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Abstract. We study the Shortest Path problem subject to positive
binary disjunctive constraints. In positive disjunctive constraints, there
are certain pairs of edges such that at least one edge from every pair must
be part of every feasible solution. We initiate the study of Shortest

Path with binary positive disjunctive constrains from the perspective
of parameterized complexity. Formally, the input instance is a simple
unidrected graph G = (V,E), a forcing graph Gf = (E,E′), two vertices
s, t ∈ V (G) and an integer k. Note that the vertex set of Gf is the
same as the edge set of G. The goal is to őnd a set S of at most k

edges from G such that there is a path from s to t in the subgraph
G = (V, S) and S is a vertex cover in Gf . In this paper, we consider
two different natural parameterizations for this problem. One natural
parameter is the solution size, i.e. k for which we provide FPT algorithms
and polynomial kernelization results. The other natural parameters are
structural parameterisations of Gf , i.e. the size of a modulator X ⊆

E(G) = V (Gf ) such that Gf − X belongs to some hereditary graph
class. We discuss the parameterized complexity of this problem under
some structural parameterizations.

Keywords: Shortest Path · Parameterized Complexity · Positive Dis-
junctive Constraints · Kernelization · Planar Graph.

1 Introduction

In the recent times several classical combinatorial optimization problems on
graphs including Maximum Matching, Shortest Path, Steiner Tree have

⋆ Research of Diptapriyo Majumdar has been supported by Science and Engineering
Research Board (SERB) grant SRG/2023/001592.
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been studied along with some additional binary conjunctive and/or disjunctive
constraints [1,7]. Darmann et al. [7] have studied finding shortest paths, mini-
mum spanning trees, and maximum matching of graphs with binary disjunctive
constraints in the perspective of classical complexity. These positive or negative
binary constraints are defined with respect to pairs of edges. A negative disjunc-
tive constraint between an edge-pair ei and ej says that both ei and ej cannot be
present in a feasible solution. A positive disjunctive constraint between an edge
pair ei and ej says that either the edge ei or the edge ej or both must be present
in any feasible solution. The negative disjunctive constraints can be interpreted
as a conflict graph such that each vertex of the conflict graph corresponds to an
edge in the original graph. Furthermore, for every edge in the conflict graph, at
least one endpoint can be part of any feasible solution. Then, a feasible solution
must be an independent set in the conflict graph. The positive disjunctive con-
straints can be interpreted as a forcing graph such that each vertex of the forcing
graph corresponds to an edge in the original graph. In the forcing graph, each
edge must have at least one endpoint included in any feasible solution. There-
fore, in the case of positive disjunctive constraints, a feasible solution must be
a vertex cover in the forcing graph. Formally, an input to the Forcing-Version of
a classical combinatorial optimization problem Π, called as Forcing-Version Π
consists of an instance I of Π along with a forcing graph Gf ; i.e.; (I,Gf ). The
vertex set of the forcing graph is the edge set of the original graph. A solution
of Forcing-Version Π for the instance (I,Gf ) is a solution of I for the original
problem along with the property that the solution forms a vertex cover for Gf .
To the best of our knowledge, none of the problems Shortest Path, Maxi-
mum Matching, Minimum Spanning Tree have been explored with positive
disjunctive constraints in the perspective of parameterized complexity.

In this paper, we initiate the study of Shortest Path problem with positive
disjunctive constraints from the perspective of parameterized complexity and
kernelization (see Section 2 for definitions etc). Formally, in the Shortest Path
with Forcing Graph (SPFG) problem, we are given a simple, unweighted
graph G(V,E), two vertices s and t, a positive integer k and a forcing graph
Gf (E,E

′

). The decision version of this problem asks to check whether there
exists a set E∗ ⊆ E(G) of at most k edges such that the subgraph induced by
the vertex set V (E∗) in G contains an s-t path and also E∗ forms a vertex cover
in Gf . As “solution size” is the most natural parameter, we formally state the
definition of the parameterized version of our problem as follows.

Shortest Path with Forcing Graph (SPFG) Parameter: k
Input: A simple, undirected graph G(V,E), two distinct vertices s, t ∈
V (G), a positive integer k, and a forcing graph Gf (E,E

′

).
Question: Is there a set E∗ of at most k edges from G such that the
subgraph G(V,E∗) contains an s-t path in G, and E∗ forms a vertex
cover in Gf?
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In the above definition, the considered parameter is ‘solution size’. Darmann
et al. [7] have proved that the classical version of Shortest Path with Forc-
ing Graph is NP-hard even when the forcing graph Gf is a graph of degree
at most one. So, it can be concluded that even when the forcing graph Gf is
very sparse, then also the classical version of Shortest Path with Forcing
Graph is NP-hard. In the first part of our paper, we consider Shortest Path
with Forcing Graph when parameterized by solution size. Additionally, it is
also natural to consider some parameters that are some structures of the input.
Observe that the solution size must be as large as the minimum vertex cover size
of the forcing graph. If we consider the ‘deletion distance of Gf to some hered-
itary graph class G’, then this deletion distance is a parameter that is provably
smaller than solution size whenever G contains a graph that has at least one
edge. In the second part of our paper, we also initiate the study of this problem
when the considered parameter is deletion distance of Gf to some special graph
class. Formally, the definition of this parameterized version is the following.

SPFG-G-Deletion Parameter: |X|
Input: A simple, undirected graph G(V,E), two distinct vertices s, t ∈
V (G), a positive integer k, a forcing graph Gf (E,E

′

), a set X ⊆ E such
that Gf −X ∈ G.
Question: Is there a subset E∗ of at most k edges from G such that
the subgraph G(V,E∗) contains an s-t path in G, and E∗ forms a vertex
cover in Gf?

Our Contributions: In this paper, we study the Shortest Path with Forc-
ing Graph under the realm of parameterized complexity and kernelization (i.e.
polynomial-time preprocessing). We first consider both the original graph G and
the forcing graph Gf to be arbitrary graphs and provide FPT and kernelization
algorithms. Next, we initiate a systematic study on what happens to the ker-
nelization complexity when either G is a special graph class or Gf is a special
graph class. Formally, we provide the following results for Shortest Path with
Forcing Graph when the solution size (k) is considered as the parameter.

➢ First, we prove two preliminary results. One preliminary result is a polyno-
mial time algorithm for SPFG when Gf is 2K2-free (see Lemma 2). Implication
of this result is a dichotomy that SPFG is polynomial-time solvable when Gf is
the class of all 2K2-free and NP-hard otherwise (see Theorem 1). The other pre-
liminary result is a parameterized algorithm for Shortest Path with Forcing
Graph that runs in O∗(2k)-time5 (see Theorem 2).

➢ Then, we prove our main result. In particular, we prove that Shortest
Path with Forcing Graph admits a kernel with O(k5)-vertices when G and
Gf both are arbitrary graphs (see Theorem 3).

➢ After that, we consider the kernelization complexity of Shortest Path
with Forcing Graph when G is a planar graph and Gf is an arbitrary graph.
In this condition, we provide a kernel with O(k3) vertices (see Theorem 4).

5 O∗ hides polynomial factor in the input size.
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➢ Next, we consider when G is an arbitrary graph and Gf is a graph belong-
ing to a special hereditary graph class. In this paper, we focus on the condition
when Gf is a cluster graph (i.e. a disjoint union of cliques) or a bounded de-
gree graph. In both these conditions, we provide a kernel with O(k3) vertices for
Shortest Path with Forcing Graph (see Theorem 5).

Finally, we consider the SPFG-G-Deletion problem. It follows from the
results of Darmann et al. [7] that even if X = ∅ and Gf is a 2-ladder, i.e. a
graph of degree one, SPFG-G-Deletion is NP-hard. Therefore, it is unlikely to
expect the possibility that SPFG-G-Deletion would admit an FPT algorithm
even when G is a very sparse graph classes. We complement their NP-hardness
result by proving that SPFG-G-Deletion admits an FPT algorithm when G is
the class of all 2K2-free graphs (see Theorem 6).

Related Work: Recently, conflict free and forcing variant of several classical
combinatorial optimization problem including Maximum Flow [14], Maximum
Matching [6], Minimum Spanning Tree [6,7], Set Cover [10], Shortest
Path [7] etc have been studied extensively in both algorithmic and complex-
ity theoretic point of view. Recently, some of these problems also have been
studied in the realm of parameterized complexity as well [1,12]. Agrawal et al.
[1] have studied Shortest Path and Maximum Matching with conflict free
version and proved that both the problems are W[1]-hard when parameterized
by solution size. They also investigated the complexity of the problems when
the conflict graph has some topological structure. Darmann et al. [7] studied
both the problems along with both the constraints conflict graph and forcing
graph. they showed that the conflict free variant of maximum matching problem
is NP-hard even when the conflict graph is a collection of disjoint edges.

Organization of the Paper: We organize our paper as follows. In Section 2, we
provide some notations related to graph theory, and parameterized complexity.
In the same section, we also prove our first two preliminary results (Theorem 1
and Theorem 2). After that, in Section 3, we prove the main result (Theorem
3) of our paper. Next, in Section 4, we give a short illustration how we can
improve the size of our kernels of Section 3 when either the input graph G or
Gf belongs to some special graph classes. Additionally, in the same section, we
provide a result (Theorem 6) of SPFG on the structural parameterizations for
SPFG. Finally, in Section 5, we conclude with open problems and future research
directions.

2 Preliminaries

In this section, we describe the notations and symbols used in this paper. Addi-
tionally, we also provide some preliminary results for our porblem in this section.

Graph Theory: All the graphs considered in this paper are simple, finite, undi-
rected and unweighted. The notations and terminologies used in this paper are
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fairly standard and adopted from the Diestel’s book of graph theory [8]. In our
problem, we are dealing with two different graphs: original graph G and forcing
graph Gf . We denote the number of vertices and edges of G by n and m, respec-
tively. Similarly for Gf , it is m and m′ (since the edge set of G is same as the
vertex set of Gf ). Given a graph G(V,E) and an edge e ∈ E(G), Ve denotes the
set of two end vertices of e. For any subset of edges E∗ ⊆ E(G), by V (E∗) we de-
note the set of all the vertices that constitute the edge set; i.e.; V (E∗) =

⋃

e∈E∗

Ve.

Informally, V (E∗) denote the set of all endpoints of the edges in E∗. Given, any
two vertices u and v, we denote its shortest path distance by dist(u, v). For any
graph G(V,E) a subset of its vertices S ⊆ V (G) is said to be a vertex cover
of G if every edge of G has at least one of its endpoints in S. A subset of the
vertices S is said to be an independent set of G if between any pair of vertices
of S, there does not exist any edge in G. For any subset of vertices S of G, the
subgraph induced by the vertex set in G is denoted by G[S]. Furthermore, for
a set of edges F , the graph G[F ] is the graph with G′(V, F ). Informally, given
an edge set F ⊆ E(G), the graph G[F ] has vertex set V (G) and the edge set F .
For any graph G and any vertex v ∈ V (G), G− {v} denotes the graph that can
be obtained by deleting v and the edges incident on it from G. This notion can
be extended for a subset of vertices as well. Given a graph G = (V,E) and a set
X ⊆ V (G). A graph operation identification of the vertex subset X into a new
vertex uX is performed by constructing a graph Ĝ as follows. First, delete the
vertices of X from G and then add a new vertex uX . Then, for every v ∈ NG(X),
make vuX an edge of Ĝ. This graph operation was also defined in Majumdar et
al. [13]. A graph is said to be a cluster graph if every connected component is a
clique. A graph is said to be a degree-η-graph if every vertex has degree at most
η. A connected graph is said to be 2K2-free if it does not contain any pair of
edges that are nonadjacent to each other. A graph is said to be a planar graph
if it can be drawn in the surface of a sphere without crossing edges. We use the
following property of planar graph in our results.

Proposition 1 ([15]). If G is a simple planar graph with n vertices, then G
has at most 3n− 6 edges.

A graph is said to be a 2-ladder if every connected component is a path
of length one. Similarly, a graph is said to be a 3-ladder if every connected
component is a path of length two.

Parameterized Complexity and Kernelization: A parameterized problem Π is
denoted as a subset Σ∗ ×N. An instance to a parameterized problem is denoted
by (I, k) where (I, k) ∈ Σ∗ ×N where Σ is a finite set of alphabets and N is the
set of natural numbers. A parameterized problem Π ⊆ Σ∗×N is said to be fixed-
parameter tractable (or FPT in short) if there exists an algorithm A which runs
in O(f(k)·|I|c) time where f(k) is a function of k and independent of n and c is a
positive constant independent of n and k. We denote the running time O(f(k) ·
|I|c) by the shorthand notation O∗(f(k)) where we suppress the polynomial
factors. We adopt the notations and symbols related to parameterized algorithms
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form the books [9,4]. A parameterized problem Π admits a kernelization (or
kernel in short) if starting with any arbitrary instance (I, k) of the problem, there
exists a polynomial-time algorithm that constructs an equivalent instance (I

′

, k
′

)
such that |I

′

|+ k
′

≤ g(k) for some commutable function g(·). This function g(·)
denotes the size of the kernel. If g(k) is bounded by a function polynomial in
k, then Π is said to admit a polynomial kernel. It has been shown by Cai et
al. [2] that a problem is in FPT if and only if there exists a kernalization. If a
parameterized problem Π admits a kernelization algorithm, we also call that Π
admits a kernel (in short). We describe the kernalization process by writing a
number of reduction rules. A reduction rule takes one instance (say I) of Π and
generates the reduced instance (say I

′

) of Π. We say a reduction rule is safe if the
following condition holds: “I is a Yes-instance if and only if I

′

is a Yes-instance."
The efficiency of a kernel (or kernelization algorithm) is determined by the size
of the kernel. There are many parameterized problems that are fixed-parameter
tractable but do not admit polynomial kernels unless NP ⊆ coNP/poly. So,
from the perspective of polynomial-time preprocessing, we look for kernels of
polynomial-size.

Graph Parameters: In parameterized complexity, though the natural parame-
terization is the solution size, however, several structural graph parameters have
also taken into account [11]. In our problem, the natural parameter is the vertex
cover of the forcing graph. As mentioned in [3], the vertex cover can be computed
in O∗(1.2738k) time where k is the size of the vertex cover. Another important
graph parameter is the G-deletion set where G is a graph class. A subset of the
vertices S ⊆ V (G) is said to be a deletion set to graph class G if G− S ∈ G.

Some Preliminary Algorithmic Results: In this section, we establish some clas-
sical complexity dichotomy result and some related parameterized complexity
results for this problem. The first part of this section gives a proof that the
problem is polynomial-time solvable when the forcing graph is a 2K2-free graph.
Towards this, we define the following annotated problem that would be useful
for both the classical and parameterized complexity results.

Ext-SPFG

Input: A simple undirected graph G(V,E), two distinct vertices s, t ∈
V (G), a forcing graph Gf (E,E

′

) and a vertex cover S of Gf .

Goal: Find a subset E∗ ⊆ E with minimum number of edges such that
S ⊆ E∗, i.e. E∗ extends S, and the induced subgraph in G by the edge
set E∗ contains an s-t path in G.

Our next lemma provides a polynomial-time algorithm for Ext-SPFG.

Lemma 1. (⋆) Ext-SPFG can be solved in polynomial-time.

5 Due to lack of space, the proofs that are omitted or marked ⋆ can be found in the
full version (https://arxiv.org/abs/2309.04346).
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Using the above lemma, we can provide a polynomial-time algorithm for
SPFG the forcing graph is 2K2-free.

Lemma 2. (⋆) The Shortest Path with Forcing Graph can be solved in
polynomial time if the forcing graph is 2K2-free.

The above lemma illustrates that if the forcing graph is 2K2-free, then the
optimization version of the Shortest Path with Forcing Graph can be
solved in polynomial-time. Darman et al. [7] proved that Shortest Path with
Forcing Graph is NP-Complete even when the forcing graph Gf is a 2-ladder,
i.e. graph of degree one. In particular, their construction ensures that there are
several 2K2s present in the forcing graph as subgraphs. So, we complete this
picture by the following dichotomy.

Theorem 1. Shortest Path with Forcing Graph is polynomial-time solv-
able when the forcing graph is a 2K2-free graph and NP-Complete otherwise.

After discussing the classical complexity of Shortest Path with Forcing
Graph, we move on to discuss the parameterized complexity of the same. Since
solution size is the most natural parameter; i.e. the number of edges in an optimal
solution, we first prove that Shortest Path with Forcing Graph is FPT
when parameterized by the solution size. For this purpose, we use the following
existing result by Damaschke et al. [5].

Proposition 2. [5] Given a graph G and positive integer k, all the vertex cover
of G of size at most k can be enumerated in O(m+ 2kk2) time.

We prove the following result by using Proposition 2 and Lemma 1.

Theorem 2. (⋆) The Shortest Path with Forcing Graph is fixed-parameter
tractable and can be solved in O((m+ 2kk2)(m+ n)) time.

3 Polynomial Kernels for SPFG

In the previous section, we have discussed that if Shortest Path with Forc-
ing Graph is fixed-parameter tractable when there are no restrictions on the
original graph G and the forcing graph Gf , i.e, G and Gf are arbitrary graphs.
This section is devoted to the kernalization complexity of Shortest Path with
Forcing Graph problem when solution size is considered as the parameter. Our
kernelization algorithm has intuitively two parts, “hitting the edges of Gf ” and
“providing connectivity between s and t in G”. As the edges of G are the vertices
of Gf , we define the following edge subsets of G.
➢ We put an edge e ∈ E(G) in H if degGf

(e) ≥ k + 1.
➢ We put e ∈ E(G) in L if NGf

(e) ⊆ H.
➢ R = E(G) \ (H ∪ L).
Notice for any edge e ∈ E(G), if NGf

(e) ⊆ H, then e ∈ L. Hence, we have the
following observation.
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Observation 1 If e is an isolated vertex in Gf , then e ∈ L.

Now, we prove the following lemma that will be one of the important parts
in obtaining the kernel.

Lemma 3. If I(G,Gf , s, t, k) is a Yes-instance then |H| ≤ k and Gf [R] has at
most k2 edges.

Proof. By Observation 1, an isolated vertex e of Gf is in L. So, every e ∈ R
has at least one neighbor (with respect to Gf ) in R. As any e ∈ V (Gf ) with
degree at least k + 1 in Gf is put in the set H, any e ∈ R must have at most
k neighbors in R. By our hypothesis, I(G,Gf , s, t, k) is a Yes-instance. Hence,
there is E∗ ⊆ E(G) such that |E∗| ≤ k for every (a, b) ∈ E(Gf ), at least one of
a and b must be in E∗. If there is e ∈ H \E∗, then at least k+1 edges have to be
in E∗ that is a contradiction to the fact that I(G,Gf , s, t, k) is a Yes-instance.
Hence, H ⊆ E∗ implying that |H| ≤ k. Consider the set R. As every e ∈ R
at least one neighbor belongs to R in Gf and at most k neighbors belong to R
in Gf . Hence, the number of edges in Gf that are incident to R is at most k2.
Therefore the cardinality of V (R) is at most 2k2. ⊓⊔

Observe that the edges in H are necessary for any solution of size at most
k that certainly “hits every edge of Gf ”. But, the role of the edges in L are
only to provide connectivity between s and t in G. Let Ek be the set of edges
in Gf [H ∪ R]. Recall, V (Ek) = {u, v| e(u, v) ∈ Ek}. For our convenience, we
also add s and t into V (Ek). More formally, V (Ek) = V (Ek) ∪ {s, t} and let
Y = V (G)\V (Ek). We mark some additional vertices from Y using the following
marking scheme.

➢ For each pair (x, y) of vertices in V (Ek) compute a shortest x-y path, Pxy

via the internal vertices of Y in G.
➢ If Px,y has at most k edges, then mark the edges of Px,y.
➢ Else Px,y has more than k edges. Then, do not mark any edge.
➢ Finally, for every pair x, y ∈ V (Ek), mark the edges of a shortest path

Qx,y in G when |Qx,y| ≤ k.

Let Et =
⋃

x,y∈V (Ek)

(Px,y ∪ Qx,y) be the set of marked edges of G after the

completion of the above marking scheme. Consider EM = Et ∪H ∪R. Formally,
EM be the edges that are in H∪R as well as in Et. We denote G[EM ] = G(V,EM )
be the subgraph of G induced by the set of edges in EM and consider the instance
as I(G[EM ], Gf [EM ], s, t, k). Next, we prove the following lemma.

Lemma 4. The instance I(G,Gf , s, t, k) is a Yes-instance if and only if
I(G[EM ], Gf [EM ], s, t, k) is a Yes-instance.

Proof. Let us first give the backward direction (⇐) of the proof. First, assume
that the instance I(G[EM ], Gf [EM ], s, t, k) is a Yes-instance. One can make a
note that edges present in G[EM ] are also in G and in Gf [EM ] as vertices.
Suppose that G[EM ] contains a set of edges E∗ such that G[E∗] has an s-t path



Shortest Path with Positive Disjunctive Constraints 9

and E∗ is a vertex cover in Gf . Then, H ⊆ E∗ and hence E∗ also forms a vertex
cover of Gf . Moreover, an s-t path passing through a (proper) subset of edges
in E∗ is also an s-t path in G. Hence, I(G,Gf , s, t, k) is a Yes-instance.

Next, we focus on proving the forward direction (⇒). Assume that I(G,Gf , s, t, k)
is a Yes-instance. Let E∗ be the solution to the instance I(G,Gf , s, t, k) and let
P be an s-t path contained inside the graph induced by G(V,E∗). As |E∗| ≤ k
is a solution to I(G,Gf , s, t, k), H ⊆ E∗. If E∗ ⊆ EM , then E∗ is a solution to
I(G[EM ], Gf [EM ], s, t, k) and we are done. In case some edge e ∈ E∗ \EM does
not belong to any s-t path in G(V,E∗), then clearly such an edge e ∈ L. We just
replace that edge e with ê such that ê ∈ NGf

(e)∩H. Consider those edges that
belong to some s-t path in G(V,E∗). Consider those subpaths (one at a time)
P ∗ ⊆ P that contains an edge e ∈ E∗\EM . Observe that P ∗ has at most k edges
and is an x-y path in G for some x, y ∈ V (Ek) ∪ {s, t}. But, we have marked a
shortest path P̂ ∗ from x to y in G (either via the vertices of Y or in G itself). We
just replace the edges of P ∗ by P̂ ∗. As |P̂ ∗| ≤ |P ∗|, this constructs an s-t walk.
Similarly, for other subpaths also, we use the same replacement procedure and
eventually construct an s-t walk with at most k edges in G[EM ]. As Ê∗ provides
an s-t in G[EM ], Ê∗ is a solution to I(G[EM ], Gf , s, t, k). ⊓⊔

Observe that for every pair of vertices in V (Ek), we have marked a shortest
path of length at most k in G. We are ready to prove our final theorem statement.

Theorem 3. The Shortest Path with Forcing Graph admits a kernel
with O(k5) vertices and edges.

Proof. Our kernelization algorithm works as follows. First, we compute a par-
tition of V (Gf ) = H ⊎ R ⊎ L as described. From Lemma 3, we have that
H ∪ R has at most O(k2) edges in Gf . After that, we invoke the marking
scheme described. Observe that the marking scheme marks a shortest path
of length at most k for every pair of vertices x, y ∈ V (Ek) and put them in
EM . Hence, |EM | is O(k5). From Lemma 4, I(G,Gf , s, t, k) is a Yes-instance
if and only if I(G[EM ], Gf [EM ], s, t, k) is a Yes-instance. Let W = V (EM ),
i.e. the vertices that are the endpoints of the edges of EM in G. We output
(G[W ], Gf [EM ], s, t, k) as the output instance. As |EM | is O(k5), |W | is also
O(k5). Therefore, Shortest Path with Forcing Graph admits a kernel with
O(k5) vertices and edges. ⊓⊔

4 Improved Kernels for Special Graph Classes and

Results on Structural Parameters

Consider an input instance I(G,Gf , s, t, k) to Shortest Path with Forcing
Graph. This section is devoted to kernelization algorithms when either G or Gf

belongs to some special graph class. For both the results, we give a proof sketch
here and refer to appendix for more detailed proofs.

Theorem 4. Shortest Path with Forcing Graph admits a kernel with
O(k3) vertices when G is a planar graph.
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Proof. (Sketch) The input graph G has a special property satisfying Euler’s
formula but the forcing graph Gf can be an arbitrary graph. If G is a simple
graph with n vertices, then G can have at most 3n − 6 edges. We partition
the vertices of Gf , i.e. the edges of E(G) into H,L and R as inn the previous
section. Put an edge e ∈ E(G) into H if degGf

(e) > k. Put e ∈ E(G) into L if
NGf

(e) ⊆ H. Define R = E(G) \ (H ∪ L). Our first step is to invoke Lemma 3,
that if I(G,Gf , s, t, k) is a Yes-instance, then |H| ≤ k and Gf [R] has at most
k2 edges. Since every vertex of Gf [H ∪ R] is incident to some edge, H ∪ R has
O(k2) vertices that are edges of G. Let VL ⊆ V (G) denote the vertices spanned
by the edges of G present in H ∪ R and VI = V (G) \ VL. For every pair {x, y}
of VL, we define a boolean variable J({x,y}) is true if there is a path from x to
y in G with internal vertices in VI and J({x,y}) is false otherwise. We prove a
structural characterization which says that “there are 3|VL| − 6 distinct pairs of
vertices {x, y} in VL for which the boolean variable J({x,y}) is true”. We now
consider the a similar marking scheme MarkPlanar(G,Gf , s, t, k) as before. We
give a description of this for the sake of completeness and clarity. For each pair
(x, y) of vertices from VL, compute a shortest path Px,y from x to y that uses
only the vertices of VI as internal vertices. If Px,y has at most k edges, then
mark the edges of Px,y. Otherwise do not mark any edge of Px,y. Finally, for
every pair (x, y) from VL, mark the edges of a shortest path Qx,y from x to y
in G if Qx,y has at most k edges. Consider Et ⊆ E(G), the set of all edges that
are marked and let EM = Et ∪H ∪ R. After that, we prove that “the instance
I(G,Gf , s, t, k) is equivalent to I(G[EM ], Gf [EM ], s, t, k)”. Using this, we prove
our result (Theorem 4) that SPFG admits a kernel with O(k3) vertices when G
is a planar graph. ⊓⊔

Theorem 5. Shortest Path with Forcing Graph admits a kernel with
O(k3) vertices when Gf is either a cluster graph or a graph with bounded degree.

Proof. (Sketch) The input graph G is arbitrary here but the forcing graph Gf

can be either a cluster graph or a graph of bounded degree. In this situation, we
exploit some special properties of cluster graphs or bounded degree graphs as
follows. In particular, for the hitting part, we can ensure that O(k) vertices are
sufficient for the hitting part, i.e. to hit all the edges of Gf . An intuition behind
this is that if C is a clique in a graph Gf , then at least |C| − 1 vertices of C are
part of any vertex cover of Gf . We first prove two statements. The first statement
says “if Gf is cluster graph and I(G,Gf , s, t, k) is a Yes-instance, then Gf has
at most 2k vertices that are not isolated in Gf ”. The second statement says “Gf

is a bounded degree graph with maximum degree at most η and I(G,Gf , s, t, k)
is a Yes-instance, then Gf has at most kη vertices that are not isolated in Gf ”.

Let V f
L ⊆ V (Gf ) be the set of vertices that are not isolated in Gf and they are

edges in G and VL be the set of vertices of G that are the endpoints of these
edges of V f

L . Consider VI = V (G) \ VL. We use a similar marking procedure as
before. For each pair (x, y) of vertices from VL, compute a shortest path Px,y

from x to y in G that uses only the vertices of VI as internal vertices. If Px,y

has at most k edges, then mark the edges of Px,y. Otherwise, when Px,y has
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more than k edges, do not mark any edge of Px,y. Finally, for each pair (x, y) of
vertices from VL, compute a shortest path Qx,y from x to y in G when Qx,y has
at most k edges. Let Et be the set of all the edges that are marked by the above
mentioned marking scheme and let EM = Et ∪ V f

L . We consider G[EM ] as the
output instance and prove that “I(G,Gf , s, t, k) is a Yes-instance if and only if
the output instance I(G[EM ], Gf [EM ], s, t, k) is a Yes-instance”. Using this, we
can prove (Theorem 5) that SPFG admits a kernel with O(k3) vertices when Gf

is either a cluster graph or a graph of bounded degree. ⊓⊔

Results on Structural Parameterizations Now, we provide a short summary of
our result the structural parameterization of Shortest Path with Forcing
Graph. We primarily consider the case when the deletion distance (k) to 2K2-
free graph of Gf . Our first step here is prove the following lemma that enumerates
all minimal vertex covers of a 2K2-free graph.

Lemma 5. (⋆) Given an instance (G,Gf , X, s, t, ℓ) to the SPFG-2K2-Free-
Deletion problem, the set of all minimal vertex covers of G can be enumerated
in 2|X|nO(1)-time.

Using the above lemma, we can prove the following theorem saying that
SPFG-2K2-Free-Deletion is fixed-parameter tractable.

Theorem 6. (⋆) SPFG-2K2-Free-Deletion admits an algorithm that runs
in 2|X|nO(1)-time.

5 Conclusion and Open Problems

In this paper, we have initiated the study of Shortest Path with Forcing
Graph under the realm of parameterized complexity. One natural open problem
is to see if our kernelization results for Shortest Path with Forcing Graph
can be improved, i.e. can we get a kernel with O(k4) vertices for SPFG when both
G and Gf are arbitrary graphs? We strongly believe that those results can be
improved but some other nontrivial techniques might be necessary. In. addition,
it would be useful to have a systematic study of this problem under positive
disjunctive constraints containing three (or some constant number of) variables.
From the perspective of kernelization complexity, we leave the following open
problems for future research directions.

➢ Can we get a kernel with O(k4) vertices for SPFG when the input graph
G is arbitrary graph but the forcing graph Gf is a graph of degeneracy η? Our
results only show that if the forcing graph is of bounded degree, then we can
get a kernel with O(k3) vertices. In fact, even if Gf is a forest, then also it is
unclear if we can get a kernel with O(k3) or O(k4) vertices.

➢ What happens to the kernelization complexity when Gf is an interval
graph while G is an arbitrary graph? Can we get a kernel with O(k3) vertices
in such case?

➢ Finally, can we generalize our result of Theorem 4 when G is a graph of
bounded treewidth or graph of bounded degeneracy?
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