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The Nepetoideae, a subfamily of Lamiaceae (mint family), is rich in aromatic plants, many of which are sought after for their use as flavors 
and fragrances or for their medicinal properties. Here, we present genome assemblies for two species in Nepetiodeae: Drepanocaruym 
sewerzowii and Marmoritis complanata. Both assemblies were generated using Oxford Nanopore Q20 + reads with contigs anchored to 
nine pseudomolecules that resulted in 335 Mb and 305 Mb assemblies, respectively, and BUSCO scores above 95% for both the assem-
bly and annotation. We furthermore provide a species tree for the Lamiaceae using only genome-derived gene models, complementing 
existing transcriptome and marker-based phylogenies.
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Introduction

The mint family (Lamiaceae) is the sixth largest plant family with 
a number of species regarded as important for medicinal, aromat-
ic, and ornamental properties (Harley et al. 2004; Zhao et al. 2021; 
Rose et al. 2022). Within the Lamiaceae, species from the 
Nepetoideae are renowned for the accumulation of terpenoids, 
with tissues used for the extraction of essential oils or as tradition-
al herbal medicines (Wink 2003; Frezza et al. 2019). The clade 
includes widely recognized aromatic species such as mint, laven-
der, lemon balm, and catnip; the volatile terpenoids produced by 
these plants are responsible for their characteristic fragrances. 
The ethnobotanical and commercial relevance of this plant family 
has resulted in considerable scientific interest, including genome 
assemblies for 36 species at the time of writing (Published Plant 
Genomes).

Here, we present the genome assemblies for two Nepetoideae 
species, namely Drepanocaryum sewerzowii (Regel) Pojark. and 
Marmoritis complanata (Dunn) A.L.Budantzev. M. complanata is 
endemic to the subnival band of the Himalaya–Hengduan 
Mountains, a unique arctic–alpine region recognized as a biodiver-
sity hotspot (Myers et al. 2000; Sun et al. 2017). This unique habitat 
necessitates careful control of seed germination to ensure sur-
vival (Peng et al. 2018). M. complanata and other species of the genus 
are also used as traditional herbal medicines to treat a variety of 
ailments that include digestive, reproductive, musculoskeletal, 
and skin disorders (Zaman et al. 2022). D. sewerzowii is native to 

a region that ranges from Iran to Central Asia and Pakistan and 
is the sole representative of this genus (Serpooshan et al. 2018).

These two species are part of the Nepetinae, a subtribe of the 
mint family (Lamiaceae, subfamily Nepetoideae, tribe 
Mentheae) that consists of 375 species and 9–12 genera of which 
Nepeta L. is considered the type genus encompassing 200–300 spe-
cies. Other genera in this subfamily include Dracocephalum L., 
Hymenocrater Fisch. and C.A. Mey., Lophanthus Adans., Agastache 
Clayton ex Gronov., and Schizonepeta (Benth.) Briq. (Serpooshan 
et al. 2018; Rose et al. 2023). The phylogenetic relationship of M. 

complanata and D. sewerzowii relative to Nepeta cataria L., N. racemo-

sa Lam., Agastache rugosa (Fisch. and C.A. Mey.) Kuntze and 
Schizonepeta tenuifolia (Benth.) Briq. is what prompted our efforts 
to assemble these genomes. We have been exploring the evolu-
tionary, genomic, and enzymatic innovations of monoterpenoid 
biosynthesis in these species (Lichman et al. 2019, 2020; 
Hernández Lozada et al. 2022; Liu et al. 2023). However, the avail-
able genomic resources provide limited taxonomic coverage. 
The genome assemblies presented here will allow us to further ex-
plore the evolutionary innovations that have impacted terpenoid 
biosynthesis in the mint family.

Methods and Materials
Plant growth conditions
D. sewerzowii seeds were obtained from the Millennium Seed 
Bank at the Royal Botanic Gardens, Kew (serial no. 0694027). 
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M. complanata seeds were collected from Puyong Pass Shangri-la 
County, Yunnan Province, SW China (99°55′E, 28°24′N), 4,620 m 
a.s.l. (Peng et al. 2018). Seeds were germinated on 1% water agar 
in a growth room set to 16 h day length, temperature of 20 (±2) °C, 
relative humidity of 60% (±10%), and a NS12 light spectrum at 
120 µmol m−2 s−1 PPFD using Valoya L28 LED lights (Helsinki, 
Finland). Once a radical emerged, the seedlings were transferred 
to 7 cm square pots containing Levington Advance Seed and 
Modular FS2 (ICL Professional Horticulture) seedling soil that 
was pretreated with Calypso (Bayer). Once established, a single in-
dividual was selected and maintained as a clonal population by 
propagation using cuttings.

Genome size and heterozygosity estimation
Genome size estimations were determined through flow cytome-
try (FCM) using the method of Dolezel et al. (2007). Briefly, the LB01 
buffer was used together with N. cataria and N. racemosa tissues 
to prepare a reference standard with previously reported genome 
sizes (Mint Evolutionary Genomics Consortium 2018). A CytoFLEX 
LX (Beckman Coulter) FCM with a 561 nm excitation laser, 610/20 
emission filter, and a flow rate of 30 µL/min was used. The thresh-
old was set to 488 nm forward scatter to exclude instrument noise 
and background signal from the buffer. Fluorescence intensities 
of stained nuclei were used to analyze the nuclear DNA content 
and determine the genome size relative to the aforementioned 
Nepeta spp. reference samples.

Paired-end 150 Illumina short reads were used to estimate gen-
ome size and heterozygosity by determining k-mer frequencies 
with KMC v3.1.2 (Kokot et al. 2017) using a k-mer of 21 and trans-
formed into a histogram using kmc_tools with a count cutoff of 
15,000. Genomescope v2.0 (Ranallo-Benavidez et al. 2020) with 
ploidy set to 2 was used to estimate the genome size and level of 
heterozygosity.

Nucleic acid isolation
High molecular weight DNA isolation and sequencing

High molecular weight (HMW) DNA was extracted in duplicate 
from ∼1 g of young leaf tissue using the Nucleobond HMW DNA 
Extraction kit (Macherey-Nagel, Germany). HMW DNA purity 
and concentration were assessed by Nanodrop and Qubit, where-
after the extractions were combined. Small fragment DNA elimin-
ation was performed with the Circulomics short-read eliminator 
kit (PacBio). Briefly, an equal volume of SRE reagent was added 
to the sample, and this was centrifuged for 1 h at 12,000×g. The 
pellet was washed with 70% ethanol before resuspending in TE 
buffer with low EDTA. DNA quality and quantity were assessed 
with a nanodrop spectrophotometer (Thermo Fischer Scientific), 
Agilent Tapestation (running genomic DNA screentape), and 
Qubit fluorimeter (Invitrogen). Sequencing was performed with 
the ligation sequencing kit SQK-LSK114 (Oxford Nanopore 
Technologies), as per the manufacturer’s guidelines, with limited 
modifications; namely extending the reaction times for end 
preparation to 30 min at each temperature, and extending adapt-
er ligation steps to an hour). Sequencing was performed on a 
single promethION FLO-PRO114 flowcell (Oxford Nanopore 
Technologies) per species, with nuclease flush and sample reload 
steps performed every 24 h through the run time. For M. complana-

ta two additional runs using the SQK-LSK112 ligation sequencing 
kit (Oxford Nanopore Technologies) and FLO-MIN112 minION 
flowcells (Oxford Nanopore Technologies) were performed.

Base calling of the ONT reads was performed using guppy 
(Oxford Nanopore Technologies) version 6.1.5 for D. sewerzowii 

and version 6.3.9 for M. complanata with the super accuracy (sup) 
model. Read length and quality were assessed using Nanoplot 
(De Coster and Rademakers 2023). D. sewerzowii reads were filtered 
for a 10 kb minimum length using Nanofilt (De Coster et al. 2018). 
For M. complanata we combined all reads from the promethION 
and minION runs and then filtered using Nanofilt (De Coster 
et al. 2018) with a 3 kb length and Q15 quality cutoff.

Genomic DNA isolation and Illumina sequencing
Genomic DNA (gDNA) was extracted from 100 mg of young leaf 
tissue, in duplicate, using a CTAB extraction method (Doyle and 
Doyle 1990) and treated with RNAse A. Removal of RNA was con-
firmed through gel electrophoresis followed by gDNA quality and 
quantity assessment with a nanodrop spectrophotometer and a 
Qubit fluorometer (Invitrogen). A total of 508 ng and 752 ng of 
gDNA for D. sewerzowii and M. complanata, respectively, was sent 
for library preparation and paired-end Illumina sequencing with 
Novogene (Cambridge, UK).

RNA isolation and sequencing
RNA was extracted from 80 to 100 mg of tissue with the Direct-Zol 
RNA extraction kit (Zymo Research, CA, USA) as per the manufac-
turer guidelines. For D. sewerzowii, young and mature leaves, 
closed and open flowers, and stems were used. For M. complanata 

root, young and mature leaf and stem tissues were used. RNA 
quality was assessed with an Agilent bioanalyzer. Library prepar-
ation and paired-end Illumina sequencing were performed by 
Novogene (Cambridge, UK).

Hi-C sequencing
Freshly harvested young leaf tissue was fixed in 1% formaldehyde 
and washed as per the Phase Genomics (Seattle, WA, USA) sample 
preparation protocol. Following fixation, the tissue was flash fro-
zen in liquid nitrogen and homogenized using a tissue lyser. The 
Hi-C libraries were prepared and sequenced by Phase Genomics.

Genome assembly
Filtered nanopore reads for the respective genomes were used for 
assembly and error correction. Both species were first assembled 
using Flye v2.9 (Lin et al. 2016; Kolmogorov et al. 2019; --iterations 
0 and --nano-hq flags). M. complanata was also assembled with 
NECAT v0.0.1 (Chen et al. 2021) using the default configuration 
file settings. Our error correction pipeline entailed polishing with 
long reads by two rounds of RACON v1.5 (Vaser et al. 2017), with 
reads mapped using minimap2 v2.24 (Li 2018), followed by two 
rounds of MEDAKA v1.6 (Medaka: Sequence Correction Provided 
by ONT Research 2018) polishing. Short reads were mapped using 
bwa-mem v0.7.17 (Li 2013) and duplicate reads were marked using 
Picard v2.25.5 (“Picard Toolkit” 2019) prior to two iterative rounds of 
polishing with Pilon v1.23 (Walker et al. 2014). Short-read alignment 
and pairing rates were determined using flagstat command from 
samtools v.1.17 (Danecek et al. 2021).

The M. complanata Flye and NECAT assemblies were merged 
with Quickmerge v0.3 (Chakraborty et al. 2016; Solares et al. 
2018) due to the low N50 scores. The overlap cutoff (-c flag) was 
5 and the length cutoff (-l) was 100,000 with the NECAT assembly 
used as the query. The NECAT-Flye merged assembly underwent 
another two rounds of short read error correction using Pilon. For 
M. complanata, we purged the merged assembly of haplotigs prior 
to HiC scaffolding while D. sewerzowii was purged after HiC scaf-
folding. Haplotig purging was performed using the purge haplotigs 
pipeline (Roach et al. 2018). Contigs were scaffolded into pseudo-
molecules by Phase Genomics using the Proximo Genome 
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Scaffolding Platform. Contiguity and completeness were assessed 
throughout the assembly pipeline using BUSCO (Benchmarking 
for University Single Copy Orthologs) v5.4.2 with the embryophy-
ta_odb10 dataset (Manni et al. 2021).

Genome annotation
Repeats and transposable elements were annotated using the Earl 
Grey v3.2 (Baril et al. 2023, 2024) pipeline with default settings fol-
lowed by softmasking of the repeats using the maskfasta function 
of bedtools. The BRAKER3 pipeline (v3.0.6; Stanke et al. 2006, 2008; 
Gotoh 2008; Iwata and Gotoh 2012; Buchfink et al. 2015; Hoff et al. 
2016, 2019; Kovaka et al. 2019; Pertea and Pertea 2020; Brůna et al. 
2021; Bruna et al. 2024) was used to predict gene models using 
mRNA and protein evidence. For protein evidence, we generated 
a representative database from 52 Mint species (48 Lamiaceae 
and 4 from Lamiales families) using the transcriptomes from 
(Mint Evolutionary Genomics Consortium 2018). MMseqs2 
(Steinegger and Söding 2017) was used to remove identical se-
quences from the database. For mRNA evidence we aligned 
RNAseq reads from the different tissues using STAR v2.7 (Dobin 
et al. 2013) with default settings and the “--outSAMstrandField 
intronMotif” flag. The respective bam outputs were merged using 
samtools (Danecek et al. 2021) and used as input for BRAKER3. The 
BRAKER annotation output was reformatted to GFF3 using AGAT 
v1.1 (Dainat et al. 2020) followed by extraction and translation of 
the longest open-reading for each predicted coding sequence. 
Annotation completeness was assessed using BUSCO v5.4.2 
(Manni et al. 2021) in protein mode with the embryophyta_odb10 
dataset.

Functional annotations were assigned by searching predicted 
proteins against the Arabidopsis TAIR10 proteome (Lamesch 
et al. 2012) and Magnoliopsida (taxon ID 3398) Swiss-Prot database 
(2024_03 Release; UniProt Consortium 2023). Searches were per-
formed using DIAMOND v2.1.0 (Buchfink et al. 2021) with an 
e-value of 0.001 and retaining the top hit only. Functional domains 
were assigned with hmmsearch through HMMER v3.4 (http:// 
hmmer.org/) against the PFam v37.0 database (Mistry et al. 2021; 
UniProt Consortium 2023) with an e-value cutoff of 0.001 with 
the highest scoring domain hit retained.

Species tree and macrosynteny analysis
Markerminer v1.0 (Chamala et al. 2015) was used to identify single- 
copy genes using predicted coding genes from representative 
Lamiaceae genomes (Supplementary Table 1) and Paulownia 
fortunei (Seem.) Hemsl. as an outgroup. Genes present in 26 of 
the 27 species were included. The MAFFT alignments generated 
as part of the Markerminer pipeline were trimmed for gaps using 
the gappyout algorithm of trimAl v1.4.1 (Capella-Gutiérrez 
et al. 2009) and concatenated into a supermatrix with partitions 
using the catfasta2phyml script (https://github.com/nylander/ 
catfasta2phyml). A species-tree was inferred by maximum likeli-
hood with partition models (Chernomor et al. 2016) using IQ-TREE 
2 (Minh et al. 2020) with ModelFinder (Kalyaanamoorthy et al. 
2017), ultrafast bootstraps (UFBoot2, ×1000; Hoang et al. 2018), 
and SH-aLRT supports (×1000; Guindon et al. 2010). In addition, 
a species tree using protein sequences was inferred using 
the STAG (Species Tree inference from All Genes) method of 
Orthofinder v2.5.4 (Emms and Kelly 2015, 2017, 2018, 2019). 
Pairwise macrosynteny analyses were performed against A. rugosa 
(Park et al. 2023) and S. tenuifolia (Liu et al. 2023) using the JCVI v.1.2.7 
(Tang et al. 2024) implementation of MCScan (Tang et al. 2008). 
MCScan orthologs were identified in full mode with predicted 
protein sequences and default settings.

Expression analysis
RNAseq read alignments were evaluated with STAR v2.7 (Dobin 
et al. 2013) and assed with qualimap v2.2.1 (García-Alcalde et al. 
2012; Okonechnikov et al. 2016). Qualimap reports were aggre-
gated with MultiQC v1.13 (Ewels et al. 2016). Expression counts 
as transcripts per million (TPM) were generated using Salmon 
v1.10.0 (Patro et al. 2017). The transcript index for Salmon was gen-
erated using the full set of predicted coding sequences from 
BRAKER3.

Results and discussion
Genome size and heterozygosity estimation
The genome size was estimated by fluorescence of stained nu-
clei (Dolezel et al. 2007) relative to that of N. cataria and its previ-
ously reported genome size (Mint Evolutionary Genomics 
Consortium 2018). D. sewerzowii was estimated to be 330 Mb 
and M. complanata to be 337 Mb in size. The k-mer estimation 
of genome size (Supplementary Fig. 1) was similar to that of 
FCM with a genome size of 334 Mb and 328 Mb for D. sewerzowii 
and M. complanata, respectively. K-mer analysis estimated the 
heterozygosity at 0.08% and 0.6% for D. sewerzowii and M. compla-

nata, respectively.

Chromosome level assemblies
We sequenced the genomes for D. sewerzowii and M. complanata 

using Oxford Nanopore long reads and Proximo HiC scaffolding 
(Phase Genomics) resulting in two chromosome-level assemblies 
(Fig. 1). A total of 99.24 Gb of super accurate nanopore reads were 
generated for D. sewerzowii with 80 Gb of reads being greater than 
10 kb at a mean read quality (Q-score) of 16.6. The size filtered reads 
provided 242 ×  coverage when using the genome size determined 
through FCM (Supplementary Fig. 1). The initial Flye assembly re-
sulted in 472 contigs, an N50 of 17 Mb, a total assembly length of 
333.75 Mb and a BUSCO score of 98.7%. Polishing with long and 
short reads reduced the number of contigs to 134 and the assembly 
size to 332.85 Mb while maintaining an N50 of 17 Mb. The BUSCO 
score increased slightly to 98.8% after polishing. HiC scaffolding or-
ientated the assembly to 9 pseudomolecules (Supplementary Fig. 
2a), which is in agreement with the chromosome counts reported 
by Bordbar (2023). The 9 pseudomolecules contained 97.6% of the 
contigs, representing 324.87 Mb of the total assembly at an N50 
of 35.2 Mb and L50 of 5 (Table 1).

We obtained 59.3 Gb of reads after length and quality filtering, 
providing 176 ×  coverage when using the 337 Mb FCM genome size 
estimation with a mean Q-score of 18. We tried various different 
read filtering cutoffs for both length and quality with all attempts 
using Flye failing to reach an N50 greater than ∼335 kb. After pol-
ishing the best Flye assembly was 420 Mb in size with an N50 of 
335 kb, 3,001 contigs and a BUSCO score of 98.5%, of which 
17.1% were duplicated. NECAT resulted in a more contiguous gen-
ome assembly of 457 Mb with an N50 of 1 Mb, 869 contigs, and 
98.6% BUSCO, of which 36.7% were duplicated. The inflated gen-
ome size and high number of duplicate BUSCO genes suggested 
that the fragmented assemblies contained a high number of hap-
lotigs (contigs of a single haplotype), that would artificially inflate 
genome size.

In an attempt to increase the continuity of the assembly (N50 
score) we merged the Flye and NECAT assemblies. The NECAT as-
sembly had fewer contigs and greater N50 and was, therefore, se-
lected to be the query genome with the Flye assembly used to 
improve the query genome. We evaluated the impact of haplotig 
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purging before and after merging. Each assembly was purged of 
haplotigs prior to merging and compared to a merged assembly 
that was purged as the final step. In each iteration, we polished 
twice with short reads (18 Gb of PE150 reads) after merging. The 
merging increased the N50 to 3 Mb regardless of when we purged 
the haplotigs. The timing of the purging step had a large impact on 
the number of contigs together with a minor impact on the dupli-
cated BUSCOs. Merging, polishing, and then purging the haplotigs 
resulted in the most contiguous assembly (305.6 Mb) with 
the fewest number of contigs (338) and a BUSCO score of 95.6%. 
HiC scaffolding assembled the contigs into 9 pseudomolecules 
(Supplementary Fig. 2b), which is in agreement with karyotype 

information (Sun 2016), totaling 258 Mb (85% of the total assem-
bly). The pseudomolecules had a BUSCO score of 91.3% with the 
total assembly having a BUSCO of 95.7% (Table 1).

Pseudomolecule termini were manually inspected for the 
presence of the TTTAGGG telomeric repeat. Seven of the D. sew-

erzowii pseudomolecules contained this repeat on at least one 
end with Chr. 4 and 7 having it on both ends. For M. complanata 

we found this repeat on 6 pseudomolecules with Chr. 7 and 8 
having it on both ends. The presence of this repeat on both 
ends indicates a telomere-to-telomere assembly for these 
chromosomes.

A limited number of genome assemblies are available for spe-
cies within the Nepetinae with the nearest sequenced species, 
N. cataria and N. racemosa, having highly fragmented assemblies. 
We, therefore, compared our assemblies to the closest relatives 
with pseudomolecule assemblies, namely A. rugosa (Park et al. 
2023) and S. tenuifolia (Liu et al. 2023). A. rugosa has a 9 chromo-
some assembly with macrosynteny revealing that Chr. 3, 4, and 
6 have remarkably similar genomic structures for both assemblies 
reported here (Fig. 2). Pairwise comparisons (Supplementary 
Fig. 3) highlight the extent of genomic rearrangements within 
the Nepetinae, for example, fusion events resulted in the 6 
chromosome structure of S. tenuifolia. D. sewerzowii, and M. compla-

nata have very similar chromosome structures to each other 
(Supplementary Fig. 3); however, large relative inversions are pre-
sent on M. complanata Chr. 3 and D. sewerzowii Chr. 2, with a trans-
location on Chr. 7. The high proportion of properly mapped and 
paired short-reads (Table 1) suggests that D. sewerzowii is a nearly 
complete assembly. The mapping and pairing rates for M. compla-

nata short reads (Table 1) indicate a less accurate assembly, likely 
due to the higher level of heterozygosity (0.6%). Misassembly due 
to the merging of M. complanata NECAT and Flye assemblies may 
also be a reason for the lower read pairings. Higher accuracy reads 
and phasing will be required to fully resolve the problematic re-
gions. Nevertheless, the M. complanata and D. sewerzowii genome 
assemblies provide a valuable genomic resource for intergeneric 
analyses.

Table 1. Assembly and annotation metrics.

D. sewerzowii M. complanata

Assembly statistics
Assembly size (Mb) 332.85 305.55
Number of pseudomolecules 9 9
N50 (Mb) 35.13 27.69
L50 5 5
L90 9 28
GC% 38.56 37.45
Number of Ns 2,600 18,800
Mapped short-reads 95% 92.2%
Properly paired short-reads 93.8% 84.1%
Annotation statistics
Assembly BUSCOa 

n = 1,440
C: 99.0% 
S: 96.3% 
D: 2.7%

C: 95.7% 
S: 85.7% 
D: 10.0%

Annotation BUSCOa 

n = 1,440
C: 95.0% 
S: 92.1% 
D: 2.9%

C: 95.3% 
S: 86.1% 
D: 9.2%

Predicted coding genes 24,221 25,080
Predicted proteins 26,989 28,384
Percentage repeats Total: 62% 

DNA: 2.38% 
LINE: 0.53% 
LTR: 40.61%

Total: 53% 
DNA: 4.43% 
LINE: 2.92% 
LTR: 25.83%

a Complete (C), single (S), duplicated (D).
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Fig. 1. Circos plots for the genome assemblies of D. sewerzowii and M. complanata depicting density (1 Mb bins) of genes, total repeats, gypsy, and copia 
elements along the 9 pseudomolecules.
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Repeat and genome annotations
Repeat annotation revealed that 62% of the D. sewerzowii genome 
and 53% of the M. complanata genome are repeats (Table 1). The lar-
gest portion of the repeats were long terminal repeats (LTRs), occu-
pying 40.6% and 25.8% of the respective genomes. Subsequent to 
repeat masking our gene annotation, using ab initio, protein and 
mRNA predictions, resulted in 24,221 and 25,080 gene regions 
that encode for 26,989 and 28,384 proteins for the respective gen-
omes. BUSCO analysis of the primary isoforms was 95% for both 
genomes. Gene and repeat density showed an inverse relationship 
along the chromosomes (Fig. 1).

The RNAseq data we produced found evidence for the expres-
sion of the majority of genes. RNAseq reads mapped to gene mod-
els showed that 85% (22,794/26,815) of the genes were expressed 
in at least 1 tissue type for D. sewerzowii and 88% (24,919/28,384) 
of the genes in M. complanata. Expression matrices as TPM are 
available in Supplementary Tables 2 and 3 with functional anno-
tations available in Supplementary Tables 4 and 5.

Phylogenies using genome-derived gene models
The phylogenetic relationships of the Lamiaceae have been re-
ported using plastid, nuclear, and transcriptome approaches. We 
used genome-derived gene models to construct a species tree via 
phylogenomic inference, complementing existing species trees 
(Fig. 3; Mint Evolutionary Genomics Consortium 2018; Serpooshan 
et al. 2018; Rose et al. 2022, 2023). The STAG species-tree used multi-
copy gene families (i.e. orthogroups) predicted by Orthofinder using 
protein sequences. The consensus tree (Fig. 3a) shows internal bi-
partition support for 5,296 orthogroups in which all species are pre-
sent. The ML tree (Fig. 3b) was inferred from a single-copy gene 
supermatrix totaling 340,706 nucleotide sites with all but two 
branches showing above 98% support for both ultrafast bootstraps 
and SH-aLRT. The two branches indicated by the asterisk were not 
well supported, bootstrap and SH-aLRT <85%.

In both the ML and STAG topologies, D. sewerzowii is recovered 
as a sister to a clade that includes M. complanata and Nepeta, 
which are sister to each other. While our phylogenomic results 
corroborate existing hypotheses regarding the close relation-
ships among these genera, our trees are incongruent with previ-
ously reported topologies (Supplementary Fig. 4). For example, 
nuclear phylogenetic results by Rose et al. (2023) report D. sewer-
zowii as sister to Nepeta, which together are sister to the sister 
lineages Hymenocrater and (Lophanthus + Marmoritis). This con-
trasts with plastid-based phylogenetic results reported in the 

same study, which recover Nepeta as sister to a clade comprising 
the sister taxa, Drepanocaryum and Hymenocrater, and their sister, 
(Lophanthus + Marmoritis), and with results by Serpooshan et al. 
(2018), which recover D. sewerzowii as sister to a mixed and par-
tially unresolved clade of Hymenocrater, Lophanthus, Marmoritis, 
and Nepeta. Topological discordances among trees reported in 
this and previous studies likely reflect differences in taxonomic 
and molecular sampling, but they also highlight the complexity 
of resolving intergeneric relationships within Nepetinae.

Understanding these intergeneric relationships is especially 
relevant in the context of specialized metabolism. Evolutionary 
innovations in the Mentha longifolia and S. tenuifolia lineages, for ex-
ample, have resulted in the convergent evolution of biosynthetic 
genes for monoterpenoid biosynthesis (e.g. pulegone and men-
thol; Srividya et al. 2020, 2022; Vining et al. 2022; Liu et al. 2023). 
Similarly, iridoid biosynthesis in N. cataria and N. racemosa evolved 
through the concomitant emergence of iridoid biosynthetic genes 
(ISY, NEPS, and MLPL) that also colocalize to form a biosynthetic 
gene cluster (Sherden et al. 2018; Lichman et al. 2019, 2020). 
Comparative genomics in these species has suggested that gen-
omic rearrangements and gene movement through ectopic re-
combination or transposition are likely involved in organizing 
pathway genes into BGCs (Smit and Lichman 2022). The species- 
tree presented here (Fig. 3) provide necessary context for further 
comparative genomics, although interpretations should be con-
sidered alongside available transcriptome- and marker-based 
phylogenies until additional Nepetinae genomes and phyloge-
nomic results become available. Nevertheless, the genomes 
presented here provide a valuable resource to explore the evolu-
tionary trajectories underpinning the remarkable innovations in 
specialized metabolism within the Lamiaceae.

Conclusion
Plant genome assemblies are being generated at a remarkable rate, 
with two-thirds of available plant genome assemblies generated 
within the last three years (Xie et al. 2024). Here, we present the 
chromosome-level genome assemblies of D. sewerzowii and 
M. complanata, representing the first assemblies from these genera. 
The gene and repeat annotations, along with expression matrices, 
present a comprehensive resource for comparative genomics. The 
species-tree using gene models from available Lamiaceae genome 
assemblies provides a reference point that celebrates the number 
of sequenced species. These genome assemblies will allow us to de-
cipher the evolutionary innovations that resulted in the 

A. rugosa 21 7 48 69 35

D. sewerzowii

M. complanata 2 19 3 54 7 86

21 93 54 7 86

Fig. 2. Pairwise macrosynteny analysis of the assembled genomes relative to the chromosome level assembly of A. rugosa. Conserved collinear blocks are 
linked by the gray lines.
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remarkably diverse number of specialized metabolites found in 
the Lamiaceae.

Data availability

Genome assemblies are available through Genbank under accession 
numbers JBCJKZ000000000 and JBCLUX000000000. The raw reads for 
whole genome and transcriptome sequencing are available in the 
National Center for Biotechnology Information Sequence Read 

Archive BioProject PRJNA1097548 and PRJNA1095452. The gen-
ome assembly and annotation files are available through figshare 
as Supplementary data: https://doi.org/10.25387/g3.25671948.

Supplemental material available at G3 online.
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