, c2 ∈ R when fdf is the

PDF for the χ2-distribution with parameter value df. Note
also that f ′′

6 (0) = c3 for some c3 ∈ R. The observed conver-
gence rates are therefore coherent with the theory, with the
exception of the case df = 3. In this case we do not have a lot

of regularity as f ′
3(x)

x→0−−−→ ∞, and therefore our theoretical
framework is not applicable. Note also that f2(0) �= 0 thus
our implementation of the convolution method used for this
experiment utilize the formula given in 9.

The results of a similar experimentwhere Xi ∼ Lévy(0, c)
for a number of different values for the shape parameter c is
shown in the right plot in Fig. 3. From the figure we see that

123



Statistics and Computing           (2024) 34:202 Page 15 of 19   202 

Fig. 3 Left: Relative error as a function of the mesh-size when estimating FY (0.8), Y ∼ χ2(16df). Right: Relative error as a function of the

mesh-size when we are estimating FY (0.8), Y ∼ Lévy
(
0,
(∑n

i=1
√
ci
)2)

the convolution method performs really well when estimat-
ing the Lévy distribution, with the relative error δ being less
than 10−9 for all values of c that we tested when the mesh-
size N > 104. Furthermore, we observe from the figure that
a convergence rate of about N−6 were attained for all choices
of c. In contrast with theχ2-distributionwe have f (k)(0) = 0
for all k ∈ N for our choices of c. The result in Theorem 1
therefore implies that we should observe a convergence rate
of at least N−6 as we use Boole’s rule for the integration in
the last step. This fitswell with the observed convergence rate
for all choices of c. Furthermore, we observe that the relative
error flattens out when we reach errors bellow 10−13, which
is probably due to round-off errors and in agreement with
with the errors observed in Sect. 4.1.

4.3 Performance of different Newton–Cotes
formulas in direct convolution

In this subsection we again consider the problem of estimat-
ing the value

α = FY (γ )

where γ = xn with x = 0.7 and n = 16, i.e.

α = FY (11.2) = P(Y ≤ 11.2) = P

(
16∑
i=1

Xi ≤ 11.2

)
,

where FY is the CDF of Y = ∑16
i=1 Xi and Xi ∼

Log-Normal(0, σ 2), i ∈ {1, . . . , 16} are i.i.d. Here, we let
σ = 0.125. The PDF is given in Table 1. The approxima-
tions ᾱ are calculated using equation (5). In this experiment
we aim to observe how the convergence rate vary when
using three different closed Newton–Cotes formulas in the

last step: Trapezoid, Simpson and Boole. The weights w j

in equation (5) depend on the used Newton–Cotes formula.
The resulting formula for each of the Newton–Cotes for-
mulas utilized in this experiment is given in Table 2. We
also compare our estimates of the CDF value α and the PDF
value f (11.2) with approximations generated by a saddle-
point method presented inAsmussen et al. (2016). For details
on the saddlepoint method we refer the reader to the cited
paper. Furthermore, the estimate of f (11.2) is numerically
found by the value f �n(xN ).

In order to test the convergence rate using the different
rules in the last step we apply an iterative scheme where
we first calculate a pseudo-reference solutions ᾱNM using
Boole’s rule on a mesh of size NM for some large NM . We
then calculate estimates ᾱNm using the three different rules
on a mesh of size Nm , where Nm � NM , and calculate the
relative error

δ̄ =
∣∣ᾱNM − ᾱNm

∣∣
αNM

for each of the estimates. We then check if all of the calcu-
lated relative errors are smaller than some threshold ε > 0. If
this is not the case we repeat the calculation on amesh of size
N ′
m = 2Nm . This is repeated until all calculated errors are

bellow the given threshold. Here we set NM = 217, Nm =
210 and ε = 10−8.

The results are shown in the left plot of Fig. 4 together
with reference slopes showing the theoretical convergence
rates and the relative error of the above mentioned sad-
dlepoint method. Given the fact that for the PDF f of the
Log-Normal distribution we have f (k)(0) = 0 for all k ∈ N,
we would from Theorem 1 expect convergence rates similar
to the convergence rate of the chosen Newton–Cotes for-
mula. Our results are in accordance with this expectation as
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the convergence rates are 2, 4 and 6 for the Trapezoid, Simp-
son and Boole’s respectively. We also see that we quickly
achieve relative errors smaller than the saddlepoint method
with all three rules.

In order to further validate the correctness of the convo-
lution method when applied to the Log-Normal distribution,
we compared estimates of the CDF and PDF for different
values of x generated with our method with approximations
calculated by the saddlepoint method from Asmussen et al.
(2016). For the convolution method we utilized a mesh-size
of 104 and Boole’s rule in the last step, while the saddelpoint
approximations were calculated using our implementation of
the saddlepoint method presented in Asmussen et al. (2016).
The results are given in Table 6. Note that the values cal-
culated with our implementation of the saddlepoint method
gives slightly different values comparedwith the values listed
in the paper (Asmussen et al. 2016) (±1 in the third digit of
the significand).

The results show that the two methods gives similar
approximations of α for all chosen values of x , with only
the fourth non-zero decimal being different between the two
estimates in some cases. This indicates that the convolution
method is indeed able to accurately estimate the desired prob-
abilities. Both our implementation of the convolutionmethod
and the saddlepoint method has for this experiment a negligi-
bleCPU-time. The advantagewith the convolutionmethod as
opposed to the more intricate saddlepoint method is that the
convolution method is generic in the way that it can handle
multiple distributions and that the RVs does not need to be
identically distributed. However, for the convolution method
when a larger mesh size N is needed to get accurate estimates
the cost increases byO(N 2) and when the number n of RVs
in the sum increases the complexity increase byO(log2(n)).
On the other hand, the saddlepoint method has a negligible
computational cost.

Furthermore, we wanted to empirically test the perfor-
mance of the convolution method when employing it on a
sum of independent Log-Normals that are not identically
distributed. We therefore perform a experiment similar to
the ones described in above, but instead estimate

α = FY (11.2), with Y =
16∑
i=1

Xi ,

where Xi ∼ Log-Normal(0, σi ) and σi = 1
22+ j with j = i

mod 4 for i ∈ {1, 2, . . . , 16}. The result is shown in the
right plot of Fig. 4. From the graphs it is apparent that the
convolution method performs well in this case as well.

4.4 Estimating unknown distributions with direct
convolution

In this subsection we explore the convergence properties of
the convolution method for Nakagami-m and the Rice dis-

tribution. The PDFs are given in Table 1. Note that we let
� = 1 for the Nakagami-m, while we for the Rice distribu-
tion use an alternative parameterizationwherewe let K = ν2

2
and � = ν2 + 2. Similarly to the Log-Normal distribution,
which was the topic of the former Sect. 4.3, we do not know
the exact distribution of a sum of i.i.d Nakagami-m or Rice
RVs. We run the same experiment as before, utilizing the
convolution method to estimate the value

α = FY (0.8) = P(Y ≤ 0.8) = P

(
16∑
i=1

Xi ≤ 0.8

)
,

with Xi , i = 1, 2, · · · , 16, are i.i.d RVs drawn from either
the Nakagami-m distribution or the Rice distribution. We
first calculate a pseudo-reference solution ᾱ using a mesh
consisting of N = 220 intervals. We then calculate esti-
mates ᾱmi , i = 7, 8, . . . , 15 where we utilize a mesh of size
N = 2i in order to calculate ᾱmi . The relative error of the
approximation relative to the pseudo-reference solution is
then calculated by

δmi =
∣∣ᾱ − ᾱmi

∣∣
ᾱ

For the Nakagami-m case we see from the left plot in
Fig. 5 that we end up with convergence rates of N−6, N−4

and N−2 when choosing parameter values m = 3,m = 2
and m = 1 respectively. These observations are consistent
with Theorem 1 as the pdf of the Nakagami-m distribution is
zero at zero for all derivatives up to and including the forth
derivative when m = 3, while the same is true up to the
second derivative for m = 2. For the case m = 1 the first
derivative is not zero at zero.

The last distribution we will consider is the Rice distribu-
tion. The result from the numerical experiment is shown in
the right plot of Fig. 5. Here the relative error more or less
coincide for all tested parameter values. We also note that
the empirically observed convergence rate is N−2. This also
agree with the result from Theorem 1 (see Remark 6) as the
first derivative of the pdf of the Rice distribution is not zero
at zero.

5 Conclusion

We have presented a deterministic numerical method for
estimating left-tail rare events of sums of non-negative inde-
pendent RVs. The method is shown to be efficient, flexible,
and accurate—even when measured in relative error. This
is due to the fact that numerical integration of convoluted
densities only involves sums and products of non-negative
floating point values,which are operations that are insensitive
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Fig. 4 Left: Relative error as a function of the mesh-size when approxi-
mating αNM in the case when Xi ∼ Log-Normal(0, 0.125)where (αNM

is a pseudo-reference solution calculated using the convolution method
with NM = 1e6 using Boole’s rule in the last step. Right: Relative

error as a function of the mesh-size when estimating pseudo-reference
solution αNM of the CDF of a sum of Log-Normals with varying σ

calculated using the convolution method with NM = 1e6 using Boole’s
rule in the last step

Table 6 Approximations of the
CDF and PDF of Y

x Convolution CDF Saddle CDF Convolution PDF Saddle PDF

0.70 1.761 ×10−31 1.761 ×10−31 5.873 ×10−30 5.873 ×10−30

0.80 9.806 ×10−14 9.806 ×10−14 1.829 ×10−12 1.829 ×10−12

0.85 3.031 ×10−8 3.031 ×10−8 3.975 ×10−7 3.975 ×10−7

0.90 1.631 ×10−4 1.631 ×10−4 1.388 ×10−3 1.388 ×10−3

0.91 5.955 ×10−4 5.955 ×10−4 4.577 ×10−3 4.577 ×10−3

0.92 1.911 ×10−3 1.911 ×10−3 1.318 ×10−2 1.318 ×10−2

0.93 5.423 ×10−3 5.423 ×10−3 3.332 ×10−2 3.332 ×10−2

0.94 1.368 ×10−2 1.368 ×10−2 7.416 ×10−2 7.416 ×10−2

0.95 3.081 ×10−2 3.081 ×10−2 1.460 ×10−1 1.460 ×10−1

0.98 1.901 ×10−1 1.901 ×10−1 5.520 ×10−1 5.520 ×10−1

Fig. 5 Left: Relative error as a function of the mesh-size when estimating FY (0.8)where Y =∑16
i=1 Xi and Xi ∼ Nakagami-m(m). Right: Relative

error as a function of the mesh-size when estimating FY (0.8) where Y =∑16
i=1 Xi and Xi ∼ Rice(ν)
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to rounding errors, cf. Theorem2.We further compare direct-
based convolution to FFT-based convolution, and show by
formal theoretical arguments and in numerical experiments
that FFT-based convolution is more sensitive to rounding
errors and a less reliable method when the magnitude of the
probability of failure is sufficiently small.

In the future, it would be interesting to explore whether
ideas involving numerical integration of linear convolutions
to could be extended to estimations of “left-tail” rare events
for random vectors, and to right-tail rare events. For the latter
problem, one would seek to estimate the rare event

α=P

(
n∑

i=1

Xi > γ

)
=
∫ ∞

γ

f ∗n(x) dx, for some γ � 1 .

We note that unlike the herein considered estimation prob-
lem, this is an integral over the unbounded interval [γ,∞).
This renders numerical integration on a uniformmesh impos-
sible, as itwould require an infinite number ofmeshpoints. To
extend our current methodology to this setting might involve
a suitable truncation of the interval, and/or numerical inte-
gration on a non-uniform mesh, and/or a change of variables
that transforms the above integral into one over a bounded
interval.
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