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Abstract
Holotomography (HT) represents a 3D, label-free optical imaging methodology that leverages refractive index as an inherent
quantitative contrast for imaging. This technique has recently seen significant advancements, creating novel opportunities for the
comprehensive visualization and analysis of living cells and their subcellular organelles. It has manifested wide-ranging applications
spanning cell biology, biophysics, microbiology and biotechnology, substantiating its vast potential. In this Primer, we elucidate the
foundational physical principles underpinning HT, detailing its experimental implementations and providing case studies of
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representative research employing this methodology. We also venture into interdisciplinary territories, exploring how HT harmonizes
with emergent technologies, such as regenerative medicine, 3D biology and organoid-based drug discovery and screening. Looking
ahead, we engage in a prospective analysis of potential future trajectories for HT, discussing innovation-focused initiatives that may
further elevate this field. We also propose possible future applications of HT, identifying opportunities for its integration into diverse
realms of scientific research and technological development.

Editor's Summary

Holotomography is a 3D, label-free optical imaging method for visualizing living tissues and cells. In this Primer, Kim et al. discuss
the implementation of holotomography in various applications ranging from cell biology to biophysics and biotechnology.

Introduction
The examination and analysis of cells AQ1  are integral to understanding their complex nature, diagnosing diseases and facilitating the
creation of innovative drugs. Over time, a multitude of microscopy technologies have been devised for cellular observation, starting with
the optical microscope in the 1750s. Since then, a myriad of microscopy techniques have been refined, paving the way for observing and
comprehending various life phenomena that were hitherto unseen[ 1 ]. This progress has considerably enriched our understanding of
biology and medical knowledge, liberating humanity from a range of diseases. AQ2 AQ3 AQ4 AQ5

Contemporary research underscores the necessity for extended observation of living cells, thereby revealing the constraints of traditional
microscopy techniques. A great challenge when imaging biological samples is their transparency, which results in poor contrast. Phase-
contrast microscopy solves this problem by visualizing the delay in light propagation caused by the sample. However, it provides only
qualitative contour data in a 2D plane, lacking precise 3D information or quantitative data on cell mass and volume. Fluorescence
microscopy offers subcellular molecular imaging, yet prerequisites such as fixation may alter cells or compromise their innate properties,
and prolonged observation is impeded by phototoxicity and photobleaching from fluorescence[ 2 ]. These limitations accentuate the
potential of label-free imaging[ 3 ]. Quantitative phase imaging (QPI) — which includes holotomography (HT), among the growing label-

free imaging fields — is a promising technique owing to its high resolution, imaging speed and wide availability[ 4 ]. QPI is a field of

imaging that accounts for both the intensity and phase of light. HT, as a subset of QPI[ 5 ], reconstructs the 3D refractive index  (RI) of a

sample, accounting for the complex optical field scattered from the sample (Fig. 1 ). This scattering takes place regardless of sample
labelling or staining, thus providing a quantitative physical profile. As a result, HT overcomes the limitations of traditional microscopy
methodologies such as phase contrast and fluorescence microscopy, which provide limited morphological and structural information on the
sample.

Fig. 1

An overview of holotomography and diverse implementations.

a, Similarities drawn between CT and HT. b, As a subset of QPI, HT reconstructs the 3D RI of a sample without using exogenous labelling
agents. c, Coherent HT leverages light scattering from coherent plane-wave illumination, as an extension of QPI techniques. d, Temporally
low-coherence HT adopts a low-coherence source to curtail noise. e, Spatially low-coherence HT diminishes optical hardware prerequisites.
DIC, differential interference contrast; QPI, quantitative phase imaging; RI, refractive index.

Loading web-font TeX/Caligraphic/Regular

24. 6. 14. 오후 6:19 eProofing

https://eproofing.springer.com/ePj/printpage_jnls/ViQxfKkSq295afz-f3cNEbdjvG26w4g08gIKlJ-1UUYSOLQc0AVKQCkOirkN6MFilXfnnuYs6_DdLJo6qffmIoboqeK-Fk5QIqlKJ3DNQMKqvy1LyAUnyYOjpH7oAT9w 3/31



HT renders precise measurements of the 3D RI distribution of transparent specimens, such as biological cells, with superior spatial
resolution and contrast. The technology builds upon the principles of computed tomography (CT) but substitutes X-rays with light to
reconstruct the RI distribution of the sample (Fig. 1a ). In CT, X-rays are used to reconstruct a 3D image of a target object based on the
absorption of X-rays by different tissues. Similarly, HT uses light instead of X-rays to reconstruct the RI distribution. This technique
involves capturing a series of 2D optical images of a specimen under various illumination modulations. Each optical image contains phase
and amplitude information, resulting from the interference of light with the specimen. HT algorithms then integrate these multiple 2D
images to reconstruct a 3D RI map of the sample, revealing internal structures without the need for external labels or dyes.

Although HT imaging can carry out a wide variety of realizations, HT is categorized based on the illumination strategy being used:
coherent, temporally low-coherence and spatially low-coherence. Coherent HT  involves recording the transmitted field under various

illumination angles through interference. Temporally low-coherence HT  operates in a similar manner, in which light source is temporally

slightly incoherent. By contrast, spatially low-coherence HT  records the transmitted intensity under spatially incoherent illumination at
different depths inside the sample.

HT has extensive applications in biological research[ 5 ] (Fig. 2 ), encompassing cell biology, biophysics, neuroscience, immunology and
cancer research. The suite of advantages provided by HT — that it is non-invasive, volumetric and provides sustainable imaging — makes
it ideal for use in biomedical investigations. The labour-intensive and often sample-altering preparations of traditional microscopy methods
are bypassed with HT to enable the study of live cells and potentially aid in therapeutic interventions. Its 3D imaging capability spans
realms such as 3D cultures, organoids[ 6, 7 ], tissue engineering[ 8 ], microfluidics[ 9, 10, 11 ], organ-on-a-chip systems[ 12 ] and 3D

bioprinting[ 13 ], whereas its sustained time-lapse measurement also allows continuous assessment[ 7, 14 ] of long-term phenomena.

Fig. 2

General landscape of contemporary holotomography applications.

Applications of holotomography (HT) extend to a range of scales, both spatial and temporal. The spatial scale ranges from micrometre-scale
single cells to millimetre-scale tissues. Major examples of single cells studied with HT include microorganisms and blood cells that provide
pathological insights. Larger cells have been studied concerning the subcellular structures — such as lipid droplets — and their dynamics.
Multicellular subjects of HT include tissues, stem cell colonies, organoids and embryos. Although studying tissues accompanies covering the
largest spatial scale, others also focus on the temporal dynamics.
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HT can be integrated with other imaging modalities, such as fluorescence microscopy and Raman spectroscopy, to provide supplementary
information on the chemical and structural properties of samples. In recent years, HT has been commercialized by start-up companies,
growing increasingly accessible in research laboratories, hospitals and biotechnology companies. The rising popularity and availability of
this technology are anticipated to catalyse the development of new diagnostic and therapeutic tools for various diseases, including cancer[
11, 15, 16 ], neurodegenerative disorders[ 17, 18 ] and infectious diseases[ 19, 20 ]. In this Primer, we provide an overview of the principles,
applications and future prospects of HT in biological research. We will discuss the diverse HT techniques, their benefits and limitations as
well as the challenges and opportunities in crafting HT-based diagnostic and therapeutic strategies. We will also spotlight recent
advancements in HT and its potential impact on various areas of biomedical research.

Experimentation
Coherent	HT
Coherent HT capitalizes on spatiotemporally coherent light illumination  to render 3D label-free images of live cells. The preference for

coherent sources stems from initial design and theory of optical tomography, assuming single-wavelength light propagation[ 21, 22 ].
Coherent HT reconstructs the 3D RI distribution of samples by capturing their microscopic images under sequential illumination at
multiple illumination angles (Fig. 1c ). To reconstruct the RI of the sample, both the phase and intensity of the light transmitted through
the sample are needed. Imaging the phase is not straightforward as cameras only measure light intensity. Techniques for retrieving the
phase of light from intensity measurements are broadly known as QPI. In essence, coherent HT methodologies incorporate a QPI
configuration augmented with an apparatus that scans the angle of the illumination. Most techniques differ either in the illumination
scanning apparatus or in the QPI configuration employed for phase retrieval.

QPI and related phase retrieval can be performed in numerous ways. Traditionally, Mach–Zehnder interferometric techniques  have been
widely used as simplistic approaches to produce a sample and a reference beam from an illumination. A Mach–Zehnder interferometer
operates by splitting a laser beam, directing one part through the specimen and the other along a reference path. The two beams are then
re-combined using a beam splitter, forming an interference pattern at the camera, enabling retrieval of both the phase and the intensity of
the transmitted light field (Fig. 2a ). The sample and reference beams can either meet at an angle (known as off-axis holography[ 23 ]) or

be parallel with a modulated reference beam phase (known as phase shifting holography[ 24 ]).

Self-interfering QPI configurations have been developed, offering enhanced stability and more compact instrumentation compared with
traditional interferometry. Coherent HT, when implemented with a separate reference beam, can be susceptible to instability stemming
from mechanical vibrations, and requires a sizeable area to accommodate dual beam paths. Conversely, self-interfering setups operate
without a reference beam, interfering the sample-diffracted beam with itself to retrieve phase information. Broadly used methodologies
include: using a known[ 25, 26 ] or filtered[ 27 ] area of the sample-diffracted beam to form decodable interference patterns; shearing
interferometry, which interferes the sample-diffracted beam with the slightly shifted copy of itself to retrieve the derivative of the phase[
28 ]; phase retrieval based on the Kramers–Kronig relations [ 29 ] and an algorithm from redundant measurements at different depths or

illumination angles[ 30, 31 ]. Nevertheless, self-interfering coherent HT has its own challenges, including complications in beam steering,
constraints related to sample density and low precision in the reconstruction of low spatial frequencies.

To accomplish illumination angle scanning, active beam-steering hardware is commonly used. This category includes devices such as
micro-electromechanical systems[ 32 ], galvanometric mirrors[ 33, 34, 35 ], spatial light modulators[ 36 ] and digital micromirror devices[

37 ], which directly tilt the angle of incident light. Finally, angular scanning can be achieved by rotating the sample while maintaining aLoading web-font TeX/Caligraphic/Regular
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constant illumination direction[ 38, 39 ]. Although these strategies can counteract a potential loss in axial resolution, their application
remains limited when dealing with live biological cells or arbitrarily shaped samples.

Temporally	low-coherence	HT
Recently, incorporation of low-coherence sources appears to resolve the undesired artefacts from coherent HT, such as the speckle noise.
Some of the principles and methods developed for coherent HT can employ spatially coherent yet temporally slightly incoherent light.
This approach effectively mitigates speckle noise and fringes induced by back reflections in the optical system while still enabling
reconstruction under the monochromatic assumption[ 36, 40 ]. Alternatively, multiple light sources such as those implemented in light-

emitting diode (LED) arrays can be sequentially turned on and off to vary the illumination angle[ 30 ]. These low-temporal-coherence
conversions provide higher signal-to-noise ratios (SNRs) with small modifications in the fundamental design but entail distinct difficulties
as well. From a technical perspective, precisely matching beam paths within the short coherence length may be difficult to achieve. The
rapid decorrelation of light along the propagation may complicate the imaging of thick samples unless augmented with mechanical
scanning.

Spatially	low-coherence	HT
Spatially incoherent light can be conceptualized as a superposition of multiple incoherent beams with varying incident angles.
Illumination light beams are incoherent in that they do not interfere with each other: the total intensity measured by the camera is the sum
of the intensities of the transmitted field for each illumination.

Low-coherence HT is enabled by the weak scattering approximation under which the intensity is linearly related to the RI and absorption[
41 ]. As such, the incoherent sum of transmitted intensities is also linearly related to the RI. A phase retrieval-like problem remains; we
need to differentiate between the RI and absorption of the sample. The absorption can be viewed mathematically as the imaginary part of
the RI. For this reason, methods analogous to phase retrieval are used to distinguish absorption from refraction using redundant
information from multiple illumination[ 42, 43 ], transparent sample assumption[ 41, 44 ], phase shifting interferometry[ 45 ], shearing
interferometry[ 28, 46 ] or the Kramers–Kronig relations[ 47 ].

The low-coherence HT illumination is typically generated using an LED in combination with a mask[ 41, 44, 45, 48 ], a microdisplay[

43, 49 ] or an array of LEDs[ 42 ] (Fig. 3b ). The microdisplay or LED array is positioned at the pupil plane of the microscope condenser
so that each pixel corresponds to a particular illumination incidence angle at the sample plane. The chosen intensity at the pupil plane is
highly dependent on the low-coherence HT modality. Shearing interferometry-based methods fully illuminate the pupil plane of the
condenser. Methods based on redundant information from multiple illuminations usually illuminate only about half of the pupil plane at
once. Finally, methods based on phase shifting interferometry illuminate a thin ring in the pupil plane.

Fig. 3

Optical measurement and numerical reconstruction in holotomography.

a, An interferometric instrumentation for coherent (or temporally low-coherence) holotomography (HT). The illumination is split into the
illumination and reference beams with a beam splitter. In the illumination path, the illumination angle is scanned with a beam-steering
compartment. This example shows projecting different grating patterns on the spatial light modulator to this end. The complex field of the
scattered light is captured at a series of illumination angles, retrieved from the interference of the sample-scattered beam and the reference
beam. This angular stack of the optical field (the intensity and phase) is mapped onto the scattering potential in Fourier space. The RI is
obtained from the assembled scattering potential through Fourier transform. b, An axial scanning instrumentation of spatially low-coherence
HT. The intensity of the scattered light is recorded while modulating the illumination aperture. This example shows projecting four different
aperture intensity profiles using the spatial light modulator to this end. The axial stack of intensity measurements is converted to RI by
deconvolving with the optical transfer function, which is predetermined by the aperture modulation. In both approaches, regularization based
on previous knowledge of the sample can be applied to enhance the quality of RI reconstruction. The missing cone is depicted with a green
shade in each transfer function. LED, light-emitting diode; RI, refractive index.
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Owing to its use of incoherent light, low-coherence HT possesses inherent sectioning capability. Axial scanning must be performed to
obtain volumetric information about the sample, in contrast to coherent HT, in which angular scanning is used. Axial scanning is usually
performed by directly moving the sample, but faster scanning can be performed using liquid lenses[ 44 ] or remote focusing[ 43 ].

Spatially low-coherence HT offers improved sample penetration depth when compared with coherent HT or temporally low-coherence
HT[ 46 ]. This advantage largely stems from the averaging of many illumination modes, resulting in the dampening of interference
patterns caused by multiple light scattering within a sample. Phase unwrapping is also not used in spatially low-coherence HT, reducing
discontinuity in the image. Imaging thick (more than a few hundred microns, such as organoids and adult Caenorhabditis elegans) or
porous biological samples (such as hydrogel-embedded cells) remains a challenge owing to significant AQ6  multiple scattering[ 50, 51 ].
Nevertheless, innovative methods are being developed to overcome these limitations, as will be partially introduced in the following
section.

Comparing	illumination	strategies
Understanding the strengths and weaknesses of different HT experimentations is necessary to select the most suitable HT option for a
given research environment and target application. Coherent HT and temporally low-coherence HT generally provide high temporal
resolution, but the mechanical vulnerability of the bulky setup, along with the limited imaging depth, may pose an issue. Therefore, these
HT configurations are generally better suited to studying the dynamics of a small number of cells, particularly when sufficient and stable
space for optical experiment is provided. By contrast, spatially low-coherence HT offers high SNR and deep imaging at the cost of the
image acquisition rate. Therefore, spatially low-coherence HT offers a solution for investigating tissues and 3D cultures in extracellular
matrix.

Reconstruction	and	regularization
The process of HT reconstruction starts with phase retrieval. Typically, coherent HT uses off-axis or phase shifting interferometry to
retrieve the field transmitted through the sample E  from the intensity measured at the camera . In interferometry, a reference plane
wave  is interfered with the transmitted field E . If  denotes the reference field wavevector,  the spatial coordinate and  the global
phase:

The sample field can be obtained AQ7 from term #2 but contributions from terms #1 and #3 need to be deduced. Phase shifting
interferometry measures I  with three or more  values to separate each term contribution[ 52 ]. Alternatively, off-axis holography
increases the lateral component of the wavevector  so that each of the three terms is located at a different position in the Fourier plane,
enabling retrieval of E  from a single camera image using Fourier space filtering[ 23 ].

Then volumetric HT reconstruction bears considerable similarity to other tomographic techniques such as X-ray CT (Fig. 3 ). In an

interferometric coherent HT (Fig. 3a ), illumination of the sample from a specific direction results in an image, which can be considered a
projection of the sample along that same direction. As projections correspond to sections in Fourier space, the acquired data undergo a

sample

sample

Camera

sample
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Fourier transformation and are positioned appropriately in the Fourier plane of the sample via filtered back projection. The key distinction
between HT and CT lies in the fact that the wavelength of the visible light is much larger than the X-rays used in CT, rendering diffraction
a significant consideration[ 22, 53 ]. To account for this factor, the section plane onto which the data are projected in the Fourier space is

curved. This leads to an enhanced version of filtered back projection, referred to as the Fourier diffraction theorem [ 53 ].

Two versions of the Fourier diffraction theorem are used: the Born approximation and the Rytov approximation. The Rytov approximation
linearly relates the RI to the phase of the transmitted field and is generally more accurate[ 54, 55 ]. By contrast, the Born approximation
linearly relates the field to the RI enabling easier computations, especially in the presence of incoherent light[ 41 ]. According to the Born
approximation, the field scattered by a scattering potential , a function of the RI  given by  with  the mounting medium RI, is:

in which the Green’s function[ 53, 56 ]  denotes the light field detected at the camera in the case in which the sample is a point source and
 is the convolution operator. Here  is the axial component of the wavevector with  the wavenumber in the mounting medium. The Fourier
transform of the Green’s function corresponds to a spherical cap so that this equation can be interpreted as the field information
corresponding to the sample information positioned on a sphere cap in the Fourier plane. As such, the field information is projected on
various spherical caps corresponding to each illumination angle, slowly filling the Fourier plane of the reconstructed sample.

The Fourier diffraction theorem forms the basis of all HT techniques employing linear reconstruction. Variants of the Fourier diffraction
theorem have also been derived for anisotropic materials enabling imaging of birefringence strength and direction[ 57, 58, 59 ]. Even HT
using spatiotemporally incoherent light computes the optical system response by adding the different back-projection planes that
correspond to the angular decomposition of the incoherent illumination[ 41, 60 ]. The image formation is then described by a convolution
of the RI with a point spread function PSF. More precisely, the absorption and RI are convolved with a different point spread function.
The PSF for the real part of the scattering potential (corresponding to the RI) is often called the phase point spread function PSF ,
whereas the PSF for the imaginary part of the scattering potential (corresponding to the absorption) is often called the absorption point
spread function PSF . Those PSF can be formulated as the product of a Green’s function corresponding to the detection (equation ( 4 ))

with one corresponding to the illumination[ 41, 61 ] (equation ( 5 )):

With  corresponding to the intensity distribution at the pupil plane[ 61 ],  denotes the Fourier transform and  is the convolution operator.
This formulation is similar for most incoherent HT configurations with slight alterations depending on the optical system. For example,
configurations based on phase shifting do not require the real and complex parts in the PSF[ 45 ], and shearing interferometry PSF
requires further modifications to the Green’s functions[ 62 ]. The RI can finally be obtained using a deconvolution algorithm[ 41 ].
Deconvolution practically means Fourier transforming the experimentally measured 3D intensity stack, dividing by the Fourier transform
of the PSF while using a regularization and finally doing an inverse Fourier transform to obtain the RI[ 41, 43 ] (Fig. 3b ).

The linear algorithm falls short when applied to highly scattering objects. In such instances, nonlinear reconstructions based on accurately
simulated light propagation become necessary[ 50, 63, 64, 65, 66, 67, 68 ]. The reconstructed RI tomogram can be iteratively enhanced by
comparing the simulated and experimental light fields and by back-propagating the error utilizing a time-reversal light scattering
simulation.

Missing	cone	problem
One limitation of HT is the missing cone problem , wherein not all information about the Fourier plane of the object can be retrieved
owing to the maximum illumination angle being constrained by the optical system (as depicted by the shaded region of transfer functions
in Fig. 3 ). This issue can generate artefacts such as vertical sample elongation or low RI regions known as the halo effect. To address
this problem, regularization algorithms have been devised to fill in this missing information using previous knowledge about the sample[
69 ] (Table 1 ).

Table 1

Categories of regularization algorithms for reducing missing cone artefacts

Algorithm Principle Strengths Weaknesses Examples

Gerchberg–
Papoulis

Enforcement of previous constraints while
alternating between spatial and frequency
domains

Missing cone mitigation while
preserving measured signal Noise amplification

Gerchberg (1974)[
70 ]
Lim et al. (2015)[ 69
]

Edge preserving Smoothing of image selectively outside the
detected edge Preservation of sharp features Moderate missing cone mitigation

and considerable computational load

Charbonnier et al.
(1997)[ 78 ]
Lim et al. (2015)[ 69
]

Total variation Reduction of derivative gradient while
maintaining image fidelity

Robustness in a wide range of
images

Staircase artefacts, parameter
dependence and large computational
load

Lustig et al. (2007)[
72 ]
Rudin et al. (1992)[
73 ]
Lim et al. (2015)[ 69
]

P

A

*
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Algorithm Principle Strengths Weaknesses Examples

Hessian Reduction of second-order image derivative
while maintaining image fidelity Reduced smoothing artefacts Parameter dependence and large

computational load

Lefkimmiatis et al.
(2013)[ 74 ]
Pham et al. (2020)[
75 ]

Artificial
intelligence
regularizer

Statistically optimized prediction of the
improved image from a given image Fast inference Requirement of training and

potential generalization issues

Zhou and Horstmeyer
(2020)[ 82 ]
Yang et al. (2020)[
84 ]
Chung et al. (2021)[
81 ]
Lim et al. (2019)[ 63
]
Ryu et al. (2019)[ 83
]

The most prevalent previous information used is non-negativity , or the Gerchberg–Papoulis algorithm, as most samples possess an RI

higher than their mounting medium[ 70 ]. Another commonly employed previous constraint is total variation[ 71, 72, 73 ], which
capitalizes on the fact that most samples have sharply defined edges connecting piecewise constant RI regions. More advanced
regularizations such as Hessian Schatten norm[ 63, 74, 75 ] or edge-preserving regularization[ 76, 77, 78 ] are predicated on similar
principles, and regularization using the object support[ 79 ] or for polarization-sensitive measurements[ 80 ] has also been developed.

Finally, regularization based on artificial intelligence is also demonstrating promising results[ 81, 82, 83, 84 ].

It is crucial to acknowledge that the missing cone problem is not exclusive to HT but is also prevalent in other imaging fields[ 85, 86 ]
including wide-field fluorescent imaging[ 87 ], limited-angle CT[ 88 ], MRI or transmission electron microscopy[ 89 ]. A range of

regularization algorithms have been developed for these techniques that could be adapted for HT[ 69, 80, 90 ], whereas several latest
algorithms have yet to be applied in HT[ 91, 92, 93, 94 ]. The choice of the regularization method, at a given sample and imaging
condition, would be decisive to the extent of image improvement. Yet, it has been investigated in only a small scale and limited set of
samples and algorithms thus far[ 69 ]; the findings included the weakness of Gerchberg and Papoulis under noise, effective mitigation of
image elongation by total variation and the efficiency of edge preserving when given high numerical aperture. By contrast, recent efforts
using artificial intelligence to construct regularization pipelines[ 81, 82, 83, 84 ] have shown promise in the speed and adaptivity.

Sample	preparation
Owing to its label-free characteristic, HT mandates only minimal sample preparation, with labelling or fixation remaining an optional step
for correlative studies of HT and label-specific imaging. The sample preparation in HT typically includes placing the sample on a
compatible slide or within a suitable container without the need for labelling or fixation agents. This can involve simple procedures such
as cell culturing in appropriate media, ensuring that the sample is live and in a natural state for imaging. However, certain mechanical
conditions must commonly be considered for HT acquisition, such as maintaining slide thickness below the working distance, particularly
when using objective lenses with high numerical aperture. High numerical aperture objectives are largely adopted in HT realizations for
high resolution (with the exception of ptychographic methods[ 95, 96 ]), yet they feature notably short working distances. To
accommodate deeper imaging, using a sample container with a thin bottom substrate, such as a 1.5H glass slide, is recommended.
Alternatively, using high numerical aperture objective lenses with long working distances can effectively extend the imaging depth. When
using well plates, a particular condition is that the walls of the wells should not interfere with the light path for high-angle illumination, to
achieve the desired illumination profile at the sample location. An advisable precaution would be selecting well plates with low-profile
walls or using specialized imaging wells designed to minimize optical interference.

Additionally, it is essential to minimize sample motion during each series of measurements for HT, which may result in artefacts.
Although this condition applies to any HT experimentation, particular attention is called for in case of HT realizations involving large
number of measurements such as ptychographic or scattering-based methods. Naturally steady samples — such as adherent mammalian
cells — can be imaged without heavy constraints. However, certain suspension samples, such as bacteria, yeast and non-adherent cells,
may require immobilization to guarantee robust HT reconstruction. Coating the imaging substrate with concanavalin A or implementing a
3-aminopropyltriethoxysilane modification facilitates cell binding non-specifically to the surface[ 97 ]. Alternatively, the topography of
the sample holder itself can be used to immobilize or trap samples. For instance, the elastic and transparent material polydimethylsiloxane
can efficiently immobilize and trap cells between polydimethylsiloxane and the base cell culture glass. This approach has been
successfully used to image pre-aligned cells (such as budding yeast) in a single focal plane for time-lapse imaging[ 98, 99 ]. Recently, a

hydrogel was used to immobilize individual live bacteria for the HT measurements[ 100 ].

Results
Label-free	volumetric	imaging	of	cells
HT has been extensively employed for 3D imaging of living cells, offering a solution to the limitations of label-dependent methods that
necessitate labelling, fixation or sectioning[ 101, 102, 103, 104 ]. HT does not require the fixation of cells, thereby permitting the

measurement of live cells in their natural state (Fig. 4a ). This also confers practical benefits such as simplicity of measurement and
minimal phototoxicity. The 3D RI image of a cell delineates the entire cell morphology, including lamellipodia and dendritic shafts, as the
RI of the cytosol exceeds that of the surroundings. Moreover, intracellular RI variation facilitates spatial distinction between major
subcellular structures.Loading web-font TeX/Caligraphic/Regular
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Fig. 4

Label-free 3D imaging of diverse live cells.

A, Two-dimensional RI distribution images of various cell types: neuro-2a cell (part Aa) and mouse primary neuron (part Ab). Neuro-2a cells
depict a triangular structure with short, blunt neurites. Mouse primary neurons present extensive neurites and a large nucleus consuming most
of the cytoplasm. The colour bar indicates the 2D RI range. Parts Ac and Ad show 3D models reconstructed using 3D RI distributions
corresponding to parts Aa and Ab, respectively. The adjacent colour bar denotes the 3D RI range. B, Two-dimensional RI distribution image
of adipocytes differentiated from fibrocytes, with zoom-in images of adipocytes in the inset. C, Time-lapse image of Hep3B cells illustrating
subcellular morphology changes upon H O  treatment, followed by cellular recovery after returning to the regular cell culture medium. HT,
holotomography; RI, refractive index.

The label-free imaging of unlabelled cells using HT facilitates the long-term assessment of individual cells in their native states. This
ability can further generate synergistic effects when combined with the quantitative phase capability. The RIs of lipids droplets are
distinctly higher than those of cytoplasm and other subcellular organelles[ 105 ], and the lipid droplets  are readily localized in the 3D RI
tomograms of unlabelled cells. The volume and mass of each lipid droplet can be quantified, whereas the lipid species composition and
their mole fractions determine the RI value[ 106, 107 ].

The field of view of HT is generally determined by the specifications of the objective lens, image sensor and the overall magnification of
the optical configuration. For high-resolution imaging, the objective lenses with high numerical aperture are usually adapted and thus the
field of view is limited to 100–200 μm. However, the lateral size of HT images can be expanded by measuring multiple fields of view and
stitching them after reconstructions[ 8 ]. Figure 4b  shows an example of the large field-of-view image of HT — the 4 mm × 4 mm
stitched RI tomogram of fully differentiated adipocytes from the induced stem cells.

Different subcellular organelles exhibit different RI values, and thus the precise HT measurements visualized major subcellular organelles
without fluorescence labelling (Fig. 4c ). The cell membrane and nucleus membrane can be distinctly visualized owing to the contrast of
RI among the surrounding medium, the cytoplasm and the nucleoplasm. Lipid droplets have distinctly high RI values in cytoplasm and
can be easily localized and quantified[ 108 ]. The nucleolus has RI values higher than the surrounding nucleoplasm. Mitochondria also
have higher RI values compared with the cytoplasm. These RI characteristics of major subcellular organelles enable versatile quantitative
intracellular analyses.

Quantitative	analysis
The numerical processing of data stands as a fundamental component of HT. Each HT variant involves a numerical process that translates
a series of 2D measurements into the 3D RI distribution. In most HT implementations — particularly coherent HT — the angular
sinogram of 2D optical fields is mapped onto the spatial frequency domain scattering potential[ 35 ]. In another category, a focal stack of

intensity measurements gets converted into the 3D RI image via deconvolution with the optical transfer function[ 42, 43, 61, 109 ].

2 2
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Regularization is frequently applied to enhance reconstruction quality. This is particularly useful for addressing the issue of low axial
resolution that results from the limited-angle configuration of the imaging hardware[ 69, 83 ]. The resolution limit can be mitigated by
enforcing constraints that reflect previous knowledge about the sample.

After reconstruction, the size and biophysical parameters of subcellular organelles and whole cells can be derived directly from each HT
image[ 110 ]. From the reconstructed RI tomograms of cells, key subcellular organelles such as the cell membrane, nucleus membrane,
nucleoli, lipid droplets and mitochondria become easily identifiable, owing to the RI contrasts between these organelles and the
surrounding cytoplasm or nucleoplasm. Both manual and automatic segmentation algorithms, whether rule-based or powered by machine
learning, facilitate the measurement of the size and volumes of these organelles. This enables subcellular analyses without the need for
cell fixation or staining, maintaining the cells in their natural state. Although subcellular analyses of HT still rely largely on manual
segmentation, advanced platforms that use machine learning to accelerate this procedure have been developed in other fields[
111, 112, 113 ]. These tools will effectively reduce the amount of labour and time needed, but the applicability may need adjustments as
their primary target domain is different from HT.

The unique quantitative nature of RI allows for the quantification of biomolecular contents and concentration of cells and their subcellular
organelles. Specifically, RI indicates the composition at each volumetric location; for the aqueous solution that constitutes living cells, RI
linearly increases with the concentration of molecules such as protein[ 114 ]. As a HT image depicts the 3D arrangement of biomolecules,
a biological sample can be distinguished from its environment in 3D. The sample volume can be ascertained by tallying the number of
voxels within the defined envelope. The envelope also allows for the acquisition of other morphological properties such as surface area
and sphericity. Moreover, integrating the RI contrast over these voxels yields the gross amount of biomolecules contained within the
sample, that is, dry mass[ 114, 115 ]. The RI distribution also provides details such as the average and variation of dry mass density.

The analytical advantage of RI has supported distinct studies and applications that quantitatively examine live cells. For instance, an
active field of study involves identifying alterations in the properties of individual red blood cells (RBCs) under various
pathophysiological conditions[ 35, 110, 116, 117, 118 ]. Other applications include continuous monitoring of bacteria[ 19, 100, 119 ],

tracking lipid droplets in hepatocytes[ 105 ] and characterizing neuronal growth[ 17 ].

Quantifying	subcellular	structures
HT allows for the quantitative characterization of the morphological and biophysical properties of subcellular organelles with a spatial
resolution approaching 100 nm (ref. [ 120 ]). Leveraging the quantitative information procured through HT, which illustrates the physical
characteristics of subcellular organelles, aids in constructing comprehensive models for a deeper understanding of biological processes.

The cell nucleus has a critical role in preserving cell physiology through genetic transcription and gene expression. Traditionally, the
nucleus has been viewed as one of the densest organelles in cells as all genetic materials, in the form of a linear DNA polymer ~2 m in
length, are packed into a small sphere roughly 10 µm in diameter. However, QPI and HT have demonstrated that the cell nucleoplasm
possesses a lower RI than the surrounding cytoplasm in suspended cells[ 121 ] and cells grown on a 2D substrate[ 33, 122 ], signifying a
lower mass density in the nucleoplasm. A recent study showed that the relative mass density difference between the nucleoplasm and the
cytoplasm is consistently preserved during cell cycle progression, as well as during drug-induced alterations of cytoskeletal
polymerization and chromatin condensation[ 122 ]. The inversion of this usually robust relative mass difference has so far been observed
only in unique conditions such as cells cultured in a 3D hydrogel[ 123 ], cells under hyperosmotic shock[ 124 ], blood cells[ 125 ] and

light-guiding photoreceptor cells in the retina of nocturnal mammals[ 121 ]. Additional studies are necessary to decipher the mechanism
through which the mass density difference across the nuclear envelope is maintained, as well as any potential biological implications of
this phenomenon.

HT has also elucidated other subcellular organelles, particularly those formed through phase separation and transition[ 126 ]. A key
example is nucleoli within nuclei, which are instrumental for the synthesis and assembly of ribosomal subunits used in protein translation.
Recent research has revealed that nucleoli are membrane-less compartments formed by liquid-liquid phase separation and possess unique
biochemical and viscoelastic properties[ 127 ]. In the RI tomograms reconstructed by HT, nucleoli consistently show a higher RI than the
surrounding nucleoplasm. Their physicochemical attributes have been examined in various conditions such as cell cycle progression, drug
treatment or ATP depletion[ 122, 128, 129 ].

Mitotic chromosomes, which are condensed forms of chromatin during cell division, display distinctively high RI values when analysed
using HT[ 77, 130 ]. The elevated RI values of chromosomes under hyperosmotic conditions were linked with molecular crowding[ 130 ].
Furthermore, dual-wavelength HT using visible and ultraviolet wavelength beams unveiled the dispersive properties of chromosomes and
cytoplasm[ 77 ]. Conversely, HT measurements on mitotic spindles in the Xenopus egg extract demonstrated that the spindle, typically
described as a condensed phase of microtubules and associated proteins in the cytoplasm, actually possesses the same density as the
surrounding cytoplasm[ 131 ].

The mechanical and dynamic properties of organelles have also been investigated using HT with high temporal resolution; coherent HT
with illumination scanning has achieved 3D imaging at a rate of 100 Hz (ref. [ 37 ]). A study that tracked lipid droplets in 3D through HT
revealed the heterogeneity of intracellular lipid dynamics and the negative relation between the diffusion coefficient and the exponent[
105 ]. Another study used HT to evaluate the rotation of nucleus and lipid droplets, in which the revealed synchrony of the rotation
implied that the entire nucleus spins[ 132 ]. Mitochondrial dynamics have been investigated with time-lapse HT, which enabled
quantification of the interaction time between the mitochondria and other organelles[ 132, 133 ].
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Although HT provides 3D quantitative imaging of unlabelled cells in 3D, its lack of molecular specificity can be a limitation. To offset
this, HT has been integrated with fluorescence microscopy techniques such as epi-fluorescence[ 121, 134 ], confocal fluorescence[ 77, 135

] and structured illumination microscopy[ 133, 136, 137 ]. Through the correlation of fluorescence emission signals with reconstructed RI
tomograms, it is possible to perform synergistic analyses that provide both structural and molecular insights about cells, similar to the way
in which PET/CT is used in medical imaging. This allows the determination of local mass density for subcellular organelles and specific
proteins, from which measurable data such as dry mass, volume and mass density can be extracted. Additionally, juxtaposing confocal
fluorescence volumes with reconstructed RI tomograms provides extra 3D morphological constraints, enhancing the precision of
tomogram reconstruction using the Gerchberg–Papoulis iterative algorithm and minimizing missing cone artefact[ 138 ].

Implementing vibrational spectroscopy in conjunction with HT enhances molecular specificity in a label-free manner. This collaborative
technique facilitates the identification of the chemical composition within subcellular compartments. It has been used in phenotyping the
metastatic propensity of cancer cells[ 139 ] and in determining the saturation degree of lipid droplets in preadipocytes[ 140 ]. Recent
advancements in Raman spectroscopy enable quantitative assessment of the density of substances such as protein, lipid and water[ 141 ],

as well as the prediction of the RI values of samples based on Raman scattering intensity at diverse vibrational modes[ 142 ]. HT can
supplement this information on mass density and RI, providing a benchmark for these recent achievements, and the precise chemical
compositions ascertained through these methods can be used to estimate the corresponding RI increment. In combining HT with
vibrational spectroscopy effectively, these techniques can be implemented either sequentially or simultaneously, depending on the specific
experimental setup and objectives. Sequential implementation involves first acquiring HT images to visualize and measure the 3D RI
distribution of cells or tissues, followed by vibrational spectroscopic imaging to analyse the chemical composition of the same sample
areas. This approach allows researchers to correlate physical properties, such as cell volume and mass density obtained from HT, with
chemical information, such as lipid and protein concentrations, from vibrational spectroscopy.

Additionally, Brillouin microscopy has surfaced as a spectroscopic technique to quantitatively depict the mechanical properties within
biological samples[ 143 ]. This technique involves the measurement of the inelastic Brillouin frequency shift, caused by the interaction
between photons and internal acoustic phonons of the material. Consequently, Brillouin microscopy allows an all-optical characterization
of the longitudinal modulus (inversely proportional to linear compressibility) and viscosity of biological tissues and cells at a resolution
limited only by diffraction[ 143, 144 ]. Integrating Brillouin microscopy with HT can enhance the accuracy of longitudinal modulus
calculations based on the measured Brillouin frequency shift, considering the local RI and density data provided by the HT. This
integrated methodology has proven useful in studying the mechanical and physical attributes of microgel beads[ 145 ], protein

condensates[ 146 ], cells[ 123, 146 ], lipid droplets in adipocytes[ 146, 147 ] and in the context of tissue regeneration[ 144, 148 ].

Extracting physical properties from individual organelles leads to quantitative biophysical insights; for instance, the flow of biomolecular
mass can be traced throughout important phenomena such as mitochondrial fission, fusion[ 149 ] and lipid–mitochondria interaction.
Experimental precision is necessary to effectively achieve such subcellular investigations. For instance, measuring both imaging
modalities within the timescale of sample dynamics is advisable to register the images without technical difficulties. Furthermore,
different modalities are likely to provide unidentical resolutions, necessitating accurate resampling of the correlative measurements.

Applications
The applications of HT in various scientific fields underscore its transformative impact on basic and preclinical research. In haematology,
HT identifies blood cell pathologies and characterizes immune cells, enhancing our understanding of diseases such as malaria and diabetes.
Microbiology benefits from the real-time analysis of HT of bacteria and yeast, bypassing the limitations of traditional labelling methods.
Studies on lipid metabolism leverage HT to monitor lipid droplet dynamics, crucial for metabolic disease research. HT also supports the
investigation of phase-separated biomolecular condensates, contributing to our understanding of cellular physiology. In stem cell research
and embryogenesis, non-invasive imaging of HT facilitates the study of stem cell biology, developmental biology and regenerative
medicine. The application of technology extends to 3D cell culture, organoids and histology, in which it provides detailed, quantitative data
on tissue architecture and function, promising advancements in disease diagnosis and therapeutic development.

Microbiology
Microbiology stands to gain considerably from rapid, label-free measurements of HT. Although fluorescence imaging[ 150 ] and electron
microscopy[ 151 ] are frequently employed in image-based bacteria studies, their inherent need for labelling and associated detrimental

effects hinder real-time investigations of live bacteria (Fig. 5 ). By contrast, HT offers non-invasive, continuous morphological analysis of
undisturbed microbes. Yeast is an excellent model for studying the cell cycle, metabolism and signalling owing to its easily modifiable
genetics and shared biological components with human cells. Recent studies have highlighted a notable shift in the intracellular
environment of yeast under glucose deprivation, which is marked by a reduction in macromolecule movement in glucose-deprived yeast,
as observed through fluorescence-based measurements[ 152 ]. HT proves a highly effective platform for exploring cell dynamics over

extended periods or with high temporal resolution[ 125 ], providing biophysical information — such as biomolecular concentration, dry
mass and properties of subcellular structures — without the need for labelling, facilitating studies on yeast responses to glucose
deprivation and osmotic stress[ 153, 154 ].

Fig. 5

Applications of holotomography in microbiology.

a, Yeast cells captured by a holographic optical tweezer[ 39 ]. The central axial slice (upper) shows heterogeneity of refractive index (RI)
within the yeast cells, from which subcellular structures can be identified as marked in the volumetric rendering (lower). b, Time-lapseLoading web-font TeX/Caligraphic/Regular
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monitoring of growing bacteria[ 19 ]. The central axial slices (upper) and the corresponding volumetric renderings (lower) are shown after 0,
120 and 240 min of culture. Part a reprinted with permission from ref. [ 39 ], Optica. Part b reprinted with permission from ref. [ 19 ], Optica.

HT has demonstrated time-lapse imaging of bacteria growth in the presence of antibiotics[ 19 ], accelerating pathogenic profiling in

clinical microbiology (Fig. 5b ). The analysis of HT images aided by artificial intelligence has achieved species-level identification from

individual bacterial clusters, potentially reducing the time required for standard microbial identification using in vitro cultures[ 20, 155 ].
In antibiotic susceptibility testing, HT enables single-cell characterization of bacterial responses to antibiotics within 2 h (ref. [ 19 ]).

In the field of biopolymer biosynthesis using microorganisms, particularly polyhydroxyalkanoates[ 156 ], HT offers real-time monitoring

of polyhydroxyalkanoate accumulation in live bacteria at the single-cell level[ 119 ]. This capability could contribute to the development
of sustainable materials, addressing challenges associated with traditional methods relying on bacteria in non-native states[ 157 ] or using

costly and complex procedures[ 158 ].

Haematology
The advancement of QPI and HT has been largely influenced and adopted by applications related to blood cells since their early
development. This partially owes to the simple and explicable structure of RBCs, as well as their wide availability. A wealth of research
employing HT has illuminated cellular and subcellular modifications in RBCs under various physiological conditions and has compared
immune cells in differing environments. Research has shown that HT-based analysis can identify haematological diseases such as malaria[
35 ], sickle cell disease, diabetes, iron-deficiency anaemia, spherocytosis and cardiac arrest[ 110, 118, 159, 160 ]. Moreover, HT has
provided the means to characterize immune cells, indicating their subtypes and pathophysiology[ 125, 161 ]. Recently, the enhanced
measurement accuracy of HT has furthered the study of platelets, allowing the identification and quantification of differences in
individual platelets in their natural state[ 162, 163 ]. Structural and constitutional changes in individual platelets have been observed in
two pathological states (a myeloproliferative mutation and following Leishmania donovani infection), showing changes in dry mass and
the number of high RI structures.

Lipid	droplet	dynamics
HT is widely used for tracking various subcellular structures, with a focus on lipid droplets owing to their distinct RI distribution
compared with the aqueous surrounding within the cell[ 164 ]. Lipid droplets play roles in energy storage, lipid metabolism and cell
signalling[ 165 ]. HT facilitates the analysis of complex lipid droplet dynamics, overcoming challenges faced by traditional imaging
methods.

Fluorescence imaging has considerable limitations when used to investigate lipid droplets dynamics. Traditional labelling — using Nile
Red, BODIPY or LipidTOX — can disrupt natural processes such as membrane integrity and metabolism[ 166 ]. By contrast, clickable
lipids offer a bioorthogonal tracking of specific lipid species[ 167 ]. Nevertheless, photobleaching, phototoxicity and low temporal
resolution remain a substantial hurdle in studying lipid dynamics with most fluorescence-based techniques. HT addresses these issues with
a label-free approach that uses differences in RI, enabling non-invasive visualization of lipid droplets. HT offers continuous, high-
resolution monitoring of lipid droplet dynamics, preserving their natural state[ 105 ], providing critical insights into droplet size,
movement and cellular interactions, essential for understanding lipid metabolism and energy storage mechanisms.

Diseases and physiological conditions affecting cellular metabolism can be detected through changes in lipid droplets, which further
highlight the capability of HT to profile the lipid content in unperturbed cells. HT has been used to track lipid droplet accumulation in
various cell types under different conditions, such as stem cells treated with oleic acid or a cholesterol transport inhibitor[ 168 ].
Additionally, monitoring primary bovine umbilical vein endothelial cells with HT under the infection of Besnoitia besnoiti displayed
changes in the lipid distribution[ 169 ]. Changes of lipid in immune cells, captured by HT, were also related to pathology, medicine and
molecular biology. HT captured the differences in morphology and lipid content between normal macrophages and foam cells, while
quantifying the lipid reduction by treating nanodrug[ 170 ]. In a different study, HT identified accumulation of lipid in live T cells with an

impaired non-catalytic region in tyrosine kinase, revealing its involvement in lipid metabolism[ 171 ].
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Cell	biology
Phase-separated	biomolecular	condensates
Although many HT-based studies on subcellular structures have focused on lipid droplets, the cell interior is also populated by
numerous biomolecular condensates [ 126, 127 ]. Recent research has demonstrated that phase separation processes drive the formation

of condensates with distinct compositions from the surrounding protoplasm[ 172, 173 ], which are thought to facilitate or inhibit
biochemical reactions and provide diverse solvent environments[ 174 ]. Abnormal condensation forms have been found in various
cancers and neurodegenerative diseases[ 175, 176 ]. HT has been used to study the phase behaviours of purified biomolecules and the

properties of biomolecular condensates in living cells[ 177 ].

In vitro reconstitutions using purified components have been a powerful approach to probe the intrinsic capacity of proteins for phase
separation, with HT proving suitable for surveying biomolecular concentration owing to the linear relationship between RI and
concentration[ 114, 178 ]. Recent studies with purified protein solutions have demonstrated that RI provides higher precision for
assessing biomolecular concentration compared with fluorescence intensity-based methods, which tend to underestimate the dense phase
concentration[ 179, 180 ]. HT is advantageous for examining the phase behaviour of multicomponent systems, directly assessing the total
biomolecular concentration in RNA–protein co-condensates[ 181 ].

HT can also facilitate the investigation of biomolecular condensates within living cells, providing 3D RI distributions and density
information[ 146 ]. Nuclear speckles and stress granules are shown to be low-density condensates with their total biomolecular densities
similar to the surrounding cellular space[ 177 ]. RNA depletion leads to an increase in the RI of nuclear speckles, revealing that RNA has
a key role in regulating the density of biomolecular condensates. HT is particularly beneficial for studying intracellular multicomponent
condensates, offering unique density information that is inaccessible from labelling specific biomolecules. Yet, as the lack of molecular
specificity is also a hurdle in compositional studies, HT can be used in conjunction with fluorescence labelling for outlining and
deciphering biomolecular condensates.

Stem	cell	research	and	embryogenesis
HT offers a compelling application in non-invasive monitoring of stem cells, particularly human pluripotent stem cells (PSCs) such as
induced PSCs (iPSCs). PSCs hold tremendous potential for regenerative medicine, disease modelling and drug discovery[ 182, 183 ], and
assessing their quality before downstream applications is crucial. Previous studies using phase-contrast and differential inference
contrast microscopy established morphological standards for high-quality iPSCs, focusing on colonial border features, cellular
characteristics, granular spots and mitochondrial content[ 147, 184, 185 ]. However, these criteria lack quantitative contrast and fail to
reflect the morphological nuances attributable to the wide variety of subcellular organelles.

Identifying changes in subcellular structures during iPSC transition from their pluripotent state to abnormal cells without labelling has
proven challenging to date. Label-free and 3D high-resolution capabilities of HT can address these challenges, providing systematic
assessments of unlabelled live iPSCs. For instance, a HT-based study has identified differences between stem cells and fibroblasts; stem
cells displayed higher RI in nucleoli and vesicles, whereas iPSCs had fewer vesicles and a larger volume portion of nucleoli[ 129 ]. In a

colony scale, HT further provides a high contrast in visualizing morphological iPSC evaluation criteria[ 186 ] including the boundary

definition, intercellular spaces and nuclear morphology (Supplementary Fig. 1a,b ), enabling insights into pluripotency and viability and
facilitating therapeutic applications of the evaluated iPSCs.

HT shows potential for the study of sperm, oocytes and embryos for in vitro fertilization (IVF), offering quantitative assessments of 3D
morphokinetics of bovine and human sperm[ 187, 188 ], as well as the 3D visualization of C. elegans and bovine embryos[ 46, 189 ]

(Supplementary Fig. 1c ).

Three-dimensional	cell	culture	and	organoids
In recent years, cell culture methodologies have shifted from traditional 2D to 3D systems. The increasing inclination towards 3D culture
systems arises from its closer mimicry to in vivo conditions, improving drug testing capabilities, accurate tumour modelling and
advanced co-culture systems. HT, as a label-free 3D imaging system, is a valuable tool in the studying natural cell behaviour and
interactions. High-resolution 3D reconstructions of HT capture intricate spatial relationships, and its non-invasive nature allows
prolonged monitoring of samples for insights into short-term and long-term cellular dynamics. The quantitative data aid in precise
assessments of cell behaviours and interactions within a 3D environment. HT has been demonstrated for the study of 3D vascularization
and tumour spheroids[ 12, 51 ].

Organoids are crucial for disease simulation drug discovery and screening[ 190 ]. Traditional imaging struggles with organoid
morphology, and exogenous labels can hinder cell viability, complicating long-term toxicological studies. Additionally, the size of
organoids often surpasses the depth of focus of standard systems such as confocal microscopy, necessitating extensive preparation for
imaging. Although light sheet microscopy has improved depth in organoid imaging, it still depends on labelling. To address these
challenges, recent research has turned to HT, demonstrating its potential in live organoid assays, by using QPI for thick 3D cell cultures[
6, 8, 12, 51, 191, 192 ] (Fig. 6 ). These findings suggest that a scalable study on live organoids using HT is near. The application of HT

in organoid research is particularly promising for drug screening and toxicity testing[ 7, 193 ]; HT has been used to locate and visualize
cellular and tissue structures within organoids while maintaining viability. Combining HT with fluorescent labelling strategies, including
CRISPR-mediated genetic labelling[ 194 ], enhances its capabilities for comprehensive organoid imaging.
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Applications of holotomography in the study of organoids.

a AQ8 , Time-lapse 3D images of a liver organoid captured using spatial low-coherence holotomography (HT). At the initial time point (left
and middle), one can locate a non-dividing cell (circled and magnified) with visible features (red: cell outline, yellow: nucleus, purple:
nucleoli). After 20 min of culture (right), a neighbouring cell (magnified) is observed undergoing mitosis, indicated with the chromosomal
condensation and alignment. b, Correlative imaging exploiting HT and 3D fluorescence microscopy. Correlative imaging potentially
provides individual cell analysis, as labelling actin (red) outlines cell boundaries and labelling nuclei (blue) distinguishes each nucleus from
the cytoplasm of the cell.

Theragnosis
HT is identified as a potential theragnostic tool for various diseases. Time-lapse HT shows promise in atherosclerosis theragnosis, by
demonstrating suppressing lipid droplet accumulation in foam cells with nanodrugs[ 170 ]. Similarly, an in vitro model for respiratory
pathology can be demonstrated with HT, such as monitoring the apoptotic reaction of lung cells when microplastic particles are
introduced[ 195 ]. Parasitic activities in live cells can also be identified through HT, as well as the drug-induced egress of the invading
parasites[ 196 ]. Cancer is another feasible target for HT-assisted theragnosis. HT was able to characterize the therapeutic effects of
superparamagnetic iron oxide nanoparticles[ 197 ] and bioluminescence-induced proteinaceous photodynamic therapy on cancer cell lines[

198 ]. In addition, HT can aid in future gout diagnosis by measuring monosodium urate crystal phagocytosis and quantitatively measured
morphological differences between synthetic monosodium urate crystals and those found in synovial fluid[ 199 ]. Finally, recent studies

using HT have identified diseases affecting the rheological properties of RBCs, as observed in metabolic diseases such as diabetes[ 110 ]
and dyslipidaemia[ 200 ]. These studies highlight the potential for live cell-based drug discovery and disease diagnosis using HT in the
future.

Reproducibility	and	data	deposition
Reproducibility
HT imaging has relatively low variability during both the measurement and analysis because the measurement process does not alter or
deteriorate the signal, unlike fluorescence imaging. This is because RI does not drastically change depending on the preparation, and HT
measurements are carried out under a relatively low dose of illumination. Also, the analysis on HT images can be established in a
relatively universal manner. RI is an endogenous physical property that does not require manual normalization, so each biological
structure can be represented with unique patterns in the 3D RI image.

Despite inherent reproducibility of HT, achieving stable data acquisition entails meticulous attention to technical details. Variations in HT
configurations — such as the illumination source wavelength, numerical apertures of the condenser and objective lenses and sensitivity of
the image sensor — can significantly influence the resolution and SNR of 3D RI images. Moreover, the aberration in each implementation
may result in hardware-specific artefacts that distort RI measurements or obscure structural details. Inspecting such variability among HT
systems is also challenging as physical 3D phantoms for calibration purposes are scarce[ 201 ].

On another note, biological attributes derived from 3D RI images can be reproduced within a confirmed range of samples. That is,
although RI is a consistent physical property, the patterns of specific structures can vary between and within species or depending on
pathophysiological conditions. RBCs, for example, showcase notable differences: although typical human RBCs display cytoplasmic RI
around 1.40 and lack a nucleus[ 202 ], amphibian RBCs were reported to have cytoplasmic RI near 1.351 and nuclear RI near 1.365 (ref. [
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203 ]). In addition, a decrease in the cytoplasmic RI of human RBCs to approximately 1.37 was observed during malaria infection,
indicating the digestion of haemoglobin by the parasites.

Data	sharing
HT has the future potential for a multicentre database. Although the variability and difficulty in implementation are currently hindering
factors, the consistency of light scattering ensures that HT measurements are reproducible and transparent. The recent commercialization
of HT, by companies such as Tomocube and Nanolive, has spurred global studies adopting standardized HT measurements across various
biomedical fields. Although creating a standard database is in its nascent stages, the burgeoning open research initiative is set to accelerate
the expansion of HT research communities and advance data-driven HT analyses. Presently, HT data sets are shared via general
repositories such as Figshare, Zenodo and Dryad, promoting open science principles. Best practices encourage sharing both raw and
processed data, accompanied by comprehensive metadata to facilitate validation, reinterpretation and further research. Establishing
minimum reporting standards for HT data, including detailed system configurations, sample preparations, imaging conditions and data
processing details, is imperative for ensuring consistency, reproducibility and the advancement of HT research. These standards should
include detailed descriptions of the HT system configuration (for example, wavelengths of the illumination source and the numerical
aperture of the condenser and objective lenses), sample preparation methods, imaging conditions and data processing algorithms.
Reporting the software version used for data analysis, along with any custom code or settings, further enhances reproducibility.

Limitations	and	optimizations
Artefacts	in	reconstruction
HT is not immune to artefacts that might degrade the HT image quality. This section highlights some common artefacts and suggests
mitigation strategies (Fig. 7 ).

Fig. 7

Typical imaging artefacts in holotomography.

a, Coherent holotomography (HT) suffers from a distinct speckle noise caused by the undesired interference of light[ 204 ]. b, The noise
arising from the imperfection of the illumination beam may deteriorate the hologram qualities for HT. c, The shot noise of photon
measurement influences the reconstruction quality[ 49 ]. d, Sample-induced aberration reduces the reconstruction quality by breaking the

weakly scattering assumption[ 50 ]. RI, refractive index; ROI, region of interest. Panel a adapted with permission from ref. [ 204 ], © Optica
Publishing Group. Part c adapted with permission from ref. [ 49 ], © Optica Publishing Group. Panel d adapted with permission from ref. [
50 ], © Optica Publishing Group.

Coherent HT specifically faces noise issues resulting from the extended coherence length of laser illumination. These issues related to
undesired diffraction by objects beside the sample, including the imperfection of the optical hardware and sample slide. Commonly, a
wide range of factors are involved in the undesired diffraction, producing the speckle noise[ 204 ] (Fig. 7a ). Hardware-oriented solutions
are available for mitigating this coherent noise. One can reduce a significant portion of the coherent noise by ruling out multiple
reflections within the beam splitter or from a protective glass shielding the camera. This involves aligning the angle of the beam splitter to
prevent multiple reflections from entering the image sensor and replacing or removing the protective glass of the camera. Other
countermeasures regarding hardware include maintaining an optical system free of dust and ensuring the spatial light modulator used for
beam steering is properly calibrated. Computational solutions provide further mitigation of coherent noise, using shift-based differential
phase retrieval[ 204 ] (Fig. 7a ) and artificial intelligence-assisted noise removal[ 205, 206 ] (Supplementary Fig. 2d,e ).

An effective remedy for the coherent noise issues is to switch to incoherent light for illumination[ 207 ] (Fig. 7b ), yet other types of noise

may persist. One class of the remaining noise is the camera shot noise (Fig. 7c ), which naturally occurs during the Poisson process of
detecting photons. Shot results in a pixelwise irregularity throughout the entire field of view of the reconstructed HT image. The shot
noise can be mitigated by employing a camera with a larger full-well capacity and using more intense illumination[ 208 ].
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Other elements of noise can be counteracted by considering the properties of the sample. For instance, when noise is absent in the
background but evident within the sample, the culprit might be multiple scattering (Fig. 7d ). In coherent HT, adjusting the phase

unwrapping algorithm can help mitigate this challenge[ 209 ]. For scenarios in which extended reconstruction times are permissible,
algorithms designed to counter multiple scattering can be employed to minimize related artefacts[ 50, 64, 65, 66, 67, 68 ]. Additionally,

aligning the RI of a mounting medium with that of a sample stands as an effective strategy to curtail multiple scattering artefacts[ 210 ].
Employing low-coherence HT serves as an effective method to minimize multiple scattering artefacts, and it offers the advantage of rapid
reconstruction as many artefacts are effectively averaged out[ 46 ]. However, when imaging samples with high scattering properties, there
can be notable reductions in contrast and RI precision. In addition, if noise and diminished contrast predominantly manifest out of focus,
virtual refocusing can serve as an effective solution[ 211 ], offering a balance with computational demands.

Large-sized	HT	images
Although advancements in optical engineering and image analysis are pushing HT towards accommodating larger data sets, there is still
ground to cover. HT methodologies produce 3D images with subcellular resolution and expansive fields of view, capable of encompassing
tissues and even entire slides. Yet, despite these strides in HT measurement techniques[ 8, 95 ], the potential of the derived images remains
underutilized. The primary hindrances are the nascent understanding bridging large-scale HT images with their biomedical implications
and the computational demands they introduce. Historically, studies involving extensive HT images have adopted a patch-based analysis,
extrapolating individual patch data to span the entire image scale[ 14, 16, 212 ]. By dissecting and then piecing together, this strategy
effectively localizes high-resolution features, culminating in a comprehensive field-of-view map drawn from these localized details.

Processing and analysing large-scale HT images necessitate advancements in computational strategies to fully harness their potential in
biomedical research. These high-resolution 3D images, capturing extensive fields of view, offer unparalleled insights into tissue
architecture and cellular dynamics, yet their biomedical implications are often not fully exploited owing to computational limitations and
a gap in linking these images to specific biological contexts. Past research on established medical imaging modalities has showcased the
feasibility of storing and profiling large-scale images, enabling global-scale attributes to be factored into analyses[ 213, 214 ].
Implementing compression algorithms could further enhance the handling of voluminous HT data. Although direct application of lossless
compression algorithms is a possibility, efficient albeit lossy algorithms might be suitable if the information loss is negligible and does
not compromise HT data precision[ 215 ]. By adopting and fine-tuning these computational approaches, the depth of information
embedded in large-scale HT images will pave the way for novel insights.

To address these challenges, future research should aim at developing integrated analysis frameworks that can contextualize HT imaging
data within the broader scope of biomedical research. This involves not just the processing of images for structural details but also the
interpretation of these details to derive meaningful insights into health, disease progression and response to treatments. Efficient data
management strategies, including the application of both lossless and selectively lossy compression algorithms, could facilitate the
handling of large data volumes without sacrificing the precision of HT data. By enhancing computational methodologies to interpret large-
scale HT images in relation to their biological significance, researchers can unlock new perspectives on cellular behaviour, disease
pathology and therapeutic responses.

Outlook
Machine	learning
Over the past decade, the advancement and proliferation of machine learning have reshaped imaging science, with HT being no exception.
By integrating computer vision techniques into HT, intricate patterns that were previously elusive to manual or rule-based analyses have
been discerned, ushering in a new era of biomedical applications.

A primary area of focus in integrating machine learning with HT has been the enhancement of the imaging process itself (Supplementary
Fig. 2 ). More specifically, machine learning has been able to address both the limit of weak scattering approximation and the missing

cone problem, with early works using deep neural networks as the platform for iterative RI reconstruction[ 64 ] (Supplementary Fig. 2a ).
In this study, the neural connectivity weights were fixed to mimic propagation through the sample, and the neural values corresponding to
the RI were learned to satisfy the resulting intensity measurement. Beyond such utilization as an optical forward model, deep neural
networks have been leveraged to secure HT image quality even on unknown data[ 63, 83, 205, 206, 216 ]. One way to do this is to replace
the time-consuming and parameter-dependent regularization with a deep neural network. For example, a trained neural network was used
to predict the image total variation regularized[ 71, 72, 73 ] from the initial HT reconstruction[ 83 ] (Supplementary Fig. 2b ). Similarly, a
different deep neural network trained with simulated data was able to counteract the resolution reduction originating from multiple
scattering and the missing cone problem[ 63, 216 ]. Some studies have addressed the coherent HT-specific noise issue; for example, a
neural network-based screening for noise-corrupted measurements applied before reconstruction effectively reduced noise in angle-
scanning coherent HT[ 205 ]. Also, a deep neural network was constructed to yield a clear HT image when given a noisy HT image, by

training in an unsupervised manner[ 206 ].

These machine learning approaches differ from the regularization techniques previously described in their learning aspect: although
traditional regularization methods apply mathematical constraints based on previous knowledge (such as non-negativity and smoothness),
machine-learning-based regularization and artefact removal adaptively learn these constraints from the data, potentially uncovering
complex relationships that manual or rule-based techniques might miss. This adaptability makes machine learning an invaluable tool for
enhancing HT imaging, leading to more precise and informative biomedical analyses.
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Machine-learning the singular cell level-enhanced HT is making strides in the cell and tissue analysis by precisely discerning cell or tissue
subtypes and physiological states. Traditional efforts relying on manual identification of biophysical properties often struggle with
inherent variabilities among cells. However, with the integration of machine learning, especially deep learning, classification accuracy has
substantially improved, allowing for precise differentiation of blood cells[ 160 ], immune cells[ 161, 217 ] and even bacteria[ 20 ] at the
single-cell level. These advances promise substantial time and cost efficiencies in laboratory diagnostics. Moreover, machine-learning-
driven advancements in HT are bridging the gap of molecular specificity by infusing RI contrast with detailed molecular profiles,
enabling predictions based on morphological indicators present in HT imagery[ 11, 14 ]. This approach offers benefits such as reduced
cellular disruptions, accelerated data capture and expanded imaging channels. Although initial focus has centred around singular cells,
expanding to tissues and 3D cultures is crucial for deeper insights into cellular behaviour. Integrating machine learning with HT in the
histopathological analysis of tissue slides and probing 3D cultures holds great promise for enriching biomedical research and
understanding living cells in their native environments.

Enhancing	existing	applications
Histology
HT has shown unique advantages in histological applications[ 218 ] as a consistent and streamlined 3D imaging platform that abolishes
the need for labour-intensive staining and preparation[ 8 ]. With rapid imaging speeds, HT surpasses other label-free modalities which

often are limited by scanning geography and low SNRs[ 219 ]. HT is consistent, ensuring standardized analysis protocols. With its 3D
analytical capabilities, HT goes beyond traditional 2D assessments, revealing detailed multiscale structures across various tissue types[
8 ] (Supplementary Fig. 3 ). Heterogeneity analyses of HT images pinpoint malignant areas on standard histology slides of renal cell

carcinoma, underscoring its clinical promise[ 16 ]. HT can also be applied to 3D tumour models in patients with gastric cancer
undergoing immunotherapy, revealing spatial organization and heterogeneous interactions of various cellular and non-cellular
components in the tissue (Fig. 8 ). Through the integration of artificial intelligence algorithms and spatial molecular technologies, HT
becomes a powerful tool for identifying and evaluating tissue-level biomarkers and therapeutic targets within the tissue
microenvironment. Despite lower specificity in pinpointing individual subcellular functions, strategies such as assessing the statistical
distribution of tissue RI[ 220, 221 ] and leveraging artificial intelligence to simulate staining processes[ 222 ] have been used to infer
tissue type or detect disease and to improve diagnostics. Artificial intelligence interpretation of RI metrics enables swifter and more
precise diagnostic conclusions.

Fig. 8

Artificial-intelligence-assisted holotomography for investigating the organization of a 3D tissue.

a, A cropped region of a histopathology tissue imaged after H&E staining (corresponds to a 256 × 256 region from a standard 40× histology
image). b, The corresponding holotomography (HT) images of the identical field of view of the tissue (each column illustrates a different
axial section of the 5-µm-thick tissue). c, Artificial-intelligence-driven identification and segmentation of cellular and non-cellular tissue
substructures, for the HT section images of part b. d, Artificial-intelligence-assisted detection of collagen, along with the analysis of
collagen fibre arrangement and alignment derived from the HT section images of part b. e, Volumetric rendering of the tissue segmentation
in part c, merged into a 3D structure. H&E, haematoxylin and eosin.

Three-dimensional	biology
Exploring biological systems in 3D contexts more accurately mirrors in vivo conditions. Although the utility of HT in organoid studies is
palpable, there is room for advancement, such as tailoring HT for high-throughput applications, necessitating swifter image acquisition
and the concurrent scanning of multiple organoids. Optimization of conditions for monitoring robust densely packed samples — such as
brain organoids — in live circumstances is needed. This includes harnessing in vivo clearing methods[ 223 ] or fine-tuning imaging
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conditions. An on-going issue in examining organoids is the limited penetration depth of HT imaging; the foundational principle of HT,
anchored in the inversion of light scattering and presupposing single scattering within samples, curtails its imaging depth to a mere
handful of cell layers. By melding HT with incoherent light sources, this reach has been extended to ~100–150 µm. Yet, environments
conducive to high-fidelity imaging remain bound within the 50 µm threshold, hemmed in by multifaceted light scattering and sample-
induced distortions[ 7 ]. This is particularly challenging given that standard organoid dimensions span from 100 µm to 1 mm. The advent
of artificial-intelligence-driven computational tools designed for visual amplification and noise reduction can further illuminate deep
organoid structures, and novel iterative algorithms are able to enhance depth penetration[ 15 ]. As HT continues to adapt, addressing both

multiple light scattering and sample-induced distortions[ 50 ], its potency in organoid research and its utility in drug screening are set to
ascend.

Regenerative	medicine
Applying HT imaging to PSC biology presents challenges owing to the need for advanced analyses for colony-like growth, variations in
pluripotency and differentiation influenced by genetic/epigenetic factors and culture conditions and the resulting heterogeneous cultures
during somatic cell reprogramming. Precise high-resolution multiplexed microtomography of diverse PSC lines will enhance the
accuracy and applicability of label-free image-based quality control of PSCs. The automation of image analysis and the scalability of HT
imaging systems are expected to address the complexities of applying HT imaging to PSC biology. Advances in automated image
analysis through the integration of machine learning will transform the accurate identification, classification and tracking of nuanced
changes in pluripotency and differentiation stages of PSCs and will minimize manual analysis, reduce biases and facilitate the processing
of large data sets with unprecedented speed and accuracy. Furthermore, enhancements in HT imaging technology are anticipated to
improve sample handling and throughput capabilities for PSC cultures, speeding up the screening of genetic and epigenetic factors and
establishing culture conditions that promote optimal growth and differentiation. These forecasted advances in HT for the surveillance
and improvement of reprogramming of hPSCs and cellular differentiation hold enormous potential to improve our understanding of stem
cell biology and provide promising methodologies for safe and cost-efficient clinical cell therapy.

In	vitro	fertilization
A non-invasive, high-speed 3D imaging modality is needed to quantitatively analyse the 3D morphokinetics of freely moving sperm used
in IVF. Although oocytes have not received as much attention as embryos and sperm[ 55 ], accurately predicting their developmental
potential before IVF treatment could greatly simplify and streamline the process of achieving a successful pregnancy. The limited focus
on oocytes compared with embryos and sperm in IVF-related research likely stems from a combination of technical challenges and
historical oversight. Technically, oocytes present unique imaging challenges owing to their size, optical properties and the need to
maintain their viability during analysis. Oocytes are significantly larger than sperm, requiring imaging techniques that can capture their
entire volume without compromising resolution or causing damage. Additionally, the dense, opaque nature of the zona pellucida (the
outer layer of the oocyte) can hinder optical clarity, necessitating imaging modalities capable of penetrating this layer without affecting
oocyte developmental potential. This kind of evaluation of oocytes became more important as oocyte cryopreservation for future use
became a routine clinical practice in reproductive medicine.

Notably, combining HT with machine learning can be a promising route for the accurate and automatic segmentation of good-quality
oocytes and sperm[ 224 ]. Given the high spatiotemporal resolution and data reproducibility, it also has the potential to serve as a time-

lapse monitoring system for continuously monitoring embryo development[ 225 ], improving the accuracy in machine-learning-assisted
selection of embryos with higher potential to achieve pregnancy and live birth[ 226, 227 ].

Conclusion
The precision, adaptability and label-free imaging and quantitative analysis potential of HT in elucidating intricate biological phenomena,
from the cellular to the organoid level, portends a future in which we can observe and understand processes of life with an unprecedented
depth and clarity. Furthermore, insights and techniques of other disciplines will foster new avenues for HT to contribute, while remedying
the limitations such as the missing cone problem, imaging depth, multiple scattering and marginal molecular specificity. The integration
of HT with complementary techniques, including machine learning and other advanced imaging modalities, is addressing many of the
current limitations of HT. Furthermore, as HT becomes more accessible and integrated into mainstream research, its applications will
undoubtedly extend beyond the laboratory, impacting clinical diagnostics, therapeutic development and patient care.
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Glossary
Biomolecular condensates
Membrane-less assemblies of proteins and nucleic acids, characterized by inhomogeneous, non-stoichiometric molecular arrangements,
encompassing structures such as nucleoli, nuclear speckles, heterochromatin, cytoplasmic stress granules, germ granules and others.
Coherent HT
A HT technique that uses a coherent light source such as a laser for angle-scanned illumination.
Coherent light illumination
Light with well-defined propagation angle which can be described by a plane wave.
Fourier diffraction theorem
A theorem which states that the Fourier transform of the aperture function of an object is proportional to the far-field diffraction pattern,
linking the spatial domain with the frequency domain and enabling the reconstruction of 3D RI tomogram via the analysis inverse wave
scattering and propagation.
Kramers–Kronig relations
A fundamental principle in physics that describes the relationship between the real and imaginary parts of a complex function, used in
holotomography to retrieve phase information from intensity measurements.
Lipid droplets
Subcellular organelles primarily involved in the storage and regulation of lipids, serving as energy reservoirs and playing a role in cellular
lipid metabolism and signalling pathways within cells.
Mach–Zehnder interferometric techniques
Optical techniques that split a laser beam into two distinct paths, which are then recombined to form interference patterns, providing an
optical field with detailed amplitude and phase information.
Missing cone problem
The issue in tomographic imaging in which certain angles cannot be sampled owing to geometric or physical constraints, resulting in a loss
of information and potentially leading to inaccuracies in the reconstructed images.
Non-negativity
In regularization algorithms addressing the missing cone problem, the non-negativity is a constraint applied during reconstruction that
ensures all predicted values for the missing data are greater than or equal to zero.
Refractive index
A dimensionless number given by the ratio of speed of light in a medium to that in vacuum.
Spatially low-coherence HT
A HT technique that exploits spatially low-coherent light source for illumination and axially scans the sample.
Temporally low-coherence HT
A HT technique that exploits temporally low-coherent light sources such as LED for angle-scanned illumination.
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