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Investigating the impact 
of stochasticity on HIV infection 
dynamics in CD4+ T cells using 
a reaction‑diffusion model
Nauman Ahmed 1,7, Muhammad W. Yasin 1,2, Syed Mansoor Ali 3*, Ali Akgül 4,7*, Ali Raza 5, 
Muhammad Rafiq 6,7, Shah Muhammad 8 & Mubasher Ali 9

The disease dynamics affect the human life. When one person is affected with a disease and if it is not 
treated well, it can weaken the immune system of the body. Human Immunodeficiency Virus (HIV) 
is a virus that attacks the immune system, of the body which is the defense line against diseases. 
If it is not treated well then HIV progresses to its advanced stages and it is known as Acquired 
Immunodeficiency Syndrome (AIDS). HIV is typically a disease that can transferred from one person to 
another in several ways such as through blood, breastfeeding, sharing needles or syringes, and many 
others. So, the need of the hour is to consider such important disease dynamics and that will help 
mankind to save them from such severe disease. For the said purpose the reaction‑diffusion HIV CD4+ 
T cell model with drug therapy under the stochastic environment is considered. The underlying model 
is numerically investigated with two time‑efficient schemes and the effects of various parameters 
used in the model are analyzed and explained in a real‑life scenario. Additionally, the obtained 
results will help the decision‑makers to avoid such diseases. The random version of the HIV model 
is numerically investigated under the influence of time noise in Itô sense. The proposed stochastic 
backward Euler (SBE) scheme and proposed stochastic Implicit finite difference (SIFD) scheme are 
developed for the computational study of the underlying model. The consistency of the schemes is 
proven in the mean square sense and the given system of equations is compatible with both schemes. 
The stability analysis proves that both schemes and schemes are unconditionally stable. The given 
system of equations has two equilibria, one is disease‑free equilibrium (DFE) and the other is endemic 
equilibrium. The simulations are drawn for the different values of the parameters. The proposed SBE 
scheme showed the convergent behavior towards the equilibria for the given values of the parameters 
but also showed negative behavior that is not biological. The proposed SIFD scheme showed better 
results as compared with the stochastic SBE scheme. This scheme has convergent and positive 
behavior towards the equilibria points for the given values of the parameters. The effect of various 
parameters is also analyzed. Simulations are drawn to evaluate the efficacy of the schemes.

Keywords Stochastic HIV model, Proposed SBE scheme, Proposed SIFD scheme, Analysis of schemes, 

Simulations

Any phenomena in physical sciences can be modeled by partial differential equations (PDEs). For example, 
in physics, the flow of temperature in a body and transmission of waves are expressed by PDEs. In the field of 
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biology, most models related to people are expressed by partial differential equations. It is very easy to define that 
most of the phenomena governing population dynamics, quantum physics, disease dynamics, fluid dynamics, 
and some other models lie inside the domain of PDEs. In Epidemiology, disease dynamics are considered and 
analyzed. Infectious diseases are causing serious threats to population dynamics. Several diseases affect human 
life severely and one of them is acquired immunodeficiency syndrome (AIDS) which spreads due to the virus 
known as human immunodeficiency virus (HIV). Since the initial days of HIV, numerous works have been 
devoted to the understanding complexity of this virus. The HIV models are divided into two categories: one is a 
within-host model and the other is a population-level  model1–5. The immune system of the body fights with all 
types of germs and tries to save it from disease and if the immune system gets weak then the disease affects the 
body according to the severity of the virus. Similarly, HIV enters the body and starts to damage the CD4+ T cells 
and if the immune system is strong then the CD4+ T cells d remain to save and if it is weak then the number of 
the CD4+ T cells starts to reduce. If the patient has a weak immune system and is checked timely and then by 
using a different medication facility, he can be cured. There are various mathematical models which describe 
the different dynamics of the HIV models. Zafar et al. worked on the approximate solution of a non-integer 
HIV epidemic model. They used the Grunwald Letnikov non-standard finite difference scheme for numerical 
study and this scheme preserves the positivity and boundedness. They analyzed the different dynamics of the 
given model and verified the theoretical results with  simulations6. Raza et al. considered a stochastic HIV/AIDS 
model in a two-sex population with antiretroviral therapy and counseling. They compared the numerical results 
of the deterministic and stochastic HIV model and concluded that the stochastic model is more realistic than the 
 deterministic7. Huo et al. incorporated the treatment T compartment in the HIV model and analyzed it. They 
analyzed the stability of disease-free and endemic equilibria for R0 < 1 and R0 > 1 respectively and proved that 
equilibria are globally asymptotically  stable8.

For human medication, it is necessary to test the drugs and other therapies on the animals. Hatziioannou 
and Evans worked on the animal models for HIV/AIDS9. Silva and Torres proposed an HIV/AIDS model of 
non-integer order. They analyzed the global and local stability of the given model and explained the theo-
retical results through the numerical  simulations10. Khan et al. studied the fractional order HIV/AIDS having 
Atangana–Baleanu–Caputo and Liouville–Caputo derivatives. From analysis, they observed that some species 
moved from the symptomatic to the asymptomatic phase. They used various techniques for numerical study 
and discussed convergence as well. They used the simulation for the result  illustration11. Cai et al. investigated 
the HIV/AIDS epidemic model and analyzed the global and local stability of the given model. They introduced 
the discrete time delay in the model and investigated the effect of the delay factor on the stability of endemic 
 equilibrium12. El-Metwaly et al. investigated the dynamics of the HIV models with stochastic perturbation. They 
derived the global exponential stability of DFE with a reproductive number less than  unity13.

Many researchers are working on solving stochastic partial differential equations (SPDEs) numerically. Roth 
developed the finite difference method (FDM) for the solutions of SPDEs. He developed the analysis of the 
stochastic  scheme14. Roth also used the FDM along with the Wong–Zakai technique for the numerical study 
of  SPDEs15. Kamrani and Hosseini work on the solution of a general class of SPDEs. They discussed the stabil-
ity and consistency of the schemes and analyzed the role of coefficients on the general  SPDEs16. The authors 
showed the existence of a solution for the SPDEs and their solution by various  techniques17–19. Yoo worked on 
the approximation of the SPDEs by using finite difference  methods20. Allen et al. worked on the numerical solu-
tion of elliptic and parabolic  SPDEs21.

Wu and Zhao proposed a new age-space structured model that incorporates both two spatial diffusion, infec-
tion age, and highly active antiretroviral therapy to investigate the global dynamics of the HIV epidemic model 
and its transmission in humans. The authors established the well-posedness and positivity of the solution. They 
conclude that the disease-free equilibrium is globally asymptotically stable when the basic reproduction number 
is less than  one22. Wu et al. worked on the global dynamics of the three-age-structured, spacial diffusion, viral 
load-dependent infection, and conversion rates of HIV/AIDS. The authors also established the global stability of 
steady states and the uniform persistence of the disease. From the graphical behavior, they concluded that safety 
measures are helpful at the individual and population levels in controlling the transmission of the  disease23. Wu 
et al. proposed a model to analyze the impact of infection age, spatial diffusion, and treatment adherence on 
HIV/AIDS transmission among  humans24. Wang et al. proposed a susceptible-infected-susceptible reaction-
diffusion epidemic model with cognition and analyzed the impact of movement strategies on disease  outbreak25. 
The  authors26 analyzed a dynamical model of an evolving epidemic in a spatially inhomogeneous environment. 
They established various results for the epidemic model. Li and Wei considered stochastic diffusive COVID-19 
model, to analyzeits various  dynamics27.

The physical systems are the basic part of nature. Researchers used different techniques to understand these 
phenomena and demonstrated physical models by using a set of equations. They used analytical and approxima-
tion techniques to find the solution of the models. These solutions helped them to understand the complicated 
phenomena and make decisions for the betterment of human life. The life of man has links with living organisms, 
nonliving things, and disease dynamics. When disease dynamics are simply observed over time, labeled as tem-
poral dynamics of disease and when observed over both time and space, they are referred to as spatiotemporal 
dynamics of the disease. When we see the disease dynamics at the micro-scale, they have stochastic behavior for 
their spread. It becomes difficult for scientists when disease dynamics are considered in time, space coordinates 
with diffusion process and stochastic behavior. We have tried to solve the underlying model with two computa-
tional schemes. The stochastic backward Euler scheme is applied and negative behavior for given values on the 
other hand stochastic implicit scheme preserves the stable, convergent, and positive behavior for given values of 
the parameters. The obtained solutions are explained in real-life applications. Both schemes are time efficient.

The novelty of this work is given below:
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• The classical epidemic models cannot predict the true behavior of the infectious disease. So, stochastic epi-
demic models are more accurate and preferred. We are considering the stochastic epidemic model for HIV/
AIDS disease.

• Two schemes are used for the numerical approximation of the underlying model.
• Both schemes are consistent with the system of equations and have stable behavior in the mean square sense.
• The given model has two equilibrium points: both are successfully gained.
• The graphical behavior of the state variables is explained from the biological point of view.
• The MATLAB 2015a is used for the graphical behavior of the test problem.

Problem statement
Nauman et al.28 worked on below model

with suitable initial and boundary conditions. HIV is an infection that damages the CD4+ T cells in the body 
and the white blood  cells29,30. Where T represents the density of susceptible CD4+ T cells, while I is a reverse 
transcription (RT) class, and L is shown as the infected CD4+ T cells and L virus. The dT > 0, dI > 0, dV > 0, 
and dL > 0 are the diffusion coefficients, s represents the influx rate in CD4+ T cells, the exchange contamination 
rate of CD4+ T cells is k0 , while µ is the death rate, the death rate of contaminated cells by µ1 , the transition rate 
from pre-RT contaminated cells to post-RT contaminated cells is represented by ǫ , b is the conversion rate of 
contaminated cells to uncontaminated cells, δ show the death rate of the actively contaminated cell, c represents 
the virus’s clearance rate and the viral particles N which are produced by the contaminated cells.

We are considering the HIV model influenced by stochastic perturbation as

here νi , i = 1, 2, 3, 4 are the noise strength of the stochastic process and Ḃi(t) , i = 1, 2, 3, 4 are the stand-
ard Wiener process. Let T > 0 and (�,F,P) is the probability space having normal filtration (Ft)t≥0 , and 
{Bi(t), i = 1, 2, 3, 4.t ≥ 0} is the Brownian motion defined over the filtered probability space and it has the fol-
lowing properties

• B(s)-B(t) for s > t does not depend on the past.
• B(s)-B(t) for s > t has normal distribution with mean zero and variance s − t

• B(t), t ≥ 0 are continuous function of t.

Numerical methods
For the numerical study of the given system of equations, first the discretization of the whole domain of space x 
and temporal t variables. The grid points (xd , te) are explained as

Here, M and N1 are the integers and �x = h , �t = k are stepsizes of space and temporal respectively.
The proposed SBE scheme for the given system of equations is given below

The Eqs. (5–8) are the proposed SBE scheme for the given system of equations.
The proposed SIFD scheme for the underlying model is given below

Tτ = dTTxx + s − µT − k0LT + ηǫI + bI , Iτ = dI Ixx − (µ1 + b + ǫ)I + k0LT ,

Vτ = dVVxx + (1 − η)ǫI − δV , Lτ = dLLxx + NδV − cL,

(1)Tt =dTTxx + s − k0LT − µT + (ηǫ + b)I + ν1TḂ1(t),

(2)It =dI Ixx + k0LT − (µ1 + ǫ + b)I + ν2IḂ2(t),

(3)Vt =dVVxx + (1 − η)ǫI − δV + ν3VḂ3(t),

(4)Lt =dLLxx + NδV − cL + ν4LḂ4(t),

xd =dh, d = 0, 1, 2, 3, . . . ,M.

τe =ek, e = 0, 1, 2, 3, . . . ,N1.
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here, r1 =
dTk

h2
 , r2 =

dIk

h2
 , r3 =

dV k

h2
 , r4 =

dLk

h2
 and �Bi = (B

(e+1)k
i

− B
ek
i

), i = 1, 2, 3, 4.

Stability
To Von-Neumann’s method of stability,

where Ẑn is the Fourier Transformation of Zn.

The stability technique for this  method31.

here η is the constant value.

Theorem 1 This theorem is state that “in mean square sense, the scheme for T, I, V, L by Eqs. (5, 6, 7, 8) is uncon-
ditionally stable”.

Proof The stability analysis of numerical schemes is carried out by various criteria but Von-Neumann is used 
due to its linear analysis. So, Eq. (5) is linearized as follow

By using the Eq. (13), Eq. (16) becomes

The amplification factor, we get

by using the independence of the Wiener process and amplification factor becomes
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By using the same technique for the Eqs. (6, 7, 8), the amplification factor of these equations in means square 
sense with the independence of the Wiener process,
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Theorem 2 In mean square sense, the scheme for T, I, V, L by Eqs. (9, 10, 11, 12) is unconditionally stable.

Proof Von-Neumann is used for the stability analysis. So, Eq. (9) is linearized as

Then, the above equation can be written as,

So, by an amplification factor,

using the independence of the Wiener process, then the amplification factor becomes
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By using the same technique for the Eqs. (10, 11, 12), the amplification factor of these equations in means 
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∣
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∣
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∣
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2 ν2
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∣

∣
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 Thus, it is stable.
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∣

∣

∣

∣
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 . Thus, it is stable.

∣

∣

∣

∣

1

1+�tc+4r4 sin
2(
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2

)

∣

∣

∣

∣

2
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∣

∣

∣

∣

∣

ν4
(

1+�tc+4r4 sin
2(

�xξ
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)

∣

∣

∣

∣

∣

2

 . Thus, it is stable.

Consistency of schemes
The consistency showed the compatibility of a scheme with given equations.

Theorem 3 In a mean square sense, the proposed SBE scheme given by Eqs. (5–8) for state variables T, I, V, L is 
consistent with Eqs. (1–4)31,32.

Proof Let us suppose that T is a smooth function and applying the integral H(g) =
∫ (e+1)k
ek gdv on (1) then we get

Eq. (1) can be written as,

In the mean square sense, the equations take the form and by using the Itô integral’s square property
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∣
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∣
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∣
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∣

∣
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∣
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d

=T(dh, (e + 1)k) − T(dh, ek) − dT
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ek

Txx(dh, v)dv −

∫ (e+1)k

ek

sdv

+ k0

∫ (e+1)k

ek

(T(dh, v)L(dh, v))dv + µ
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ek

T(dh, v)dv
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T(dh, v)dv − ν1
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H
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E|H(T)e
d

− H
e

d
(T)|2 → 0 as (d, e) → ∞, so it is consistent. Similarly, the consistency of the scheme for the 

Eqs. (6–8) can be proved.

Theorem 4 In a mean square sense, the proposed SIFD scheme given by Eqs. (9–12) for state variables T, I, V, L is 
consistent with Eqs. (1–4).

Proof Let us suppose that T is a smooth function and applying the integral operator as H(g) =
∫ (e+1)k
ek gdv by 

applying the operator on (1) then we get

Eq. (1) can be written as,

In the mean square sense, the equations take the form and by using the Itô integral’s square property

E|H(T)e
d

− H
e

d
(T)|2 → 0 as (d, e) → ∞, so this scheme is consistent. Similarly, the consistency of the scheme 

for the Eqs. (10–12) can be proved.

Convergence
The convergence of the scheme is discussed in the mean square sense.

Theorem 5 The stochastic implicit finite difference scheme given by Eqs. (9–12) is convergent in the mean square 
sense.

Proof 
as the scheme is consistent in the mean square sense i.e., Le

d
T
e

d
→ L

e

d
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∣
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also, scheme is stable, then (Le
d
)−1 is bounded. So, E

∣

∣

∣

∣

T
e

d
− T

∣

∣

∣

∣

2

→ 0 . Hence proposed scheme for T is convergent 

in the mean square sense. A similar process can be used to show the convergence of the scheme.

Discussion
We are using a test problem to check the efficacy of our proposed schemes. The given system of equations 

has two equilibrium points DFE = (s/µ, 0, 0, 0) and other is EE = (T∗, I∗,V∗, L∗) where T∗ =
bc+cµ1+cǫ
kNǫ(1−η)

 , 

I∗ =
k0Nsǫ(1−η)−bcµ+cµµ1+cµǫ

k0Nǫ(1−η)(µ1+(1−η)ǫ)
 , V∗ =

k0Nsǫ(1−η)−bcµ+cµµ1+cµǫ
δk0N(µ1+(1−η)ǫ)

 , L∗ =
k0Nsǫ(η−1)+bcµ+cµµ1+cµǫ

ck0((η−1)ǫ−µ1)
 . The EE exists if 

s

µ
>

bc+cµ1+cǫ
k0Nǫ(1−η)

.
Consider the Eqs. (1–4) with following equations

The simulations are drawn for the values in Table 1. The Fig. 1 is drawn by using the backward Euler scheme 
for the noise strength zero. It is seen from the graphical behavior that the density of contaminated CD4+ T cells 
before pre-RT class and the virus density have gained negative values and it is not the behavior for the disease 
dynamics. Figure 2 is plotted by the proposed BE scheme for all noise strengths 0.02. The randomness behavior 
is observed for the state variable T(x, t) and all other state converges to zero but have negative behavior as well. 
It is a disease-free equilibrium gained for zero and nonzero noise strength. The Fig. 3 is plotted by the proposed 
SIFD scheme with noise strength zero and state variable T(x, t) is non-zero and all other state variables are zero. 
The DFE is successfully gained. The Fig. 4 is drawn for noise strength 0.02. The effect of the noise can be seen in 
the disease-free equilibrium and all the state variables possess positive behavior. The proposed stochastic IFD 
scheme is suitable for the solution of the HIV/AIDS model with disease-free equilibrium.

The given system of equations (1–4) has a coexistence equilibrium and it is given as EE = (T∗, I∗,V∗, L∗) . The 
EE is only exists when s

µ
>

bc+cµ1+cǫ
kNǫ(1−η)

 is satisfied. To attain this condition, we have chosen the value of s = 100 . 
The physical behavior of endemic equilibrium is gained for the values of the parameters given above table. The 
Fig. 5 is constructed by the proposed SBE scheme with noise strength zero. The densities of susceptible CD4+ T 
cells, pre-RT infected CD4+ T cells, infected CD4+ T cells, and virus density have positive behavior. The Fig. 6 is 
plotted for noise strength 0.02 and all densities have positive behavior except virus density. It has negative values 
for some points of the domain and it does not preserve the biological property. The Figs. 7 and 8 are drawn for 
zero and non-zero noise strength for all state variables. The endemic equilibrium has been successfully gained 
by the proposed stochastic IFD scheme. The T, V, I, and L have true behavior. The proposed SIFD scheme is 
consistent with the given system of equations. The Figs. 9 and 10 are drawn by the proposed IFD scheme with 
noise strength 0.025 by escalating the value of the b from 0 to 1

10
 and it is noticed that the number of CD4+ T 

cells increases and the number of virus decreases. The Figs. 11 and 12 are plotted for the proposed stochastic 
IFD scheme with noise strength 0.025. The effect of the parameter η is observed by increasing its value from 0.7 
to 0.8 and noticed that the densities of T, I increase and V, L decrease respectively.

The HIV models are disease dynamics and necessarily the solutions must be positive. We have employed 
two techniques for the numerical solutions of the underlying mode. One technique fails to preserve the posi-
tive behavior while the other preserves the positivity and converges towards the steady states. One of the most 
compelling reasons to consider this model with a numerical scheme is to construct and apply the scheme in a 
way that yields positive solutions. As the underlying model is disease dynamics disease can never be negative. So 

E

∣

∣

∣

∣

(Le
d
)−1(Le

d
T
e

d
− L

e

d
T)

∣

∣

∣

∣

2

→ 0,

(20)T(x, 0) =

{

300x if 0 ≤ x ≤
1
2

300 − 300x if 1
2

≤ x ≤ 1.

(21)I(x, 0) =

{

10x if 0 ≤ x ≤
1
2

10 − 10x if 1
2

≤ x ≤ 1.

(22)V(x, 0) =

{

10x if 0 ≤ x ≤
1
2

10 − 10x if 1
2

≤ x ≤ 1.

(23)Ł(x, 0) =

{

10x if 0 ≤ x ≤
1
2

10 − 10x if 1
2

≤ x ≤ 1.

Table 1.  Values of parameters.

k0 c b η µ ǫ δ µ1

0.000024 2.4 0.1 0.8 0.01 0.4 0.26 0.015
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Figure 1.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0, i = 1, 2, 3, 4, s = 10.

Figure 2.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0.02, i = 1, 2, 3, 4, s = 10.
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Figure 3.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0., i = 1, 2, 3, 4, s = 10.

Figure 4.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0.02, i = 1, 2, 3, 4, s = 10.
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Figure 5.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0, i = 1, 2, 3, 4, s = 100.

Figure 6.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0.02, i = 1, 2, 3, 4, s = 100.
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Figure 7.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0, i = 1, 2, 3, 4, s = 100.

Figure 8.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0.02, i = 1, 2, 3, 4, s = 100.
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Figure 9.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0.025, i = 1, 2, 3, 4, b = 0, s = 100.

Figure 10.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0.025, i = 1, 2, 3, 4, b = 0.1, s = 100.
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Figure 11.  3D simulations of T, I, V, L, with ri = 0.8, η = 0.7, σi = 0.025, i = 1, 2, 3, 4, s = 100.

Figure 12.  3D simulations of T, I, V, L, with ri = 0.8, σi = 0.025, i = 1, 2, 3, 4, η = 0.8, s = 100.
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its solution must preserve the positivity. Such solutions are preferred which preserve the positivity and bounded 
behavior for the whole domain. The results of the stochastic implicit finite difference scheme are aligned with 
the actual steady states which are the positive steady states. The disease dynamics have random behavior. So, 
it is quite better to consider the continuous model with a random effect. Such random behavior is observed in 
every physical phenomenon at a certain level. So we incorporate diffusion as well as random behavior in the 
underlying model.

Conclusion
In this article, the stochastic HIV/AIDS model with drug therapy is analyzed by two proposed numerical schemes. 
HIV/AIDS breaks up the immunity of susceptible patients and produces different disorders in the body. The clas-
sical models fail to predict the true behavior of the disease dynamics. It is more suitable to consider the classical 
model under the influence of some random process. So, we considered the stochastic version of the HIV/AIDS 
model for this study. The linear stability and consistency analysis of schemes is carried out. The underlying model 
has two equilibria, one is disease and the other is endemic equilibrium. The proposed SBE scheme is used to gain 
the numerical solution of the given model. The simulations are drawn for the zero and non-zero noise strength. 
The graphical behavior of the solutions by the proposed stochastic SBEs scheme showed negative behavior and 
it is meaningless in biological nature. The graphical behavior of the proposed SIFD scheme showed convergent 
and positive behavior for the specified parameter values. The simulations by the proposed SIFD scheme are 
drawn for the various values of the noise strength. The effect of various values of parameters on the solutions 
is also discussed. These findings will aid researchers in their consideration of the random effect on continuous 
systems. In the future, such analysis and numerical solution can be extended to higher dimensional stochastic 
PDEs and fractional stochastic PDEs related to the disease and population dynamics.

Data availability
Data will be provided by corresponding author on reasonable request.
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