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Abstract—The usual problem for group testing is this: For a
given number of individuals and a given prevalence, how many
tests )∗ are required to find every infected individual? In real life,
however, the problem is usually different: For a given number
of individuals, a given prevalence, and a limited number of tests
) much smaller than )∗, how can these tests best be used?

In this conference paper, we outline some recent results on this
problem for two models. First, the ‘practical’ model, which is
relevant for screening for COVID-19 and has tests that are highly
specific but imperfectly sensitive, shows that simple algorithms
can be outperformed at low prevalence and high sensitivity.
Second, the ‘theoretical’ model of very low prevalence with
perfect tests gives interesting new mathematical results.

I. INTRODUCTION

A. The problem

When testing individuals for a disease such as COVID-19,

we can take a sample from each individual and test them

separately; for = individuals, this requires = tests. Alternatively,

we can pool samples together and test the pooled sample; in

an ideal model, a test is positive if at least one individual

in the pool is infected, and is negative otherwise. When the

prevalence ? is low, the pooling method, known as ‘group

testing’ or ‘pooled testing’, can identify all the infected

individuals using fewer than = tests, thereby making better

use of scarce tests. (For background on group testing, see the

recent survey paper [1].)

Typically, the aim of group testing is to find every infected

individual without erroneously declaring any uninfected in-

dividual to be infected. Thus the mathematical problem is

typically this: Given the number of individuals = and the

prevalence ?, how many tests )∗ are required to find the all the

infected individuals, and what testing protocol achieves this.

(There has also been some attention on the problem of finding

a set that has a large overlap with the set of infected individuals

[1], [2] but that may not classify every single individual cor-

rectly.) However, considering applications in modern settings,

especially in the current coronavirus pandemic, we propose a

different goal.

In a large workplace, healthcare facility, or university, for

example, there may be a very limited number of tests )

available each day – certainly ) < )∗, so there are too few tests

to accurately find every infected worker. Thus the aim should

be to find as many infected individuals as possible with those

limited tests, so that those individuals can be removed from

the workforce to isolate at home (for example).

Under this criterion, one could take samples from just a

small proportion of the workforce but try to find all or almost

all of the infected individuals in that subset; alternatively,

one could take samples from a much larger proportion of the

workforce, but be satisfied with finding a smaller fraction of

the infected individuals within the subset.

In order to compare different strategies, we propose using

the expected number of tests per infected individual found

(ETI) as the relevant figure of merit. That is, if a scheme

uses an expected number E) of tests and finds an expected

number E of infected individuals, then the ETI is

ETI = E)/E .

We would like this to be as large as possible.

B. The models

In this conference paper, we outline results for two different

models, which we call the theoretical and practical models.

Both models have the following features in common:

• There are a large number = of individuals. This number

is sufficiently large that looking at mathematical results

in the limit as =→ ∞ is useful.

• The instantaneous prevalence rate ? ∈ (0, 1) is known.

Throughout we write @ = 1 − ?. We use the i.i.d. prior

where each individual is infected independently with

probability ?. It will be useful to write : = ?= for the

expected number of infected individuals.

• Tests are very highly specific, in that a pool containing

no infected samples is very highly likely to correctly give

a negative result. We model this as the specificity being

1; thus under our model we can be certain that a positive

test contains at least one infected sample.

In our first model, the practical model, we attempt to give

a realistic model for coronavirus testing.

• The prevalence ? is a fixed constant as = → ∞. This

is because the prevalence of COVID-19 is unlikely to

change depending on the size of organisation being tested.

For screening of COVID-19 among asymptomatic people,

values of the prevalence ? between 0.005 and 0.1 are

likely to be of interest.

• Tests are only moderately sensitive, in that pools contain-

ing one or more infected samples may give an erroneous

negative result. Our model for this is to say that each test

containing at least one infected sample correctly gives a



positive result with probability D ∈ (0, 1], independently

between tests. Values of D in the range D = 0.6 to 0.9 are

likely to be of interest for PCR tests.

• As many stages of testing will be impractical and slow,

we limit adaptive strategies to two stages of testing.

• There are high costs for a false positive declaration

(that is, wrongly declaring a noninfected individual to be

infected) – for example, a healthcare worker may have to

self-isolate for at least seven days for no reason. For this

reason, false positive declarations will not be permitted,

and we may only count individuals who we are certain

are infected (under the above model assumptions).

• So that individuals can be sure they have the virus

before isolating, we require suspicion that an individual is

infected to be definitively confirmed with an individual

non-pooled test. Thus we have a first stage of pooled

testing, then a second stage of limited individual testing.

This is known as ‘trivial two-stage testing’.

(For more detailed information on the practicality of pooled

testing for COVID-19, with detailed consideration of real-

life issues and accurate modelling, see the forthcoming book

chapter [3].)

We give here some further justification for our consideration

on trivial two-stage testing. When the sensitivity D is less

than 1, it is impossible to definitively rule out individuals

as definitely noninfected, since any negative tests might have

been false negatives. Thus the only way to definitively confirm

an individual is infected is by them receiving an individual test

and that test being positive. Thus the second stage in any of

our algorithms must be individual tests, as pooled tests in the

final stage will be worthless under the modelling assumptions

and success criteria we have set out.

In our second model, the theoretical model, we follow the

most common set-up for theoretical results on group testing –

see, for example [1], [4]–[7].

• As = → ∞, the prevalence ? scales like ? ∼ =−(1−U) for

U ∈ [0, 1). Thus the true number of infected individuals

is strongly concentrated around : = ?= ∼ =U.

• Schemes must be fully nonadaptive, meaning all the tests

are decided on in advance and are conducted in a single

stage.

• The criterion for success is that every individual declared

to be infected is indeed infected. However, we do allow

failure to meet this criterion, provided that the probability

of such failure tends to 0 as =→ ∞.

• The testing procedure is perfect. Any pool containing

no infected individuals always gives a negative result,

and any pool containing one or more infected individuals

always gives a positive result.

II. RESULTS FOR THE PRACTICAL MODEL

We consider trivial two-stage algorithms with two parame-

ters, A and B, as studied in [8], [9] for perfect noiseless tests.

In the first stage, any individual that is sampled is sampled in

A pools, and each pool samples B individuals. Typically A is

very small (1 and 2 are the most common values, but 3 and

4 are sometimes used).

For individual non-pooled testing, we take A = 1, B = 1, and

don’t require a second stage. For all other sensible parameters

we have B > 1, and in the second stage we retest any

individuals that were positive in all A pooled tests. (Although

we don’t consider it here, it may be worthwhile to retest

individuals whose A pooled tests were mostly – but not entirely

– positive. We intend to study this in future work.)

Setting A = 1, B > 1, gives the simplest pooled algorithm,

named Dorfman’s algorithm, after Robert Dorfman’s original

group testing procedure [10]. Here, the sampled individuals

are split into pools of size B. If a pooled test is negative, it

is assumed that all those individuals are noninfected. (This is

not certain to be correct, but is strong evidence that retesting

them is a poor use of resources compared with testing a

new untested pool.) If the pooled test is positive, then those

individuals are individually tested in the second stage.

For general A, B, the most mathematically convenient method

is to fix the number of individuals < ≤ = to be sampled, then

to choose a testing strategy uniformly at random, subject to

each test having weight B and each individual having weight

A . This requires < to be divisible by A and B, but since these

are typically small, this is not much of a restriction.

In practice, it can sometimes be more convenient to use a

hypercube design. We explain this first by considering the case

A = 2, where we also use the term grid design. Here, we take

< individuals where < is a multiple of B2. We imagine the

individuals placed on square grids of size B×B. Then each grid

corresponds to 2B tests: B tests each pooling the individuals

in one row, and B tests each pooling the individuals in one

column. The grid design can be better than the random design

for small = (although the asymptotic performance is the same).

However, B2 can be quite large, so the divisibility issue can

be awkward. The grid design was studied recently by Broder

and Kumar [9].

For A > 2 the hypercube design requires B = 0A−1 for some

integer 0 > 1. We place each 0A individuals in an 0×0×· · ·×0

A-dimensional hypercube. Each test corresponds to one of the

AB (A − 1)-dimensional ‘slices’ of the hypercube. The case

A = 3, B = 9, with a 27 individuals in a 3 × 3 × 3 hypercube

was prominently studied in [11] – this has nine 2-dimensional

3 × 3 slices: three front to back, three left to right, and

three top to bottom. With a hypercube design, the divisibility

restrictions are much stronger, but the extra structure can be

more convenient for a laboratory to carry out.

Theorem 1: In the practical regime, the above algorithm has

ETI

ETI =
1

?D

for individual testing A = B = 1, and ETI

ETI =

A
B
+ DA

(

? + @(1 − @B−1)A
)

?DA+1

for B > 1.



TABLE I
ETI FOR INDIVIDUAL NON-POOLED TESTING WITH EXAMPLE PARAMETERS

OF THE SENSITIVITY D AND PREVALENCE ? IN THE PRACTICAL MODEL

? D = 0.6 D = 0.7 D = 0.8 D = 0.9

0.1 16.7 14.3 12.5 11.1

0.05 33.3 28.6 25.0 22.2

0.02 83.3 71.4 62.5 55.6

0.01 167 143 125 111

0.005 333 286 250 222

TABLE II
ETI FOR POOLED TESTING WITH EXAMPLE PARAMETERS OF THE SENSITIVITY D AND PREVALENCE ? IN THE PRACTICAL MODEL.

VALUES OF THE FIRST-STAGE TESTS-PER-INDIVIDUAL A AND INDIVIDUALS-PER-TEST B ARE GIVEN IN BRACKETS AS (A , B) .

? D = 0.6 D = 0.7 D = 0.8 D = 0.9

0.1 12.4 (1, 5) 9.93 (1, 5) 8.21 (1, 4) 6.91 (1, 4)

0.05 18.0 (1, 7) 14.4 (1, 6) 11.8 (1, 6) 9.48 (2, 10)

0.02 29.1 (1, 10) 23.0 (2, 21) 17.2 (2, 19) 13.3 (3, 27)

0.01 41.7 (1, 14) 29.8 (2, 32) 22.2 (2, 29) 16.2 (3, 42)

0.005 54.0 (2, 55) 38.2 (2, 49) 28.2 (3, 76) 19.7 (3, 68)

Proof: We give a brief justification of this result. The

result for an individual test is clear: the test is positive if

the individual is infected (with probability ?) and the test

correctly gives a positive result (with probability D) for an

ETI of 1/(?D).

Now consider a trivial two-stage algorithm with parameters

A and B.The number of first-stage tests-per-individual is A/B.

An individual could potentially be retested in the second

stage if it is either infected, with probability ?, or it is not in-

fected but all A of its tests has one of the other B−1 individuals

infected, with probability asymptotically @(1 − @B−1)A . (This

would be exactly true if the test results were independent, but

if an individual shares more than one pool with our given

individual, that would not be the case. However, we prove in

our full paper that the equation is asymptotically accurate in

spite on the dependences.) If one of these criteria is fulfilled,

the individual will be tested again if all A tests correctly give a

positive result, with probability DA . Hence the expected number

of second-stage tests per individual is DA (? + @(1 − @B−1)A ).

An infected individual is found if it is indeed infected, with

probability ?, all A pooled tests are correctly positive, with

probability DA , and the individual test is correctly positive,

with probability D. All together, this is ?DA+1.

Finally, the ETI is the ratio of these two terms.

Tables I and II shows the expected tests per infected

individual found (ETI) for various plausible values of the

sensitivity D and the prevalence ?. The numbers in brackets

are optimal values of (A, B), determined numerically. Note that

(1, B) denotes Dorfman’s simple pooling algorithm.

Note that the pooled schemes are better than individual test-

ing for all values of the parameters. The gain is biggest when

the prevalence is low and the sensitivity is high. Dorfman’s

algorithm (A = 1) is best for moderately high prevalence or

moderately low sensitivity.

For a similar analysis of Dorfman’s algorithm that also

allows for imperfect specificity, see [3].

III. RESULTS FOR THE THEORETICAL MODEL

Recall that in the theoretical model all tests are perfectly

accurate, and the number of infected individuals is very close

to : = ?=, which scales like : ∼ =U with U ∈ [0, 1).

Our result (stated slightly informally in this conference

paper, with formalities to follow in a later paper full paper

later) is the following.

Theorem 2: In the theoretical model, we can achieve an ETI

of

ETI = min{ETIfull,ETIsaff},

where

ETIfull = max

{

log2

=

:
,

1

ln 2
ln :

}

,

ETIsaff = 2e log2

=

:
.

Proof: We give a brief justification for this result, again

with a full formal proof to appear in a later paper. We use



similar techniques to those used in [2] for the ‘find one

defective item’ and ‘approximate recovery’ problems.

First, ETIfull is the ETI achieved when using

)∗
= max

{

: log2

=

:
,

1

ln 2
: ln :

}

tests to find all : infected individuals [6], [7]. Suppose we

instead have ) = 2)∗ tests, where 2 < 1. We ‘cut our losses’

by immediately discarding all but 2= individuals. This subset

will have very close to 2: infected individuals, and we can

find all of them in

max

{

2: log2

2=

2:
,

1

ln 2
2: ln 2:

}

= max

{

2: log2

=

:
, 2

1

ln 2
: ln : +$ (:)

}

∼ 2

{

: log2

=

:
,

1

ln 2
: ln :

}

,

= 2)∗

tests, as required.

Second, ETIsaff is achieved by an idea inspired by the

SAFFRON scheme of [12] (see also [1]). Suppose for the

moment that we have ) = 2 log2 =/: tests. Take a subset of

=/: = 1/? items, and note that it contains exactly one infected

individual with probability

=

:
?(1 − ?)=/:−1

= (1 − ?)1/?−1 → e−1.

Number the individuals from 1 to =/: , and let v8 ∈ {0, 1};

be the number 8 written in binary, where the length is ; =

log2 =/: = )/2 (up to rounding). Further let v8{0, 1}
; be v8

with the 0s and 1s flipped. Then individual 8 is placed in the

tests that correspond to the positions of the 1s in the vector

(v8v8) ∈ {0, 1}2;
= {0, 1}. Note that this means each item is

in exactly ; = )/2 of the 2; = ) tests.

If the set contains zero infected individuals, then all )

tests will be negative, and we can rule all the individuals to

be noninfected. If exactly one of the individuals is infected,

then exactly ; = )/2 of the ) tests will be positive, and the

first )/2 test outcomes will ‘spell out’ in binary the number

of the infected individual. If there are two or more infected

individuals, then strictly more than ; = )/2 of the tests are

positive, and we find none of the expected items. Thus with

our ) tests we find one infected individual if and only if the set

contains exactly one infected individual, with is an expected

number of e−1. Hence the ETI is

ETIsaff =

)

e−1
=

2 log2
=
:

e−1
= 2e log2

=

:
.

Given the actual value of ) we have, we split it into

segments of size 2 log2 =/: , and run the SAFFRON-inspired

algorithm separately on each, obtaining the same ETI.

For a given parameter U, we choose whichever out of

the ‘full’ and ‘SAFFRON’ methods gives the best ETI. This

proves the theorem.

Fig. 1. Rate of finding isolated individuals in the theoretical model, from
Theorem 3. For given U, the better method is the one with higher rate.

Note that the ‘full’ algorithm tests fewer individuals, but

seeks to find every infected individual who was tested. In con-

tract, the SAFFRON-inspired algorithm tests more individuals,

but only expects to find e−1/(1−e−1) = 58% of those infected.

One convenient way of interpreting Theorem 2 is by con-

sidering the rate of group testing [1], [4]. Here, we define the

rate to be

rate =

� (?)

?ETI
,

where � (?) is the binary entropy. Standard information the-

oretic conditions tell us that the rate is bounded above by 1;

we want the rate to be as close as possible to 1, the higher

the better.

We can rewrite Theorem 2 as follows.

Theorem 3: When ? ∼ =−(1−U) , the theoretical model can

achieve rates up to

' = max{'full, 'saff},

where

'full = min

{

1, (ln 2)2 1 − U

U

}

, 'saff =

1

2e
.

This is illustrated in Fig. 1. Note that, for large U, the

SAFFRON method gives a higher rate than 'full, the usual

rate for finding all defectives in the usual full group testing

problem.
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