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Abstract
An edge q-coloring of a graph G is a coloring of its edges such that every vertex sees at most q colors
on the edges incident on it. The size of an edge q-coloring is the total number of colors used in the
coloring. Given a graph G and a positive integer t, the Maximum Edge q-Coloring problem is
about whether G has an edge q-coloring of size t. Studies on this coloring problem were motivated
by its application in the channel assignment problem in wireless networks.

Goyal, Kamat, and Misra (MFCS 2013) studied Maximum Edge 2-Coloring from the per-
spective of parameterized complexity. Given a graph on n vertices, they considered the standard
parameter t, the number of colors in an optimal edge 2-coloring, and the dual parameter ℓ, where n−ℓ

is the number of colors in an optimal edge 2-coloring. They designed FPT algorithms for Maximum
Edge 2-Coloring parameterized by t and ℓ. In this paper, we revisit and study Maximum Edge
2-Coloring from the perspective of parameterized complexity and show the following results.
1. Let γ(G) denote the maximum matching size in a given graph G. It is easy to see that a

maximum edge 2-coloring of G is of size at least γ(G). Goyal, Kamat, and Misra (MFCS 2013)
had asked if there exists an FPT algorithm for Maximum Edge 2-Coloring parameterized
by k, where k := (size of a maximum edge 2-coloring of G) − γ(G). We show that Maximum
Edge 2-Coloring parameterized by k is W[1] hard.

2. On the positive side, we show that there is an algorithm that, given a graph G on n vertices
and a tree decomposition of width tw, runs in time 2O(qtw log qtw)n and outputs a maximum edge
q-coloring of G.
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1 Introduction

Given a graph G and a positive integer q, an edge q-coloring is a coloring (not necessarily
proper) of the edges of G such that every vertex sees at most q colors on the edges incident
on it. The size of an edge q-coloring is the total number of colors used in the coloring.
Assigning every edge of G the same color is indeed a valid edge q-coloring. However, we
are interested in obtaining a maximum edge q-coloring of G, an edge q-coloring of G of the
maximum possible size.

In 2005, Raniwala, Chiueh, and Gopalan in [12] and [11] proposed Hyacinth, a multichannel
wireless mesh network architecture that uses 802.11 Network Interface Cards (NICs) at each
node of the mesh network. They observed that two NICs on each node may improve network
throughput by a factor of 6 to 7 compared to conventional single-channel ad hoc networks.
A network can be modeled as a graph where each computer is a vertex. Assigning channels
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to computers with two interface cards corresponds to an edge 2-coloring of the graph. The
maximum number of colors in an edge 2-coloring represents the number of channels that can
be used simultaneously in the network.

Maximum edge q-coloring of graphs has been studied from an algorithmic as well as a
structural graph theoretic perspective. Adamaszek and Popa [1] proved that the decision
version of the maximum edge q-coloring problem is NP-hard for every q ≥ 2. Further they
showed that, for every q ≥ 2, the maximum edge q-coloring problem is APX-hard. For q = 2,
the paper gives a 5/3-factor approximation algorithm for graphs having a perfect matching.
For triangle-free graphs having a perfect matching, Chandran et al. [3] gave an 8/5-factor
approximation algorithm for the maximum edge q-coloring problem. Later, in [2], Chandran
et al. showed that the approximation factors of 5/3 and 8/5 can be improved under certain
assumptions on the minimum degree of the graph under consideration. As for general graphs,
Feng et al. in [8] gave a 2-factor approximation algorithm for the maximum edge 2-coloring
problem. In the same paper, the authors showed that the maximum edge 2-coloring problem
is polynomial-time solvable for trees and complete graphs. In [6], Dvorak et al. show that
there is a PTAS known for the maximum edge q-coloring problem on minor-free graphs.

From a parameterized complexity perspective, Goyal, Kamat, and Misra in [10] gave
fixed-parameter tractable algorithms for maximum edge 2-coloring of G for both the standard
parameter (say t, if t is the size of an optimal edge 2-coloring of G) and the dual parameter
(say ℓ, if n − ℓ is the size of an optimal edge 2-coloring, where n is the number of vertices in
the input graph). It is known that the maximum number of colors used in an edge 2-coloring
of a graph G is at most the number of vertices in G, and hence, with the dual parameter ℓ,
the number of colors asked for is n − ℓ. For the dual parameterization, the authors obtained
a linear vertex kernel with O(ℓ) vertices and O(ℓ2) edges.

The maximum edge q-coloring problem is related to another parameter called anti-Ramsey
number, a concept introduced by Erdős, Simonovitz and Sós in 1975 [7]. Given a host graph
G and a pattern graph H, the anti-Ramsey number ar(G, H) is defined as the smallest
positive integer k such that any coloring of the edges of G with k colors will have a rainbow
subgraph (a subgraph no two of whose edges have the same color) isomorphic to H. In other
words, ar(G, H) is one more than the largest k for which there exists a coloring of the edges of
G with k colors such that there is no rainbow subgraph isomorphic to H under this coloring.
See [9] for a survey on anti-Ramsey numbers, a notion that has been extensively studied
in extremal graph theory. From its definition, it is clear that the size of a maximum edge
q-coloring of a graph G is one less than ar(G, K1,q+1), where K1,q+1 denotes the complete
bipartite graph with 1 vertex in one part and q + 1 vertices in the other.

Our contributions
In Section 3 we give a fixed parameter tractable algorithm for Maximum Edge q-Coloring
parameterized by the treewidth of the graph under consideration.

▶ Theorem 1. There is an algorithm that, given an n-vertex graph G and its tree decom-
position of width tw, runs in time 2O(tw·q log(tw·q))n, and outputs a maximum edge q-coloring
of G.

To explain the significance of this result, let us recall the work of Goyal et al. [10] for
Maximum Edge 2-Coloring with respect to the parameter k, the number of colors in the
output edge 2-coloring of the graph. Let G be the input graph, and let γ(G) denote the size
of a maximum matching in G. They first observe that the size of a maximum edge 2-coloring
of G is at least γ(G) as coloring all the edges in a maximum matching with distinct colors
and then coloring the remaining edges with a new color is indeed a valid edge 2-coloring of G.
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Thus, the problem becomes challenging only when γ(G) ≤ k. In this case, the vertex cover
number of G is at most 2k. Then, Goyal et al. [10] observed that maximum edge q-coloring
can be expressed in Monadic Second Order (MSO2) logic. Since the treewidth of G is at
most its vertex cover number, which is upper bounded by 2k, an application of Courcelle’s
theorem [4] provides a fixed parameter tractable (FPT) algorithm for the problem, but its
running time will be impractical. Goyal et al. [10] gave a combinatorial algorithm with
running time 2O(k log k)nO(1), using the fact that the vertex cover number will be at most 2k.
As a corollary, one gets an FPT algorithm parameterized by the vertex cover number because
the number of colors in an edge 2-coloring is at most two times the vertex cover number.

However, the case where the parameter is treewidth is not trivial. First of all, the edge
2-coloring number can be arbitrarily larger than the treewidth. Consider the graph, which is
a path on n vertices. Here, the pathwidth (and hence the treewidth) is one, but coloring all
the n − 1 edges with distinct colors is a valid edge 2-coloring. Next, it is tempting to believe
that since the problem is expressible in MSO2, we get an FPT algorithm parameterized by
treewidth. In fact, there is a caveat here. The length of the MSO2 formula depends on the
total number of colors used in the edge coloring (hence it is large), and the running time of
the algorithm by the application of Courcelle’s theorem depends exponentially on the length
of the formula as well. Thus, it is important to design an algorithm for the problem when
the parameter is treewidth. To the best of our knowledge, this is the first FPT algorithm for
the problem when parameterized by treewidth.

Recall the the size of a maximum edge 2-coloring is at least γ(G). Goyal et al. [10] asked
if there exists an FPT algorithm for the maximum edge 2-coloring problem parameterized by
k, where k := (size of a maximum edge 2-coloring of G) − γ(G). In Section 4, we resolve
this question by showing that the problem is W[1] hard.

▶ Theorem 2. It is W[1]-hard parameterized by k to decide if the given graph G has an edge
2-coloring using at least γ(G) + k colors.

2 Preliminaries

We use N to denote the set of natural numbers. For n ∈ N, we use [n] to denote {1, . . . , n}.
For a function f : A → B and A′ ⊆ A, f(A′) = {f(a) : a ∈ A′}. For two functions f : A → B

and g : B → C, g ◦ f is the function from A to C defined as follows: (g ◦ f)(a) = g(f(a)), for
all a ∈ A. Let f : A1 → B and g : A2 → B be two functions. We use f ⊕ g to denote the
function defined as follows: (f ⊕ g)(a) = f(a) if a ∈ A1 and (f ⊕ g)(a) = g(a), if a ∈ A2 \ A1.
If f(a) = g(a) for all a ∈ A1 ∩ A2, then f ∪ g denotes the the union of the functions f and g.
Here, (f ∪ g)(a) = f(a) if a ∈ A1 and (f ∪ g)(a) = g(a), otherwise. If A1 ∩ A2 = ∅, then we
may also write f ⊎ g instead of f ∪ g.

Throughout this paper, we use simple, undirected graphs. We say a graph is connected
if, for any pair of vertices in it, there is a path between them in the graph. Let G be a
graph. We use V (G) and E(G) to denote its vertex and edge sets, respectively. We use
{u, v} as well as uv to denote the edge between vertex u and vertex v. For a vertex subset
U ⊆ V (G), EG(U) denotes the set of edges incident on U . That is, EG(U) = {{x, y} ∈
E(G) : x ∈ U ∨ y ∈ U}. For a vertex v, we use EG(v) to denote the set E({v}). For a vertex
subset U ⊆ E(G), we use EG[U ] to denote the set of edges with both endpoints in G. That
is, EG[U ] = {{u, v} ∈ E(G) : u, v ∈ U}. For an edge subset F ⊆ E(G), we use VG(F ) to
denote the set of endpoints of the edges in F . When the graph is clear from the context, we
remove the subscript G in the above notations. For a vertex subset U ⊆ V (G), we use G[U ]
to denote the subgraph of G induced by U . That is, V (G[U ]) = U and E(G[U ]) = EG[U ].
For an edge subset F ⊆ E(G), we use G[F ] to denote the subgraph of G induced by F . That
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is, V (G[F ]) = VG(F ) and E(G[F ]) = F . A separation of G is a pair (A, B) of vertex subsets
such that A ∪ B = V (G), and there is no edge with one endpoint in A \ B and the other in
B \ A. The separator of this separation is A ∩ B, and the order of the separation is |A ∩ B|.

The following lemma is a folklore.

▶ Lemma 3. Let G be a graph, q ∈ N, and d : E(G) → N be an edge q-coloring using
the maximum number of colors. Then, for any color r ∈ N with d−1(r) ̸= ∅, G[d−1(r)] is
connected.

Proof. Suppose by contradiction, if G[d−1(r)] is disconnected, we have two disjoint compon-
ents. It means we can give one new color (say r′ ≠ r) to any one component and strictly
increase the number of colors used by one. This will be again a q-coloring of G. However,
this is a contradiction as the given coloring uses the maximum number of colors. ◀

Tree decompositions. A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T)),
where T is a tree and every node t ∈ V (T) is assigned a vertex subset Xt ⊆ V (G), called a
bag, such that the following three conditions hold:
1.

⋃
t∈V (T) Xt = V (G).

2. For every {u, v} ∈ E(G), there is a node t ∈ V (T) such that u, v ∈ Xt.
3. For every u ∈ V (G), the subgraph of T induced by Tu = {t ∈ V (T) : u ∈ Xt} is

connected.

The width of tree decomposition T = (T, {Xt}t∈V (T)) is maxt∈V (T) |Xt|−1. The treewidth
of a graph G, denoted by tw(G), is the minimum width among all tree decompositions of
G. To explain dynamic programming in an easier way, we recall the definition of a nice tree
decomposition. A nice tree decomposition if a T = (T, {Xt}t∈V (T)) where T is a rooted tree
and satisfies the following additional conditions. Let r be the root node in T.
1. Xr = ∅ and Xℓ = ∅ for every leaf node ℓ.
2. Each non-leaf node of T has one of the following three types:

Introduce node: A node t with exactly one child t′ such that Xt = Xt′ ∪ {v} and
v /∈ Xt′ ; we say that v is introduced at t.
Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w} for some
vertex w ∈ Xt′ ; we say that w is forgotten at t.
Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .

▶ Lemma 4 (Lemma 7.4 in [5]). If a graph G admits a tree decomposition of width at most
k, then it also admits a nice tree decomposition of width at most k. Moreover, given a
tree decomposition T = (T, {Xt}t∈V (T)) of G of width at most k, one can in time O(k2 ·
max(|V (T )|, |V (G)|)) compute a nice tree decomposition of G of width at most k that has at
most O(k|V (G)|) nodes.

Parameterized complexity. A parameterized problem P is a subset of Σ∗ × N, where Σ
is the finite alphabet. Fixed parameter traceability of a problem P means whether we can
decide the problem in O(f(k) · p(n)) time, where k is the fpt parameter, n is the input size,
f(.) is some arbitrary function and p(.) is a polynomial function.

▶ Definition 5 (Parameterized reduction [5]). Let A, B ⊆ Σ∗ × N be two parameterized
problems. A parameterized reduction from A to B is an algorithm that, given an instance
(x, k) of A, outputs an instance (x′, k′) of B such that
1. (x, k) ∈ A ⇐⇒ (x′, k′) ∈ B.
2. k′ ≤ g(k) for some computable function g(.), and
3. the running time is f(k) · |x|O(1) for some computable function f(.).
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3 FPT algorithm parameterized by treewidth

We give a dynamic programming algorithm for Maximum Edge q-Coloring when a tree
decomposition of width at most k is given as part of the input. Without loss of generality,
we assume that a nice tree decomposition is part of the input. Let (G, T = (T, {Xt}t∈V (T )))
be the input. Let n = |V (G)|, m = |E(G)|, and the width of the tree decomposition T is k.
Our algorithm should output an edge q-coloring of G using the maximum number of colors.

Let us define some notations which we use in this section. Recall that T is a rooted tree.
Let r be the root of T . For a node t ∈ V (T ), Vt is the union of the bags in the subtree rooted
at t. That is, if Tt is the subtree of T rooted at t, then Vt =

⋃
t′∈V (Tt) Xt′ . We use Gt to

denote the graph G[Vt]. Notice that for any t ∈ V (T ), (Vt, (V (G) \ Vt) ∪ Xt) is a separation
of G of order |Xt|, which is upper bounded by k. Now consider the following lemma.

▶ Lemma 6. Let G be a graph, q ∈ N, and d : E(G) → N be an edge q-coloring using a
maximum number of colors. Let (A, B) be a separation of G and there is a color r such that
r ∈ d(EG[A \ B]) and r /∈ d(EG[A] \ EG[A \ B]). Then, r /∈ EG[B].

Proof. Let r be the color specified in the lemma and let {u, v} ∈ d−1(r). From the definition
of EG[A \ B], we have u, v ∈ A \ B. We are given that r /∈ d(EG[A] \ EG[A \ B]). It means
there is no edge with at least one endpoint in A ∩ B with color r. The reason is that
EG[A \ B] is the set of edges with both the endpoints in A \ B and EG[A] = {{x, y} : x, y ∈
A \ B} ∪ {{x, y} : x ∈ A ∩ B ∨ y ∈ A ∩ B}. This implies that there is no edge from EG[A]
with at least one endpoint in A ∩ B and colored with r. We need to prove that there is no
edge in EG[B] colored with r. Now, for the sake of contradiction, say we have an edge with
color r, and it is in EG[B]. By Lemma 3, there should be a path from the edge {u, v} (as
defined above) to this edge in EG[B] and all the edges in this path are colored r. This path
must pass through at least one vertex in A ∩ B as (A, B) is a separation of G. But it leads
to contradiction as we are given that r /∈ d(EG[A] \ EG[A \ B]). It means r /∈ EG[B]. ◀

Lemma 6 helps us to design a dynamic programming algorithm. Because of Lemma 6,
at any node t ∈ V (T ), for any coloring of Gt, we do not need to remember the colors of
the edges incident on the vertices other than Xt, as it will not be used to color the “future”
edges. More formally, in the dynamic programming for any node t we compute and store
a set Ct of edge q-colorings of Gt. Here, we use two disjoint sets of colors; the first set is
[qk] = {1, 2, . . . , qk} and the other set is {a1, a2, . . . , anq}. We use only the colors from [qk]
to color the edges incident on Xt. Other edges in Gt can be colored with any colors from
[qk]∪{a1, a2, . . . , anq}. But, we make sure that if an edge in Gt is colored with a color c from
[qk], then at least one edge incident on Xt is colored with c. Consider two edges q-coloring
g1 and g2 of Gt that satisfy the conditions mentioned above. We say that g1 and g2 are
equivalent, denoted by g1 ∼t g2, if the following conditions hold.

(i) |g1(E(Gt))| = |g2(E(Gt))|. That is, the number of colors used by both g1 and g2 are
the same.

(ii) For all u ∈ Xt, g1(EGt
(u)) = g2(EGt

(u)). That is, the colors seen by the edges incident
on u are the same in both the colorings g1 and g2, for any vertex u ∈ Xt.

Lemma 6 implies that if g1 ∼t g2, and g1 can be extended to a maximum edge q-coloring
of G, then g2 can be extended to a maximum edge q-coloring of G. This is formulated in the
following lemma.

▶ Lemma 7. Suppose g1 ∼t g2. If there is an edge q-coloring f1 of G such that f1|E(Gt) = g1,
then there is an edge q-coloring f2 of G such that f2|E(Gt) = g2 and |f1(E(G))| = |f2(E(G))|.

FSTTCS 2024
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Proof. We know that both g1 and g2 satisfy the following conditions.
(a) All the edges incident on Xt are colored using the colors from [qk] by g1 and g2.
(b) All the edges in Gt are colored using colors from [qk] ∪ {a1, . . . , aqn}. Moreover, for each

i ∈ [2], if a color c ∈ [qk] is used by gi, then there is an edge e ∈ EGt
(Xt) such that

gi(e) = c.
Since g1 ∼t g2 and condition (b) above implies that the number of colors from {a1, . . . , aqn}
used by both g1 and g2 are same. Without loss of generality let a1, . . . , aℓ be the colors
in {a1, . . . , aqn} used by the coloring g2. As mentioned before, there are exactly ℓ colors
from {a1, . . . , aqn} used by g1. Let i1, . . . , iℓ be the distinct indices in [qn] such that the
colors from {a1, . . . , aqn} used by g1 are ai1 , . . . , aiℓ

. Now, we obtain a coloring f̂1 from f1
as follows. Let β : {a1, . . . , aqn} ∪ [qk] → {a1, . . . , aqn} ∪ [qk] be an arbitrary bijection such
that β(r) = r for all r ∈ [qk] and β(aij

) = aj for all j ∈ [ℓ]. Now the coloring f̂1 is defined as
follows. For each e ∈ E(Gt), f̂1(e) = β(f1(e)) and for each e ∈ E(G) \ E(Gt), f̂1(e) = f1(e).
Let f̂1|E(Gt) = ĝ1. Since β is a bijection as defined above, f̂1 is an edge q-coloring of G,
ĝ1 ∼t g2, |f1(E(G))| = |f̂1(E(G))|, and ĝ1(E(Gt)) = g2(E(Gt)).

We define an edge q-coloring f2 of G as below:

f2(e) =
{

f̂1(e), if e ∈ E(G) \ E(Gt)
g2(e), otherwise, i.e., e ∈ E(Gt)

Since g2(E(Gt)) = ĝ1(E(Gt)) and f̂1|E(Gt) = ĝ1, we have |f2(E(G))| = |f̂1(E(G))| =
|f1(E(G))|. Next we prove that indeed f2 is an edge q-coloring of G. Towards that we need
to prove that for all u ∈ V (G), |f2(EG(u))| ≤ q. Fix a vertex u ∈ V (G). First, consider
the case when u ∈ Vt \ Xt. Then, f2(E(u)) = g2(E(u)) and g2 is an edge q-coloring of the
induced subgraph Gt. Hence, |f2(E(u))| ≤ q. Now, consider the case u ∈ Xt. Since ĝ1 ∼t g2,
ĝ1(EGt

(u)) = g2(E(Gt(u)). Thus, by the definition of f2, we get that f2(EG(u)) = f̂1(EG(u)).
This implies that |f2(E(u))| ≤ q. Finally, consider the case when u ∈ V (G) \ Vt. In this case,
f2(EG(u)) = f̂1(EG(u)) and hence |f2(E(u))| ≤ q. ◀

Because of Lemma 7, it is enough to keep one coloring from an equivalence class of ∼t.
Let St be the set of all edge q-colorings of Gt such that
(a) all the edges incident on Xt are colored from the set [qk],
(b) all other edges are colored from the set [qk] ∪ {a1, . . . , anq}, and
(c) if an edge in Gt is colored with a color c from [qk], then at least one edge incident on Xt

is colored with c.

Two colorings in St are equivalent in ∼t if the conditions (i) and (ii) defined before, hold.

▶ Lemma 8. The number of equivalence classes in ∼t is upper bounded by
(

qk
q

)k · qk+1 · n.

Proof. From the definition of an equivalence class, the number of equivalence classes is
determined by the product of the number of possibilities for conditions (i) and (ii) mentioned
above in this section. For any n-vertex graph G, the number of colors used by any edge
q-coloring is at most nq, because for any vertex, the number of colors used for the incident
edges is at most q. Recall that |Xt| ≤ k. Next we count the number of distict combination
for the condition (2) (i.e., for all u ∈ Xt, g1(EGt

(u)) = g2(EGt
(u))). This number is upper

bounded by (
∑q

j=0
(

qk
j

)
)k ≤ qk

(
qk
q

)k, since for any vertex in Xt, we choose at most q out of
qk colors for coloring the incident edges. Therefore, the total number of equivalence classes
in ∼t is upper bounded by

(
qk
q

)k · n · qk+1. ◀
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Because of Lemmas 7 and 8, for each node t in T , we compute and store a family Ct ⊆ St

of edge q-colorings of Gt such that |Ct| ≤ 2O(qk log qk) · n and at least one coloring in it can
be extended to a maximum edge q-coloring of G. Now, we explain how to compute Ct in a
bottom-up fashion. Let t be a node in T and assume that we have computed Ct′ for all node
t′ such that t ̸= t′ and t′ is a node in the subtree rooted at t.

Leaf Node. In this case V (Gt) = ∅, and hence Ct contains only one coloring which is an
empty function.

Introduce Node. Suppose t is an introduce node with a child t′ such that Xt = Xt′ ∪ {v}
for some v /∈ Xt′ . Recall that we have already computed Ct′ . Notice that v is adjacent
to at most k − 1 vertices in Gt. Moreover, NGt(v) ⊆ Xt and E(Gt) = E(Gt′) ⊎ EGt(v).
Now construct a set Dt as follows. Initially we set Dt := ∅. Now for each coloring f ∈ Ct′

and each coloring g : EGt(v) → [qk] such that f ⊎ g is an edge q-coloring of Gt, we add
f ⊎ g to Dt. Finally, construct a minimal subfamily Ct ⊆ Dt such that for each non-empty
equivalence class of ∼t in Dt, there is exactly one such coloring in Ct. The subfamily Ct is
easy to compute. Initially, we set Ct := Dt, and while there are two colorings in Ct which are
equivalent, delete one of them and repeat this step.

Forget Node. Suppose t is a forget node with a child t′ such that Xt = Xt′ \ {w} for some
w ∈ Xt′ . Notice that here Gt = Gt′ and we have already computed Ct′ . But Xt = Xt′ \ {w}.
We want each of the colorings in Ct to have the following property. If a color is used only
to color the edges from E(Gt) \ EGt(Xt), then that color should be from {a1, . . . , aqn}. For
each coloring f ∈ Ct′ , we construct a coloring f ′ as follows. If a color c ∈ [qk] is used to
color an edge in E(Gt) \ EGt

(Xt) and not used to color any edge in EGt
(Xt), then recolor

those edges with an unused color from {a1, . . . , aqn}. The set Ct is the collection of such
colorings f ′. Clearly |Ct| = |Ct′ |.

Join Node. Let t1 and t2 be the children of t. In this case, we have Xt = Xt1 = Xt2 and Gt is
the union of Gt1 and Gt2 . That is, V (Gt) = V (Gt1) ∪ V (Gt2) and E(Gt) = E(Gt1) ∪ E(Gt2).
Also, we have already computed Ct1 and Ct2 . We want to construct Ct by combining
functions from Ct1 and Ct2 . Initially we set Dt := ∅. For a function f1 ∈ Ct1 and a
function f2 ∈ Ct2 , we construct an edge coloring of Gt, which is described below. Let
Aj = fj(EGtj

) ∩ {a1, . . . , anq} and ℓj = |Aj |, for all j ∈ {1, 2}. Let β1 : A1 → {a1, . . . , aℓ1}
and β2 : A2 → {aℓ1+1, . . . , aℓ1+ℓ2} be two arbitrary fixed bijections. Notice that since f1 and
f2 are edge q-colorings from Ct1 ⊆ St1 and Ct2 ⊆ St2 , respectively, and (Vt1 ∩ Vt2) \ Xt = ∅,
we have that ℓ1 + ℓ2 ≤ nq, and hence β1 and β2 are well defined. Now, for all j ∈ {1, 2},
f ′

j : Vtj
→ [qk] ∪ {a1, . . . , anq} be the edge q-colorings defined as follows: f ′

j(e) = fj(e), if
fj(e) ∈ [qk], and f ′

j(e) = βj(fj(e)) if fj(e) ∈ {a1, . . . , anq}. It is easy to see that fj ∼tj f ′
j

and f ′
j is indeed an edge q-coloring of Gtj

. Moreover f ′
1(E(Gt1)) ∩ f ′

2(E(Gt2)) ⊆ [qk]. Now
define an edge coloring f ′

1 ⊕ f ′
2 of Gt as follows.

f ′
1 ⊕ f ′

2(e) =
{

f ′
1(e), if e ∈ E(Gt1)

f ′
2(e), otherwise, i.e., e ∈ E(Gt2) \ E(Gt1)

Notice that each edge in Gt gets exactly one color in f ′
1 ⊕ f ′

2, and hence f ′
1 ⊕ f ′

2 is edge
coloring of Gt. If f ′

1 ⊕ f ′
2 ∈ St, then we include f ′

1 ⊕ f ′
2 in Dt. Notice that when f ′

1 ⊕ f ′
2 ∈ St,

f ′
1 ⊕ f ′

2 is an edge q-coloring of Gt. Finally, construct a minimal subfamily Ct ⊆ Dt such that
for each non-empty equivalence class of ∼t in Dt, there is exactly one such coloring in Ct.
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This completes the construction of Ct. Recall that r is the root of T . Finally, we output
a coloring from Cr that uses maximum number of colors.

Correctness. For the correctness proof, it is enough to prove the following statement.
For any maximum edge q-coloring h of G, any node t ∈ V (T ), and any injective function
β : h(E(G)) → [qk]∪{a1, . . . , anq} such that β◦h(EGt

(Xt)) ⊆ [qk], there is an edge q-coloring
f ∈ Ct such that f ∼t (β ◦ h)|E(Gt). We prove the statement using mathematical induction,
where the base case is when t is a leaf node. The base case is trivially true, because V (Gt) = ∅
for a leaf node t.

Consider the case when t is labelled as an introduce node. Let t′ be the child of t and Xt′ =
Xt \ {v}. Let h be a maximum edge q-coloring of G and β : h(E(G)) → [qk] ∪ {a1, . . . , anq}
be an injective function such that (β ◦ h)(EGt(Xt)) ⊆ [qk]. Let f = (β ◦ h)|E(Gt′ ) and
g = (β ◦ h)|EGt (v). By induction hypothesis, there is f ′ ∈ Ct′ with f ′ ∼t′ f = (β ◦ h)|E(Gt′ ).
Then, f ′ ⊎ g ∈ Dt and there is a function f ′′ ∈ Ct such that f ′′ ∼t f ′ ⊎ g. Since, f ′ ∼t′ f , we
get that f ′′ ∼t (β ◦ h)|E(Gt).

Consider the case when t is labelled as forget node and t′ be the child of t. Notice that in
this case for any coloring f in Ct′ , we changed some colors that are not used to color the
edges in EGt

(Xt) to some other unused colors. Hence, the proof is simple and we omit here.
Consider the case when t is labelled as a join node. Let t1 and t2 be the children

of t. Here, we have Xt = Xt1 = Xt2 . Let h be a maximum edge q-coloring of G and
β : h(E(G)) → [qk]∪{a1, . . . , anq} be an injective function such that (β ◦h)(EGt(Xt)) ⊆ [qk].
Let g1 = (β ◦ h)|E(Gt1 ) and g2 = (β ◦ h)|E(Gt2 ). By induction hypothesis, there are function
f1 ∈ Ct1 and f2 ∈ Ct2 such that f1 ∼t1 g1 and f2 ∼t2 g2. Recall the functions f ′

1 and f ′
2

constructed in the algorithm. Since g1 ⊕ g2 = g1 ∪ g2 is an edge q-coloring of Gt, f1 ∼t1 g1
and f2 ∼t2 g2, we get that f ′

1 ⊕ f ′
2 is an edge q-coloring of Gt. Moreover, by the construction

of f ′
1 and f ′

2, the number of colors used by f ′
1 ⊕ f ′

2 is same as the number of colors used by
g1 ∪ g2. Also, since f1 ∼t1 g1 and f2 ∼t2 g2, we get that (f ′

1 ⊕ f ′
2) ∼t (g1 ∪ g2) = (β ◦ h)|E(Gt).

This completes the correctness proof.

Runtime analysis. Lemma 8 implies that for all t ∈ V (T ), |Ct| ≤
(

qk
q

)k · qk+1 · n. There
are O(kn) nodes in T and the bottleneck in the computation is the computation of Ct for a
join node. This running time is upper bounded by O(|Ct1 | · |Ct2 | · n), where t1 and t2 are the
children of t. This is upper bounded by 2O(kq log kq)n3. Thus the total running time is upper
bounded by 2O(kq log kq)n4.

Improving the running time. Recall the definition of ∼t. Two functions g1 and g2 are
equivalent under ∼t, if the following conditions hold.

(i) |g1(E(Gt))| = |g2(E(Gt))|. That is, the number of colors used by both g1 and g2 are
the same.

(ii) For all u ∈ Xt, g1(EGt
(u)) = g2(EGt

(u)). That is, the colors seen by the edges incident
on u are the same in both the colorings g1 and g2.

Instead of this, we may define the equivalence only when condition (ii) is satisfied. Then, in
the computation we may store one from the equivalence class that uses maximum number of
colors. This will reduce the number of equivalence classes to

(
qk
q

)k · qk and thus the total
running time to 2O(kq log kq)n.
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4 Hardness result

A matching M in a graph G is a collection of pairwise vertex disjoint edges, and the size
of M is the number of edges in M . A maximum matching is a matching of the largest size.
We shall use γ(G) to denote the size of a maximum matching in G. It is known that every
graph G has an edge 2-coloring of size at least γ(G) as assigning every edge in a maximum
matching a distinct color and the rest of the edges another new color is indeed a valid edge
2-coloring. We thus consider the following above-guarantee version of the maximum edge
2-coloring problem.

Above-Guarantee Edge 2-coloring Parameter: k

Input: An undirected graph G and k ∈ N.
Question: Does G have an edge 2-coloring of size γ(G) + k?

An independent set I in a graph G is a subset of its vertices such that no two vertices in
I are adjacent to each other in G. The size of I is its cardinality. A maximum independent
set in a graph G is an independent set of largest size. We shall use α(G) to denote the size
of a largest independent set in G. It is known [5] that the following problem on whether a
graph G has an independent set of size ℓ parameterized by ℓ is W[1]-hard.

Independent Set Parameter: ℓ

Input: An undirected graph G and ℓ ∈ N
Question: Does G have an independent set of size ℓ?

In this section, we prove that the Above-Guarantee Edge 2-coloring problem is
W[1]-hard by giving an parameterized reduction from the Independent Set problem to the
former.

4.1 Construction
Let (H, ℓ) be an instance of the Independent Set problem. Let V (H) = {1, . . . , n}. From
H we construct a bipartite graph G as described below:
1. For each vertex i ∈ V (H), we have an edge uiu

′
i in G. Let U = {ui : i ∈ V (H)}∪{u′

i : i ∈
V (H)}.

2. For each edge ij ∈ E(H), we have a vertex xi,j that is adjacent to ui and uj . Let
X = {xi,j : ij ∈ E(H)}.

3. Finally, we have an edge ww′ in G with w adjacent to every vertex in X. Let W = {w, w′}.
See Figure 1 for an example of the construction of the graph G from H = K4. Here,
V (H) = [4] and E(H) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}).

Thus, V (G) = U ∪ X ∪ W , and the set of edges of G is as defined above. In the rest of
this section, we shall use U -X edges to denote the set of edges having one endpoint in U and
the other in X. In a similar way, we define X-W edges. Finally, for any vertex v in G, we
shall use v-U (resp., v-X, v-W ) edges to denote the set of edges from v to U (resp., X, W ).

4.2 The proof
Throughout this section, we assume that (i) H is a graph on n vertices, and (ii) G is the
graph constructed from H as described in Section 4.1.

▶ Proposition 9. γ(G) = n + 1.
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u′
1 u′

2 u′
3 u′

4

u1 u2 u3 u4

x1,2
x1,3

x1,4 x2,3 x2,4

x3,4

w

w′

Figure 1 Graph G constructed from H = K4.

Proof. The set M = {uiu
′
i : i ∈ [n]}∪{ww′} is a matching of size n+1. Thus, γ(G) ≥ n+1.

To show that γ(G) ≤ n + 1, consider any matching A of G. We construct a matching A′

out of A with |A′| = |A| below. If A contains any w-X edge, replace it with ww′ in A′. If A

contains any xi,jui edge, replace it with uiu
′
i in A′. Thus, every edge in A′ is a pendant edge

of G. Since the number of pendant edges in G equals n + 1, we have |A| = |A′| ≤ n + 1. ◀

▶ Lemma 10. Given any edge 2-coloring f of G, one can obtain another edge 2-coloring f ′

of G such that
1. Every w-X edge in G has color cF under f ′,
2. For every ui, all ui-X edges are of the same color under f ′.
3. f ′ uses the same number of colors as f

Proof. Below, we construct the coloring f ′ from f . Without loss of generality, assume that
cF is a color seen by the vertex w under f . If w sees only one color under f , then do nothing.
Suppose w sees two colors, say c and cF . In that case, replace every occurrence of c in the
given coloring of G with cF and finally assign the color c to the edge ww′. The resultant
coloring is a valid edge 2-coloring as every vertex continues to see the same number of colors.
Further, we have managed to satisfy Condition 1. The size of the new coloring obtained is
the same as that of f . Now, consider each vertex ui, 1 ≤ i ≤ n, individually. If ui sees only
one color under f , then do nothing.

Suppose ui sees two colors. In that case, (i) if cF and, without loss of generality, c are the
two colors seen by ui, then replace every occurrence of c in the given coloring of G with cF

and finally assign the color c to the edge uiu
′
i, or (ii) if, without loss of generality, c and c′ are

the two colors seen by ui, then replace every occurrence of say c′ in the given coloring with c

and finally assign the color c′ to the edge uiu
′
i. Let us call the resultant coloring f ′. Note

that f ′ satisfies Condition 2. Lastly, note that the size of f ′ is the same as that of f . ◀

▶ Lemma 11. Any maximum edge 2-coloring of G is of size n + α(H) + 2.

Proof. Assign color ci to every uiu
′
i edge, color c0 to the ww′ edge, and color cF to every

w-X edge. Let S ⊆ V (H) be a maximum independent set in H. For each i ∈ S, assign the
color c′

i to every ui-X edge. For all the remaining X-U edges, assign the color cF . Note that
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in the above coloring, (i) the vertex w sees the colors c0 and cF , (ii) every ui ∈ S sees colors
ci and c′

i, and (iii) every ui ∈ U \ S sees colors cF and ci. Now consider a vertex xi,j ∈ X.
Since S is an independent set in H, S won’t contain both i and j. If S contains neither,
then xi,j sees only color cF . Without loss of generality, assume i ∈ S. Then, xi,j sees the
colors c′

i and cF . Thus, the above coloring is a valid edge 2-coloring. Note that the size of
the above coloring is n + α(H) + 2. We have thus shown that the size of a maximum edge
2-coloring of G is at least n + α(H) + 2.

We now show that any edge 2-coloring of G is of size at most n + α(H) + 2. Let f be an
edge 2-coloring of G. Apply Lemma 10 to obtain the coloring f ′ from f . Let Pf ′ be the set
of colors seen by the pendant vertices of G under f ′. Since G has n + 1 pendant vertices,
|Pf ′ | ≤ n + 1. We know that, under f ′, every w-X edge is assigned the color cF , and for
every ui, all ui-X edges are of the same color. Let Rf ′ denote the set of all colors used by
the coloring f ′ that are not present in Pf ′ ∪ {cF }. Observe that every color in Rf ′ is used
to color U -X edges (as the color of every other edge is present in Pf ′ ∪ {cF }). Let UR ⊆ U

be a set of size r := |Rf ′ | such that (i) for any two distinct ui, uj ∈ UR, the color of ui-X
edges is different from the color of uj-X edges, and (ii) the set of colors used to color the
UR-X edges is equal to Rf ′ . Without loss of generality, assume UR = {u1, . . . , ur}. We claim
that the set {1, . . . , r} is an independent set in H. Suppose not. Then ij ∈ E(H), for some
1 ≤ i < j ≤ r. However, this would mean that the vertex xi,j sees three distinct colors (on
its edges xi,jui, xi,juj , and xi,jw) which is a contradiction to the fact that f ′ is a valid edge
2-coloring. Hence, {1, . . . , r} is an independent set in H and therefore, r ≤ α(H). The set of
colors used by f ′ is Pf ′ ∪{cF }∪Rf ′ which is at most (n+1)+(1)+(α(H)) = n+α(H)+2. ◀

▶ Theorem 12. Above-Guarantee Edge 2-coloring is W[1]-hard.

Proof. Let (H, ℓ) be an instance of Independent Set. We construct G from H as described
in Section 4.1. Note that this construction can be done in O(n2) time. Let k = ℓ + 1. We
claim that (H, ℓ) ∈ Independent Set if and only (G, k) ∈ Above-Guarantee Edge
2-coloring. If H has an independent set of size ℓ, then, by Lemma 11, G has an edge
2-coloring of size n + α(H) + 2 ≥ γ(G) + k (because α(H) ≥ ℓ and from Proposition 9, we
have γ(G) = n + 1). From such a coloring, it is easy to obtain a valid edge 2-coloring of
size exactly γ(G) + k (see Proposition 1 in [10] for a proof of this statement). To prove the
converse, suppose H does not have any independent set of size ℓ. Then, by Lemma 11, G

has no edge 2-coloring of size n + ℓ + 2 = (n + 1) + (ℓ + 1) = γ(G) + k. This completes
the reduction. Note that this is a parameterized reduction from Independent Set to
Above-Guarantee Edge 2-coloring as it satisfies all the three conditions of Definition
5. Since Independent Set is known to be W[1]-hard, we have the theorem. ◀

5 Concluding remarks

In this work, we resolve an open question of Goyal et al. [10]. Further, we give an FPT
algorithm of running time 2O(tw·q log(tw·q))n for Maximum Edge q-Coloring, where tw
is the treewidth of the input graph. It is natural to ask if this running time is optimal.
We would like to mention that as a corollary of a result of Goyal et al. [10] (as well as
our result above), one gets an FPT algorithm of running time 2O(vc log(vc))n for Maximum
Edge 2-Coloring, where vc is the vertex cover number of the input graph. It would be
interesting to obtain a single exponential FPT algorithm and a polynomial kernel even when
the parameter is vertex cover number.
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