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Abstract 1 

Transport systems such as highways and railways are constructed on earthworks that experience fluctuating levels of 2 

saturation. This can range from dry to fully saturated, however most commonly they are in a state of partial saturation. When 3 

numerically modelling such problems, it is important to capture the response of the solid, liquid and gas phases in the material. 4 

However, multi-physics solutions are computationally demanding and as a solution this paper presents a finite element 5 

approach for the dynamic analysis of unsaturated porous media in a moving coordinate system. The first novelty of the work 6 

is the development of a principle of relative motion for a three-phase medium, where the moving load is at rest while the 7 

unsaturated porous medium moves relative to the load. This makes it particularly efficient for moving load problems such as 8 

transport. The second novelty is a parametric investigation of the three-phase response of a partially saturated medium subject 9 

to a moving load. The paper starts by presenting the time domain model in terms of its constitutive relationships and equations 10 

for mass and momentum conservation. Next the model is validated using three case studies: the consolidation of a saturated 11 

soil column, the dynamics of an unsaturated soil column and finally the response of a saturated foundation to a moving load. 12 

It is then used to study a moving 2D plane strain load problem and its performance is compared to that of a standard FEM 13 

solution which does not employ a moving coordinate system. Similar accuracy is obtained while computational efficiency is 14 

improved by a factor of ten. Finally, the model is used to investigate the effect of degree of saturation and moving load speed 15 

on the response of an unsaturated porous medium. It is found that both variables have a significant impact on the dynamic 16 

response. 17 

Keywords: Multi-physics modeling; Pore-water pressure; Unsaturated porous media; Moving loads; Highway-Railway 18 

earthworks; Dynamic response 19 

20 
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1 Introduction 1 

Transport systems such as highways and railways are constructed on earthworks subject to varying levels of saturation.  2 

This can range from dry to fully saturated, however most commonly they are partially saturated, also known as being in an 3 

unsaturated condition. This degree of soil saturation can affect infrastructure performance by causing geotechnical problems 4 

such as erosion and subsidence (as shown in Figure 1). The occurrence of engineering problems resulting from unsaturated 5 

soil has become increasingly common in the construction of railway foundations (Indraratna [1],Yang [2],Fang [3]), highway 6 

foundations (Stormont and Zhou [4], Zornberg [5]), and airport runways Tang [6] in recent years.  7 

Although a large number of studies have investigated the dynamic response of moving loads in dry soil conditions using 8 

the assumptions of traditional elastodynamics (e.g. Chumyen [7], Charoenwong [8]), they typically ignore the presence of 9 

liquid and gas phases. This is important because the dynamic response of unsaturated porous media differs significantly from 10 

that of elastic media (Fredlund and Rahardjo [9], Ng and Menzies [10]) due to the presence of pore water and gases (Ma [11]). 11 

 12 

Figure 1 Unsaturated conditions in transportation geomaterials 13 

In an attempt to include the effect of water in dynamic simulation models, fully saturated approaches were first proposed.  14 

The dynamic governing equation for saturated two-phase media in the fluid-solid coupling problem within porous media was 15 

initially established by Biot [12], before being expanded upon to incorporate anisotropy and viscoelasticity (Biot [13], Biot 16 

[14]). These developments were fundamental in describing the behavior of porous media. Zienkiewicz and Shiomi [15] 17 

proposed different coupling equations for saturated porous media, using various field variables such as 𝑢 − 𝑤, 𝑢 − 𝑝, and 18 𝑢 − 𝑈 − 𝑝 (where 𝑢 is the displacement of the soil skeleton, 𝑤 is the relative displacement of the fluid, 𝑈 is the absolute 19 

displacement of the fluid, and 𝑝  is the pore water pressure). These equations have been widely used in the field of 20 

geomechanics and are important for understanding the behavior of porous media. In parallel, Bowen [16] studied planar waves 21 

in two-phase saturated porous media using mixture theory.  22 

In the field of geotechnical engineering, Prévost [17], Prevost [18] considered the non-linear behavior of the soil skeleton 23 

and established transient dynamic equations for saturated porous media. Once the governing equations were established, the 24 

study of solution methods became crucial for practical application. Therefore various analytical and numerical methods were 25 

proposed to solve these governing equations. For example, Simon [19] and Gajo and Mongiovi [20] proposed analytical 26 

approaches, which were accurate but limited to semi-infinite spaces and difficult to apply in cases with complex geometries, 27 

non-linear materials, and complicated boundary conditions. Meanwhile, because the governing equations are partial 28 

differential equations, obtaining analytical solutions under general initial and boundary conditions is challenging. Thus, 29 

numerical methods, particularly finite element methods, have been widely used, such as Ghaboussi and Wilson [21] and 30 

Zienkiewicz and Shiomi [15] who investigated saturated two-phase porous media. The theory of saturated two-phase porous 31 

media has since found numerous applications in engineering fields, such as the dynamic analysis of railway (Zhao [22]) and 32 

highway roadbeds (Liang and Liang [23]). 33 

Fully saturated modeling is useful for transport problems where the infrastructure is subject to high levels of water (e.g. 34 

flooding). However, transport infrastructure is usually designed to divert water away as quickly as possible, for example 35 

through the use of super-elevations, well-designed drainage systems and elevated earthworks.  Therefore, rather than being 36 

in a fully saturated state, it is more common for infrastructure to be in an unsaturated state.  This requires a different modeling 37 

approach compared to those previously discussed. 38 
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The modeling of a three-phase unsaturated porous media requires more variables compared to a saturated porous media, 1 

owing to the presence of gas in the pores. For example, Thigpen and Berryman [24] presented a dynamic governing equation 2 

for a three-phase porous medium, which could be simplified to Biot’s equation. Alternatively, Vardoulakis and Beskos [25] 3 

used mixture theory to formulate the dynamic equation for an unsaturated porous medium, which was compared to the 4 

governing equations of a saturated porous medium. Lu [26] proposed a frequency-wave number domain analytical approach 5 

to calculate the dynamic response of unsaturated foundations in a semi-infinite space. Similarly, Jiang and Ma [27], Tang 6 

[28], and Ye and Ai [29] employed analytical approaches to determine the dynamic response of unsaturated soil in a half-7 

space. Although these analytical solutions are useful for understanding the general behavior of an unsaturated medium, their 8 

versatility is limited when dealing with problems that involve: intricate geometry, non-linearities, or non-standard boundary 9 

conditions. Instead, alternative approaches are required for these problems.  10 

Although Finite Element Method (FEM) offers flexibility in modeling unsaturated porous media compared to analytical 11 

methods, its potential has not been widely explored for this application. Li [30] developed a finite element model for 12 

unsaturated porous media that considered the influence of temperature and four variables: 𝑢 − 𝑝 − 𝑆𝑟 − 𝑇. Ghorbani [31] , 13 

Ghorbani [32], Ghorbani [33] also proposed a finite element method that accounted for elastic-plastic deformation in 14 

unsaturated soils. However, these studies only explored the dynamic response of small unsaturated soil columns, leaving other 15 

potential applications unexplored. 16 

            17 

      18 

(a) Elastic medium                                               (b) Unsaturated porous media 19 

Figure 2 Node related variables for multi-physical field coupling problems (a) Elastic medium, (b) Unsaturated porous 20 

media (𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖are the three spatial components of solid, liquid, and gas displacement in unsaturated porous media, i=s,w, 21 

a) 22 

  A challenge with unsaturated modeling is that the solution of the extra nodal degree of freedom (Figure 2) requires significant 23 

additional computational effort. Therefore predicting the behavior of an unsaturated porous media with non-uniform geometry 24 

under a moving load requires an efficient numerical method. While the FEM is a widely used approach, capable of addressing 25 

geometric, material, and boundary nonlinearities, it suffers from reduced computational efficiency when applied to the 26 

dynamic response of unsaturated porous media under moving loads. This is because when solving with standard FEM, the 27 

location of the moving load changes constantly with time, thus requiring the dynamic matrix of the unsaturated porous media 28 

to be recomputed at each time instant. In order to meet solver stability criteria, a small step size is usually required, thus 29 

resulting in high computational time. Consequently, there is a need for more efficient computational techniques to overcome 30 

this limitation.  31 

To address this, Wang [34, Wang [35] for example, proposed the Fourier finite element method (FFEM) to study the 32 

dynamic response of pavement structures under moving loads. Yang and Hung [36], Galvín [37], and Gao [38] and 33 

Charoenwong [39]also advanced the field of railway track dynamics through the use of 2.5D FEM. Liu [40], Liu [41], 34 

proposed a semi-analytical finite element method with Fourier transform in the direction of vehicle or moving load travel, 35 

while Shen [42] used sine and cosine Fourier series to depict the load and displacement along the longitudinal direction of the 36 

track. These methods all simplify the problem by removing the time and space dimensions in the moving load direction, thus 37 

reducing the calculation complexity for solving the dynamic response of structures under moving loads. Alternatively, Cao 38 

[43] introduced an alternative method using the Betti-Rayleigh Dynamic Reciprocal Theorem to simplify the analytical 39 

solution for structural vibration induced by moving loads.  40 

In contrast to the aforementioned methods, the moving coordinate transformation uses a stationary load, while inducing 41 
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movement in its supporting structure.  It can account for complex geometries and nonlinear material in the longitudinal 1 

direction of the guideway, resulting in significant computational time savings. It has been widely used for analyzing the 2 

dynamic response of both single-phase elastic media and saturated two-phase media. Krenk [44]first proposed using this 3 

method for convective calculations to achieve fast computation. Subsequently, it found extensive application in solving 4 

interaction problems between trains and tracks. For example, Koh [45] employed the moving element method to investigate 5 

the vibration of track beams on viscoelastic foundations. Ang and Dai [46] also extended it to consider the dynamic response 6 

analysis of viscoelastic foundations with non-uniform properties along the track direction. Tran [47] used it to analyze the 7 

vertical dynamic response of high-speed railway structures under non-uniform motion. All these methods were employed 8 

within the realm of single-phase elasticity. Recently, the application of this method has gradually expanded to two-phase 9 

media ( Liu [48] and Cao [49]). 10 

Considering the challenges outlined above, this paper introduces a time domain FEM approach with moving coordinates 11 

(M-FEM) as a way to efficiently calculate unsaturated porous media under moving loads. The M-FEM is based on the 12 

principle of relative motion, which allows for the derivation of the dynamic governing equation of unsaturated porous media 13 

using a moving coordinate system. The displacement coupled format 𝑢𝑠 − 𝑢̅𝑤 − 𝑢̅𝑎 (𝑢𝑠 is the displacement of the solid, 𝑢̅𝑤 14 

is the displacement of the liquid relative to the solid, 𝑢̅𝑎 is the displacement of the gas relative to the solid) is used to minimize 15 

computational cost. To discretize the problem, the Galerkin method is used with three numerical examples to validate the 16 

method. Also, a comparison of FEM and M-FEM calculations is provided in terms of computation cost and accuracy. In 17 

addition, the M-FEM is used to evaluate the degree of saturation and moving load speed on the dynamic response of 18 

unsaturated porous media.  19 

2 Methodology 20 

This section describes the calculation method for unsaturated porous media subject to moving loads. Firstly, the governing 21 

equation describing the unsaturated porous media is established using coordinate transformation. Secondly, the governing 22 

equation is discretized in space, including the establishment of a numerical stability method and boundary conditions. In the 23 

third part, the 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 − 𝛼 numerical integration method is used to discretize the governing equation in the time domain. 24 

2.1 Governing equations  25 

Numerical instability can occur in unsaturated simulations due to incompatibilities between the coupled physical variables 26 

(Murad and Loula [50] and Li and Wei [51]).  Therefore, this study proposes a displacement coupling scheme for the dynamic 27 

governing equations of unsaturated porous media. Figure 3 illustrates this scheme, where 𝑣 represents the load's velocity, and 28 𝑅 = 𝑥 − 𝑣𝑡 represents the horizontal axis in the moving coordinate system. Employing this scheme allows for the accurate 29 

and consistent consideration of the physical properties of unsaturated porous media, leading to improved computational 30 

efficiency while maintaining accuracy. The model is based on the diagram in Figure 3 below. 31 
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 2 

Figure 3 Moving coordinate relationships 3 

In the fixed coordinate system 𝑜𝑥𝑦𝑧 and moving coordinate system 𝑂𝑅𝑌𝑍, the relationship between variables is: 4 

{  
  𝜕𝜕𝑥 = 𝜕𝜕𝑅 , 𝜕𝜕𝑥2 = 𝜕𝜕𝑅2𝜕𝜕𝑡|𝑥 = 𝜕𝜕𝑡|𝑅 − 𝑣 𝜕𝜕𝑅𝜕𝜕𝑡2|𝑥 = 𝜕𝜕𝑡2|𝑅 − 2𝑣 𝜕𝜕𝑡𝜕𝑅 + 𝑣2 𝜕𝜕𝑅2

                                                                          (1) 5 

2.1.1 Constitutive relationship 6 

According to the mixing theory proposed by Vardoulakis and Beskos [25], the total stress in an unsaturated porous medium 7 

can be expressed as: 8 𝜎𝑖𝑗 = (1 − 𝑛)𝜎𝑖𝑗𝑠 − 𝑛𝑆𝑟𝑝𝑤𝛿𝑖𝑗 − 𝑛(1 − 𝑆𝑟)𝑝𝑎𝛿𝑖𝑗 (2) 9 

where 𝑛 is porosity, 𝑆𝑟 is the degree of saturation, 𝑝𝑤is pore water pressure, 𝑝𝑎 is pore gas pressure. 10 

Then, according to the effective stress principle proposed by Bishop and Blight [52], the total stress in unsaturated porous 11 

media can be expressed as:   12 𝜎𝑖𝑗 = 2𝜇𝜖𝑖𝑗 + 𝜆𝛿𝑖𝑗𝑒𝑠 − 𝛼𝛿𝑖𝑗𝑝 (3) 13 

Where 𝛼 = 1 − 𝐾𝑏𝐾𝑠  is the Biot coefficient, where 𝐾𝑏 , 𝐾𝑠  is the bulk compression modulus of the soil skeleton and soil 14 

particles. 𝜇, 𝜆 are Lame’s parameters, 𝑒𝑠 is the solid volumetric strain and 𝜖𝑖𝑗 is the strain tensor. 15 

2.1.2 Mass conservation  16 

(a) Mass conservation of solids 17 

According to the state equation for solids proposed by Tuncay and Corapcioglu [53], the equation between the rate of mass 18 

change and bulk compressibility modulus of the soil particles 𝐾𝑠 is: 19 𝜕𝜌𝑠𝜌𝑠𝜕𝑡 = − 𝜕𝜎𝑖𝑗𝑠3𝐾𝑠𝜕𝑡 (4) 20 

It is generally assumed the spatial gradient of 𝑛, and 𝜌𝑠 is far lower than their time gradient (Tuncay and Corapcioglu [53]), 21 

meaning the spatial gradient change term can be omitted. Thus, the solid mass conservation equation is: 22 (1 − 𝑛) 𝜕𝜌𝑠𝜕𝑡 − 𝜌𝑠 𝜕𝑛𝜕𝑡 + 𝜌𝑠(1 − 𝑛)∇ ∙ 𝒖̇𝒔 = 0 (5) 23 

The degree of saturation of an unsaturated porous media has an important effect on matric suction. Similarly, the mass 24 

conservation equation for the fluid is derived using a similar principle. Therefore, the relationship between matric suction 25 

and saturation is considered. Here, the V-G model proposed by Van Genuchten [54] is used to describe the soil-water 26 

characteristic curve (SWCC). 27 



 

7 

 

𝑆𝑒 = [1 + (𝛼2𝑝)𝑑]−𝑚 (6) 1 𝑆𝑒 = (𝑆𝑟 − 𝑆𝑤0)/(1 − 𝑆𝑤0) (7) 2 

(b) Mass conservation of pore water 3 

The mass conservation equation for the representative volume element of porous medium with respect to pore water is: 4 𝜕(𝑛𝑆𝑟𝜌𝑤)𝜕𝑡 + ∇ ∙ (𝑛𝑆𝑟𝜌𝑤𝒖̇𝒘) = 0 (8) 5 

where the relative displacement of pore water with respect to solids is, 𝒖̅𝒘 = 𝑛𝑆𝑟(𝒖̇𝒘 − 𝒖̇𝒔). Mass conservation of 6 

pore water can then be reduced to the following form in a moving frame (see appendix for derivation): 7 𝑤1(𝑝̇𝑤 − 𝑣𝑝,𝑅𝑤) + 𝑤2(𝑝̇𝑎 − 𝑣𝑝,𝑅𝑎 ) + 𝛼𝑆𝑟∇(𝑢̇𝑖𝑠 − 𝑣𝑢𝑖,𝑅𝑠 ) + 𝛻(𝑢̇̅𝑖 𝑤 − 𝑣𝑢̇̅𝑖,𝑅 𝑤 ) = 0 (9) 8 

 9 

(c) Mass conservation of pore air 10 

The mass conservation equation for a representative volume element of the porous medium with respect to pore air is: 11 𝜕[𝑛𝜌𝑎(1 − 𝑆𝑟)]𝜕𝑡 + ∇ ∙ [𝑛(1 − 𝑆𝑟)𝜌𝑎𝒖̇𝒂] = 0 (10) 12 

The relative displacement of pore gas with respect to solids is defined as, 𝒖̅𝒂 = 𝑛(1 − 𝑆𝑟)(𝒖̇𝒂 − 𝒖̇𝒔). Mass conservation of 13 

pore air can then be reduced to the following form in a moving frame (see appendix for derivation): 14 𝑔1(𝑝̇𝑤 − 𝑣𝑝,𝑅𝑤) + 𝑔2(𝑝̇𝑎 − 𝑣𝑝,𝑅𝑎 ) + 𝛼(1 − Sr)∇(𝑢̇𝑖𝑠 − 𝑣𝑢𝑖,𝑅𝑠 ) + 𝛻(𝑢̇̅𝑖𝑎 − 𝑣𝑢̇̅𝑖,𝑅𝑎 ) = 0 (11) 15 

The equations for pore water pressure and pore air pressure respectively, obtained using (9) and (11) are (see appendix 16 

for derivation): 17 𝑝𝑤 = 𝐶1𝑤∇ ∙ 𝒖𝒔 + 𝐶2𝑤∇ ∙ 𝒖̅𝒘 + 𝐶3𝑤∇ ∙ 𝒖̅𝒂 (12) 18 𝑝𝑎 = 𝐶1𝑎∇ ∙ 𝒖𝒔 + 𝐶2𝑎∇ ∙ 𝒖̅𝒘 + 𝐶3𝑎∇ ∙ 𝒖̅𝒂 (13) 19 

2.1.3 Momentum conservation  20 

(a) Momentum conservation equation of mixture 21 

According to Equation (3) and the law of momentum conservation, the momentum conservation of unsaturated porous 22 

media is: 23 𝜎𝑖𝑗,𝑗 = 𝜌(𝑢̈𝑖𝑠 − 2𝑣𝑢̇𝑖,𝑅𝑠 + 𝑣2𝑢𝑖,𝑅𝑅𝑠 ) + 𝜌𝑤(𝑢̈̅𝑖𝑤 − 2𝑣𝑢̇̅𝑖,𝑅𝑤 + 𝑣2𝑢̅𝑖,𝑅𝑅𝑤 ) + 𝜌𝑎(𝑢̈̅𝑖𝑎 − 2𝑣𝑢̇̅𝑖,𝑅𝑎 + 𝑣2𝑢̅𝑖,𝑅𝑅𝑎 ) (14) 24 

Where 𝜌 is mixed density, 𝜌 = (1 − 𝑛)𝜌𝑠 + 𝑛𝑆𝑟𝜌𝑤 + 𝑛(1 − 𝑆𝑟)𝜌𝑎. 25 

(b) Momentum conservation equation of pore water 26 

Based on equation (12) and the law of momentum conservation, the momentum conservation equation of the pore water is: 27 𝐶1𝑤∇𝑒𝑠 + 𝐶2𝑤∇𝑒𝑤 + 𝐶3𝑤∇𝑒𝑎 + 𝜌𝑤(𝑢̈𝑖𝑠 − 2𝑣𝑢̇𝑖,𝑅𝑠 + 𝑣2𝑢𝑖,𝑅𝑅𝑠 ) + 𝜌𝑤𝑛𝑆𝑟 (𝑢̈̅𝑖𝑤 − 2𝑣𝑢̇̅𝑖,𝑅𝑤 + 𝑣2𝑢̅𝑖,𝑅𝑅𝑤 )+ 𝜇𝑤𝑘𝑟𝑤𝑘 (𝑢̇̅𝑖𝑤 − 𝑣𝑢̅𝑖,𝑅𝑤 ) = 0 (15) 28 

Where 𝑘𝑟𝑤 is the relative permeability coefficient of the pore water, 𝜇𝑤 is the dynamic viscosity coefficient of the pore 29 

water and 𝑘 is the intrinsic permeability of the unsaturated porous media. 30 

(c) Momentum conservation equation of pore air 31 

Based on equation (13) the momentum conservation equation of pore gas is: 32 𝐶1𝑎∇𝑒𝑠 + 𝐶2𝑎∇𝑒𝑤 + 𝐶3𝑎∇𝑒𝑎 + 𝜌𝑎(𝑢̈𝑖𝑠 − 2𝑣𝑢̇𝑖,𝑅𝑠 + 𝑣2𝑢𝑖,𝑅𝑅𝑠 ) + 𝜌𝑎𝑛(1 − 𝑆𝑟) (𝑢̈̅𝑖𝑎 − 2𝑣𝑢̇̅𝑖,𝑅𝑎 + 𝑣2𝑢̅𝑖,𝑅𝑅𝑎 )+ 𝜇𝑎𝑘𝑟𝑎𝑘 (𝑢̇̅𝑖𝑎 − 𝑣𝑢̅𝑖,𝑅𝑎 ) = 0 (16) 33 

Where 𝑘𝑟𝑎 is the relative permeability coefficient of pore gas, 𝜇𝑎 is the dynamic viscosity coefficient of pore gas and 𝑘 34 

is the intrinsic permeability of the unsaturated porous media. 35 
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2.2 Spatial discretization  1 

The Weighted Residual Method is applied to obtain the equivalent integral in a weak form for an unsaturated porous 2 

medium. The displacement of the solid is discretized as, 𝒖𝒔 = 𝑵𝒖𝒖, the relative displacement of pore water is discretized as, 3 𝒖̅𝒘 = 𝑵𝒘𝑼̅𝒘, and the relative displacement of pore gas is discretized as, 𝒖̅𝒂 = 𝑵𝒂𝑼̅𝒂 . Where 𝑵𝒖, 𝑵𝒘, 𝑵𝒂  are the shape 4 

functions for the relative displacements of the solid, pore water and pore gas, respectively. 5 

The momentum conservation equation of the mixture (14) is discrete and has the following form (see appendix for 6 

derivation):  7 𝑴𝒔𝒖̈ + 𝑴𝒔𝒘𝑼̈̅𝒘 +𝑴𝒔𝒂𝑼̈̅𝒂 + 𝑪𝒔𝒖̇ + 𝑪𝒔𝒘𝑼̇̅𝒘 + 𝑪𝒔𝒂𝑼̇̅𝒂 +𝑲𝒔𝒖+ 𝑲𝒔𝒘𝑼̅𝒘 +𝑲𝒔𝒂𝑼̅𝒂 = 𝒇𝒖 (17) 8 

The momentum conservation equation of pore water (15) is discrete and has the following form: 9 𝑴𝒘𝒔𝒖̈ + 𝑴𝒎𝒘𝑼̈̅𝒘 + 𝑪𝒎𝒘𝒔 𝒖̇ + 𝑪𝒎𝒘𝑼̇̅𝒘 +𝑲𝒎𝒘𝒔 𝒖+𝑲𝒎𝒘𝒘 𝑼̅𝒘 +𝑲𝒎𝒘𝒂 𝑼̅𝒂 = 𝒇𝒎𝒘 (18) 10 

The momentum conservation equation of pore gas (16) is discrete and has the following form: 11 𝑴𝒂𝒔𝒖̈ + 𝑴𝒎𝒂𝑼̈̅𝒂 + 𝑪𝒎𝒂𝒔 𝒖̇ + 𝑪𝒎𝒂𝑼̇̅𝒂 +𝑲𝒎𝒂𝒔 𝒖+𝑲𝒎𝒂𝒘 𝑼̅𝒘 +𝑲𝒎𝒂𝒂 𝑼̅𝒂 = 𝒇𝒎𝒂 (19) 12 

Through the above process, the analysis method for unsaturated porous media based on a moving coordinate system is 13 

established. Note that when the moving velocity of the load is 0 m/s (𝑣 = 0), the method simplifies to FEM. 14 

2.2.1 Numerical stability 15 

The traditional Galerkin method (𝑁̅(𝑥) = 𝑁(𝑥)) causes the governing equations to lose their original self-adjointness 16 

features due to the presence of the convection term (2𝑣𝒖̇𝒊,𝑹). The existence of this term introduces negative numerical 17 

damping which may lead to numerical instability. This can be avoided by modifying the shape function, as per the theory of 18 

computational fluid dynamics. There are two common ways to solve this problem. Firstly, if using the Petrov-Galerkin 19 

variational principle, then the weight function requires the addition of asymmetric terms. Secondly, the approach proposed 20 

by Krenk [44] can be used. This uses the Taylor-Galerkin method to solve this problem, which is a Taylor series expansion 21 

of the term 2𝑣𝒖̇𝒊,𝑹𝒔 . Comparing the two approaches, the Taylor-Galerkin method is relatively straightforward to implement 22 

because the compensation term can be added directly to the governing equation, which can still be discretized using the 23 

standard Galerkin method. 24 

The Taylor-Galerkin method is therefore used in this paper to add artificial numerical damping to the governing equations. 25 

To do so, a convective term related to the second-derivative of space is added to the modified equation, so as to increase the 26 

damping of the whole dynamic system and eliminate any numerical oscillations caused by the negative numerical damping 27 

zone. This is described as: 28 𝑢̇𝑖,𝑅 ≈ −∆𝑢̇𝑖ℎ + 12ℎ𝑢̇𝑖,𝑅𝑅 (20) 29 

where h is the increment of ∆R in the opposite direction of the movement. The additional domain damping is: 30 𝐶𝑖𝑣 = ∫𝜌𝑣ℎΩ 𝑵𝒊,𝑹𝑻 𝑵𝒊,𝑹𝑑Ω (21) 31 

According to Krenk [44], the value of h is generally taken to be 0.3-0.4 times the size of the element in the R-direction. 32 

2.2.2 Boundary conditions 33 

The natural boundary conditions for pore pressures and stresses within the solution domain can be obtained through the 34 

equivalent integral in weak form. The natural boundary conditions are: 35 𝑛𝑖(𝐶1𝑤∇ ∙ 𝒖𝒔 + 𝐶2𝑤∇ ∙ 𝒖̅𝒘 + 𝐶3𝑤∇ ∙ 𝒖̅𝒂) = 𝑝𝑛𝑤 (22) 36 𝑛𝑖(𝐶1𝑎∇ ∙ 𝒖𝒔 + 𝐶2𝑎∇ ∙ 𝒖̅𝒘 + 𝐶3𝑎∇ ∙ 𝒖̅𝒂) = 𝑝𝑛𝑎 (23) 37 𝑛𝑖(𝜎𝑖𝑗′ − 𝛼𝑆𝑟𝑝𝑤 − 𝛼(1 − 𝑆𝑟)𝑝𝑎) = 𝑡𝑖                                                                    (24)     38 

Note that continuity is a requirement of the domain.  Thus, the model should satisfy the displacement continuity conditions: 39 𝑢 = 𝑢0 (25) 40 𝑢̅𝑤 = 𝑢̅0𝑤 (26) 41 𝑢̅𝑎 = 𝑢̅0𝑎 (27) 42 
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2.3 Time integration 1 

The 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 − 𝛼 method was proposed by Chung and Hulbert [55] to solve dynamic problems. The method is similar 2 

to the Hilber-Hughes-Taylor (HHT) and Wood-Bossak-Zienkiewicz (WBZ) methods in that Newmark [56] is used for the 3 

calculation of velocity and displacement. Compared with HHT, WBZ, and 𝑁𝑒𝑤𝑚𝑎𝑟𝑘 − 𝛽 methods, this has been gradually 4 

applied to solve the strong nonlinear problem of multi-physical field coupling in porous media by providing a high frequency 5 

range adjustment (Erlicher [57], Kontoe [58]). 6 

According to the results in Chapter 2.2, after forming the mass matrix, damping matrix and stiffness matrix, time-domain 7 

integration is used to solve the equations. The current displacement, velocity and acceleration of different physical fields are 8 

calculated according to the conditions at the previous timestep (𝑢𝑛−1, 𝑢̇𝑛−1, 𝑢̈𝑛−1). The displacement is of the form: 9 𝑢 = 𝑢𝑛−1 + Δ𝑡𝑢̇𝑛−1 + 12Δ𝑡2𝑢̈ (28) 10 

The calculation formula for acceleration and velocity, obtained from (28), is: 11 𝑢̈ = 2(𝑢 − 𝑢𝑛−1 − Δ𝑡𝑢̇𝑛−1)Δ𝑡2 (29) 12 𝑢̇ = 𝑢̇𝑛−1 + Δ𝑡𝑢̈ (30) 13 

To reduce numerical oscillations, the General − 𝛼 time integration method uses the average form of acceleration 𝑢̈ =14 (1 − 2𝛽)𝑢̈𝑛−1 + 2𝛽𝑢̈𝑛  in place of the acceleration 𝑢̈, which is applied to (28) and (29) to obtain the modified form of 15 

displacement and acceleration. 16 𝑢𝑛 = 𝑢𝑛−1 + Δ𝑡𝑢̇𝑛−1 + Δ𝑡2 [(12 − 𝛽) 𝑢̈𝑛−1 + 𝛽𝑢̈𝑛] (31) 17 

𝑢̈𝑛 = (𝑢𝑛 − 𝑢𝑛−1 − Δ𝑡𝑢̇𝑛−1)𝛽Δ𝑡2 − 1 − 2𝛽2𝛽 𝑢̈𝑛−1 (32) 18 

The acceleration term (𝑢̈ = (1 − 𝛾)𝑢̈𝑛−1 + 𝛾𝑢̈𝑛) in the velocity formula is replaced resulting in: 19 𝑢̇𝑛 = 𝑢̇𝑛−1 + Δ𝑡(1 − 𝛾)𝑢̈𝑛−1 + 𝛾𝑢̈𝑛 (33) 20 

A new format for calculating variables in time is obtained by introducing weight correction parameters based on the 21 

aforementioned discrete formats for displacement, velocity and acceleration. The displacement, velocity and acceleration in 22 

(17), (18) and (19) all adopt the weighted form proposed by Chung and Hulbert [55]. 23 𝑢̈𝑛−𝛼𝑚 = (1 − 𝛼𝑚)𝑢̈𝑛 + 𝛼𝑚𝑢̈𝑛−1 (34) 24 𝑢̇𝑛−𝛼𝑓 = (1 − 𝛼𝑓)𝑢̇𝑛 + 𝛼𝑓𝑢̇𝑛−1 (35) 25 𝑢𝑛−𝛼𝑓 = (1 − 𝛼𝑓)𝑢𝑛 + 𝛼𝑓𝑢𝑛−1 (36) 26 𝑡𝑛−𝛼𝑓 = (1 − 𝛼𝑓)𝑡𝑛 + 𝛼𝑓𝑡𝑛−1 (37) 27 

(17), (18) and (19) take the following time integral form. 28 𝑴𝑢̈𝑛−𝛼𝑚 + 𝑪𝑢̇𝑛−𝛼𝑓 +𝑲𝑢𝑛−𝛼𝑓 = 𝒇(𝑡𝑛−𝛼𝑓) (38) 29 𝑢̈0 = 𝑴−𝟏[𝒇(0) − 𝑪𝑢̇0 −𝑲𝑢0] (39) 30 

The four parameters of the 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 − 𝛼 method are: 𝛾 = 12− 𝛼𝑚 + 𝛼𝑓 , 𝛽 = 14 (𝛾 + 12)2,𝛼𝑚 = 2𝜌∞−11+𝜌∞ , 𝛼𝑓 = 𝜌∞1+𝜌∞. 𝜌∞ 31 

is the high frequency factor, 𝛼𝑚, 𝛼𝑓 ≤ 1. The implementation process for the algorithm is provided in more detail in Ghorbani 32 

[31]. 33 

3 Validation 34 

In order to verify the accuracy of the proposed numerical method for unsaturated porous media, three numerical examples 35 

are used. Example 1 is the analysis of dynamic consolidation of a saturated soil column. Example 2 is the analysis of the 36 

dynamic response of an unsaturated soil column. Example 3 is the analysis of the dynamic response of a saturated foundation 37 

under a moving load. 38 
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3.1 Validation 1: Saturated soil column consolidation 1 

Liang and Liang [23] analyzed the dynamic response of saturated porous media using ABAQUS user-defined elements. 2 

This example uses the calculated parameters of the saturated soil column model proposed by Simon [59]. The input parameters 3 

of the saturated soil column are: 𝜌𝑠 = 0.3101ρs(kg/m3), 𝜌𝑤 = 0.2977ρs(kg/m3), n=0.333, 𝜇𝑠 = 1250𝑃𝑎, 𝜐 = 0.2, 𝑘𝑤 =4 1.4246𝑚/𝑠, 𝛼 = 0.667 and 𝑄 = 0.1385 × 105𝑃𝑎 (Simon [59]). The width of the 2D model is 1.3164 m and the height is 5 

31.5933m (𝐿 × 𝐻 = 1.3164𝑚 × 31.5933𝑚). The model is divided into 1 element in the horizontal direction and 600 6 

elements in the vertical direction. The boundary conditions of the model are shown in Figure 4. The bottom of the saturated 7 

soil column is fixed and impermeable (𝑢𝑦𝑠 = 0, 𝑢̅𝑦𝑤 = 0). The left and right boundaries of the saturated soil column do not 8 

have transverse displacements and are impermeable (𝑢𝑥𝑠 = 0, 𝑢̅𝑥𝑤 = 0). Step loading (𝐹 = 𝐹𝑚𝑎𝑥𝐻(𝑡)) is applied to the top of 9 

the column: 𝐹𝑚𝑎𝑥 = 23750.5266 𝑁. The timestep is ∆𝑡 = 𝑇1000 and the total duration is 0.14942s.  10 

 11 

Figure 4 Saturated soil column validation case 12 

The calculation parameters are 𝑣 = 0, 𝑎𝑛𝑑  𝑆𝑟 = 0.99999. Figure 5 shows the results of the proposed model are in good 13 

agreement with the results of Simon [59], indicating the accuracy of the proposed method for consolidation simulation. 14 

             15 

(a) Pore water pressure                                                                          (b) Total stress 16 
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          1 

(c) Vertical displacement                                                           (d) Relative fluid displacement 2 

Figure 5 Comparison of calculation results 3 

3.2 Validation 2: Unsaturated soil column dynamics 4 

In order to verify the accuracy of the proposed model for the dynamics of unsaturated porous media, an analytical approach 5 

of the 1D unsaturated soil column proposed by Li and Schanz [60] is used. The height of the unsaturated soil column is 10 m 6 

(L=10 m), the bottom of the column is impermeable and fixed, while the sides of the column are impermeable and rigid. A 7 

vertical load (𝜎 = 1.0𝑃𝑎) is applied instantaneously to the top of the soil column (Figure 6). The input parameters of the 8 

unsaturated soil column remain the same as those in Li and Schanz Li and Schanz [60]: 𝑛 = 0.23, 𝜌𝑠 = 2650𝑘𝑔 𝑚3⁄ , 𝜌𝑤 =9 997𝑘𝑔 𝑚3⁄ , 𝜌𝑎 = 1.01𝑘𝑔 𝑚3⁄ , 𝐾 = 1.02 × 109𝑃𝑎 , 𝐺 = 1.44 × 109𝑃𝑎 , 𝐾𝑠 = 3.5 × 1010𝑃𝑎 , 𝐾𝑤 = 2.25 × 109𝑃𝑎 , 𝐾𝑎 =10 1.10 × 105𝑃𝑎 , 𝑘 = 2.5 × 10−12𝑚2 . The Brooks and Corey model (Brooks [61]) was selected to define the soil-water 11 

characteristic curve of the unsaturated porous medium, with: 𝑠 = 𝑝𝑑𝑆𝑒−1/𝑑 , 𝑑 = 1.5. The model was divided into 500 elements 12 

and the initial solver timestep was 0.0001 s. The degree of saturation was 𝑆𝑟 = 0.9. The model is calculated under plane strain 13 

conditions. 14 

 15 

Figure 6 Unsaturated soil column validation case 16 

The vertical displacement at the top of the soil column and the pore water pressure at the bottom of the soil column were 17 

compared with the analytical solutions proposed by Li and Schanz [60] (Figure 7).  It can be observed that the proposed model 18 

yields results consistent with the analytical method, thus validating it’s accuracy for unsaturated dynamics problems.  19 
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 1 

(a) Pore water pressure at 𝑆𝑟 = 0.9 2 

 3 

(b) Vertical displacement at 𝑆𝑟 = 0.9 4 

Figure 7 Calculation results of unsaturated soil column  5 

3.3 Validation 3: Saturated foundation with moving load 6 

Finally, the case of a moving load on a saturated medium is studied. The computational parameters used for the validation 7 

are kept the same as Theodorakopoulos [62]. The depth and length of the domain are 18 m and 80 m respectively. The 8 

magnitude of the load is 0.4 MPa moving at a velocity of 100 𝑚/𝑠, as shown in Figure 8. The mesh size is 0.02 m in both 9 

horizontal and vertical directions, the initial timestep is 0.0001s and 𝑆𝑟 = 0.99999. The model is calculated under plane strain 10 

conditions. The model is compared against the analytical solution proposed by Theodorakopoulos [62]. The left and right 11 

sides of the model limit lateral displacement and are impermeable, and the bottom boundary limits vertical displacement and 12 

is impermeable. 13 

 14 

Figure 8 Moving load on saturated foundation validation case 15 

A comparison of results is shown in Figure 9, where it is seen that the calculated results are in good agreement with the 16 
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analytical solution.  This indicates the accuracy of proposed model for moving loads on saturated media. 1 

          2 

(a) The effective stress                                             (b) Pore water pressure 3 

Figure 9 Comparison of calculation results 4 

4 Comparison between M-FEM and FEM 5 

This section compares the results from the proposed M-FEM approach and standard FEM approach for moving loads on 6 

unsaturated porous media. The soil-water characteristics of the unsaturated porous medium are described and then the 7 

agreement between results and effort required for the FEM and M-FEM calculations are compared.  8 

4.1 Characteristics of the unsaturated porous medium 9 

An unsaturated porous medium with 𝑆𝑟 = 0.7, length of 100 m and depth of 10 m is shown in Figure 10. The surface in 10 

contact with the moving load is the free seepage boundary. The load has a distribution length of 4 m, magnitude of 𝐹 =11 0.7𝑀𝑃𝑎 and moved at a speed of 𝑉 = 0.4𝑣𝑠 (𝑣𝑠 is the shear wave velocity of the soil (𝑣𝑠 = √𝑢𝑠 𝜌𝑠⁄ )). The left and right sides 12 

of the model limit lateral displacement and are impermeable, and the bottom limits vertical displacement and is impermeable. 13 

The calculations are analysed in 2D conditions. 14 

 15 

Figure 10 Computational modeling of unsaturated porous media 16 

The hydraulic parameters of the unsaturated porous media are closely related to the degree of saturation. In order to 17 

investigate the dynamic response of the unsaturated porous media under moving load, the coupling relationship between the 18 

degree of saturation and matric suction, pore water and pore gas must be considered. The soil-water characteristic curve 19 

(Figure 11) describes these relationships, using parameters adopted from the literature, as shown in Table 1.   20 
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Table 1 Parameters defining the unsaturated porous medium Lo [63] 1 

Parameters Value 

Shear modulus 𝜇𝑠(MPa) 3.85 

Solid density 𝜌𝑠(kg/m3) 2650 

Water density 𝜌𝑤(kg/m3) 1000 

Gas density 𝜌𝑎(kg/m3) 1.29 

Soil porosity n 0.45 

Fitting parameter 𝛼2 10−4 

Fitting parameter 𝑚 0.5 

Fitting parameter 𝑑 2 

Water viscosity 𝜇𝑤(𝑃𝑎 ∙ 𝑠) 0.001 

Gas viscosity 𝜇𝑎(𝑃𝑎 ∙ 𝑠) 1.8 × 10−5 

Permeability 𝑘(𝑚2) 5.3 × 10−13 

Bulk modulus(𝐾𝑠)(𝐺𝑃𝑎) 35 

Bulk modulus(𝐾𝑤)(𝐺𝑃𝑎) 2.25 

Bulk modulus(𝐾𝑎)(𝑘𝑃𝑎) 145 

 2 

(a)SWCC                                  (b) Pore water                                 (c) Pore gas 3 

Figure 11 Hydraulic characteristics of the unsaturated porous medium 4 

4.2 Calculation accuracy  5 

This section compares the agreement between the results from the FEM and M-FEM approaches using the same 6 

computational material parameters (Table 1) and Lagrange first-order quadrilateral elements. The mesh size is 0.05𝑚, the 7 

time step is 0.001s and the receivers are located directly below the centre of the moving load.  8 

The differences between the models were quantified by analyzing pore water pressures, displacements and pore air 9 

pressures. From Figure 12, it is seen that the calculation trends and magnitudes agree well. Specifically, the maximum pore 10 

water pressure calculated with the FEM is 65.58 kPa and the maximum pore water pressure calculated with the M-FEM is 11 

67.49 kPa, which is a difference of 2.91 %. The maximum displacements calculated using FEM and M-FEM are 0.372 m and 12 

0.362 m respectively; a deviation of 3.04 %. The maximum pore gas pressure is 62.81 kPa and 64.63 kPa (2.9 %), calculated 13 

by FEM and M-FEM respectively. Thus, the calculations based on FEM and M-FEM show strong agreement.  14 
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 1 

Figure 12 Comparison of M-FEM and FEM calculations  2 

4.3 Computational efficiency comparison 3 

The computational efficiency between FEM and M-FEM is compared, studying the simulations until the stabilization of 4 

all pore water pressures, gas pressures and vertical displacements. The factors of rectangular element sizes (0.2 m, 0.1 m and 5 

0.05 m) and the different element orders (both Lagrange first-order and second-order elements) were considered. The 6 

processor is 13th a Gen Intel(R) Core (TM) i9-13900K with 128GB of RAM. The computational model parameters and 7 

operating environment were identical and as discussed above. 8 

For the Lagrange first-order elements, it can be seen from Figure 13 (a) that the computational efficiency for M-FEM is 9 

significantly better than that with FEM. The computation time with M-FEM is 9.3%, 9.1%, 9.0% of that with FEM, 10 

respectively for three different mesh sizes (0.2 m, 0.1 m and 0.05 m). Thus, the average time required with FEM is 10.94 11 

times that with M-FEM. For the Lagrange second-order element (Figure 13 (b)), M-FEM also shows superior computational 12 

efficiency: the computation time for M-FEM is, 9.6%, 9.5%, 9.3% of that with FEM considering the three different mesh 13 

sizes (0.2 m, 0.1 m and 0.05 m respectively). Therefore the average computation time with FEM is 10.53 times that of M-14 

FEM, which is similar to that for the case with first order elements.  15 

The reason for this significantly higher efficiency is because M-FEM avoids the dynamic re-generation of the system matrix 16 

at each time step because it does not have to take into account the movement of the interaction points between the moving 17 

loads and the unsaturated porous medium with time. As a result, non-convergence is less of a concern meaning M-FEM can 18 

use larger time steps compared to FEM.  19 

  20 

(a) First-order elements                            (b) Second-order elements 21 

Figure 13 Calculation times for different orders of rectangular element 22 

As shown in Figure 14, by analysing the number of degrees of freedom with computation time, it is seen that both FEM 23 

and M-FEM exhibit an approximately linear relationship. When the number of degrees of freedom of the model reaches 24 

1,000,000, the computation time with FEM is approximately 3 hours, while it takes 0.28 hours with the M-FEM. This 25 

advantage of computational efficiency is particularly attractive for solving unsaturated engineering problems such as transport, 26 

0

10

20

30

40

50

60

70

80

-1 1 3 5 7 9

P
o

re
 w

at
er

 p
re

ss
u

re
 (

k
P

a)

Depth(m) 

FEM

MDEM

-0.4

-0.3

-0.2

-0.1

0

0.1

-1 1 3 5 7 9

V
er

ti
ca

l 
d

is
p

la
ce

m
en

t 
(m

)

Depth(m) 

FEM

MDEM

0

10

20

30

40

50

60

70

80

-1 1 3 5 7 9

P
o

re
 g

as
p

re
ss

u
re

 (
k
P

a)

Depth(m) 

FEM

MDEM

0

500

1000

1500

2000

2500

3000

0 20000 40000 60000

T
im

e 
(s

) 

Number of elements 

FEM

M-FEM

0

2000

4000

6000

8000

10000

12000

0 20000 40000 60000

T
im

e 
(s

)

Number of elements

FEM

M-FEM



 

16 

 

where there are often millions of degrees of freedom.  1 

 2 

 Figure 14 Calculation time for different degrees of freedom  3 

5 Unsaturated porous medium-elastic medium analysis  4 

This section explores the response of a 5 m-thick unsaturated porous layer overlaying a 5 m-thick layer of elastic (i.e. solid 5 

only) layer, 100m long, as shown in Figure 15. The calculations are analysed in 2D conditions. This is intended to represent 6 

a two-layered soil, where the top layer could be a clayey-sandy and the bottom layer an impermeable clay. The surface moving 7 

load is 0.8𝑀𝑃𝑎 and the domain discretized using four-node Lagrangian elements with a mesh size of 0.1 m and time step of 8 

0.001 s. The observation point of the dynamic response is set at the location directly below the moving load. The surface of 9 

the upper unsaturated porous medium is permeable while the bottom boundary and sides are fixed. All input parameters for 10 

the unsaturated porous medium are listed in Table 1 and the parameters for the elastic medium (modulus of elasticity, Poisson's 11 

ratio and density are 48.6 MPa, 0.35, 1800kg/m3 respectively) are described in Wu [64].  12 

The variables under consideration are the degree of saturation and moving load speed. Five values of degree of saturation 13 

(𝑆𝑟 = 0.2, 0.4, 0.6, 0.8, 0.95) are considered, and five values of load speed related to the shear wave velocity of upper soil 14 

(𝑉 𝑣𝑠⁄ = 0.1, 0.3, 0.5, 0.7, 0.9) are considered.  15 

 16 

Figure 15 Unsaturated porous medium-elastic medium calculation example 17 

5.1 The effect of degree of saturation 18 

The gas phase in the pore space can affect wave transmission. If the presence of gas is not considered, the pore water 19 

pressure in the pore space will be overestimated (Steeb [65], Wang [66], Zhang [67]). Therefore, simplifying an unsaturated 20 

porous medium as a two-phase saturated medium will cause the calculation results to deviate significantly from the actual 21 

state. Thus, it is worthwhile to study how the degree of saturation affects the dynamic response of unsaturated porous media.  22 

(c) Displacement at depth                                                   (d) Surface displacement 23 

Figure 16 (a) shows that the pore water pressure increases rapidly and non-linearly as the degree of saturation increases. 24 
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When 𝑆𝑟increases from 0.2 to 0.95, the maximum pore water pressure increases approximately 6.25 times. Further, when 1 𝑆𝑟 = 0.8  increases to 𝑆𝑟 = 0.95 , this corresponds to the pore water pressure increasing by approximately 222%. (c) 2 

Displacement at depth                                                   (d) Surface displacement 3 

Figure 16 (b) shows that the variation in pore gas pressure with the degree of saturation is similar to the trend in pore water 4 

pressure. This shows that when the degree of saturation is greater than 0.8, the effect of matrix suction on gas and water 5 

pressures decreases as the porous medium gets close to being saturated. The values of pore gas pressure and pore water 6 

pressure will gradually become equal. (c) Displacement at depth                                                   (d) Surface displacement 7 

Figure 16 (c) shows the relationship of vertical displacement versus different degrees of saturation. The pattern of vertical 8 

displacement decrease with depth is similar. The maximum and minimum displacements during the increase in the degree of 9 

saturation are 0.215 mm and 0.192 mm, respectively. (c) Displacement at depth                                                   (d) Surface 10 

displacement 11 

Figure 16 (d) represents the displacement distribution of the soil surface, when the degree of saturation is 0.2, 0.4 and 0.6.  12 

The difference in displacement is limited however when the degree of saturation is more than 0.6, the displacement 13 

distribution of the soil surface shows a more pronunced difference. 14 

          15 

(a) Pore water pressure                                                         (b) Pore gas pressure 16 
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         1 

(c) Displacement at depth                                                   (d) Surface displacement 2 

Figure 16 Effect of degree of saturation 3 

In unsaturated porous media, the percentage of water in the pores increases due to the increase in degree of saturation, 4 

which results in an increase in the compression modulus of the pores of the porous media (part of the water replaces the gas). 5 

As a result, the water and gas pressures within the pores increase. This increase occurs over the range of depths influenced by 6 

the load. As the degree of saturation increases, both pore water pressure and pore gas pressure escalate, leading to a reduction 7 

in the load borne by the soil skeleton. Consequently, the displacement resulting from effective stress decreases. Moreover, 8 

with an increase in the degree of saturation, the volume of water occupying the pores expands, resulting in a decrease in the 9 

number of compressible pores. Consequently, deformations of the porous medium skeleton diminish as saturation levels rise. 10 

5.2 The effect of moving load velocity 11 

The velocity of a moving load affects the motion of water and gases in unsaturated porous media. In unsaturated porous 12 

media, the degree of interaction between fluid, gas and solid is different as the velocity of the moving load varies. Failure to 13 

consider the effect of the velocity on the unsaturated porous medium can result in an unreasonable design of structure (Cui 14 

[68]). 15 

Figure 17 shows the effect of the moving load speeds on the pore water pressure, gas pressure and displacement located 16 

directly below the middle of moving load. The dynamic response indices (pore water pressure, pore gas pressure and 17 

displacement) all increase with an increase in speed. When the velocity of the moving load is increased from 𝑣/𝑣𝑠 = 0.1 to 18 𝑣/𝑣𝑠 = 0.9, the maximum pore water pressure, pore gas pressure and vertical displacement increase by 24.60%, 23.11%, and 19 

26.01% respectively. Therefore moving speed can be an influential factor in the dynamic response of unsaturated porous 20 

media. Figure 17(d) shows the displacement distribution of the soil surface under different moving load speeds. When the 21 

moving load ratio exceeds 0.5, the moving load forms a clearer surface pattern on the soil surface, resulting in the bulging of 22 

certain soil sections. 23 

Inside the unsaturated porous medium, an increase in the velocity of the moving load can be equated to an increase in 24 

the loading frequency, which is because the width of the load is constant, and an increase in the velocity is equivalent to an 25 

increase in the loading frequency as explained by Cui [68]. Consequently, this intensifies the interactions among the solid, 26 

liquid, and gas phases within the unsaturated porous medium. 27 

javascript:;
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       1 

(a) Pore water pressure                                                 (b) Pore gas pressure 2 

       3 

(c) Displacement with depth                                                   (d) Surface displacement 4 

Figure 17 Effect of moving load velocity 5 

6 Conclusions 6 

This paper proposes a calculation approach for analyzing the dynamic response of unsaturated porous media subject to 7 

moving loads. The method combines a mass conservation equation, a momentum conservation equation, and a constitutive 8 

equation through a moving coordinate transformation to maximize computational efficiency. Spatial discretization is 9 

performed using the Galerkin-method, while time discretization is established using the General-α method. The validation of 10 

the proposed approach is performed by simulating three numerical examples from the published literature. The differences in 11 

calculation results between the proposed method and the FEM for a typical example are compared with respect to accuracy 12 

and computational time. Next, a numerical example is presented to illustrate the effect of the degree of saturation and moving 13 

load speed on the dynamic response of unsaturated porous media. Finally, new insights are provided into the dynamic response 14 

of unsaturated porous media. The main conclusions are: 15 

(1) The M-FEM results show strong agreement FEM, but with significantly reduced computation time. Specifically, when 16 

comparing the computation time for either first-order or second-order elements, M-FEM requires approximately 1/10 of the 17 

time compared to the FEM. The computational time for FEM exhibits a nonlinear relationship with the number of degrees of 18 

freedom. Conversely, for the M-FEM approach, the number of degrees of freedom and the computational time have an 19 

approximately linear growth rate. This suggests M-FEM may offer a more efficient computational approach than traditional 20 

finite element methods, particularly for large domains.  21 

(2) The dynamic response of unsaturated porous media is heavily influenced by its degree of saturation. As the degree of 22 

saturation increases, there is an increase in both pore water pressure and pore gas pressure. When the degree of saturation 23 

increases from 0.2 to 0.95, the maximum pore fluid pressure increases by a factor of 6.25. Additionally, the displacement of 24 
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unsaturated porous media decreases with increasing degree of saturation.  1 

(3) As the moving load speed increases, the pore water pressure, pore gas pressure and displacement increase. For the 2 

example considered, when the velocity of the moving load was increased from 𝑣 = 0.1𝑣𝑠 to 𝑣 = 0.9𝑣𝑠, the maximum pore 3 

water pressure, the maximum pore air pressure and the maximum displacement increased by 24.60%, 23.11%, and 26.01% 4 

respectively. The velocity of the moving load can have an amplifying effect on the dynamic response of unsaturated porous 5 

media. 6 

M-FEM shows good computational efficiency in 2D numerical examples, and it is predicted, based on the relationship 7 

between the computational degrees of freedom and the computationally consumed time, that this method has potential in the 8 

computation of complex unsaturated porous media. 9 
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Nomenclature 1 

 2 

  3 
Symbol Physical significance 𝜎𝑖𝑗 The total stress 𝜎𝑖𝑗𝑠  The solid stress 𝑝𝑤 Pore water pressure 𝑝𝑎 Pore gas pressure 𝑛  Porosity 𝑆𝑟 The degree of saturation 𝛿𝑖𝑗 Kronecker symbol 𝜇 Shear modulus 𝜖𝑖𝑗 Strain tensor 𝜆 Lame parameters 𝑒𝑠 Solid volumetric strain 𝛼 Biot coefficient 𝑝 Pore fluid pressure 𝐾𝑏 Bulk compression modulus of soil skeleton 𝐾𝑠 Bulk compression modulus of soil particle 𝑆𝑒 The effective saturation 𝑆𝑤0 The irreducible saturation 𝑢𝑠 The displacement of solid 𝑢𝑤 The displacement of pore water 𝑢𝑎 The displacement of pore gas 𝜌𝑠 The solid density 𝜌𝑤 The density of pore water 𝜌𝑎 The density of pore gas 𝜌 The mixed density 𝑘 The intrinsic permeability of the unsaturated porous media 𝑘𝑟𝑤 The relative permeability coefficient of pore water 𝜇𝑤 The dynamic viscosity coefficient of pore water 𝑘𝑟𝑎 The relative permeability coefficient of pore gas 𝜇𝑎 The dynamic viscosity coefficient of pore gas 𝑢̅𝑤 The relative displacement of pore water with respect to solids 𝑢̅𝑎 The relative displacement of pore gas with respect to solids 𝑣 The speed of the moving load ∇ Gradient operator 

t Time 𝜕 The symbol for the derivative 

L The time change equation of saturation 𝛼2 Fitting parameter 1 of unsaturated porous medium 𝑚 Fitting parameter 2 of unsaturated porous medium 𝑑 Fitting parameter 3 of unsaturated porous medium 𝑣𝑠 The shear wave velocity 

M The mass matrix 

K The stiffness matrix 

C The damping matrix 𝐶𝑗𝑖 The intermediate variable ̇  Rate of variable ̈  Acceleration of variable 𝑁𝑢 The shape function of the solid displacement 𝑁𝑤 The shape function for the relative displacement of pore water 𝑁𝑎 The shape function for the relative displacement of pore gas Ω The field of integration Γ The integral boundary 
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Appendix 1 

(1) Governing equation: 2 

Substituting the total stress 𝜎𝑖𝑗 into equations (2) and (3), the expression for solid stress (𝜎𝑖𝑗𝑠 ) can be obtained as: 3 𝜎𝑖𝑗𝑠 = 1(1 − 𝑛) {𝜆𝛿𝑖𝑗𝑒𝑠 + 2𝜇𝜖𝑖𝑗 − [𝛼𝑆𝑟 − 𝑛𝑆𝑟]𝛿𝑖𝑗𝑝𝑤 − [𝛼(1 − 𝑆𝑟) − 𝑛(1 − 𝑆𝑟)]𝛿𝑖𝑗𝑝𝑎}   4 

Then, calculating the time derivative of 𝜎𝑖𝑗𝑠  and substituting (4) into equation 𝜎𝑖𝑗𝑠 , the equivalent expression of the rate of 5 

change of soil mass can be obtained as: 6 𝜕𝜌𝑠𝜌𝑠𝜕𝑡 = −𝐾𝑏∇ ∙ 𝒖̇𝒔 + (𝛼𝑆𝑟 − 𝑛𝑆𝑟) 𝜕𝑝
𝑤𝜕𝑡 + [𝛼(1 − 𝑆𝑟) − 𝑛(1 − 𝑆𝑟)] 𝜕𝑝𝑎𝜕𝑡(1 − 𝑛)𝐾𝑆  7 

The equivalent expression of the rate of change of soil mass is then substituted into the mass conservation equation for 8 

solids to obtain the rate of change of porosity. 9 𝜕𝑛𝜕𝑡 = (1 − 𝑛 − 𝐾𝑏𝐾𝑆)∇ ∙ 𝒖𝒔̇ + (𝛼𝑆𝑟 − 𝑛 𝑆𝑟)𝐾𝑆    𝑑𝑝𝑤𝑑𝑡 + (𝛼(1 − 𝑆𝑟) − 𝑛(1 − 𝑆𝑟))𝐾𝑆    𝑑𝑝𝑎𝑑𝑡  10 

The time derivative of saturation 𝑆𝑟 is calculated according to (6) and (7), where 𝑆𝑒 is the effective saturation and 𝑆𝑤0 is 11 

the irreducible saturation. The time change equation of saturation is then: 12 𝑑𝑆𝑟𝑑𝑡 = −𝛼2𝑚𝑑 ∙ (1 − 𝑆𝑤0) ∙ (𝑆𝑒)𝑚+1𝑚 ∙ ([(𝑆𝑒)−1𝑚 − 1]𝑑−1𝑑 ) ∙ (𝑑𝑝𝑎𝑑𝑡 − 𝑑𝑝𝑤𝑑𝑡 )  13 

Where 𝐿 = −𝛼2𝑚𝑑 ∙ (1 − 𝑆𝑤0) ∙ (𝑆𝑒)𝑚+1𝑚 ∙ ([(𝑆𝑒)− 1𝑚 − 1]𝑑−1𝑑 ). 14 

The spatial gradient of 𝑛, 𝜌𝑤 and  𝑆𝑟 is significantly lower than its time gradient, meaning the mass conservation equation 15 

of pore water is simplified as: 16 𝑛𝑆𝑟 𝜕𝜌𝑤𝜕𝑡 + 𝑆𝑟𝜌𝑤 𝜕𝑛𝜕𝑡 + 𝑛𝜌𝑤 𝜕𝑆𝑟𝜕𝑡 + 𝑛𝑆𝑟𝜌𝑤∇ ∙ 𝒖̇𝒘 = 0  17 

Combining the state equation of water and the rate of change of porosity and the time change equation of saturation, and 18 

using the mass conservation equation for pore water, the following form is obtained: 19 {𝑛𝑆𝑟 1𝐾𝑤 + 𝑆𝑟(𝛼𝑆𝑟 − 𝑛 𝑆𝑟)𝐾𝑆 − 𝑛𝐿}𝜕𝑝𝑤𝜕𝑡 + {𝑆𝑟[𝛼(1 − 𝑆𝑟) − 𝑛(1 − 𝑆𝑟)]𝐾𝑆 + 𝑛𝐿}𝜕𝑝𝑎𝜕𝑡+𝛼𝑆𝑟∇ ∙ 𝒖̇𝒔 + 𝑛𝑆𝑟(∇ ∙ 𝒖̇𝒘 − ∇ ∙ 𝒖̇𝒔) = 0  20 

Again, the spatial gradient of 𝑛, 𝜌𝑎, 𝑆𝑟 is much lower than their time derivatives, meaning the mass conservation of pore 21 

air can be simplified to: 22 𝑛(1 − Sr) 𝜕𝜌𝑎𝜌𝑎𝜕𝑡 + (1 − Sr) 𝜕𝑛𝜕𝑡 + 𝑛 𝜕(1 − 𝑆𝑟)𝜕𝑡 + 𝑛(1 − Sr)∇ ∙ 𝒖̇𝒂 = 0  23 

Combining the state equation for gas and the rate of change of porosity and the time change equation of saturation, and 24 

bringing in the mass conservation equation for pore air, yields the following: 25 [𝑛(1 − Sr)𝐾𝑎 + (1 − Sr) (𝛼(1 − 𝑆𝑟) − 𝑛(1 − 𝑆𝑟))𝐾𝑆 − 𝑛𝐿]𝜕𝑝𝑎𝜕𝑡  26 

+[(1 − Sr) (𝛼𝑆𝑟 − 𝑛 𝑆𝑟)𝐾𝑆 + 𝑛𝐿] 𝜕𝑝𝑤𝜕𝑡 + 𝛼(1 − Sr)∇ ∙ 𝒖𝒔̇ + 𝑛(1 − Sr)(∇ ∙ 𝒖̇𝒂 − ∇ ∙ 𝒖𝒔̇) = 0  27 

The coefficients for each term in equations 12 and 13 are as follows: 28 
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where 𝐶1𝑤 = 𝛼(𝑆𝑟𝑔2−(1−𝑆𝑟)𝑤2)(𝑤2𝑔1−𝑤1𝑔2) , 𝐶2𝑤 = 𝑔2(𝑤2𝑔1−𝑤1𝑔2)，𝐶3𝑤 = −𝑤2(𝑤2𝑔1−𝑤1𝑔2)； 1 

𝐶1𝑎 = 𝛼(𝑆𝑟𝑔1−(1−𝑆𝑟)𝑤1)(𝑤1𝑔2−𝑤2𝑔1) ，𝐶2𝑎 = 𝑔1(𝑤1𝑔2−𝑤2𝑔1)，𝐶3𝑎 = −𝑤1(𝑤1𝑔2−𝑤2𝑔1). 2 

(2) Spatial discretization 3 

The momentum conservation equation of the mix (14) is transformed into the weak form equivalent integral using the 4 

Galerkin method: 5 ∫{𝛿𝑢𝑖2𝜇𝜖𝑖𝑗,𝑗 + 𝛿𝑢𝑖[𝜆 − 𝛼𝑆𝑟𝐶1𝑤 − 𝛼(1 − 𝑆𝑟)𝐶1𝑎]∇𝑒𝑠𝛿𝑖𝑗 − 𝛿𝑢𝑖𝛼[𝑆𝑟𝐶2𝑤 + (1 − 𝑆𝑟)𝐶2𝑎]∇𝑒𝑤𝛿𝑖𝑗Ω6 − 𝛿𝑢𝑖𝛼[𝑆𝑟𝐶3𝑤 + (1 − 𝑆𝑟)𝐶3𝑎]∇𝑒𝑎𝛿𝑖𝑗} 𝑑Ω7 = ∫(𝜌𝑢̈𝑖𝑠 − 2𝑣𝜌𝑢̇𝑖,𝑅𝑠 + 𝜌𝑣2𝑢𝑖,𝑅𝑅𝑠 )𝛿𝑢𝑖𝑑ΩΩ +∫(𝜌𝑤𝑢̈̅𝑖𝑤 − 2𝑣𝜌𝑤𝑢̇̅𝑖,𝑅𝑤 + 𝜌𝑤𝑣2𝑢̅𝑖,𝑅𝑅𝑤 )𝛿𝑢𝑖𝑑ΩΩ8 

+∫(𝜌𝑎𝑢̈̅𝑖𝑎 − 2𝑣𝜌𝑎𝑢̇̅𝑖,𝑅𝑎 + 𝜌𝑎𝑣2𝑢̅𝑖,𝑅𝑅𝑎 )𝛿𝑢𝑖𝑑ΩΩ  9 

According to the Gauss-Green integral method, each term of the integral equation can be written in the following form: 10 ∫𝛿𝑢𝑖2𝜇𝜖𝑖𝑗,𝑗Ω 𝑑Ω = −∫𝛿𝑢𝑖,𝑗2𝜇𝜖𝑖𝑗Ω 𝑑Ω +∫𝛿𝑢𝑖2𝜇𝜖𝑖𝑗Γ 𝑑Γ 11 

∫𝛿𝑢𝑖[𝜆 − 𝛼𝑆𝑟𝐶1𝑤 − 𝛼(1 − 𝑆𝑟)𝐶1𝑎]∇𝑒𝑠𝛿𝑖𝑗Ω 𝑑Ω12 

= −∫𝛿𝑢𝑖,𝑗[𝜆 − 𝛼𝑆𝑟𝐶1𝑤 − 𝛼(1 − 𝑆𝑟)𝐶1𝑎]𝑒𝑠𝛿𝑖𝑗Ω 𝑑Ω +∫𝛿𝑢𝑖[𝜆 − 𝛼𝑆𝑟𝐶1𝑤 − 𝛼(1 − 𝑆𝑟)𝐶1𝑎]𝑒𝑠𝛿𝑖𝑗Γ 𝑑Γ 13 

∫−𝛿𝑢𝑖𝛼[𝑆𝑟𝐶2𝑤 + (1 − 𝑆𝑟)𝐶2𝑎]∇𝑒𝑤𝛿𝑖𝑗Ω 𝑑Ω14 

= ∫𝛿𝑢𝑖,𝑗𝛼[𝑆𝑟𝐶2𝑤 + (1 − 𝑆𝑟)𝐶2𝑎]𝑒𝑤𝛿𝑖𝑗Ω 𝑑Ω −∫𝛿𝑢𝑖𝛼[𝑆𝑟𝐶2𝑤 + (1 − 𝑆𝑟)𝐶2𝑎]𝑒𝑤𝛿𝑖𝑗Γ 𝑑Γ 15 

∫−𝛿𝑢𝑖𝛼[𝑆𝑟𝐶3𝑤 + (1 − 𝑆𝑟)𝐶3𝑎]∇𝑒𝑎𝛿𝑖𝑗Ω 𝑑Ω16 

= ∫𝛿𝑢𝑖,𝑗𝛼[𝑆𝑟𝐶3𝑤 + (1 − 𝑆𝑟)𝐶3𝑎]𝑒𝑎𝛿𝑖𝑗Ω 𝑑Ω −∫𝛿𝑢𝑖𝛼[𝑆𝑟𝐶3𝑤 + (1 − 𝑆𝑟)𝐶3𝑎]𝑒𝑎𝛿𝑖𝑗Γ 𝑑Γ 17 

∫𝛿𝑢𝑖,𝑗2𝜇𝜖𝑖𝑗Ω 𝑑Ω +∫𝛿𝑢𝑖,𝑗[𝜆 − 𝛼𝑆𝑟𝐶1𝑤 − 𝛼(1 − 𝑆𝑟)𝐶1𝑎]𝑒𝑠𝛿𝑖𝑗Ω 𝑑Ω −∫𝛿𝑢𝑖,𝑗𝛼[𝑆𝑟𝐶2𝑤 + (1 − 𝑆𝑟)𝐶2𝑎]𝑒𝑤𝛿𝑖𝑗Ω 𝑑Ω18 

−∫𝛿𝑢𝑖,𝑗𝛼[𝑆𝑟𝐶3𝑤 + (1 − 𝑆𝑟)𝐶3𝑎]𝑒𝑎𝛿𝑖𝑗Ω 𝑑Ω −∫𝛿𝑢𝑖2𝜇𝜖𝑖𝑗Γ 𝑑Γ −∫𝛿𝑢𝑖[𝜆 − 𝛼𝑆𝑟𝐶1𝑤 − 𝛼(1 − 𝑆𝑟)𝐶1𝑎]𝑒𝑠𝛿𝑖𝑗Γ 𝑑Γ19 

+∫𝛿𝑢𝑖𝛼[𝑆𝑟𝐶2𝑤 + (1 − 𝑆𝑟)𝐶2𝑎]𝑒𝑤𝛿𝑖𝑗Γ 𝑑Γ +∫𝛿𝑢𝑖𝛼[𝑆𝑟𝐶3𝑤 + (1 − 𝑆𝑟)𝐶3𝑎]𝑒𝑎𝛿𝑖𝑗Γ 𝑑Γ20 

+∫(𝜌𝑢̈𝑖𝑠 − 2𝑣𝜌𝑢̇𝑖,𝑅𝑠 + 𝜌𝑣2𝑢𝑖,𝑅𝑅𝑠 )𝛿𝑢𝑖𝑑ΩΩ +∫(𝜌𝑤 𝑢̈̅𝑖𝑤 − 2𝑣𝜌𝑤 𝑢̇̅𝑖,𝑅𝑤 + 𝜌𝑤𝑣2𝑢̅𝑖,𝑅𝑅𝑤 )𝛿𝑢𝑖𝑑ΩΩ21 

+∫(𝜌𝑎𝑢̈̅𝑖𝑎 − 2𝑣𝜌𝑎𝑢̇̅𝑖,𝑅𝑎 + 𝜌𝑎𝑣2𝑢̅𝑖,𝑅𝑅𝑎 )𝛿𝑢𝑖𝑑ΩΩ = 0 22 

 23 

The mass, damping and stiffness matrices of (17) are: 24 𝑴𝒔 = 𝜌∫ 𝑵𝒖𝑻Ω 𝑵𝒖𝑑Ω，𝑴𝒔𝒘 = 𝜌𝑤 ∫ 𝑵𝒖𝑻Ω 𝑵𝒘𝑑Ω，𝑴𝒔𝒂 = 𝜌𝑎 ∫ 𝑵𝒖𝑻Ω 𝑵𝒂𝑑Ω 25 𝑪𝒔 = −2𝑣𝜌∫ 𝑵𝒖𝑻Ω 𝑵𝒖,𝑹𝑑Ω，𝑪𝒔𝒘 = −2𝑣𝜌𝑤 ∫ 𝑵𝒖𝑻Ω 𝑵𝒘,𝑹𝑑Ω，𝑪𝒔𝒂 = −2𝑣𝜌𝑎 ∫ 𝑵𝒖𝑻Ω 𝑵𝒂,𝑹𝑑Ω 26 



 

24 

 

𝑲𝒔 = 𝜌𝑣2 ∫ 𝑵𝒖,𝑹𝑻Ω 𝑵𝒖,𝑹𝑑Ω + ∫ 𝑩𝒖𝑻Ω 𝑫𝑩𝒖𝑑Ω + (−𝛼𝑆𝑟𝐶1𝑤 − 𝛼(1 − 𝑆𝑟)𝐶1𝑎) ∫ 𝑩𝒖𝑻𝑩𝒖𝑑ΩΩ ， 1 𝑲𝒔𝒘 = 𝜌𝑤𝑣2 ∫ 𝑵𝒖,𝑹𝑻Ω 𝑵𝒘,𝑹𝑑Ω − 𝛼[𝑆𝑟𝐶2𝑤 + (1 − 𝑆𝑟)𝐶2𝑎] ∫ 𝑩𝒖𝑻𝑩𝒖𝒘𝑑ΩΩ ， 2 𝑲𝒔𝒂 = 𝜌𝑎𝑣2 ∫ 𝑵𝒖,𝑹𝑻Ω 𝑵𝒂,𝑹𝑑Ω − 𝛼[𝑆𝑟𝐶3𝑤 + (1 − 𝑆𝑟)𝐶3𝑎] ∫ 𝑩𝒖𝑻𝑩𝒖𝒂Ω 𝑑Ω，𝒇𝒖 = ∫ 𝑵𝒖𝑻𝚪 𝒕𝒖𝑑Γ  3 

The momentum conservation equation of pore water (15) is multiplied by the test function 𝛿𝒖̅𝒘. Its equivalent integral, in 4 

weak form, is obtained as: 5 ∫𝛿𝒖̅,𝒊𝒘Ω (𝐶1𝑤∇ ∙ 𝒖𝒔 + 𝐶2𝑤∇ ∙ 𝒖̅𝒘 + 𝐶3𝑤∇ ∙ 𝒖̅𝒂)𝑑Ω −∫𝛿𝒖̅𝒘𝜌𝑤(𝑢̈𝑖𝑠 − 2𝑣𝑢̇𝑖,𝑅𝑠 + 𝑣2𝑢𝑖,𝑅𝑅𝑠 )Ω 𝑑Ω6 

−∫𝛿𝒖̅𝒘𝑚𝑤(𝑢̈̅𝑖𝑤 − 2𝑣𝑢̇̅𝑖,𝑅𝑤 + 𝑣2𝑢̅𝑖,𝑅𝑅𝑤 )Ω 𝑑Ω −∫𝛿𝒖̅𝒘𝑏𝑤(𝑢̇̅𝑖𝑤 − 𝑣𝑢̅𝑖,𝑅𝑤 )Ω 𝑑Ω7 

−∫𝛿𝒖̅𝒘𝑛𝑖Γ (𝐶1𝑤∇ ∙ 𝒖𝒔 + 𝐶2𝑤∇ ∙ 𝒖̅𝒘 + 𝐶3𝑤∇ ∙ 𝒖̅𝒂)𝑑Γ = 0 8 

The mass, damping and stiffness matrices of (18) are: 9 𝑴𝒘𝒔 = −𝜌𝑤 ∫ 𝑵𝒘𝑻𝑵𝒖Ω 𝑑Ω，𝑴𝒎𝒘 = −𝑚𝑤 ∫ 𝑵𝒘𝑻𝑵𝒘Ω 𝑑Ω， 10 𝑪𝒎𝒘𝒔 = 2𝑣𝜌𝑤 ∫ 𝑵𝒘𝑻𝑵𝒖,𝑹Ω 𝑑Ω，𝑪𝒎𝒘 = 2𝑣𝑚𝑤 ∫ 𝑵𝒘𝑻Ω 𝑵𝒘,𝑹𝑑Ω − 𝑏𝑤 ∫ 𝑵𝒘𝑻𝑵𝒘𝑑ΩΩ ， 11 𝑲𝒎𝒘𝒔 = −𝜌𝑤𝑣2 ∫ 𝑵𝒘,𝑹𝑻 𝑵𝒖,𝑹Ω 𝑑Ω + 𝐶1𝑤 ∫ 𝛁𝑵𝒘𝑻𝛁𝑵𝒖Ω 𝑑Ω， 12 𝑲𝒎𝒘𝒘 = −𝑚𝑤𝑣2 ∫ 𝑵𝒘,𝑹𝑻 𝑵𝒘,𝑹Ω 𝑑Ω + 𝑏𝑤𝑣 ∫ 𝑵𝒘𝑻𝑵𝒘,𝑹Ω + 𝐶2𝑤 ∫ ∇𝑵𝒘𝑻𝛁𝑵𝒘Ω 𝑑Ω, 13 𝑲𝒎𝒘𝒂 = 𝐶3𝑤 ∫ ∇𝑵𝒘𝑻𝛁𝑵𝒂Ω 𝑑Ω，𝒇𝒎𝒘 = ∫ 𝑵𝒘𝑻𝚪 𝑝𝑛𝑤𝑑Γ 14 

The momentum conservation equation for pore gas is multiplied by the trial function 𝛿𝒖̅𝒂, and its equivalent integral, in 15 

weak form, is obtained. Using the Gauss-Green integral method, it becomes: 16 ∫𝛿𝒖̅,𝒊𝒂Ω (𝐶1𝑎∇ ∙ 𝒖𝒔 + 𝐶2𝑎∇ ∙ 𝒖̅𝒘 + 𝐶3𝑎∇ ∙ 𝒖̅𝒂)𝑑Ω −∫𝛿𝒖̅𝒂𝜌𝑎(𝑢̈𝑖𝑠 − 2𝑣𝑢̇𝑖,𝑅𝑠 + 𝑣2𝑢𝑖,𝑅𝑅𝑠 )Ω 𝑑Ω17 

−∫𝛿𝒖̅𝒂𝑚𝑎(𝑢̈̅𝑖𝑎 − 2𝑣𝑢̇̅𝑖,𝑅𝑎 + 𝑣2𝑢̅𝑖,𝑅𝑅𝑎 )Ω 𝑑Ω −∫𝛿𝒖̅𝒂𝑏𝑎(𝑢̇̅𝑖𝑎 − 𝑣𝑢̅𝑖,𝑅𝑎 )Ω 𝑑Ω18 

−∫𝛿𝒖̅𝒂𝑛𝑖Γ (𝐶1𝑎∇ ∙ 𝒖𝒔 + 𝐶2𝑎∇ ∙ 𝒖̅𝒘 + 𝐶3𝑎∇ ∙ 𝒖̅𝒂)𝑑Γ = 0 19 

The mass, damping and stiffness matrices of (19) are: 20 𝑴𝒂𝒔 = −𝜌𝑎 ∫ 𝑵𝒂𝑻𝑵𝒖Ω 𝑑Ω，𝑴𝒎𝒂 = −𝑚𝑎 ∫ 𝑵𝒂𝑻𝑵𝒂Ω 𝑑Ω， 21 𝑪𝒎𝒂𝒔 = 2𝑣𝜌𝑎 ∫ 𝑵𝒂𝑻𝑵𝒖,𝑹Ω 𝑑Ω，𝑪𝒎𝒂 = 2𝑣𝑚𝑎 ∫ 𝑵𝒂𝑻Ω 𝑵𝒂,𝑹𝑑Ω − 𝑏𝑎 ∫ 𝑵𝒂𝑻𝑵𝒂𝑑ΩΩ ， 22 𝑲𝒎𝒂𝒔 = −𝜌𝑎𝑣2 ∫ 𝑵𝒂,𝑹𝑻 𝑵𝒖,𝑹Ω 𝑑Ω + 𝐶1𝑎 ∫ 𝛁𝑵𝒂𝑻𝛁𝑵𝒖Ω 𝑑Ω，𝑲𝒎𝒂𝒘 = 𝐶2𝑎 ∫ 𝛁𝑵𝒂𝑻𝛁𝑵𝒘Ω 𝑑Ω， 23 𝑲𝒎𝒂𝒂 = −𝑚𝑎𝑣2 ∫ 𝑵𝒂,𝑹𝑻 𝑵𝒂,𝑹Ω 𝑑Ω + 𝑏𝑎𝑣 ∫ 𝑵𝒂𝑻𝑵𝒂,𝑹Ω + 𝐶3𝑎 ∫ 𝛁𝑵𝒂𝑻𝛁𝑵𝒂Ω 𝑑Ω, 24 𝒇𝒎𝒂 = ∫ 𝑵𝒂𝑻𝚪 𝑝𝑛𝑎𝑑Γ. 25 
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