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Abstract 1 

Geotechnical measurements are often limited, leading to the use of interpolation techniques for 2 

interpreting spatial variations in geotechnical properties from sparse geo-data. Traditional 3 

geostatistical methods suffer from significant computational complexity. On the other hand, data-4 

driven approaches often lack integration with geotechnical domain knowledge, potentially 5 

oversimplifying or complicating predictions related to the spatial variability of geotechnical properties. 6 

This study introduces a novel framework that combines geotechnical knowledge with data-driven 7 

methods to model inherent soil spatial variability incorporating Geotechnical Correlation Field (GCF) 8 

that reflects domain knowledge. The GCF, influenced by Autocorrelation Function (ACF) types and 9 

Scale of Fluctuation (SOF), provides a flexible basis for accurately representing spatially varying 10 

geotechnical properties. Using a large synthetic database comprising known ACF types and SOFs, we 11 

constructed a series of specialized neural networks. These networks identify random field parameters 12 

at different sites based on sparse data, and the estimated parameters can be directly used to calculate 13 

GCFs for a given site. The performance of the proposed method is validated using a set of synthetic 14 

data and a real case history in New Zealand. The results demonstrate the model can accurately predict 15 

random field parameters for irregularly spaced geo-data, even with limited information. Significantly, 16 

the GCFs offer improved physical interpretations and enhance the performance of subsurface modeling. 17 

The computational complexity of this method is independent of the number of soil cells, making it 18 

highly efficient and scalable. 19 

Keywords: Spatial variability; Data-driven Method; Random field theory; Site investigation; Neural 20 

Network 21 
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1 Introduction 22 

The spatial variability of soil properties is a significant source of uncertainty in geotechnical 23 

engineering (Phoon et al., 2022; Shi and Wang, 2023; Uzielli et al., 2005). This challenge is prevalent 24 

across various fields, such as accurately assessing the extent and concentration of contaminated sites 25 

in environmental engineering or predicting mineral reserves and distribution densities in mining 26 

engineering (Gu et al., 2023; Wang and Shi, 2023; Zhang et al., 2020; Zhao et al., 2018). Precise and 27 

high-resolution geographic information can assist engineers in analysis and design optimization  (Chen 28 

et al., 2023; Wang et al., 2020; Zhao et al., 2020). However, obtaining high-density in-situ 29 

measurements using expensive and time-consuming testing equipment is often impractical. 30 

Engineering projects typically retrieve sparse measurements from limited locations. For instance, it is 31 

common to use Cone Penetration Tests (CPT) at intervals of 25-100 m along the ground surface (Guan 32 

et al., 2020) to characterize subsurface ground conditions (Collico et al., 2024). Although CPT tests 33 

provide continuous measurements with depth, the interpretation of spatial distribution of soil properties 34 

is challenging, particularly in the horizontal direction (Xie et al., 2022b, 2022a; W. Zhang et al., 2022). 35 

The use of interpolation or data-driven methods to predict soil properties at unsampled locations 36 

is an active area of study (Shi and Wang, 2021a; Wang et al., 2018; Xie et al., 2024). In this context, 37 

several techniques, including Geostatistical methods, Distance-based methods, Bayesian analysis, and 38 

data-driven methods, have found wide application (Hu and Wang, 2024; Wang and Chen, 2023; Zou 39 

et al., 2017). For instance, Kriging provides direct estimates and uncertainty assessments of soil 40 

properties at unsampled locations, but when geotechnical measurements are sparse and exhibit 41 

significant variations, Kriging predictions often tend to capture the average trend and disregard the 42 
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spatial variability of soil properties (Nag et al., 2023). Notably, when simulating large-scale or fine-43 

resolution random fields, traditional conditional random field methods may suffer from low 44 

computation due to excessively large correlation matrices (Yang et al., 2021). Recently, Yang and 45 

Ching (2021) proposed an efficient method for simulating conditional random fields (CRFs) by 46 

utilizing the Kronecker-product to decompose the large correlation matrix, and further extended this 47 

approach to simulate multivariate cross-correlated CRFs (Z. Yang et al., 2022). Bayesian Compressive 48 

Sensing (BCS) is a non-parametric and data-driven method that can be directly applied to non-49 

stationary random fields (Wang and Zhao, 2017). However, BCS does not incorporate specific basis 50 

function forms relevant to geotechnical modeling (Cami et al., 2020; Phoon and Wang, 2019). Inverse 51 

Distance Weighting (IDW) and the Geotechnical Distance Field (GDF) method both attempt to recover 52 

the soil properties at unsampled points based on the "distance" between unsampled points and sampled 53 

points (Xie et al., 2022b). It's important to note that soil properties exhibit location-specific 54 

dependencies, implying that soil properties within a certain scale of fluctuation (SOF, δ) in a particular 55 

subsurface stratigraphy are correlated (Phoon et al., 2003). Therefore, relying solely on relative 56 

distances to infer soil properties at unsampled points may overlook this fact. 57 

Although data-driven methods can be straightforward to use, they tend to overlook the 58 

geotechnical expertise, such as random field theory. This may lead to overly simplified or complex 59 

subsurface modeling results. These 'black-box' models may impede effective collaboration between 60 

engineers and the models, compromising the prediction performance. The incorporation of 61 

geotechnical knowledge can steer the prediction towards correct solutions. Therefore, a random field-62 

informed and data-driven model is introduced to predict spatially varying soil property from sparse 63 
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site-specific measurements. In this approach, random field theory is embedded in the data-driven 64 

model through Geotechnical Correlation Field (GCF). Essentially, GCF is derived from the 65 

decomposition of the correlation matrix (C) used in random field theory to describe the correlation 𝜌 66 

between soil cells. For instance, Fig. 1 (a)-(c) illustrate three GCFs for point A, where darker colors 67 

correspond to a higher correlation between the respective soil cell and point A. The advantages of 68 

employing GCFs are threefold: (1) Soil properties at point A are only correlated with those within a 69 

specific range, strictly adhering to the fact that soil properties exhibit location-specific dependencies; 70 

(2) The correlation between point A and other points is affected by the type of autocorrelation function 71 

(ACF)(Ching et al., 2019), providing a flexible tool for accurately describing soil properties; (3) The 72 

impact of point A on other points is constrained by the Scale of Fluctuation (SOF), facilitating the 73 

geotechnical engineer to enhance further collaboration with the model by controlling the SOF. In 74 

contrast, Fig. 1(d)-(f) represent three Geotechnical Distance Fields (GDFs) corresponding to the 75 

distances from the sampling point to the ground surface (Line A), the corner point (Point B), and the 76 

exploration location (Line B). Compared to methods using two-dimensional coordinates as input 77 

features, GDFs significantly enhance feature dimensions and modeling accuracy. However, GDFs 78 

overlook the fact that soil properties exhibit location-specific dependencies. Furthermore, in 79 

comparison to BCS and GDFs, GCFs can comprehensively consider multiple ACF types, providing 80 

flexible input features, as opposed to relying on a single base function or fixed feature type.  81 

It is noteworthy that the generation of GCF depends on the specific site's ACF types and 82 

corresponding SOFs. Estimating random field parameters based on sparsely distributed measurement 83 

data is challenging (Dasaka and Zhang, 2012; Qi and Liu, 2019; Yan et al., 2023). Traditional methods 84 
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include the method of moments (Lloret-Cabot et al., 2014; Onyejekwe et al., 2016), maximum 85 

likelihood estimation (Xiao et al., 2018) and Bayesian analysis(Cami et al., 2020; Ching et al., 2018). 86 

However, these methods are influenced by human experience and involve certain assumptions about 87 

describing SOFs, mainly used for estimating vertical SOFs. Recently, some machine learning-based 88 

methods for estimating horizontal and vertical SOFs have been proposed, with prediction models based 89 

on Convolutional Neural Networks (CNN) demonstrating good performance and efficiency (Zhang et 90 

al., 2021; 2022). Nevertheless, current CNN methods cannot assess the optimal ACF type based on 91 

measurement data. 92 

 93 

Fig. 1 Illustration of GCFs and GDFs: GCFs (a-c); GDFs (d-f) 94 

  To address these challenges, this study draws inspiration from the generation process of traditional 95 

conditional random field to construct a framework for the data-driven model. This framework provides 96 

support for the proposed subsurface modeling method, by allowing the developed data-driven model 97 

to integrate geotechnical knowledge. The framework employs random field samples generated from 98 

specified GCFs serve as training data to train a neural network that is used for forward prediction of 99 

spatially varying soil properties and estimation of random field parameters. The performance of the 100 
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proposed method is illustrated using a set of synthetic data and a real case study in New Zealand. The 101 

remainder of this study is organized as follows: In section two, the proposed subsurface modeling 102 

framework is introduced. The construction and validation of the random field parameter estimation 103 

model is in section three. Subsequently, the performance of the proposed GCF-based subsurface 104 

modeling approach is validated by a set of synthetic data. In section five, further validation is 105 

conducted using a real case study in New Zealand, followed by conclusions. 106 

2 Proposed Methods for Predicting Spatially Varying Geotechnical Properties 107 

The essence of data-driven subsurface modeling lies in utilizing machine learning (ML) 108 

techniques to learn the correlation between sampling positions (coordinates) and the corresponding 109 

soil properties, and then using the trained ML model to infer soil properties at unsampled positions. 110 

Notably, this study effectively integrates random field theory into the process of subsurface modeling 111 

using GCF, aiming to enhance modeling reliability and reduce modeling uncertainty. 112 

In GCF, instead of using 2D or 3D coordinates to represent the positions of soil cells, it employs 113 

the correlation between each soil cell and every sampled soil cell. Therefore, the framework proposed 114 

in this study first estimates the random field parameters of the site (e.g., types of ACFs, horizontal SOF, 115 

and vertical SOF). Subsequently, based on random field theory and predicted parameters, 116 

corresponding GCFs are computed. Finally, a machine learning (ML) model is employed to learn the 117 

complex relationship between GCFs and observed soil properties, enabling predictions of soil 118 

properties at unsampled locations. As illustrated in Fig. 2, the geotechnical subsurface modeling 119 

process in this study involves six key steps, using the case of three CPTs as an illustrative example:  120 

(1) Collect CPT data (e.g., cone tip resistance 𝒒c) along with corresponding horizontal coordinates 121 
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(𝑳). 122 

(2) Utilize the ACFs type prediction model (Model #1) to assess the probability 𝑃 of measured 123 

CPT data belonging to each ACF type. This study considers seven common ACF types, ensuring that 124 ∑ 𝑃𝑖=1, i=1-7. 125 

(3) Utilizing the horizontal and vertical SOFs prediction models (Model #2 and Model #3) to 126 

accurately estimate the measured CPT data's horizontal and vertical SOFs. Notably, SOFs predicted 127 

based on different ACF types can vary. Therefore, both Model #2 and Model #3 incorporate seven sub-128 

models (corresponding to the seven ACF types), resulting in seven sets of predicted horizontal and 129 

vertical SOFs corresponding to different ACF types. 130 

(4) Employing seven sets of random field parameters (ACFs and corresponding horizontal and 131 

vertical SOFs) to calculate the seven sets of GCFs, as outlined in Section 2.3. 132 

(5) Constructing the subsurface prediction model (Model #4) involves using GCFs as input and 133 

the geotechnical properties of soil cells as output. Once Model #4 is well-trained, it can be utilized to 134 

predict soil properties at unexplored locations. Notably, since Step (4) generates seven sets of GCFs, 135 

it allows for the creation of seven sub-models within Model #4. 136 

(6) Weighted summation of the predicted results (𝒀𝑖) from the seven sub-Model #4, based on the 137 

probabilities (𝑃𝑖 ), yields the subsurface modeling outcome (𝒀 = ∑ 𝑃𝑖𝒀𝑖 ) closely correlated with 138 

observed data. 139 

Notably, in Steps (2), (3), and (5), independent data-driven models (PCA-SC neural networks) are 140 

employed for predicting ACFs types, estimating horizontal and vertical SOFs, and subsurface 141 

modeling. Specifically, the ACFs types and SOFs prediction models are trained using a large synthetic 142 
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𝑞𝑐  database containing known ACFs types and SOFs. Detailed descriptions of Models #1-4 are 143 

provided in the subsequent sections. 144 

 145 

Note: 𝒒̂𝑐  and 𝑳̂  represent the standardized cone tip resistance 𝒒c  and horizontal coordinates 𝑳 . Standardization of 146 

data is necessary for neural network models to expedite the training process and enhance model performance. In Step 147 

(2), the seven types of ACFs can be referenced from Table 1. Since the values of GCF range between 0 and 1, larger 148 

GCF values indicate stronger correlation between two soil cells. 149 

Fig. 2. Framework for Proposed Soil Property Recovery for 3 CPTs 150 

2.1 PCA–Shortcut Connection Neural Network 151 

It is noteworthy that a universal PCA-SCNN structure, as depicted in Fig. 3, is utilized for ACFs 152 

classification (Model #1), horizontal SOF estimation (Model #2), vertical SOF estimation (Model #3), 153 

and subsurface modeling (Model #4). While the training datasets fed into the PCA-SCNN differ across 154 

tasks, resulting in different inputs and outputs for each model, the remaining structure of the models is 155 

consistent. 156 
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In Fig. 2, Models #1-3 take standardized 𝒒c and 𝑳 as input, while Model #4 utilizes GCFs. It’s 157 

worth noting that CPT tests provide almost continuous soil information in the vertical direction, 158 

leading to higher-dimensional 𝒒c  and GCFs. However, handling high-dimensional input features 159 

increases model complexity, extends training time, and requires substantial memory. This study 160 

proposes a solution: the PCA-NN structure. PCA, an unsupervised dimensionality reduction method, 161 

transforms multiple potentially correlated features into a smaller set of linearly uncorrelated principal 162 

components (PCs). This process eliminates redundancy in input data and reduces the number of 163 

neurons in the neural network's input layer. By simplifying the data-driven model structure, this 164 

enhances model convergence speed (Bai et al., 2023; He et al., 2016). The dimension of PCs is set to 165 

100 in this study.  166 

As the depth of a neural network increases, its non-linear representation strengthens (Hong et al., 167 

2024; Zhang et al., 2023). But deeper networks introduce challenges like gradient vanishing and 168 

exploding. To tackle these issues, shortcut connections are incorporated into the model. Research by 169 

Li et al. (2018) indicates that these connections promote loss surface minimization and prevent chaotic 170 

behavior. Therefore, a shortcut connection is established between the input layer and the last hidden 171 

layer, concatenating input features with those of the final hidden layer to improve training efficiency 172 

and overall performance. 173 

Fig. 3 displays the model structure. Notably, Monte–Carlo dropout (MC dropout) is applied after 174 

the hidden layers. Dropout randomly deactivates a portion of neuron connections during training, 175 

preventing the model from becoming too dependent upon specific neurons and thus reducing 176 

overfitting (P. Zhang et al., 2022). MC dropout extends this concept by randomly deactivating neuron 177 
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connections not only during training but also during prediction. While the network structure and weight 178 

parameters are fixed after training, MC dropout introduces randomness to the model structure. Through 179 

multiple predictions, an output distribution is obtained, assisting in the assessment of prediction 180 

uncertainty. The model formulation is as follows: 181 𝒙 = PCA(Input) (1) 182 𝒉𝑖 = Dropout[ReLU(𝒙, 𝜽𝑖, 𝜷𝑖)]   𝑖 = 1, 2,3 (2) 183 𝒉4 = Dropout[ReLU(concatenate(𝒙, 𝒉3), 𝜽4, 𝜷4)] (3) 184 𝒐 = Dropout[ReLU(𝒉4, 𝜽4, 𝜷4)] (4) 185 

where x denotes the input feature vector following PCA preprocessing; h is the hidden layer feature 186 

vector;  𝜽 and 𝜷 are the weight and bias vectors for each layer, respectively. concatenate refers to the 187 

direct merging of two vectors. For activation functions, ReLU is frequently employed due to its rapid 188 

convergence, computational simplicity, and absence of gradient vanishing, defined as ReLu(𝑣) =189 max (0, 𝑣). It is essential to note that, the model is used for both regression and classification, and in 190 

classification models, the activation function in Eq. (4) should be changed as Softmax to ensure that 191 

the sum of probabilities across all classifications equals 1. 192 
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 193 

Fig. 3 Architecture of the PCA–Shortcut Connection Neural Network (PCA-SCNN) 194 

2.2 Classification of ACF Types and Estimation of SOFs 195 

In this study, the training samples for Models #1-3 consist of synthetic zero-mean stationary 196 

normal random fields 𝒒c (Zhang et al., 2021). The CPT data depth is 10 m with a resolution of 0.05 m 197 

thus ensuring sufficient information in the synthetic sample path. The CPT ranges from 0 to 100 m 198 

horizontally with a resolution of 0.25 m. Given that the number of CPTs within a site is variable, four 199 

scenarios of CPT quantities are considered (2, 3, 4, and 5). The analytical modeling process for 200 

different CPT quantities follows a similar approach. To avoid redundancy, an example with 3 CPTs is 201 

illustrated in Fig. 4. Apart from the CPT quantity, this study considers three other variables: 202 



13 

 

 203 

Fig. 4 Flow of ACF Type Classification and SOFs Estimation for 3 CPTs 204 

(1) Different ACF types. Table 1 presents expressions for common ACFs (Cami et al., 2020), 205 

where 𝜏ℎ  and 𝜏𝑣  represent the horizontal and vertical distances of two soil cells, 𝛿ℎ  and 𝛿𝑣  are the 206 

horizontal and vertical SOFs. This study opts for seven commonly used one-parameter ACFs prevalent 207 

in geotechnical engineering. While some two-parameter ACFs that allow defining smoothness have 208 

been developed (Ching et al., 2018), their application in practical cases is relatively limited. 209 

Table 1. Frequently Used Autocorrelation Functions (ACFs) - Adapted from Cami et al. (2020) 210 

Autocorrelation 
model 

Autocorrelation function 

 𝝆(𝝉𝒉, 𝝉𝒗) 

Frequency 
of usage 

Single exponential 
(SNX) 

exp [−2 (|𝜏ℎ|𝛿ℎ + |𝜏𝑣|𝛿𝑣 )] 47 % 

Second–order 
Markov (SOM) 

(1 + 4 |𝜏ℎ|𝛿ℎ ) (1 + 4 |𝜏𝑣|𝛿𝑣 ) exp [−4 (|𝜏ℎ|𝛿ℎ + |𝜏𝑣|𝛿𝑣 )] 4 % 

Third–order Markov 

(TOM) (1 + 163 |𝜏ℎ|𝛿ℎ + 25627 (|𝜏ℎ|𝛿ℎ )2) (1 + 163 |𝜏𝑣|𝛿𝑣 + 25627 (|𝜏𝑣|𝛿𝑣 )2) exp (− 163 (|𝜏ℎ|𝛿ℎ + |𝜏𝑣|𝛿𝑣 )) New 
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Squared exponential 
(SQX) 

exp [−𝜋 (𝜏ℎ2𝛿ℎ2 + 𝜏𝑣2𝛿𝑣2)] 15 % 

Binary noise 

(BIN) 
{(1 − |𝜏ℎ|𝛿ℎ ) (1 − |𝜏𝑣|𝛿𝑣 )   |𝜏ℎ| ≤ 𝛿ℎ and |𝜏𝑣| ≤ 𝛿𝑣0                                    otherwise  9 % 

Cosine exponential 
(CSX) 

cos (|𝜏ℎ|𝛿ℎ ) cos (|𝜏𝑣|𝛿𝑣 ) exp (− (|𝜏ℎ|𝛿ℎ + |𝜏𝑣|𝛿𝑣 )) 10 % 

Spherical 
(SPH) 

{[1 − 98 |𝜏ℎ|𝛿ℎ + 27128 (|𝜏ℎ|𝛿ℎ )3] [1 − 98 |𝜏𝑣|𝛿𝑣 + 27128 (|𝜏𝑣|𝛿𝑣 )3]  |𝜏ℎ| ≤ 43 𝛿ℎ and |𝜏𝑣| ≤ 43 𝛿𝑣0              otherwise  15 % 

(2) Different distributions of CPT positions. Due to constraints in equipment, site conditions, 211 

and costs, the positions of CPT measurements often exhibit irregular distribution. Existing data-driven 212 

models solely rely on CPT measurement data as input (Zhang et al., 2022), potentially overlooking the 213 

actual distances between different CPT data points. As depicted in Fig. 4, this study enhances the 214 

model's adaptability in unevenly spaced scenarios by incorporating the coordinates (L) of each CPT 215 

test as an additional input.  216 

(3) Different horizontal and vertical SOFs. The horizontal SOF range from 3 to 105 m, and the 217 

vertical SOF range from 0.1 to 3.5 m (Cami et al., 2020; Zhang et al., 2021). 218 

Notably, assessing the ACF type and SOFs for unevenly spaced CPT data poses a more intricate 219 

challenge. This study addresses this by (1) utilizing a PCA-SCNN with robust nonlinear fitting 220 

capabilities to construct a data-driven model and (2) augmenting the training data volume.  221 

Consequently, in the process of constructing training samples, seven common ACFs, 2000 sets of 222 

random CPT positions, and 250 sets of random horizontal and vertical SOFs combinations are 223 

considered. Therefore, the total training dataset comprises 7 × 500,000 samples, with 500,000 samples 224 

for each ACF type. Detailed model information for 3 CPTs is provided in Table 2. 225 

Table 2. Overview of the Architecture of the ACF Classification Model and the SOFs Estimation Model for 3 CPTs 226 
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Model Number 
of models 

Inputs Outputs 
Activation function & 
(number of neurons) 
in the output layer 

Sample 
size 

Model #1 

(Classification of ACFs) 1 CPT data (𝒒̂𝐜) 

& 

positions 

(𝑳̂) 

Pi Softmax (7) 7×500,000 

Model #2 

(Estimation of SOFx) 7 SOFx ReLU (1) 500,000 

Model #3 

(Estimation of SOFy) 7 SOFy ReLU (1) 500,000 

Note: Model #1 is utilized to determine the probability of CPT data belonging to the 7 ACF types. Therefore, the 227 

training samples for Model #1 comprise all samples of the 7 ACF types (7 × 500,000). The 7 neurons in the output 228 

layer of Model #1 correspond to the probabilities 𝑃𝑖 (i=1-7) of CPT data belonging to each ACF type. The activation 229 

function used is Softmax, ensuring ∑ 𝑃𝑖 = 1. Model #2 and Model #3 are used to estimate the horizontal and vertical 230 

SOFs of CPT data, respectively. Therefore, both Model #2 and Model #3 consist of 7 independent sub-models 231 

corresponding to the 7 ACF types. Each sub-model's training samples only include samples of one ACF type (500,000 232 

samples). Each sub-model's output layer contains only 1 neuron, and the activation function used is ReLU. 233 

After training, Model #1-3 can be utilized to predict the probabilities𝑃𝑖 (i=1-7) of measured CPT 234 

data 𝒒cmbelonging to the 7 ACF types, as well as the corresponding SOFx and SOFy for each ACF type. 235 

It is noteworthy that during the training process, the input of the Model #1-3 is [𝒒̂𝐜, 𝑳̂], where 𝒒̂𝐜 is the 236 

normalized 𝒒𝐜 ; 𝑳̂  is the normalized position coordinate, 𝑳̂ = 𝑳/100 . To ensure the accuracy of the 237 

prediction results, the real measurement data 𝒒cm  should closely resemble the training data 𝒒̂𝐜 . 238 

Therefore, the following steps are needed: ① First, apply the Box-Cox method to transform 𝒒cm into 239 

a normal distribution (Zou et al. , 2017), as shown in Eq. (5); ② Calculate the mean and standard 240 

deviation of the normal distribution, and transform the data into a standard normal distribution; ③ 241 

Apply Min-Max normalization to transform the data back into 𝒒̂𝐜. 242 

𝒒c = {𝒒cm𝜆 − 1𝜆    𝜆 ≠ 0 ln(𝒒cm)   𝜆 = 0 (5) 243 

where 𝜆  is the power parameter that needs to be estimated. The optimal 𝜆  value can be efficiently 244 

determined using common statistical software such as the Scipy library implemented in Python. 245 

2.3 Geotechnical Subsurface Modeling Using GCFs 246 
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Currently, spatial positions of sampling points are commonly represented using Euclidean 247 

distance-based coordinates. However, these coordinates have low-dimensional features and lack 248 

effective constraints from random field theory. To address this issue, this study proposes a high-249 

dimensional GCF that conforms to random field theory to characterize the spatial positions of sampling 250 

points: (1) The GCF aligns with random field theory, where the correlation between two soil cells 251 

within the site is calculated using random field theory rather than simple Euclidean distance. (2) The 252 

GCF has higher-dimensional features. Instead of using 2D or 3D relative coordinates to represent the 253 

positions of soil cells, it employs the correlation between each soil cell and every sampled soil cell, as 254 

illustrated in Fig. 5. 255 

In this study, GCFs are employed to characterize the correlation between soil cells (calculated 256 

based on ACFs, SOFs, and relative distances), effectively integrating random field theory into the data-257 

driven model. The process of generating GCFs is illustrated in Fig. 5. Assuming discretization of the 258 

geological site into a 4 × 6 grid, where the second and fifth columns represent sampled points, and the 259 

other columns represent unsampled points. Taking soil cell 𝑒5  as an example, the GCF of 𝑒5 is defined 260 

as the correlation matrix (GCFe5) between 𝑒5 and other soil cells within the site: 261 

GCFe5 = [𝜌5,1 𝜌5,5 𝜌5,9𝜌5,2 𝜌5,6 𝜌5,10𝜌5,3 𝜌5,7 𝜌5,11𝜌5,4 𝜌5,8 𝜌5,12   𝜌5,13 𝜌5,17 𝜌5,21𝜌5,14 𝜌5,18 𝜌5,22𝜌5,15 𝜌5,19 𝜌5,23𝜌5,16 𝜌5,20 𝜌5,24] (6) 262 

where 𝜌5,𝑗 represents the correlation between soil cell 𝑒5 and 𝑒𝑗, calculated using different ACFs from 263 

Table 1, and 𝜌5,𝑗 = 𝜌𝑗,5. Considering that only the soil properties of cells 𝑒5 to 𝑒8 and 𝑒17 to 𝑒20 are 264 

known, a total of 8 GCFs can be generated: GCFe5  to GCFe8  and GCFe17  to GCFe20 . Therefore, the 265 

spatial position of soil cell 𝑒𝑖 (i=1-24) in the geological correlation field can be represented by an 8-266 
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dimensional coordinate vector: [ 𝜌𝑖,5, 𝜌𝑖,6, 𝜌𝑖,7, 𝜌𝑖,8, 𝜌𝑖,17, 𝜌𝑖,18, 𝜌𝑖,19, 𝜌𝑖,20 ], which indicates the 267 

correlation between 𝑒𝑖 and the 8 sampled soil cells. 268 

The essence of subsurface modeling based on GCFs is to utilize a data-driven model to learn the 269 

relationship between the coordinate vectors of 𝑒𝑖  and their corresponding geological properties, 270 

represented as 𝑞̂c𝑖 = 𝑓([𝜌𝑖,5, 𝜌𝑖,6, 𝜌𝑖,7, 𝜌𝑖,8, 𝜌𝑖,17, 𝜌𝑖,18, 𝜌𝑖,19, 𝜌𝑖,20]) , where f represents a complex 271 

implicit function. In this study, PCA-SCNN is employed to solve f, which corresponds to Model #4 in 272 

Fig. 2. The model takes an 8-dimensional coordinate vector as input and outputs the corresponding 273 

geological properties of the soil cells. As shown in Fig. 5, the input and output of the training set for 274 

Model #4 can be represented as 𝑥𝑖 = [𝜌𝑖,5, 𝜌𝑖,6, 𝜌𝑖,7, 𝜌𝑖,8, 𝜌𝑖,17, 𝜌𝑖,18, 𝜌𝑖,19, 𝜌𝑖,20], 𝑦𝑖 = [𝑞̂c𝑖 ], where 𝑖 = 5-275 

8 and 17-20. The test set can be represented as 𝑥𝑗 = [𝜌𝑗,5, 𝜌𝑗,6, 𝜌𝑗,7, 𝜌𝑗,8, 𝜌𝑗,17, 𝜌𝑗,18, 𝜌𝑗,19, 𝜌𝑗,20], where 276 𝑗 = 1-4, 9-16, and 21-24. Therefore, the training set consists of 8 samples, while the test set consists of 277 

16 samples, all with a feature dimension of 8. If there are N discrete soil cells within the site, among 278 

which M cells have been measured, then the training set will have M samples, and the test set will have 279 

N−M samples, all with a feature dimension of M. 280 
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 281 

Fig. 5. Illustration of Geotechnical Correlation Fields and Associated Training and Test Set (Note: When the 282 

resolution of CPT does not align with the size of the soil cell, the average property of the soil cell is the mean value 283 

of the included measurement data.) 284 

As depicted in Fig. 6 (a)-(g), using the seven different ACFs from Table 1, GCFs for soil cells at 285 

the coordinate origin (0 m, 0 m) are generated under horizontal and vertical SOFs of 2 m and 1 m, 286 

respectively. The contour lines of different GCFs exhibit distinct shapes, indicating significant 287 

variations in the influence range of the soil cells around the coordinate origin. Fig. 6 (h) and (g) 288 

illustrate one-dimensional correlation curves for different GCFs along the y=0 m section. While these 289 

curves demonstrate similar trends, GCFs generated by SNX, BIN, CSX, and SPH are not differentiable 290 

at zero lag, leading to lower smoothness of the corresponding sample paths (Ching et al., 2019). Real 291 

CPT data are often challenging to interpret with a single ACF. Vanmarcke (1983) proposed overlaying 292 

two or more ACFs to create a more flexible ACF. As shown in Fig. 2, this study adopts this overlay 293 

approach, generating seven sets of GCFs using seven sets of ACFs, followed by constructing seven 294 
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independent Model #4 for subsurface modeling. Finally, the predictions of the seven subsurface models 295 

are weighted by 𝑃𝑖  to obtain a modeling result closely related to the measured data. 296 

 297 

Fig. 6. Correlations of Various GCFs Under Horizontal and Vertical Scale of Fluctuation (SOF) Set at 2 m and 1 m 298 

Respectively: (a) SNX, (b) SOM, (c) TOM, (d) SQX, (e) BIN, (f) CSX, (g) SPH; (h) Cross-Sectional Trends at y=0 299 

m for ACFs; (i) zoom-in view of (h) 300 

2.4 Uncertainty Estimation of the Model 301 

In this study, the uncertainty of the subsurface models is evaluated using the Monte Carlo Dropout 302 

structure of neural networks (P. Zhang et al., 2022). The MC dropout structure randomly deactivates a 303 

certain percentage of connections between neurons, introducing randomness into the model's 304 

architecture. Through repeated predictions (e.g., 100 times), the uncertainty of the output results can 305 

be directly obtained. As shown in Fig. 3, the models used for ACFs classification (Model #1), 306 

horizontal SOF estimation (Model #2), vertical SOF estimation (Model #3), and subsurface modeling 307 

(Model #4) all incorporate the MC dropout structure. Therefore, the output results of Model #1-4 are 308 
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associated with uncertainty. 309 

It is noteworthy that different horizontal and vertical SOFs generate distinct GCFs, necessitating 310 

the repetitive construction of different Model #4 for subsurface reconstruction. To minimize 311 

computational costs, the most robust SOFs predictions are considered, obtained by running the SOFs 312 

prediction model 100 times and averaging the results. Therefore, the primary source of uncertainty in 313 

subsurface modeling stems from the combined contributions of ACFs classification (Model #1) and 314 

subsurface modeling (Model #4). As shown in Fig. 2, the one subsurface modeling result 𝒀 considers 315 

the influence of 7 ACFs, represented as 𝒀 = ∑ 𝑃𝑖𝒀𝑖 , where i ranges from 1 to 7. To obtain uncertainty 316 

in the prediction results, Model #1 and Model #4 need to predict 100 times each, yielding 100 sets of 317 𝑃𝑖 and 𝒀𝑖. Computing according to the aforementioned formula yields 100 subsurface modeling results. 318 

3 Classification and SOF Prediction Models 319 

The PCA operation is implemented using Scipy v1.9.3, and the construction and training of the 320 

SCNN are carried out using Tensorflow-GPU v2.8.0—both are open-source packages developed in 321 

Python. The neural network consists of four hidden layers, each containing 512 neurons, with a dropout 322 

rate set to 0.3. For SCNN, a batch size of 512 is chosen to expedite the model training process. The 323 

initial learning rate is set at 0.001, with a 0.5 reduction if the loss on the validation set does not decrease 324 

for 15 consecutive iterations. Early stopping is employed to control the number of model iterations, 325 

terminating the training process if the model's loss on the validation set does not improve for 30 326 

consecutive iterations. These hyperparameters are determined through a grid search approach. The 327 

training uses the Nadam optimizer, an extension of the Adam optimizer with RMSprop and Nesterov 328 

momentum. 329 
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3.1 Training and Validation of Classification Models 330 

The classification of ACF is a multi-class problem. Hence, the classification cross-entropy loss 331 

function is used and the activation function for the output layer is set to Softmax. One-hot encoding is 332 

employed to represent ACF categories. Each dimension of the one-hot encoding represents the 333 

probability that the measured data belongs to a specific category. For example, the SNX category can 334 

be represented as [1, 0, 0, 0, 0, 0], while the SOM category is represented as [0, 1, 0, 0, 0, 0], and so 335 

on. 336 

To avoid redundancy, Fig. 7 illustrates the performance of the classification model on the training, 337 

validation, and test sets using only three CPT quantities. It can be observed that the classification model 338 

exhibits high prediction accuracy on the training set, and its performance on the validation and test 339 

sets is similar. This indicates the classification model is able to capture the complex relationship 340 

between CPT data and ACF categories and does not suffer from overfitting. Furthermore, the model 341 

can distinguish between SNX, SOM, and SQX categories. The TOM sample paths exhibit a degree of 342 

smoothness between SOM and SQX, and the model occasionally misclassifies TOM as SOM or SQX. 343 

In the case of BIN, CSX, and SPH sample paths, their smoothness is quite similar, leading to potential 344 

misclassifications among the three models. However, these misclassifications are acceptable, as even 345 

in cases of misclassification, the model provides similar predictions. 346 

 347 
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 348 

Fig. 7. Classification Model Performance with 3 Sets of CPT Measurements: Training (a, d), Validation (b, e), Test 349 

(c, f) Sets  350 

 As shown in Fig. 8, the classification model exhibits strong predictive performance on the test set 351 

across different numbers of CPT data. The classification model maintains a high level of prediction 352 

accuracy even with just two CPT curves. As the measurement data increases, the model's accuracy in 353 

predicting BIN significantly improves. As depicted in Fig. 6, for a given SOF, the influence range of 354 

the BIN model varies considerably from that of the CSX and SPH models. Therefore, with an 355 

increasing amount of measurement data, the model can not only consider the smoothness of sample 356 

paths for classification but also effectively account for the influence range of SOF. 357 

 358 

Fig. 8. Test Set Performance of the Classification Model: (a) 2CPT, (b) 4CPT, (c) 5CPT 359 

3.2 Training and Validation of SOF Models 360 

 The prediction of SOF is a regression problem. The model employs mean squared error (MSE) as 361 

the loss function and applies the ReLU activation function in the output layer. All other configurations 362 
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remain consistent with the classification model. Root mean square error (RMSE), mean absolute 363 

percentage error (MAPE), and the coefficient of determination (𝑅2) are used to assess the differences 364 

between the predicted values (𝑦̂𝑖) and the measured values (𝑦𝑖) and can be expressed as follows: 365 

𝑅𝑀𝑆𝐸 = √1𝑛 ∑(𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1 (6) 366 

𝑀𝐴𝑃𝐸 = 1𝑛 ∑ |𝑦𝑖 − 𝑦̂𝑖𝑦𝑖 |𝑛
𝑖=1 × 100% (7) 367 

𝑅2 = 1 − ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛𝑖=1∑ (𝑦𝑖 − 𝑦̅)2𝑛𝑖=1 (8) 368 

where 𝑦̅  is the mean 𝑞c value; 𝑛 is the total number of samples. When 𝑅2 is close to 1, and RMSE and 369 

MAPE are relatively small, the predictive performance of the model is better. 370 

Usually, the training set exhibits higher accuracy compared to the validation and test sets. 371 

Therefore, only the prediction results of the models for different ACFs in the validation and test sets 372 

are displayed. As shown in Fig. 9 (a)–(g), the horizontal SOF prediction models all demonstrate good 373 

performance, with the SQX model exhibiting the highest prediction accuracy. Its test set's R2 is close 374 

to 1, with RMSE and MAPE values of only 2.49% and 3.29%, respectively. Although the SNX model 375 

has marginally lower accuracy, it still performs well on the test set, with an R2 of 0.91 and RMSE and 376 

MAPE values of 7.93 and 11.60%, respectively. 377 

As shown in Fig. 9 (h)–(n), the vertical SOF prediction models all exhibit improved performance. 378 

Among them, the SQX model shows the highest prediction accuracy. Its test set's R2 is 1.00, with 379 

RMSE and MAPE values of 0.05 and 3.68%, respectively. The SNX model has marginally lower 380 

prediction accuracy, with an R2 of 0.98 and RMSE and MAPE values of 0.17 and 10.09%, respectively. 381 

It can be observed that the model's prediction performance is related to the smoothness of the 382 
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sample path. The smoother the sample path, the higher the prediction accuracy of the model. When the 383 

sample path is very rough, it becomes more challenging to distinguish whether the fluctuations in the 384 

measurement data are caused by the SOF or the roughness of the sample path itself. However, overall, 385 

the established prediction models demonstrate good accuracy. 386 

 387 

 388 

Fig. 9. SOF Prediction Model Performance: Horizontal SOF (a–g); Vertical SOF (h–n) 389 
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4 Subsurface Modeling and Validation 390 

4.1 Synthetic Case Study 391 

It is uncommon to record high-resolution test data along the surface of a site. Therefore, this 392 

section illustrates the proposed method using a set of synthetic two-dimensional Gaussian  𝑞𝑐 field, as 393 

depicted in Fig. 10. The two-dimensional cross-section has a depth (h) of 10 m and extends 100 m 394 

along the surface. The 𝑞𝑐 field is simulated with a resolution of 0.05 m and 1.0 m along the depth and 395 

horizontal directions, respectively. In this example, the mean (μ) and standard deviation (σ) are taken 396 

as 10 MPa and 4 MPa, respectively. The horizontal and vertical SOF are set as 50 m and 2 m. As shown 397 

in Fig. 10, under fixed random seeds, simulation results for two types of ACF, SNX, and SOM, are 398 

generated using the matrix decomposition method. The sample paths of SNX exhibit more roughness 399 

compared to SOM. The results of SNX and SOM are averaged to obtain synthetic data with sample 400 

path smoothness between the two, as shown in Fig. 10 (c). 401 

 402 

Fig. 10. Synthetic 𝑞𝑐 Stratigraphy Depictions: (a) SNX, (b) SOM, (c) Averaged 403 

4.2 Model Construction and Validation 404 

 To validate the influence of different CPT quantities on modeling accuracy, the measurement 405 
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locations are x = 10.5 m, 30.5 m, 50.5 m, 70.5 m, and 90.5 m. CPT #1 and CPT #5 are not placed at 406 

boundary positions, aiming to assess the extrapolation capability of the proposed method. As illustrated 407 

in Fig. 11, when the CPT quantity is two, the horizontal distance between CPT #1 and CPT #5 is 408 

significantly greater than the actual horizontal SOF. This leads to challenges in accurately predicting 409 

the horizontal SOF of the model. However, with more than three CPT measurements, the predicted 410 

mean values of the SOF closely align with the actual values. 411 

 412 

Fig. 11. Predictions of Horizontal and Vertical SOFs for Different CPT Quantities 413 

As shown in Fig. 12 (a)–(d), subsurface modeling is performed using the proposed method with 414 

2, 3, 4, and 5 CPTs, respectively. It is evident that, with an increase in the number of CPTs, the 415 

modeling results become progressively finer. When only 2 CPTs are used, the predicted horizontal 416 

SOF is relatively large, indicating the model has limited capability to predict the spatial distribution of 417 

soil properties near x=50 m. However, it accurately predicts the soil properties near the measurement 418 

locations. With 3 CPTs, the model's predictions near the measurement locations closely resemble those 419 

with more CPT records. The predictions corresponding to 4 and 5 CPTs are in close agreement, 420 

indicating that the information from CPT #4 is already well-predicted with just 4 CPTs. 421 
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As shown in Fig. 12 (d)–(f), the proposed method, GDF–ET (Xie et al., 2022b), BCS (Wang et al., 422 

2020; Zhao et al., 2020), and Kriging (Zou et al., 2017) are presented for the case of 5 CPTs. Both the 423 

Kriging and the proposed methods necessitate the estimation of random field parameters. This is 424 

typically accomplished through the method of moments, maximum-likelihood estimation, and 425 

Bayesian analysis (Ching et al., 2020; Ching and Phoon, 2019; Liu et al., 2017; Liu and Leung, 2018; 426 

Xiao et al., 2018, 2016). The maximum-likelihood estimation further facilitates the selection of the 427 

optimal ACF model using either the Akaike information criterion (AIC) or the Bayesian information 428 

criterion (BIC) (Chang et al., 2021). As illustrated in Fig.12 (g), the Kriging method employs the SNX 429 

model, which aligns with the ACF model used for generating synthetic cases in Fig. 10, and exhibits 430 

smaller AIC and BIC values. 431 

As shown in Fig. 12 (d)–(f), GDF–ET excels at predicting the mean values of the soil properties 432 

within the stratigraphy. BCS produces more intricate predictions compared to synthetic stratigraphy. 433 

In cases where soil property variations are relatively gradual, BCS often yields accurate predictions.  434 

Notably, when the subsurface modeling process lacks the constraints of geotechnical knowledge, the 435 

complexity of predictions in different data-driven methods is often related to the algorithm's basis 436 

functions or the complexity of input features. This can lead to over-simplification or over-complication 437 

of predictions in some specific stratigraphy. Embedding geotechnical knowledge can help prevent such 438 

occurrences. The Kriging method exhibits high precision in areas close to CPT boreholes, but tends to 439 

estimate using the mean of nearby areas when positioned between two boreholes (Zou et al., 2017). 440 

Notably, the Kriging method exhibits cubic complexity (Y. Yang et al., 2022) which may consume 441 

excessive computational resources and result in slow solutions when dealing with large amounts of 442 
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soil cells. The method proposed in this study benefits from the control of random field theory, ensuring 443 

a good consistency between the prediction results and the actual site. Simultaneously, the proposed 444 

method is modeled based on a data-driven approach, allowing it to be applied to situations with large 445 

amounts of data at a lower computational complexity, as detailed in Section 4.4. 446 

 447 

 448 

Fig. 12. Comparative 𝑞𝑐 Modeling Results: Proposed Method (a–d) at 2, 3, 4, and 5 CPTs; GDF-ET Method (e),  449 

BCS Method (f) and Kriging Method (g) at 5 CPTs 450 

 As illustrated in Fig. 13 (a)–(d), with an increasing number of CPTs, R2 of the predictions 451 

consistently improves, while RMSE and MAPE decrease, indicating improved prediction accuracy. 452 

Notably, since the synthetic random field follows a normal distribution, a substantial amount of data 453 

is around the mean value (10 MPa). As the volume of measurement data increases, the predictions 454 

gradually approach the 1:1 line. In Fig. 13 (d)–(f), with 5 CPTs, the R2 values for the GDF–ET and 455 
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BCS models are close, with the BCS model having a slightly larger RMSE compared to the GDF–ET, 456 

and GDF–ET model exhibiting a higher MAPE than BCS. The predictions by the GDF-ET method 457 

mostly fall within the range of mean ± one standard deviation, while the BCS method exhibits overall 458 

better consistency across the entire range. Benefiting from accurate random field parameters, the 459 

Kriging method’s predictive results surpass those of the GCF-ET and BCS methods. The proposed 460 

method shows higher R2 and lower RMSE and MAPE with better accuracy compared to the other 461 

methods. 462 

 463 

Fig. 13. Comparison of Modeling Results: Proposed Method (a–d) at 2, 3, 4, and 5 CPTs; GDF-ET Method (e),  464 

BCS Method (f) and Kriging Method (g) at 5 CPTs 465 

As shown in Fig. 14, the predicted results and their confidence intervals at x = 40.5 m and 80.5 m 466 

are extracted. It is evident that the overall trend of the predicted results closely aligns with the actual 467 

values, and the majority of observed data falls within the 95% confidence interval of the predictions. 468 

Additionally, the predictions from the GDF and kriging models tend to converge toward the mean, 469 

while the BCS method exhibits unexplained fluctuations at certain locations. 470 
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 471 

Fig. 14. Model Uncertainty Assessment at Locations: (a) x=40.5 m, (b) x=80.5 m 472 

4.3 Nonstationary Synthetic Case Study 473 

It is worth noting that when evaluating random field parameters, the input for the ACF 474 

classification model and SOF prediction model is the CPT data after detrending. This section primarily 475 

evaluates the capability of the proposed method to perform subsurface modeling directly on non-476 

stationary data (measured CPT data) after obtaining random field parameters. This approach helps to 477 

improve modeling efficiency and reduce uncertainties caused by detrending. Therefore, a non-linear 478 

trend is introduced into the stationary random field depicted in Fig. 10(c). The synthetic data assumed 479 

a simple second-order increasing trend in the depth direction: 0.05ℎ2, followed by Xie et al. (2022b). 480 

Fig. 15(a) illustrates the synthesized non-stationary random field. Fig. 15(b)-(d) show predictive results 481 

based on five CPT datasets using the proposed method, GDF, and BCS. It can be observed that all 482 

three methods capture the trends of the site well. Among them, GDF-ET and BCS show some 483 

simplification or complication compared to the synthetic stratigraphy. Although the proposed method's 484 

predictive results exhibit some simplification, due to the constraints of random field information, it 485 

effectively recovers most of the information from the synthetic stratigraphy. Combining these results 486 
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with Fig. 16 reveals consistently higher R2 values for the proposed method compared to the GDF and 487 

BCS methods, with relatively minimal RMSE and MAPE. Compared to modeling results for stationary 488 

data using GCFs, as shown in Fig. 13 (d), direct modeling results for non-stationary data show higher 489 

R2 and lower MAPE values, with RMSE values close. This indicates the proposed method achieves 490 

improved modeling accuracy and is applicable for both stationary and non-stationary data with a mild 491 

trend. 492 

 493 

Fig. 15. Modeling 𝑞𝑐  Results Comparison: (a) Actual, (b) Proposed Method, (c) GDF-ET, (d) BCS 494 

 495 

Fig. 16. Comparative Analysis of Different Modeling Methods: (a) Proposed Method, (b) GDF-ET, (c) BCS 496 

4.4 Computational Complexity of Subsurface Modelling 497 

Illustrating the computational efficiency and complexity of the proposed subsurface modeling 498 

method using the non-stationary case described in Section 4.3. As shown in Fig. 15 (a), the synthetic 499 
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site consists of 20,000 discrete soil cells arranged in a 200×100 grid. Each CPT borehole includes 200 500 

soil cells. Considering the case of five CPTs, a total of 1,000 soil cells are measured (5×200). 501 

Consequently, the corresponding training and testing datasets consist of 1,000 and 19,000 samples, 502 

respectively. Each sample has 1,000 features (denoted as (M)), as described in Section 2.3. 503 

As depicted in Fig. 17(a), a comparison is made between the total trainable parameters in the 504 

subsurface model with and without the PCA operation module. Since CPT tests provide nearly 505 

continuous information in the vertical direction, the input feature dimension (M) is typically large. As 506 

the number of CPTs increases, not applying PCA to the input data leads to an exponential growth in 507 

the neural network’s parameter count, significantly reducing its computational efficiency. The PCA-508 

SCNN model proposed in this study preprocesses the input data with PCA dimensionality reduction 509 

before feeding it into the neural network. Hence, the feature dimensionality M of the input data does 510 

not affect the model's complexity. 511 

As depicted in Fig. 17 (b), after applying PCA processing to the input data, the training time for 512 

an individual subsurface model stabilizes at around 20 seconds. The training time remains independent 513 

of the number of CPTs. Furthermore, PCA processing effectively reduces the training time, especially 514 

when dealing with a larger quantity of CPTs. Notably, if PCA processing is not performed, when the 515 

number of CPTs reaches 40, the model consumes a significant amount of memory, increase training 516 

difficulty, and may even become untrainable. 517 

Fig. 17(c) illustrates the training process of the subsurface modeling model using 5 CPTs as an 518 

example. Models with PCA-processed input not only converge more easily but also exhibit generally 519 

lower validation losses. The PCA operation significantly reduces the training complexity of the model. 520 
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In Fig. 17 (d)-(f), we evaluate the model’s prediction results using R2, RMSE, and MAPE metrics. As 521 

the number of CPTs increases, the model’s prediction accuracy steadily improves, with the PCA-522 

processed model consistently outperforming the non-PCA model. 523 

  524 

 525 

Fig. 17 The Impact of PCA Operations and the Number of CPTs on the Complexity of Subsurface Model (Model 526 

#4): (a) Increasing the Number of CPTs Affects the Trainable Parameter Count in Model #4. (b) The Effect of 527 

Increasing CPT Numbers on the Training Time of Model #4. (c) The Training Process of Model #4 with 5 CPTs. 528 

(d)-(f) Evaluation of the Subsurface Modeling Results Using R2, RMSE, and MAPE Metrics. 529 

5 Real Data Case Study 530 

A set of CPT data from the Christchurch region in New Zealand is used to further demonstrate the 531 

proposed method. As shown in Fig. 18, a total of seven sets of qc data are selected for subsurface 532 

modeling, taken from the New Zealand Geotechnical Database (NZGD) (NZGD, 2023). It is important 533 

to note that the measurement locations of these seven sets of CPT data are not strictly aligned along a 534 
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straight line. Therefore, CPT soundings are projected onto the two-dimensional vertical cross-section 535 

represented by the red dashed line in Fig. 18. The two-dimensional vertical cross-section extends 536 

approximately 82 m along the ground surface, with qc data typically collected to depths of around 20 537 

m below the surface, as illustrated in Fig. 19. The codes and positions of the seven datasets in NZGD 538 

are as follows: CPT_4047 (10.5 m), CPT_4556 (33.5 m), CPT_2715 (42.5 m), CPT_99651 (47.5 m), 539 

CPT_2353 (63.5 m), CPT_2358 (70.5 m), and CPT_14412 (92.5 m). For this case, the qc data have 540 

spatial resolutions of 1 m along the ground surface and 0.05 m in the depth direction. 541 

 542 

Fig. 18. Geographical Layout and Cross-Section of 7 CPT Soundings in Christchurch, New Zealand (NZGD, 2023) 543 

 544 

Fig. 19. Set of Seven Measured CPT Data 545 
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Given that actual CPT data consists of trend and residual terms, this study employs a linear 546 

function for detrending, as illustrated in Fig. 19. The modified Bartlett statistical test (Phoon et al., 547 

2003) is employed to assess the stationarity of the residual term after detrending. It is worth noting that 548 

the critical Bartlett peak value, 𝐵crit , used in the modified Bartlett statistical test to determine the 549 

stationarity of the sample sequence, depending on the ACF type. Using a classification model for 550 

prediction, it is found that the actual CPT data has the highest probability of belonging to the SOM 551 

and CSX models. 𝐵crit_SOM  and 𝐵crit_CSX  values of 71.85 and 48.87, detailed calculation steps are 552 

available in (Phoon et al., 2003). The 𝐵stat values for the residual terms from all CPT measurements 553 

are mostly below 71.85, with the majority falling below 48.87. Therefore, when using the SOM ACF, 554 

the null hypothesis of weak stationarity for the residual terms cannot be rejected at a significance level 555 

of 5%. In the case of CSX, the assumption of weak stationarity holds for most scenarios. Furthermore, 556 

it is worth noting that within the 7 sets of measured data, there are noticeable outliers, such as 557 

CPT_2353 and CPT_2358. These outliers are common in real-world data, and in this study, no special 558 

treatment is applied to them. This is done to further test the robustness of the proposed method. 559 

Section 4.3 validates the proposed method's applicability to both stationary and non-stationary 560 

data. Therefore, in this case, a detrending operation is solely applied during the assessment of random 561 

field parameters. Subsequently, the GCFs, based on the obtained random field parameters, are used as 562 

the model's inputs, with non-stationary observed data serving as output for subsurface modeling. As 563 

shown in Fig. 20, subsurface modeling is conducted using different numbers of CPTs, with the 564 

remaining CPTs serving as the test set for validation. With only 2 CPTs, the model struggles to provide 565 

a detailed prediction of soil properties in the horizontal direction. As more CPT datasets are 566 
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incorporated, the modeling results become progressively more refined. Notably, near x=70m, the 567 

modeling results exhibit a lens-shaped (hole effect) distribution.  568 

As depicted in Fig. 21, the model's predictions on the training set are nearly identical to the 569 

observed values, indicating that using correlation as inputs for the model provides enhanced non-linear 570 

expressive capabilities. On the test set, the model predictions closely match the observed values, 571 

suggesting the model can predict soil properties in unknown areas based on the correlation 572 

relationships established in the training set. It's worth noting that the model does not appear to be 573 

affected by the outlier data from CPT_2353 and CPT_2358. This further validates the robustness of 574 

the method, showing it can provide accurate predictions, even when dealing with anomalies. This 575 

feature reduces the complexity of applying the method for subsurface modeling on a large scale, thus 576 

making it more accessible to geotechnical engineers. 577 

 578 

Fig. 20. Subsurface Modeling of Varied Numbers of CPT data: (a) 2; (b) 3; (c) 4; (d) 5 579 
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 580 

Fig. 21. Predictions of Measurement Locations of Varied Numbers of CPT Data: (a) CPT_4047, (b) CPT_4556, (c) 581 

CPT_2715, (d) CPT_99651, (e) CPT_2353, (f) CPT_2358, and (g) CPT_14412 582 

6 Conclusions 583 

This study introduces an innovative data-driven framework for soil property recovery which 584 

integrates geotechnical knowledge. This framework attempts to recover soil properties at unsampled 585 

points using sparse geotechnical measurements. Based on results from this study, the following 586 

conclusions can be drawn: 587 

(1) The use of geotechnical correlation fields as inputs for the subsurface reconstruction model 588 

align with the fact that soil properties exhibit location-specific dependencies. This integration of 589 

random field theory into the data-driven model fosters enhanced collaboration between the model and 590 

geotechnical engineers. The superiority of the data-driven model has been validated through 591 

experiments with two synthetic random fields and a real-world case study. 592 

(2) The subsurface modeling method proposed in this study benefits from PCA-SCNN model’s 593 

dimensionality reduction of the input. The computational complexity of the model is independent of 594 

the number of soil cells, resulting in stable modeling efficiency and excellent scalability. 595 

(3) A robust model for identifying types of autocorrelation functions is proposed, and this model 596 
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explicitly estimates the probability of observed data belonging to a specific type of autocorrelation 597 

function, even in cases with limited measurement data. 598 

(4) The addition of location labels to measurement data addresses the challenge of predicting SOFs 599 

in irregularly spaced CPT locations, and the developed SOF prediction models exhibit superior 600 

performance, as indicated by R2, MAPE, and RMSE. 601 

The proposed geotechnical knowledge-based data-driven framework is promising for geotechnical 602 

engineering applications and bridges the gap between data-driven modeling and domain-specific 603 

knowledge, thereby enhancing the accuracy and reliability of estimating spatially varying geotechnical 604 

properties. It should be noted that: ① The proposed framework is flexible, where each model can be 605 

replaced with common methods according to the user’s preference. For example, the Maximum 606 

Likelihood Estimation method can be used to estimate random field parameters. Then, the estimated 607 

random field parameters can be used to calculate GCFs. Subsequently, user-friendly machine learning 608 

models can be employed to establish the relationship between GCFs and the measured soil properties. 609 

② The construction process of the proposed random field parameter prediction model is relatively 610 

complex. Once the model is trained, it can be directly applied to the target site, making the prediction 611 

process highly efficient and straightforward. Moreover, it does not require users to have a background 612 

in mathematical statistics. ③ Compared to the Kriging model, which has a cubic computational 613 

complexity, the computational complexity of the data-driven subsurface model proposed in this study 614 

is independent of the number of soil cells, resulting in stable modeling efficiency and excellent 615 

scalability. 616 

Notably, when subsurface conditions involve multiple soil layers with significant variations in 617 
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properties, and each layer has distinct random field parameters, researchers can employ either manual 618 

or IC-XGBoost methods (Shi and Wang, 2023, 2021b) to delineate the spatial distribution of 619 

subsurface stratigraphic boundaries. Then, our proposed method can be used to model the spatially 620 

varying soil properties within each soil layer. Furthermore, due to the sparsity of CPT data in the 621 

horizontal direction, the detection data for weak thin layers often constitute only a small proportion of 622 

the overall dataset. Therefore, data-driven subsurface modeling methods should further investigate 623 

their applicability and improvement strategies under conditions of data imbalance. 624 

Notation 625 

The following terms and notations are used in this paper: 626 

Terms 
CPT Cone penetration test 
CRF Conditional random field 

BCS Bayesian compressive sensing 

IDW Inverse distance weighting 

GDF Geotechnical distance field 

GCF Geotechnical correlation field 

SOF Scale of fluctuation 

ACF The autocorrelation function 

CNN Convolutional neural network 

SNX Single exponential 
SOM Second–order Markov 

TOM Third–order Markov 

SQX Squared exponential 
BIN Binary noise 

CSX Cosine exponential 
SPH Spherical 
PCA-SCNN Principal component analysis–shortcut connection neural network 

Model #1 The ACFs classification model 
Model #2 The horizontal SOF estimation model 
Model #3 The vertical SOF estimation model 
Model #4 The subsurface modeling model 
MSE Mean squared error 
RMSE Root mean square error 
MAPE Mean absolute percentage error 𝑅2  The coefficient of determination 

Notations 
C The correlation matrix 𝒒c  Cone tip resistance (MPa) 𝑳  Horizontal coordinates (m) 𝑃  The probability of measured CPT data belonging to each ACF type. 𝒀  The subsurface modeling outcome (MPa) 
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𝒒cm  The measured 𝒒c (MPa) 𝒒̂𝑐  The standardized cone tip resistance 𝑳̂  The standardized horizontal coordinates 𝒙  The input feature vector following PCA preprocessing 

h The hidden layer feature vector 𝜽  The weight vectors 𝜷  The bias vectors 𝒐  The output of the model 𝜏ℎ and 𝜏𝑣 The horizontal and vertical distances of soil properties at two discrete points (m) 𝛿ℎ and 𝛿𝑣  The horizontal and vertical SOFs (m) 𝜆  The power parameter of the Box-Cox method 𝑒𝑖  The i-th soil cell GCFe𝑖  The GCF of 𝑒𝑖 𝜌𝑖,𝑗  The correlation between soil cell 𝑒𝑖 and 𝑒𝑗 

f The complex implicit function 

N Total number of soil cells 

M The number of samples in the training set, the feature dimension of the model #4 𝑦̅  The mean value 𝑦̂𝑖  The predicted values 𝑦𝑖  The measured values 𝑛  Total number of samples 

h The depth of the site 

μ The mean value of the random field (MPa) 
σ The standard deviation of the random field (MPa) 𝐵crit  The critical Bartlett peak value 
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