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Abstract 17 

The Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE 2, ca. 94 Ma) is 18 

characterized by a marked positive carbon isotope excursion (CIE) recorded in global 19 

marine basins. This CIE results from a global-scale increase in organic matter burial, 20 

facilitated by high productivity and seawater deoxygenation. To date, however, the 21 

precise pattern of changes in the burial rate of organic matter through the event has 22 
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not been well constrained. In this work, we present a compilation of data from 42 23 

globally distributed OAE 2 sites, as well as organic carbon isotope (δ13Corg), total 24 

organic carbon (TOC), and trace element concentration data from a new OAE 2 25 

interval in southern Tibet, China. In southern Tibet, the absence of redox-sensitive 26 

trace element enrichment through OAE 2 indicates prevailing oxic conditions. 27 

Organic carbon (OC) mass accumulation rate (MAR) at this site decreased from the 28 

lower part of the CIE to the upper part, in contrast to an approximate doubling of 29 

organic carbon MAR in the upper part observed globally. This result, coupled with 30 

detailed analysis of the compilation, shows that redox was a key factor controlling 31 

organic burial rates during OAE 2, with OC MAR scaling positively with increasing 32 

deoxygenation. Leveraging a biogeochemical model to simulate these data suggets 33 

that 5-20% of the seafloor became anoxic during OAE 2, and that this deoxygenation 34 

was accompanied by 100% to 200% increase in global seawater P concentration. Our 35 

findings indicate that during OAE 2, elevated nutrient levels may have resulted from 36 

enhanced recycling from sediments under reducing conditions, sustaining intensified 37 

primary production and subsequent organic carbon export and burial. 38 

Keywords: OAE 2; Cenomanian-Turonian; Tibet; oceanic anoxia; organic carbon 39 

burial  40 

 41 

1. Introduction 42 

The Cretaceous Period witnessed elevated atmospheric CO2 concentrations and 43 

temperatures, coinciding with episodic accumulation of organic carbon-rich sediments, 44 



known as oceanic anoxic events (OAEs; Schlanger and Jenkyns, 1976). OAEs marked 45 

prolonged and significant perturbations to the global carbon cycle (Schlanger et al., 46 

1987; Takashima et al., 2006; Jenkyns, 2010; Herrle et al., 2015; Gambacorta et al., 47 

2016; Owens et al., 2017), expressed by widespread deoxygenation across numerous 48 

ocean basins. OAEs are commonly distinguished stratigraphically by positive carbon 49 

isotope (13C) excursions (CIEs) related to globally enhanced burial of organic carbon 50 

enriched in 12C (Kump, 1991; Jenkyns, 2010; Bryant et al., 2021). Oceanic Anoxic 51 

Event 2 (OAE 2), occurring around ~94 Ma, represents a peak of organic matter (OM) 52 

burial, and is associated with a CIE of approximately 2.5‰ in marine carbonates and 53 

up to 4‰ in marine OM (e.g., Jarvis et al., 2006; Tsandev and Slomp, 2009; Owens et 54 

al., 2018; Paez-Reyes et al., 2021; Papadomanolaki et al., 2022). The 13C profiles 55 

through OAE 2 in different basins share a similar basic pattern. Specifically, the δ13C 56 

evolution can be divided into six distinct stages (Li et al., 2017), of which stages C3, 57 

C4 and C5 define the OAE 2 interval. In stages C1 and C6, the carbon isotope curve 58 

exhibits relative stability, representing pre- and post-event baseline values, 59 

respectively. Larger-scale and higher frequency δ13C fluctuations characterize stage 60 

C2, with a relatively minor δ13C negative shift sometimes observed. Stage C3 shows 61 

an initial rapid transition to higher δ13C values (‘build-up’ phase), followed by a 62 

‘plateau’ phase (stage C4) with relatively constant δ13C values and finally a ‘recovery’ 63 

phase (stage C5), where δ13C values return to near-pre-event values. 64 

Different hypotheses have been proposed to elucidate the mechanisms of 65 

enhanced organic matter accumulation during OAE 2 (e.g., Jenkyns, 2010; Beil et al., 66 



2020). These include the role of nutrient enrichment via emissions from large igneous 67 

provinces (LIPs) (Turgeon and Creaser, 2008; Trabucho Alexandre et al., 2010; Du 68 

Vivier et al., 2015; Schröder-Adams et al., 2019), remobilization from terrestrial areas 69 

due to marine transgressions (Jenkyns, 1980; Haq, 2014), input from intensified 70 

terrestrial weathering (Monteiro et al., 2012; Poulton et al., 2015; Jenkyns et al., 71 

2017), and the release of phosphorus from sediments under benthic anoxic conditions 72 

(Mort et al., 2008; Wallmann, 2010; Beil et al., 2020). Understanding the triggers and 73 

mechanisms behind organic carbon enrichment during OAE 2 has significantly 74 

advanced in recent years (e.g., Schröder-Adams et al., 2019; Londoño and Collins, 75 

2022). At the same time, previous studies have provided a robust estimate of the total 76 

organic carbon sequestration throughout the entire OAE 2 period, amounting to 77 

approximately 70 Eg (1 Eg = 1018 g), which exceeds the current marine carbon burial 78 

flux by more than two-fold (Owens et al., 2018). However, the variations in the 79 

organic carbon mass accumulation rates (OC MARs) across different CIE stages 80 

remain poorly understood, and the dominant drivers governing short-term organic 81 

carbon burial during the event also remain elusive. A key challenge in unraveling the 82 

driving forces and dynamics of OAE 2 is the uncertainties regarding its duration and 83 

the distinct stages it encompasses (Beil et al., 2020). The total duration of the CIE 84 

associated with OAE 2 has been previously estimated to have ranged from ~430 kyr 85 

to ~930 kyr (Sageman et al., 2006; Meyers et al., 2012; Ma et al., 2014; Eldrett et al., 86 

2015; Li et al., 2017; Charbonnier et al., 2018; Gangl et al., 2019). A recent high-87 

precision estimate of 619 kyr has been established cyclostratigraphically from site 88 



SH#1 in the USA (Jones et al., 2019). Discrepancies in previous timescale estimates 89 

are largely attributable to varied definitions of the onset and end of OAE 2. For 90 

example, some estimates are based on the stratigraphic pattern and magnitude of 91 

organic-enrichment, while others are based on the stratigraphic pattern of the CIE 92 

(Beil et al., 2020).  93 

A robust understanding of OC MAR from globally distributed basins is a key 94 

prerequisite for understanding the precise pattern of global organic matter burial 95 

across OAE 2, and for interpreting the associated carbon isotope excursion. To date, 96 

however, only a few sites have been reported from the southern hemisphere and 97 

eastern Tethys Ocean. In this study, we have investigated the OC burial history and 98 

paleoenvironment during OAE 2 in the Qiangdong section, which was deposited on 99 

the southern margin of the eastern Tethys Ocean during the Cretaceous (Fig. 1 and S1). 100 

OAE 2 in this section has been identified by biostratigraphy (Jia et al., 2010 ) and  101 

low-resolution δ13Corg curve (Zhang et al., 2016). We integrate these new data with 102 

previously published data from 42 globally distributed sites (Fig. 1) to assess the 103 

temporal pattern of OC MARs for different CIE stages at each site. Through this 104 

analysis, we establish a unified organic carbon burial rate curve for OAE 2, permitting 105 

precise comparison of OC MAR variations in a spatiotemporal context. In so doing, 106 

we investigate the drivers of short-term organic matter sequestration rates during 107 

OAE 2. 108 



 109 

Fig. 1. Paleogeographic map (95 Ma, Cenomanian) and locations of OAE 2 sections (red dots). 110 

Referenced sources are detailed in Table 1. The yellow star marks the Qiangdong section. The 111 

map is adapted from the PALEOMAP Project (Scotese, 2016). 112 

 113 

2. Materials and Methods 114 

2.1 Sample preparation and analysis in the Qiangdong section 115 

In total, 72 samples with a spacing of 1 m were taken from the OAE interval 116 

(~72 m thick) of the Qiangdong section for organic carbon isotope and TOC analysis, 117 

and 37 samples with a spacing of 2 m were selected for major and trace element 118 

analyses. To prevent sampling of oxidized or contaminated material, weathered 119 

surfaces and visibly altered parts were trimmed off before grinding into a fine powder. 120 

The residual rock samples were crushed and ground to 200 mesh powder for 121 

subsequent analysis. Methods used for the measurement of organic carbon isotopes, 122 

TOC, and major and trace element abundance are described in detail in the 123 

Supplementary Materials.  124 

2.2 Data compilation and measurement of mass-accumulation rates 125 



OAE 2 is one of the most widely documented carbon cycle perturbation events in 126 

the geological record (e.g., Bowman and Bralower, 2005; Jenkyns, 2010; Eldrett et al., 127 

2017; Beil et al., 2018; Jones et al., 2021; Paez-Reyes et al., 2021; McDonald et al., 128 

2022). We compiled data from 43 globally distributed OAE 2 sections that each 129 

clearly show the OAE 2 CIE, including the Qiangdong section (Fig. 1). Unlike the 130 

compilation approach of Owens et al. (2018), the selected sections only include those 131 

dominated by black shale facies, rather than carbonates, as previous studies have 132 

shown that carbonates typically have low TOC content. Following Kemp et al. (2022), 133 

we classify the redox state of each section, as reported in the literature, into three 134 

types: oxic-suboxic, suboxic-anoxic, and anoxic-euxinic. Detailed information on the 135 

compiled sections is provided in Table 1, with comprehensive information on the 136 

redox of each site  provided in the Supplementary Materials Table S1.  137 

The organic carbon burial rate during OAE 2 can be quantified for each of our 138 

studied sections using the available TOC data coupled with knowledge of rock density 139 

and bulk sediment accumulation rates. Hence, organic carbon mass accumulation rate 140 

(MAR; g/cm2/kyr) is calculated by: 141 

MAR[g/cm2/kyr]= LSR [cm/kyr]× [g/cm3]×TOC [wt%] 142 

where LSR is the linear sedimentation rate, and  is rock density. Few rock 143 

density data have been previously published, and we assume instead (following 144 

Owens et al., 2018) a constant density of 2.4 g/cm3, which is lower than the typical 145 

mudstone density of ~2.7 g/cm3 since organic-rich rocks have generally lower density. 146 

In any case, the exact density value chosen has only a limited effect on the absolute 147 



MAR values calculated, and has no effect on calculations of changes in organic 148 

carbon burial rate. 149 

The linear sedimentation rates for each section are calculated by using the 150 

reported CIE stratigraphic thickness and the estimated duration of the CIE interval. As 151 

noted in Section 1, this duration of OAE 2 has been previously estimated using 152 

different methods (Sageman et al., 2006; Meyers et al., 2012; Ma et al., 2014; Eldrett 153 

et al., 2015; Li et al., 2017; Charbonnier et al., 2018; Gangl et al., 2019; Jones et al., 154 

2019). In this study, we use the published timescales for each section, if available. If 155 

the duration was not previously published, we adopt a duration of 619 kyr, based on 156 

the astronomically tuned OAE 2 duration obtained recently from site SH#1, USA 157 

(Jones et al., 2019). Importantly, this timescale provides estimated durations for the 158 

different stages of the CIE: 193 kyr for stage C3, 324 kyr for stage C4 and 102 kyr for 159 

stage C5 (Jones et al., 2019). The stratigraphic thickness of the OAE 2 interval and 160 

individual stages in each section was defined by the available organic carbon isotope 161 

data and assumes unchanging sedimentation rate and no major stratigraphic gaps. 162 

 163 

Table 1. The list of sites studied in this study, including data on stratigraphic thickness, organic 164 

carbon burial rates, and inferred redox, along with references. Question marks denote uncertain 165 

redox interpretation. The locations of the sites are shown in Fig. 1. WIS: Western Interior Seaway.  166 

Site 
No. 

Area Study site 
Thickness 
(m) 

OC MAR  
(g/cm2/kyr) 

Redox 
interpretation 

Reference               
(duration from) 

Reference                           
(data from) 

1 USA (WIS) Carthage 22.00 0.05 
Suboxic-

anoxic 
Jones et al. (2019) 

Bryant et al. 

(2021) 

2 USA (WIS) Iona-1 Core 18.03 0.11 
Anoxic-
euxinic 

Eldrett et al. 
(2017) 

Eldrett et al. 
(2015) 

3 USA (WIS) SH#1 Core 17.47 0.07 
Anoxic-

euxinic 
Jones et al. (2019) 

Jones et al. 

(2019) 

4 USA (WIS) Portland#1 7.99 0.03 
Suboxic-

anoxic 

Eldrett et al. 

(2017) 

McDonald et 

al. (2022) 

5 USA (WIS) Angus Core 11.39 0.09 
Anoxic-
euxinic 

Jones et al. (2021) 
Jones et al. 
(2021) 

6 USA (WIS) Cuba, Kansas 3.27 0.05 
Suboxic-

anoxic 
Jones et al. (2019) 

Bowmana et 

al. (2005) 



7 USA (WIS) Rock Canyon 7.00 0.02 
Anoxic-

euxinic 
Jones et al. (2019) 

Bowmana et 

al. (2005) 

8 USA (WIS) Innes-1 Core 12.04 0.06 
Anoxic-

euxinic 

Eldrett et al. 

(2017) 

Eldrett et al. 

(2017) 

9 USA (WIS) Well “X” core 17.65 0.09 
Suboxic-

anoxic 

Eldrett et al. 

(2017) 

Eldrett et al. 

(2017) 

10 
Canada 
(WIS) 

Youngstown 14.40 0.36 
Anoxic-
euxinic? 

Jones et al. (2019) 
Prokoph et al. 
(2001) 

11 

High 

Canadian 
Arctic 

May Point 12.00 0.22 
Anoxic-

euxinic 
Jones et al. (2019) 

Lenniger et 

al. (2014) 

12 

High 

Canadian 
Arctic 

Glacier Fiord 21.40 0.44 
Suboxic-

anoxic 
Jones et al. (2019) 

Schröder-

Adams et al. 
(2019) 

13 
Gulf of 

Mexico 
Spinks Core 14.87 0.11 

Suboxic-

anoxic 
Jones et al. (2019) 

Lowery et al. 

(2017) 

14 

USA 

(North 

Atlantic) 

HP core 19.42 0.04 

Suboxic-

anoxic Jones et al. (2019) 
Lowery et al. 
(2021) 

15 

USA 

(North 

Atlantic) 

SES core 10.82 0.04 

Anoxic-

euxinic? Jones et al. (2019) 
Lowery et al. 
(2021) 

16 

USA 

(North 

Atlantic) 

Bass River 14.65 0.06 Oxic-suboxic Jones et al. (2019) 
van Helmond 
et al. (2014a) 

17 

Colombia 

(North 
Atlantic) 

Paipa 11.90 0.27 
Suboxic-

anoxic 

Paez-Reyes et al. 

(2021) 

Paez-Reyes et 

al. (2021) 

18 

Colombia 

(North 
Atlantic) 

Olini 6.05 0.12 
Suboxic-

anoxic 

Paez-Reyes et al. 

(2021) 

Paez-Reyes et 

al. (2021) 

19 

Demerara 

Rise (North 
Atlantic) 

ODP Site 

1260 
1.60 0.03 

Anoxic-

euxinic 

Eldrett et al. 

(2017) 

Forster et al. 

(2007) 

20 

Demerara 

Rise (North 
Atlantic) 

ODP Site 

1258 
4.68 0.27 

Anoxic-

euxinic 
Jones et al. (2019) 

Erbacher et 

al. (2005) 

21 

Demerara 

Rise (North 
Atlantic) 

ODP Site 

1261 
9.13 0.26 

Anoxic-

euxinic 

Eldrett et al. 

(2017) 

Erbacher et 

al. (2005) 

22 

Morocco 

(North 

Atlantic) 

S57 17.72 0.59 
Anoxic-

euxinic 
Jones et al. (2019) 

Tsikos et al. 

(2004) 

23 

Morocco 

(North 
Atlantic) 

SN°4 41.94 1.30 
Anoxic-

euxinic 
Beil et al. (2018) 

Beil et al. 

(2018) 

24 

Morocco 

(North 
Atlantic) 

S13 44.57 1.90 
Anoxic-

euxinic 
Jones et al. (2019) 

Kuypers et al. 

(2002) 

25 
North 

Atlantic 

DSDP Site 

367 
5.60 0.94 

Anoxic-

euxinic 
Jones et al. (2019) 

Dickson et al. 

(2016) 

26 
North 

Atlantic 

DSDP Site 

386 
6.38 0.18 

Anoxic-

euxinic 
Jones et al. (2019) 

van Helmond 

et al. (2014b) 

27 
North 
Atlantic 

DSDP Site 
603 

5.03 0.10 
Anoxic-
euxinic 

Jones et al. (2019) 
van Helmond 
et al. (2014b) 

28 
North 

Atlantic 

DSDP Site 

641 
1.09 0.01 

Anoxic-

euxinic 
Jones et al. (2019) 

van Helmond 

et al. (2014b) 

29 
North 

Atlantic 

ODP Site 

1276 
3.97 0.05 

Suboxic-

anoxic 
Jones et al. (2019) 

Westermann 

et al. (2014) 

30 
France 
(Western 

Tethys) 

Pont d'lssole 15.85 0.04 
Suboxic-

anoxic 
Jones et al. (2019) 

Jarvis et al. 

(2011) 

31 

France 

(Western 

Tethys) 

Lambruisse 15.20 0.05 
Suboxic-

anoxic 
Jones et al. (2019) 

Danzelle et 

al. (2020) 

32 
France 
(Western 

Tethys) 

Clot 

Chevalier 
19.85 0.08 

Suboxic-

anoxic 
Jones et al. (2019) 

Gale et al. 

(2019) 

33 
Germany 
(Western 

Tethys) 

Wunstorf 14.38 0.03 
Suboxic-

anoxic 
Jones et al. (2019) 

Du Vivier et 

al. (2014) 

34 
Germany 
(Western 

Tethys) 

Halle 9.37 0.02 
Anoxic-

euxinic? 
Jones et al. (2019) 

Voigt et al. 

(2007) 

35 Italy La Contessa 0.72 0.02 Anoxic- Jones et al. (2019) Westermann 



(Western 

Tethys) 

euxinic et al. (2014) 

36 

Italy 

(Western 
Tethys) 

Furlo 1.04 0.03 
Anoxic-

euxinic 
Jones et al. (2019) 

Westermann 

et al. (2014) 

37 

Jordan 

(Western 
Tethys) 

GM3 CTB 15.14 0.04 
Suboxic-

anoxic 
Jones et al. (2019) 

Sepúlveda et 

al. (2009) 

38 

Switzerland 

(Western 
Tethys) 

Roter Sattel 3.52 0.02 
Anoxic-

euxinic 

Charbonnier et al. 

(2018) 

Charbonnier 

et al. (2018) 

39 
Pacific 

Ocean 
Sawpit Gully 33.44 0.02 Oxic-suboxic 

Gangl et al. 

(2019) 

Gangl et al. 

(2019) 

40 
Pacific 

Ocean 

Mangaotane 

B 
10.92 0.01 Oxic-suboxic 

Gangl et al. 

(2019) 

Gangl et al. 

(2019) 

41 
Indian 
Ocean 

ODP Site 
1138 

2.22 0.04 
Anoxic-
euxinic 

Jones et al. (2019) 
Dickson et al. 
(2017) 

42 

Iran 

(Eastern 
Tethys) 

Gharesu 33.50 0.06 Oxic-suboxic Jones et al. (2019) 
Kalanat et al. 

(2018) 

43 

China 

(Eastern 

Tethys) 

Qiangdong 23.00 0.03 Oxic-suboxic Jones et al. (2019) This study 

 167 

2.3 Earth System Modeling  168 

The Spatial Continuous Integration (SCION) model was used to explore 169 

potential mechanisms for organic matter burial and their links to climatic and 170 

environmental changes during OAE 2. SCION is a global biogeochemical model that 171 

integrates 3D spatial climate information from FOAM (Fast Ocean-Atmosphere 172 

Model; Goddéris et al., 2014) with the biogeochemical processes outlined in COPSE 173 

(Carbon-Oxygen-Phosphorus-Sulphur-Evolution) to predict the evolution of seawater 174 

chemistry over the entire Phanerozoic (Mills et al., 2021; Zhang et al., 2023). 175 

Validations of the model and detailed model descriptions are provided in Mills et al. 176 

(2021) and Zhang et al. (2023). The full model code and derivation are available at 177 

https://github.com.bjwmills/SCION. 178 

With external forcings (e.g. degassing rate) fixed at 95 Ma, the SCION model 179 

inform a steady-state preceding OAE 2. With this steady-state, the riverine input of 180 

the key limiting nutrient phosphorus (P) is artificially set to increase by scaled with a 181 

time-dependent factor during the OAE 2 interval. This single forcing drives 182 



fluctuations in the seawater P reservoir and additional organic cabron burial. The 183 

artificially altering P input fluxes in the model are not as realistic as employing fully 184 

dynamic modeling, however, they can help focus our understanding of the likely 185 

phosphorus cycling involved during OAE 2 and relationships between this, the 186 

organic carbon burial record, and the responses of redox changes in the water column. 187 

Except for these revisions in the SCION model, carbon isotope fractionation factor for 188 

photosynthesis is fixed at －27‰. This factor, within the range of －25‰ to －35‰ 189 

used previously in the model (Mills et al., 2021), was obtained from comparisons 190 

between our analyzed organic C isotope composition and previously reported 191 

inorganic C isotope composition. 192 

 193 

3. Results  194 

3.1 Paleoenvironment and OC MAR variations across OAE 2 in the Qiangdong 195 

section 196 

3.1.1 Organic carbon isotopes  197 

Bulk organic carbon isotopes (δ13Corg) of the Qiangdong section range from 198 

−26.50‰ to −24.27‰ (Fig. 2), which is consistent with previous studies in this area 199 

(Jia et al., 2010; Zhang et al., 2016). A large positive δ13Corg excursion between 20m 200 

and 42m is identified as OAE 2 based on the regional and global comparable 201 

variations in lithology, δ13C, and foraminiferal biostratigraphy (Wang et al., 2001; 202 

Wan et al., 2003; Jarvis et al., 2006; Li et al., 2006; Zhang et al., 2016).  203 

In our study, the use of high-resolution sampling allows more precise 204 



identification of the different carbon isotope stages (C1-C6) compared to previous 205 

work (Zhang et al., 2016). At the base of the Qiangdong section, a segment with 206 

relatively stable δ13Corg values is apparent (stage C1, ~0–17 m), with values varying 207 

between −25.51‰ to −24.94‰ (mean −25.16‰). Stage C2 (17–20m) is marked by 208 

a small-scale negative δ 13Corg excursion (~0.27‰), which was not previously 209 

recognised in this section (Zhang et al., 2016). Subsequently, δ 13Corg increases 210 

gradually from −25.14‰ to −24.27‰ (stage C3, 20–26m), interrupted by a brief 211 

negative shift (Fig. 2). The end of stage C3 is at ~26 m, where δ13Corg reached a 212 

maximum value (−24.27‰). Within the subsequent plateau phase (stage C4, 26–38m), 213 

δ13Corg values are around −24.80‰ with several small peaks and troughs <0.5‰ in 214 

magnitude. Thereafter, the recovery phase (stage C5, 38–42m) encompasses a marked 215 

decrease in δ13Corg to a stable value of −25.12‰. The end of this stage marks the 216 

termination of the CIE. Above this, δ13Corg is broadly stable (stage C6), through 217 

decreases again at around 57 m height (Fig. 2).  218 



 219 

Fig. 2. Stratigraphic succession, carbon isotope composition, TOC content, Phosphorus contents, 220 

P/Al, atomic Corg:Ptot ratios and organic carbon burial rate (OC MAR) through the Qiangdong 221 

section. The light green shaded area represents the OAE 2 interval. The subdivisions of OAE 2 222 

(stages C1-C6) are from Li et al. (2017). Blue bands show trends based on three-point average of 223 

the OC MAR data. 224 

3.1.2 TOC and OC MAR variation 225 

The total organic carbon (TOC) content of the Qiangdong section varies between 226 

0.20 wt% and 0.50 wt% (Fig. 2). The most distinctive feature of the TOC profile is 227 

that the values fluctuate between 0.30 wt% and 0.45 wt% for the majority of the 228 

record, and is broadly stable except for some minor and transient positive and 229 

negative shifts.  230 

The pre-OAE 2 interval (C1 and C2)  generally exhibits low TOC content (<0.40 231 

wt%), except for a single sample at 11 m with a value of 0.50 wt%. At the base of 232 



stage C3, TOC content increases slightly and is followed by an interval of relatively 233 

constant TOC of ~0.4 wt‰ throughout the stage C3. However, the OC MARs 234 

increase rapidly to 0.04 (g/cm2/kyr) in the lower part of stage C3 and then decrease 235 

gradually in the upper part of this stage (Fig. 2). TOC values of ~0.4 wt‰ persist 236 

throughout the remainder of the section and are interrupted by a small decrease at ~57 237 

m. In stage C4, OC MARs maintain low levels, with minor fluctuations around 0.03 238 

g/cm2/kyr (except for a low value), followed by a small increase during stage C5 (Fig. 239 

2).  240 

 241 

3.1.3 Phosphorus content and Corg: Ptot ratios  242 

Total phosphorus (Ptot) concentrations in the Qiangdong section vary between 243 

450 ppm and 750 ppm (Fig. 2). When normalized against Al, the trend in Ptot/Al 244 

correlates very well with the Ptot variations, strongly suggesting that Ptot variations are 245 

independent of lithological changes. The pre-OAE 2 interval (stages C1 and C2) is 246 

characterized by relatively variable but progressively increasing Ptot and Ptot/Al. 247 

Above this, Ptot decreases to 509 ppm through stage C3 and the start of stage C4 in the 248 

OAE 2 interval, and there is also a corresponding minima reached in Ptot/Al. Ptot and 249 

Ptot/Al increase again through most of stage C4. Ptot and Ptot/Al values in stage C5 and 250 

above the CIE to the top of the studied succession are broadly stable. As such, P 251 

content does not show any clear change at the termination of OAE 2. 252 

Corg/Ptot ratios have been proposed as a reliable indicator of seafloor redox 253 

conditions in marine environments (Algeo and Ingall, 2007; Mort et al., 2008; Kraal 254 



et al., 2010; Beil et al., 2020). The Corg/Ptot ratio in the Qiangdong section mirrors the 255 

trend in Ptot (Fig. 2). Corg/Ptot in the strata below OAE 2 show a stepwise decreasing 256 

trend. Stage C3 is characterized by a sharp increase from ~13 to ~22. Corg/Ptot then 257 

gradually decreases to a minimum of ~12 during stage C4 and increases slightly 258 

during stage C5. Above stage C5, Corg/Ptot returns to relatively stable background 259 

values, with an average of 15.3. 260 

3.1.4 Trace element record  261 

The enrichment or depletion of redox-sensitive trace elements (RSTEs) in 262 

sediments depends on the availability of oxidants, making them useful indicators for 263 

deciphering the paleo-redox conditions related to organic-rich sediments (Brumsack, 264 

2006; Tribovillard et al., 2006; Turgeon and Brumsack, 2006). Mo, V and U are 265 

generally show enrichment under O2-depleted conditions. In addition, these elements 266 

have minimal terrigenous sources, and are thus considered as robust proxies for the 267 

assessment of seawater redox conditions (Tribovillard et al., 2006; Algeo and 268 

Tribovillard, 2009). Cu, Ni and Ba are micronutrients and are consequently widely 269 

employed as palaeoproductivity indicators. Raw and Al-normalized RSTE data from 270 

the Qiangdong section are shown in Fig. 3. 271 

The concentrations of Mo are exceptionally low in the Qiangdong section, with 272 

almost all the data falling close to the detection limit of our analysis (~0.5 ppm). 273 

These Mo/Al values are well below that of average shale. U concentrations are also 274 

low, with all U/Al values below those of average shale. In contrast to Mo and U, V/Al 275 

values are higher than average shale and values are stable through the studied 276 



succession.  277 

No enrichments of Cu and Ba are observed across the section, with all Al-278 

normalized values remaining broadly stable and significantly below average shale 279 

values. Ni/Al values are close to those of average shale. 280 

 281 

Fig. 3. Evolution of the redox-sensitive trace elements (RSTEs) (Mo, V, U), and elements 282 

associated with primary productivity (Ba, Cu, Ni) throughout the Qiangdong section. The red 283 

curves represent element concentrations, and the blue dots represent elements normalized to Al. 284 

The Al-normalized average shale values (post-Archean Australian shale, PAAS, dashed lines) are 285 

taken from Taylor and McLennan (1985).  286 

 287 

3.2 Global record of OC MARs during OAE 2 288 

Our compilation of 43 global sections (including Qiangdong) comprises sections 289 

that have been extensively studied in biostratigraphy and carbon isotopic stratigraphy 290 

(Fig. 1). As such, the stratigraphic framework of the sections is well constrained, with 291 



well-defined C/T boundaries and biostratigraphic zonation schemes. Ages obtained 292 

through astronomical tuning of the OAE 2 interval thus allow high-resolution 293 

calculation of the OC MARs for the different substages. The average OC MAR values 294 

determined for each site span from 0.01 to 1.9 g/cm2/kyr during OAE 2 (Fig. 4). 295 

Regions of inferred upwelling (e.g., Morocco) exhibit the highest values. Among the 296 

43 sections, 39 localities have average OC MAR values less than 0.5 g/cm2/kyr 297 

(including Qiangdong). Specifically, the majority of sites located in the WIS have 298 

organic carbon burial rates between 0.05 and 0.1 g/cm2/kyr, while most sites in Tethys 299 

exhibit organic carbon burial rates below 0.05 g/cm2/kyr.  300 

Based on the compiled data from the 43 sites, we also generated a curve of mean 301 

OC MAR values in each stage of OAE 2 by employing bootstrap resampling (20,000 302 

times) to ascertain the average value for each stage along with the 1-sigma standard 303 

deviation (Fig. 5). The bootstrap method mitigates the risk of over-reliance on 304 

individual data points (Singh and Xie, 2008). A mean value of 0.05 g/cm2/kyr, as 305 

determined in previous studies, was regarded as the background value for stages C1-2 306 

and C6 (Owens et al., 2018). The results show that the OC MAR during stage C3 307 

(0.109 g/cm2/kyr) is twice that of the background value. In stage C4, this rate (0.224 308 

g/cm2/kyr) increases to four times the background level. Notably, the burial rate in 309 

stage C5 (0.215 g/cm2/kyr) is comparable to that observed in stage C4 (Fig. 5; Table 310 

2). Unlike most sites, however, in our Qiangdong section OC MAR during stage C3 is 311 

slightly higher than in stage C4 (Fig. 2). Here, the accumulation rates of organic 312 

carbon increase in the lower part of stage C3, reaching a maximum value of ~0.04 313 



g/cm2/kyr. Thereafter, the accumulation rates gradually decrease to relatively low 314 

values that persist throughout stage C4. Stage C5 shows a slight increase in OC 315 

MARs.  316 

 317 

 318 

Fig. 4. Global pattern of calculated OC MAR for each site. Each coloured data point denotes data 319 

from a specific location with available high-resolution carbon isotope and TOC data (see also 320 

Table 1). The map is adapted from the PALEOMAP Project (Scotese, 2016).  321 

 322 

  323 

Fig. 5. Composite average value curve of all organic carbon burial rates (OC MARs) data for each 324 



stage of the OAE 2 CIE (stages C3-C5, with 1 error bars) obtained by bootstrap resampling 325 

method, based on global compilation of all 43 sections. Stages C1-2 and C6 represent the pre- and 326 

post-event intervals, respectively, with OC MAR set to 0.05 g/cm2/kyr in these intervals (see main 327 

text). Detailed data are shown in Table 2. 328 

 329 

4. Controls on organic enrichment during OAE 2 330 

4.1 The role of seawater redox 331 

Organic matter accumulation in marine environments is governed by the 332 

interplay of primary productivity, preservation conditions and dilution (e.g., Tessin et 333 

al., 2015; Lowery et al., 2021; Wang et al., 2021). Numerous studies have 334 

documented a covariance between redox sensitive trace elements (RSTEs, e.g., Mo, U, 335 

V) and TOC concentrations in ancient sediments and rocks (e.g., Algeo and Maynard, 336 

2004; Tribovillard et al., 2006), thus supporting a link between redox conditions and 337 

organic carbon burial/preservation. In the Qiangdong section, there are no significant 338 

enrichments of TOC or RSTEs through the studied interval (Fig. 3; Fig. 6), indicating 339 

oxic conditions during OAE 2 on the shelf of East Tethys. 340 

Redox conditions of the compiled sites during OAE 2 varied from oxic to 341 

euxinic (Table 1, see also Section 2.2). During OAE 2, the seafloor of the proto-North 342 

Atlantic Ocean was mainly anoxic-euxinic. In contrast, the seafloor of the Eastern 343 

Tethys and Pacific Oceans appear to have been dominantly oxic. The Western Interior 344 

Seaway (WIS) and Western Tethys were mainly suboxic-anoxic (Table 1).  345 

The recorded redox states of different sites is typically evidenced by geochemical 346 

proxies, including Mo and U enrichments (Algeo and Maynard, 2004; Algeo and 347 



Tribovillard, 2009). In Fig. 6, we compiled available Mo-U data (quantified as 348 

enrichment factors) across OAE 2 from global basins (Fig. 6). The data emphasize the 349 

well-oxygenated condition in Qiangdong, the generally suboxic to anoxic conditions 350 

in the WIS (Portland-1 and Well “X” cores), the more severe reducing conditions 351 

(close to the anoxic/euxinic threshold) in the Iona-1 and Innes-1 cores, and the fully 352 

euxinic conditions in the Cape Verde Basin (ODP Site 367) and at Demerara Rise 353 

(ODP Site 1261). 354 

 355 

Fig. 6. Mo-EF (enrichment factor) versus U-EF for the Qiangdong section (this study), ODP Site 356 

1261 and DSDP Site 367, Iona-1, Innes-1, Well “X”, Portland#1 and Site1276. EF was calculated 357 

as EF(X) = (X / Al)sample / (X / Al)PAAS (PAAS: post-Archean Australian shale, from Taylor and 358 

McLennan, 1985). Data sources are listed in Table 1. Diagonal dashed lines indicate the 3/1, 1/1 359 

and 0.3/1 (Mo/U) ratios of present-day seawater. The area of gradient grey maps the Mo-EF vs. U-360 

EF evolution under suboxic to euxinic conditions in modern unrestricted marine environments, as 361 

observed in eastern tropical Pacific sites (Tribovillard et al., 2012). The green area represents the 362 

“Particulate Shuttle” effect values, characteristic of weakly restricted basins (Tribovillard et al., 363 

2012).  364 

 365 



We also used the method of bootstrap resampling (see Section 3.2) to create 366 

separate composite OC MAR curves across OAE 2 for sites with different redox 367 

states (Fig. 7). These data are presented in Table 2. The results show that OC MAR 368 

values are strongly dictated by the redox conditions at the studied sites (Fig. 7). The 369 

highest organic matter burial rates predominantly occur at anoxic-euxinic sites, with 370 

an average OC MAR of 0.27 g/cm2/kyr during OAE 2. In contrast, oxic-suboxic areas 371 

have the lowest OC MAR, averaging at 0.04 g/cm2/kyr. Suboxic-anoxic sites have an 372 

average OC MAR of 0.1 g/cm2/kyr, relatively close to that of oxic-suboxic sites (Fig. 373 

7). Numerous previous studies have also shown that there is a clear correlation 374 

between redox-sensitive elements (e.g., Mn, V/Cr) and organic carbon burial rate (e.g., 375 

ODP Site 1276, Westermann et al., 2014). This relationship underscores the influence 376 

of redox on organic carbon sequestration in marine sedimentary environments (e.g., 377 

Danzelle et al., 2018; Wang et al., 2021).  378 

Redox state also played a key role in determining the changing magnitude in OC 379 

MAR through OAE 2 (Fig. 7). OC MAR values show the most substantial changes at 380 

anoxic-euxinic sites. Indeed, OC MAR in oxic-suboxic areas did not significantly 381 

change through OAE 2, and only a modest increase occurred at suboxic-anoxic sites. 382 

In order to describe the change of OC MARs during OAE 2, the average rates at 383 

stages C4 and C5 relative to C3 are denoted by the ratio (C4+C5)/C3. Our 384 

compilation suggests that anoxic-euxinic sites (constituting ~58% of the studied 385 

locations) exhibit an average (C4+C5)/C3 ratio of 2.39 for OC MARs. Suboxic-386 

anoxic sites (constituting ~30% of all sites) display a mean (C4+C5)/C3 ratio of 1.29. 387 



The remaining ~12% of sites, categorized as oxic-suboxic, demonstrate a mean 388 

(C4+C5)/C3 ratio of 0.89 (Fig. 7; Table 2). A trend toward more reducing conditions 389 

during stages C4 and C5 of OAE 2 is indicated by high accumulation rates of redox-390 

sensitive elements (Kolonic et al., 2005). Taken together, our analyses suggest that 391 

oxygen availability played an important role in controlling organic carbon burial 392 

during OAE 2. For sites deposited in shallow well-oxygenated water (including the 393 

Qiangdong section) organic matter was nearly completely oxidized prior to burial. By 394 

contrast, anoxic to euxinic conditions would have diminished organic carbon 395 

remineralization rates and promoted organic carbon preservation and burial (e.g., 396 

Takashima et al., 2011; Westermann et al., 2014). 397 

Our compilation confirms the correlation between OC MARs and redox 398 

conditions, but there is clear overlap in OC MAR values between different redox 399 

states (Table 1). This overlap can partly be attributed to the broad and overlapping 400 

redox classifications utilized. Moreover, diverse proxies employed for inferring OAE 401 

2 redox vary in their efficacy and interpretation (e.g., Algeo and Liu, 2020). Different 402 

redox indicators may represent conditions in different parts of the sediment/water 403 

column (e.g., Hetzel et al., 2009). Additionally, redox interpretations can be equivocal, 404 

for example, black shales in the Tethyan Himalayas marked by low bioturbation but 405 

also low TOC content (Wang et al., 2001).  406 



 407 

Fig. 7. Composite mean organic carbon burial rates (OC MAR) and associated 1 uncertainties for 408 

sites with different redox environments (anoxic-euxinic, suboxic-anoxic, oxic-suboxic) in each 409 

stage of the OAE 2 CIE (stages C3-C5) obtained by bootstrap resampling, based on global 410 

compilation of all 43 sections. Detailed data are shown in Table 2. 411 

 412 

Table 2. Data on mean organic carbon burial rates in each stage of OAE 2, obtained by bootstrap 413 

resampling. See also Fig. 5 and 7, and main text for details. 414 

 415 

4.2 The role of nutrients and productivity 416 

Previous studies have suggested that enhanced organic carbon sequestration at 417 

the onset of OAE 2 was likely initiated due to enhanced nutrient input sourced via 418 

Large Igneous Province emplacement (Du Vivier et al., 2014; Papadomanolaki et al., 419 

2022), increased continental weathering and runoff (Blättler et al., 2011; Pogge von 420 

Strandmann et al., 2013; Van Helmond et al., 2015; Chen et al., 2021), and/or via 421 

Redox 

condition 

Number 

of sites (n) 

Stage C3 Stage C4 Stage C5 

mean 1  mean 1  mean 1  

Oxic-suboxic 5 0.042 0.002 0.034 0.001 0.041 0.005 

Suboxic-anoxic 14 0.081 0.005 0.115 0.007 0.094 0.010 

Anoxic-euxinic 24 0.139 0.011 0.327 0.026 0.337 0.062 

Total sites 43 0.109 0.006 0.224 0.013 0.215 0.032 



hydrothermal alteration of basalts (Trabucho Alexandre et al., 2010). Benthic 422 

regeneration of nutrients could also have significantly contributed to sustaining 423 

primary productivity (e.g., Kuypers et al., 2002; Mort et al., 2008; Beil et al., 2020).  424 

Phosphorus is the primary limiting nutrient controlling marine biological 425 

productivity on geological timescales (e.g., Rimmer et al., 2004; Paytan and 426 

McLaughlin, 2007; Schoepfer et al., 2015), and as such has the potential to mediate 427 

the occurrence of high-productivity events (e.g., Kuypers et al., 2002; Handoh and 428 

Lenton, 2003). The atomic Corg:Ptot ratio provides a proxy to assess seafloor oxygen 429 

content and the corresponding phosphorus retention ability of sediments (Algeo and 430 

Ingall, 2007; Kraal et al., 2010). Burial of phosphorus bound to iron oxides directly 431 

correlates with the mean oxygen concentration in the deep ocean (Komar and Zeebe, 432 

2017). This means that less P is buried through PFe (i.e., more is regenerated) with 433 

decreasing oxygen levels, and P cannot be buried effectively in fully anoxic waters 434 

(Tsandev and Slomp, 2009; Komar and Zeebe, 2017). P remobilized from sediments 435 

would increase nutrient availability in the surface ocean, which in turn can promote 436 

intensified primary production and hence more oxygen consumption via organic 437 

matter respiration, thus creating a positive feedback loop. 438 

In the Qiangdong section, Corg:Ptot ratios are significantly lower than the Redfield 439 

ratio (106:1; Redfield et al., 1963) and other productivity proxies (e.g., Ba, Ni and Cu) 440 

are not enriched (Fig. 3), indicating oligotrophic conditions. The sediments in the 441 

Qiangdong section were deposited in a well-oxygenated shallow marine environment, 442 

where P remobilization was clearly limited. Limited nutrient input could be 443 



responsible for the low OC MAR observed at Qiangdong and other oxic sites in the 444 

compilation. In oxygenated shallow marine systems, phosphorus availability is 445 

predominantly regulated by terrestrial fluxes and is directly utilized to sustain primary 446 

productivity (Ruttenberg, 2003). As noted earlier, OC MAR in Qiangdong is slightly 447 

higher in stage C3 than that observed in stages C4 and C5. This phenomenon could be 448 

because of higher nutrient fluxes from the continents due to enhanced weathering 449 

intensity during C3, as evidenced by zinc and lithium isotope data (e.g., Pogge von 450 

Strandmann et al., 2013; Chen et al., 2021). 451 

For all 43 compiled sites, Corg:Ptot ratio data are available from 11 sections, 452 

covering diverse redox conditions. These data are from our Qiangdong section (oxic-453 

suboxic), the North Atlantic (anoxic-euxinic) and WIS (suboxic-anoxic). A robust 454 

correlation between Corg:Ptot ratios and OC MAR at these sites is observed (Fig. 8). 455 

Therefore, at the sites where anoxic to euxinic conditions prevailed during OAE 2, 456 

high OC MAR in stages C4 and C5 likely resulted from the positive feedback loop of 457 

remobilization of phosphorus, which stimulated productivity and further facilitated 458 

anoxia. At sites characterized by relatively oxic conditions, there is no positive 459 

feedback mechanism for phosphorus, resulting in low Corg:Ptot ratio and diminished 460 

organic matter burial. 461 



 462 

Fig. 8. Cross plot of OC MAR (g/cm2/kyr) and Corg/Ptot (mol/mol) from 11 sites where the Corg:Ptot 463 

ratio data are available showing a significant positive correlation (R2 = 0.652, P-value <0.05). 464 

The data sources for each point are shown in Table 1. 465 

 466 

4.3 Quantifying nutrient influx during OAE 2 467 

Enhanced nutrient influx and productivity has long been regarded as a probable 468 

trigger for OAEs generally and increased OC MAR (e.g., Jenkyns, 2003). However, 469 

the magnitude of nutrient input changes required through this mechanism is not well 470 

constrained quantitively. In this study, we modelled the inferred OC MAR changes 471 

during OAE 2 using the SCION model (Fig. 9). The seawater P reservoir size (Fig. 9A) 472 

was influenced by an artificial riverine nutrient P input forcing (or by altering P fluxes 473 

from sediment remobilization), to match the OC MAR records. When phosphorus 474 

inputs are set to rise in a two-stage pattern across stages C3 and C4 (Fig. 9A), the 475 

model yields an OC MAR curve that best fits with our empirically determined 476 

composite curve (Fig. 9B). To reproduce the maximum empirically determined OC 477 

MAR values in C4 and C5, a ~140% (i.e. 2.4-fold) increase in P concentration is 478 



required relative to background values. The increase in OC MAR in stage C3 requires 479 

a more modest increase in P availability (~30% increase). In this scenario, the model 480 

also indicates a two-stage increase in primary productivity, ocean anoxia (quantified 481 

as an area percentage of anoxic seafloor) and a corresponding increase in the 482 

proportion of organic carbon buried (Fig. 9C, D and F). In detail, productivity during 483 

stages C4 and C5 underwent a 40% increase compared to stage C3 (Fig. 9C). 484 

Meanwhile, the increase in the modelled area of anoxic seafloor undergoes only a 485 

slight increase across the start of OAE 2 in C3. However, the modelled area of anoxic 486 

seafloor increases substantially in stages C4 and C5, and is ~24 times larger in stages 487 

C4 and C5 (~12%) compared to stage C3 (~0.5%) (Fig. 9D). This is consistent with 488 

previous work, corroborating the magnitude of oceanic anoxia expansion during 489 

stages C4 and C5 provided by previous geochemical studies using global redox 490 

proxies (e.g., sulfur isotope and uranium isotope) (Owens et al., 2013; Clarkson et al., 491 

2018). These results indicate that intensified ocean anoxia coupled with enhanced 492 

productivity synergistically contributed to the elevated organic carbon burial observed 493 

in the stages C4 and C5, corroborating our findings discussed in Sections 4.1 and 4.2. 494 

The magnitude of the output δ13Corg (~4–6‰) in our model is slightly higher than that 495 

observed in geological data (~3‰) (Papadomanolaki et al., 2022; Fig. 9E), with the 496 

shape also slightly differing from the geological record (Li et al., 2017). A possible 497 

explanation for the larger modelled CIE amplitude could be the missing consideration 498 

of isotopically lighter carbon input, mainly from the LIP magmatisms and enhanced 499 

carbonate burial during the OAE 2, which would reduce the proportion of organic 500 



carbon output and the corresponding carbon isotope values. In addition, simply 501 

comparing the modelled marine organic carbon burial fluxes to the OC MAR record 502 

may lead to underestimate the varying degrees of loss of organic carbon after 503 

deposition. The model outputs are simply compared to the average record of OC 504 

MAR, which simplified our modelling strategy but neglected the possible existence of 505 

extremely high/low carbon burial in some intervals and could result in the 506 

mismatched δ13C morphologies. 507 

Our modelling results show that lower OC MAR in stage C3 compared to stages 508 

C4 and C5 could have resulted from a lower P reservoir size and lower productivity 509 

(Fig. 9A and C). It is noteworthy, however, that only the global average state of each 510 

CIE stage is modelled. Therefore, it is possible that some locally lower OC MAR in 511 

stage C3 than in stages C4 and C5 could have resulted from the reoxygenation of 512 

benthic water in the proto-Atlantic region during the upper part of stage C3, i.e. in the 513 

Plenus Cold Event (O'Connor et al., 2020). 514 



 515 

Fig. 9. SCION model outputs under a varying P input. The age model (horizontal axis) is 516 

estimated by assuming the durations of each phase and the starting age of the stage C3 at ~94.5 517 

Ma. (A) Modelled ocean nutrient P reservoir size relative to modern level (f/f0); (B) Modelled 518 

organic carbon burial rates (black line) and empirically determined OC MAR from our 519 

compilation (red line) (also shown in Fig. 4); (C) Modelled primary productivity relative to 520 

modern level (f/f0); (D) Modelled seafloor anoxia (%); (E) 13Corg (‰); (F) Percentage of organic 521 

carbon in total carbon burial. Shaded green areas are the 20% uncertainties in the artificial P input 522 

and its effects on the modelling results. 523 

 524 

Conclusions 525 

In this study, we present new organic carbon isotope (δ13C), total organic carbon 526 



(TOC) and trace element concentrations from the Qiangdong section in southern Tibet, 527 

China. The absence of redox-sensitive trace element (RSTE) enrichments in this 528 

section suggests prevailing oxic conditions and relatively low productivity. Our 529 

analysis of this site and a global compilation of OAE 2 sites shows that anoxic-530 

euxinic environments were associated with the most significant increases in organic 531 

carbon burial. Our study underscores the major influence of redox conditions on 532 

organic enrichment and burial rates. An observed positive correlation between Corg:Ptot 533 

ratios and OC MARs from our compiled sites suggests enhanced anoxia during stages 534 

C4 and C5 of OAE 2. Anoxia was likely driven and promoted by a positive feedback 535 

loop owing to increased remobilization of P from anoxic-euxinic sediments, which 536 

then further promoted and sustained productivity and oxygen consumption in the 537 

water column. Conversely, well-oxygenated environments lacked this feedback, 538 

leading to lower organic carbon burial rates in stages C4 and C5. Model simulations 539 

that reconstruct the observed OC MAR trends in our compiled data suggest that 540 

productivity during stages C4 and C5 underwent a 40% increase compared to stage 541 

C3, and that areal extent of anoxic seafloor during OAE 2 in stages C4 and C5 was 542 

approximately 24 times larger than in stage C3. 543 
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