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Small error algorithms for tropical group testing

Vivekanand Paligadu∗ Oliver Johnson† Matthew Aldridge‡

1 October 2024

Abstract

We consider a version of the classical group testing problem motivated by
PCR testing for COVID-19. In the so-called tropical group testing model,
the outcome of a test is the lowest cycle threshold (Ct) level of the indi-
viduals pooled within it, rather than a simple binary indicator variable.
We introduce the tropical counterparts of three classical non-adaptive al-
gorithms (COMP, DD and SCOMP), and analyse their behaviour through
both simulations and bounds on error probabilities. By comparing the re-
sults of the tropical and classical algorithms, we gain insight into the extra
information provided by learning the outcomes (Ct levels) of the tests. We
show that in a limiting regime the tropical COMP algorithm requires as
many tests as its classical counterpart, but that for sufficiently dense prob-
lems tropical DD can recover more information with fewer tests, and can be
viewed as essentially optimal in certain regimes.

1 Introduction

1.1 Group testing and tropical group testing

Group testing is the problem of reliably recovering a subset K of ‘defective’ items
from a population of N items, using a relatively small number T of so-called pooled
tests to test multiple items at the same time. In the classical noiseless setting, the
outcome of such tests is binary, indicating whether or not there is at least one
defective item in the pool.
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Group testing was initially introduced by Dorfman [11] in the context of testing
for syphilis. It has now developed into a combinatorial and algorithmic problem
with a rich history [12, 4], where one seeks to understand the trade-offs between
N , |K| and T , and to understand how K can be efficiently recovered using com-
putationally feasible algorithms.

Group testing has applications to many fields such as biology, manufacturing,
communications and information technology, as described in [4, Section 1.7]. This
framework also recently gained considerable attention during the COVID-19 pan-
demic – see [3] for a review of its use in this context, and [22] for an early proof
of concept that pooled testing can detect the presence of COVID-positive individ-
uals. In general, the efficiency of group testing makes it useful when using PCR
machines to test large populations for rare conditions.

In this paper, however, we consider not the standard binary group testing
model, but rather the ‘tropical group testing’ model of Wang et al. [20]. While
the binary model considers only ‘positive or negative’ outcomes, the tropical group
testing model considers different levels of strength of infection (or ‘seriousness of
defectiveness’). In the tropical model, the output is given by the strongest infected
(or ‘most defective’) input.

We have three reasons for wanting to study further the tropical model of Wang
et al. [20]. First, the tropical model is a fascinating mathematical puzzle in its own
right, where the generalisation of the binary group testing model creates interesting
problems requiring creative solutions. We are pleased to be able to build on the
work of [20] to propose and rigorously analyse new algorithms for the tropical
model.

Second, tropical group testing is an excellent model for situations where the
performance of a set of items is determined by the most extreme performance of
a single item in the set. Consider, for example, the capacity of a route through a
network, which is typically limited by the lowest bandwidth link on that route. If
ui is the bandwidth of link i, and xti = 1 denotes that link i is on route t, then
the capacity of route t would be given by yt = min{ui : xti = 1}. This is precisely
the tropical group testing model defined below in Definition 2.1.

Third, tropical group testing models how information regarding strengths of
infections is combined in PCR testing, for example when testing for COVID. On
one side, traditional group testing only considers binary positive-or-negative out-
comes, so it does not represent how samples with different strengths of infection
combine. On the other side, more complicated models (like that we describe in
Subsection 1.2 below) do not seem amenable to theoretical analysis, only to ex-
ploration via simulation. In Subsection 1.2 we explain how tropical group testing
can be formally seen as an approximation of a more detailed, but less tractable,
model of PCR testing. In this sense, we feel that the tropical model of [20] hits the
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‘sweet spot’ between keeping the analytical tractability of binary group testing,
while still adopting a model that reflects (even if it does not perfectly capture)
how PCR testing works.

Other COVID-inspired pooled testing schemes that are designed to take ac-
count of quantitative information through numerical values of test outcomes in-
clude Tapestry [15, 14], the work of Bharadwaja and Murthy [6], and the two-stage
adaptive scheme of Heidarzadeh and Narayanan [16].

1.2 The tropical model as an approximation of PCR test-

ing

To motivate the tropical model, we will consider a detailed model the PCR test,
and show how tropical group testing can be viewed as an approximation of this
model. Readers already convinced by the utility of the tropical model who want
to read about our new contributions can skip to Subsection 1.3.

In the PCR test (see, for example, [21]), the viral genetic material is extracted
from a sample and amplified in ‘cycles’ of a process using polymerase enzymes.
In each cycle, the quantity of this material is multiplied by some factor (usually
doubled, or slightly less). The presence of the viral genetic material is detected by
fluorescence, indicating a positive result if the quantity present exceeds a certain
amount. The cycle threshold (Ct) value is the number of cycles after which fluo-
rescence is observed – this represents the number of amplifications (or doublings)
required to achieve detection. Hence when using PCR to test for COVID [19],
a lower Ct value indicates a higher concentration of viral genetic material in the
sample.

The following mathematical description of the PCR protocol follows closely
that by Bharadwaja and Murthy [6]. Suppose a single sample has initial viral
concentration z. In each cycle it will be amplified by a factor of 1 + q, say.
(Bharadwaja and Murthy [6] suggest values of q ∈ [1/2, 1] are typical.) So the Ct
number, the number of cycles u required for the amplified viral concentration to
cross a given threshold τ , will satisfy (1+ q)uz = τ (see [6, eq. (1)]). Equivalently,
z = τ(1 + q)−u.

This extends to a model where multiple items with different viral concentrations
zi = τ(1 + q)−ui are tested according to a binary pooling matrix x = (xti), where
xti = 1 means item i is in pool t. (See Section 2 for a formal description of the
test matrix.) The total initial viral concentration for pool t will be

∑

i:xti=1

zi = τ
∑

i:xti=1

(1 + q)−ui .
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This will cross the threshold τ after yt cycles, where

(1 + q)yt τ
∑

i:xti=1

(1 + q)−ui = τ.

Rearranged to make yt the subject, we have

yt = − log1+q

( ∑

i:xti=1

(1 + q)−ui

)
. (1)

This is the model of [6, eq. (4)], except for that also including an additive noise
term ϵt ∼ N(0, σ2).

It is possible to directly study the model (1) empirically. For example, Bharad-
waja and Murthy [6] describe several algorithms based on gradient descent, for
both known and unknown q, and validate them empirically for prevalence levels
found during the Covid-19 pandemic.

However, an alternative perspective comes through the way that Ct values are
explicitly combined together in the so-called tropical group testing model of Wang
et al. [20], which takes the outcome of each test to be equal to the minimum value
of ui among items appearing in it (see Definition 2.1 below). This construction
can be motivated using the ‘tropicality approximation’ to (1):

yt = − log1+q

( ∑

i:xti=1

(1 + q)−ui

)
≈ min

i:xti=1
ui. (2)

This approximation appears to render the model more amenable to mathemati-
cal analysis. It seems to be considerably harder to formally prove performance
guarantees in the setting of (1) and [6] than the tropical model of [20] and this
paper.

The tropicality approximation (2) is exact when a pool contains 0 or 1 infected
items (those with ui < ∞), and is very accurate when the viral concentrations
of 2 or more infected items differ by a reasonable amount, but can be slightly
inaccurate if 2 or more items have very similar viral concentrations. We believe
that the tropical model strikes a good balance between maintaining the analytical
tractability of standard binary group testing while still modelling the effect of
differing viral concentrations as in (1). In that sense, the contribution of our
paper is to prove rigorous bounds in a model which, when it comes to modelling
PCR tests, is more realistic than the standard group testing model studied in the
vast majority of the group testing literature (see [4] and elsewhere).

Since the outcome of a tropical group test is the minimum Ct value of the in-
fected individuals contained within it, strongly infected items with low Ct values
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tend to dominate the test outcomes, potentially concealing weakly infected indi-
viduals with high Ct values. In an attempt to address this limitation, Wang et al.
introduce the concept of a ‘tropical code’ involving ‘delays’ (controlled by a ‘delay
matrix’), which correspond to adding some samples partway through a PCR run,
so they get amplified fewer times. With this approach, [20] describes adaptive and
non-adaptive constructions.

1.3 Our contributions

The key contribution of this paper is the development and analysis of non-adaptive
algorithms in the tropical setting to recover the Ct values of defective items under
a small-error criterion, and to demonstrate gains in performance relative to the
classical group testing setting. These algorithms are tropical generalisations of the
classical COMP, DD and SCOMP algorithms [2, 4].

A major strength of our algorithms and results is that they do not require the
use of a delay matrix, meaning that all samples are added to the machine simul-
taneously at the start of the process. This means the tests can be run in parallel
simultaneously without needing to pause the machine to load further samples,
making the resulting schemes easy to implement in practice on a PCR machine.
(Strictly speaking, one could say adding a sample at the beginning of the process is
‘delay 0’ and not adding a sample at all is ‘delay ∞’; so one could say our methods
involve no nontrivial delays.)

In particular, we identify a sharp threshold for the performance of the tropical
DD algorithm (see Section 3.4) in certain parameter regimes. In Theorem 6.1 we
give an achievability result by showing that in a limiting regime where the number
of tests

T > max{T∞, Td, Td−1, . . . , T1} (3)

then the error probability of this algorithm tends to zero. Here the Tr are explicit
expressions in terms of the total number of items with particular defectivity levels.
Roughly speaking, T∞ tests are required to find most (but not necessarily all) of
the non-defective items, while Tr tests are required to find all the defective items
with Ct value r. Further in Remark 6.2, we argue that in a certain ‘uniform’
case, this result represents an explicit (albeit second-order) improvement over the
performance of classical DD.

In contrast, in Theorems 7.1 and 7.4 we show that in the regime where

T < max{Td, Td−1, . . . , T1}

then the error probability of tropical DD and even of an optimal algorithm tends to
1. Since apart from the absence of T∞ this is identical to the expression (3), we can
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conclude that our tropical DD algorithm is asymptotically optimal in parameter
regimes where T∞ does not give the maximum in (3).

The structure of the rest of the paper is as follows. In Section 2 we introduce
the notation used in the paper, and formalise the tropical group testing model.
In Section 3 we describe the three tropical algorithms we will study, and briefly
mention some of their basic properties. Section 4 gives simulation results indicating
the performance of these algorithms. We analyse the theoretical performance of
the tropical COMP algorithm in Section 5 and of the tropical DD algorithm in
Sections 6 and 7.

2 Notation and tropical model

We adapt the classical group testing notation and algorithms of [2, 4] to the tropical
group testing model of [20]. The tropical model replaces the ‘OR’ operation of
standard group testing with a ‘min’ operation, in a way motivated by the use of
PCR testing for COVID-19.

In more detail, for a fixed positive integer value d we define the set D =
{1, 2, . . . , d,∞} of possible defectivity (or infection) levels. Here level ∞ represents
the state of being not defective, and levels 1, 2, . . . , d represent different levels of
defectivity. As with Ct values in PCR testing, the lower the numerical value of
the defectivity level, the stronger the infection; and the higher the numerical value
of the defectivity level, the weaker the infection. The exact values represented
in the set do not matter from a mathematical point of view – while it may be
closer to medical practice to use Ct values such as {20, 21, . . . , 40,∞}, the choice
{1, 2, . . . , d,∞} provides notational convenience.

Given N items, we represent the defectivity level Ui ∈ D of each item i as a
vector U = (U1, . . . , UN) ∈ DN . We write Kr = {j : Uj = r} for the set of items at

each level r ∈ D, and write K =
⋃d

r=1 Kr for the total set of defective items, with

finite Ui. We write Kr = |Kr| for the size of each set, K =
∑d

r=1Kr = |K| for the
total number of defective items, and adopt the notation K = (K1, . . . , Kd). For
1 ≤ r ≤ d and 1 ≤ s ≤ Kr, we will write i(r, s) for the sth item in set Kr (labelled
arbitrarily within Kr).

We assume a combinatorial model: that is, we fix set sizes K1, . . . , Kd in ad-
vance and assume that the sets Kr are disjoint and chosen uniformly at random
among sets which satisfy these constraints. We will sometimes consider a limiting
sequence of problems where N → ∞ with K ≃ Nα for some fixed α ∈ (0, 1) and
Ki ≃ θiK for some θi with

∑d
i=1 θi = 1.

We use a non-adaptive testing strategy, where we fix the whole test design in
advance. We represent the test design in a binary T ×N test matrix x, with the
standard convention that xti = 1 means that item i appears in test t and xti = 0
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means that item i does not appear in test t. Our use of non-adaptive strategies in
this context is motivated by the fact that PCR tests can be performed in parallel
using plates with large numbers of wells (such as 96 or 384) – see for example [13]
– meaning that the test strategy needs to be designed in advance.

We now describe the outcome of a so-called tropical group test.

Definition 2.1. Tropical group testing is defined by the outcome Yt of test t being
given by the lowest defectivity level Ui among items i that appear in the test:

Yt = min
i
{Ui : xti = 1}. (4)

For d = 1, there are only two defectivity levels possible for an item i, namely
Ui = 1 (defective) and Ui = ∞ (non-defective). In this case, Definition 2.1 reduces
to Dorfman’s standard binary group testing model [11], with the outcome of a
negative test t denoted by Yt = ∞ (rather than the usual Yt = 0). We refer to this
as ‘classical group testing’.

For any value of d, if a test contains no defective items (that is, if Ui = ∞ for
all items i in the test) then the outcome is Yt = ∞, which we regard as a negative
test, just as in classical group testing. However, unlike classical group testing,
we also receive information about the defectivity levels of the items through the
outcomes of positive tests being a number from 1 to d.

In order to analyse tropical group testing, we make some definitions that will
be useful, and which extend the definitions and terminology of [2].

Definition 2.2. Write µi for the highest outcome of any test that item i appears
in:

µi := max
t

{Yt : xti = 1}. (5)

If item i is not tested, so that {Yt : xti = 1} = ∅, we use the convention µi := 1.

A key deduction is that µi is the lowest possible defectivity level for item i.

Lemma 2.3. For each item i, we have Ui ≥ µi.
In particular, if µi = ∞ (that is, if the item appears in a negative test) then

we can recover with certainty that Ui = ∞.

Proof. If an item i is not tested at all, then by Definition 2.2 we know that µi = 1,
and so the result trivially holds.

Otherwise, if an item i is tested, then for each t such that xti = 1, by Definition
2.1, we know that Ui ≥ Yt. So Ui ≥ maxt{Yt : xti = 1} = µi.

Definition 2.4. We define the following:

1. For each 1 ≤ r ≤ d, we refer to an item i that has µi = r as PD(r) (‘Possibly
Defective at levels {r, . . . , d,∞}’).
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K1 K2 · · · Kd · · · Hd−1 Hd H∞

+1 ? · · · ? · · · ? ? ?

0 +1 · · · ? · · · ? ? ?
...

0 0 · · · ? · · · +1 ? ?

0 0 · · · +1 · · · 0 +1 ?

0 0 · · · 0 · · · 0 0 +1




=⇒




Y

1

2
...

d− 1

d

∞




.

Figure 1: Schematic illustration of test matrix and outcomes sorted into block
form. Here a 0 represents a submatrix of all zeroes, a +1 represents a submatrix
which has at least one entry equal to 1 in each column, and ? represents a submatrix
which could be of any form. The defective items are sorted by level to the left of
the vertical line. The column labels above the matrix represents the number of
elements of each type; the vector represents the outcomes of the test.

2. For r ∈ D, we say that an item i of defectivity level Ui = r is intruding if it
never appears in a test of outcome r (in which case strict inequality Ui > µi

holds in Lemma 2.3).

3. For r ∈ D, write Hr for the number of tested non-defective items in PD(r)
(those that have µi = r). For convenience, also define H0 to be the number
of untested non-defective items.

If d = 1, then, in the notation of [2], the number G of intruding non-defectives
(i.e. non-defectives that don’t appear in any negative tests) corresponds here to
those items i with µi = 1, tested or untested; so G in [2] corresponds to H0 +H1

here.
To aid understanding, it can be helpful to sort the rows and columns of the

test matrix as illustrated in Figure 1.
The algorithms we describe in Section 3 will be effective for a variety of matrix

designs. However, as in [2], in the theoretical analysis in Sections 5–7 we assume
that the matrix x is sampled according to a Bernoulli design with parameter p;
that is, that the elements xti are equal to 1 independently of one another with a
fixed probability p. As in [4, Section 2.1], we consider a probability p = ν/K for
some fixed ν.

In fact, as justified in [2] and in Section 4 it is often reasonable to take ν = 1. It
remains possible that some other choice may be better in some situations, although
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simulation evidence in Figure 3 shows that the performance of our algorithms is
relatively robust to choices of ν close to 1. This means that while in theory we
need to know the number of defective items in the sample to design the matrix,
for practical purposes it is enough to have a good estimate of this number.

The paper [17] proves that performance is improved in the classical case when
using matrix designs with near-constant column weights L = ⌊νT/K⌋, and sim-
ulation evidence in Figure 6 suggests that the same might well be true in the
tropical case. However the analysis involved in [17] is significantly more compli-
cated than that in [2], so here we restrict ourselves to the Bernoulli case for the
sake of simplicity of exposition, and leave alternate matrix designs for future work.

3 Description of tropical algorithms

3.1 General remarks concerning algorithms

In this section, we describe three algorithms which estimate the true vector of
defectivity levels U , given the test design matrix x and the vector of test outcomes
Y . These are the tropical COMP, tropical DD and tropical SCOMP algorithms,
adapted from the classical algorithms of the same names in [7, 2] (see also [4,
Chapter 2] for a more detailed description).

We first define what is meant by an algorithm in this setting.

Definition 3.1. A decoding (or detection) algorithm is a function Û : {0, 1}T×N×
DT → DN which estimates the defectivity level of each of the items, based only
on knowledge of the test design x and outcomes Y .

We write P(err) for the error probability of an algorithm, and P(suc) = 1 −
P(err) for the success probability. We define

P(err) = P(Û ̸= U ) (6)

to be the probability that the algorithm fails to recover all the defectivity levels
exactly, where the randomness comes through the design of the matrix and the
value ofU itself. Sometimes for emphasis we will include the name of the algorithm
and the number of tests, for example by writing P(err; DD, T ).

Recovering U exactly represents a strong success criterion for this problem.
For example, in some cases, we might be happy to simply recover the defective set
K = {i : Ui < ∞}. We later show that recovering U and recovering K represent
equivalent success criteria for tropical DD and tropical SCOMP, but not for tropical
COMP. From a clinical point of view, since lower Ct levels are generally associated
with higher infectiousness [19], it might be sufficient to recover all the items with
defectivity level below a certain threshold t, that is to find

⋃
r<t Kr = {i : Ui < t}.
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In this setting, we say that a false positive error is an error of underestimating
the defectivity level Ui of an item i – that is, of setting Ûi < Ui – and a false
negative error is an error of overestimating the defectivity level Ui of an item i –
that is, of setting Ûi > Ui.

In the remainder of this section, we define the tropical COMP (Subsection 3.3),
tropical DD (Subsection 3.4) and tropical SCOMP (Subsection 3.5) algorithms as
tropical equivalents of their established classical counterparts. All of these algo-
rithms are relatively simple: they do not require exhaustive search over possible
values of U (in contrast to the classical SSS algorithm [2], for example), can be im-
plemented with a small number of passes through the data, and require an amount
of storage which is proportional to the number of items and tests.

Despite this simplicity, in the classical case, the DD algorithm has performance
close to optimal for certain parameter ranges. This can be seen by comparing [10,
Eq. (1.1), (1.2)], which show that DD under a constant column weight design
achieves an asymptotic performance which matches that achievable by any algo-
rithm and any test design in the case where K ≃ Nα and 1/2 ≤ α < 1.

Also, note that while simulations show that classical SCOMP outperforms
classical DD for a range of finite size problems, Coja-Oghlan et al. [9] prove
that it requires the same number of tests in an asymptotic sense, with SCOMP
having the same rate (in the sense of [2]) as classical DD.

3.2 Counting bounds

For classical group testing, a lower bound on the number of tests required is
given by the so-called ‘magic number’ T ∗

class := log2
(
N
K

)
, which can be justified

on information-theoretic grounds. In fact below this number of tests there is ex-
ponential decay in performance of any algorithm, adaptive or non-adaptive, and
for any test strategy. Specifically, [5, Theorem 3.1] shows that if T tests are used
then in any scenario the success probability for classical group testing satisfies

P(suc) ≤ 2−(T ∗
class

−T ) =
2T(
N
K

) , (7)

sometimes referred to as the counting bound.
It may not be a priori obvious how the difficulty of the tropical decoding prob-

lem with success criterion (6) compares with the corresponding classical problem.
In the tropical setting, we receive more information from each test through the
more diverse test outcomes, which suggests the problem could be easier; but we
also need to recover more information (to find the levels U ), which suggests the
problem could be harder. Nonetheless, if for given parameters any tropical al-
gorithm can demonstrate performance exceeding the classical counting bound (7)
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then we can be sure that the corresponding tropical problem is easier than its
classical counterpart.

By closely mimicking the proof of the classical counting bound (7) given in [5]
we can prove its tropical counterpart.

Theorem 3.2. Write T ∗
trop := logd+1

(
N
K

)
, where

(
N

K

)
=

(
N

K1, K2, . . . , Kd, N −K

)
=

N !

K1!K2! · · ·Kd!(N −K)!

is the multinomial coefficient. Then

P(suc) ≤ (d+ 1)−(T ∗
trop−T ) =

(d+ 1)T(
N
K

) . (8)

Proof. See Appendix A.

Writing
(
K
K

)
= K!/(K1!K2! . . . Kd!) and H(θ) = −

∑d
i=1 θi log2(θi), we expand

T ∗
trop = logd+1

(
N

K

)
+ logd+1

(
K

K

)
≃

T ∗
class

log2(d+ 1)
+K

H(θ)

log2(d+ 1)
. (9)

Compared with the classical case, the scaling factor 1/ log2(d+ 1) < 1 on the first
term of (9) represents the fact that we potentially gain more information through
each test, while the second additive term represents the extra information we are
required to recover.

3.3 Tropical COMP

We now describe the tropical COMP algorithm, which extends the classical COMP
algorithm described in [7] (see also [8]) – although the idea of the algorithm dates
back at least to the work of Kautz and Singleton [18].

We first describe the classical COMP algorithm, which simply declares any
item that appears in a negative test as non-defective. All other items are declared
defective. In the notation of this paper, classical COMP can be described in the
following way. For each item i with µi = ∞, we set Ûi = ∞; otherwise, µi = 1
and we set Ûi = 1. In other words, we set Ûi = µi for each item i.

The same rule Ûi = µi can also be used in tropical group testing. This is what
we call the tropical COMP algorithm.

Algorithm 1: Tropical COMP algorithm

Input: Test design matrix x and vector of test outcomes Y
Output: Estimated vector of defectivity levels Û
for each item i do set Ûi = µi;
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While both classical and tropical COMP mark items appearing in negative
tests as non-defective, the tropical COMP algorithm further classifies items into
estimated defectivity levels. Note that the two algorithms operate identically when
d = 1, and have some analogous properties in general. To aid terminology, we first
define the notion of unexplained tests in this setting.

Definition 3.3. Fix a test matrix x and an estimate Û of U . Write

Ŷt = min
i
{Ûi : xti = 1}

to be the outcome of test t using matrix x if the true defectivity vector were equal
to Û . We say that test t is unexplained by Û if Ŷt ̸= Yt, where Yt is the actual
test outcome, or explained if Ŷt = Yt.

We call an estimate vector Û a satisfying vector if it explains all T tests.

The terminology ‘satisfying vector’ here is the tropical group testing equivalent
of the classical group testing notion of a satisfying set [2, 4]. For classical COMP,
the estimate given is a satisfying set [4, Lemma 2.3]) – indeed, the largest satisfying
set. We have a similar result for tropical COMP.

Lemma 3.4. The estimate ÛCOMP given by tropical COMP is a satisfying vector.
Further, ÛCOMP is the least satisfying vector, in that if V ∈ DN is also a

satisfying vector, then UCOMP

i ≤ Vi for all items i.

Proof. For the first part, take an arbitrary test t with outcome Yt. All items i
included in this test have Ui ≥ µi ≥ Yt. Further, there must be an item j with
Uj = Yt, otherwise the test outcome would be greater than Yt. For that item,
µj = Yt. Hence,

Ŷt = min
i
{µi : xti = 1} = µj = Uj = min

i
{Ui : xti = 1} = Yt,

and the test is explained. Since the test t was arbitrary, we have Ŷ = Y , and
hence ÛCOMP explains all the tests.

For the second part, note that any satisfying vector V must have Vi ≥ µi =
UCOMP
i for all i. To see this, consider a vector V and item j with Vj < µj. Then

let t be a test containing item j for which Yt = µj. There must be at least one
such test, by the definition of µj, unless j is never tested. If j is never tested, then
by assumption Vj ∈ D has Vj ≥ 1 = µj. For this test t,

min
i
{Vi : xti = 1} ≥ µj > Vj,

so V is not satisfying.
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We know that classical COMP never makes false negative errors. The same is
true for tropical COMP – recall that we use this terminology to refer to an error
of the form Ûi > Ui.

Lemma 3.5. Tropical COMP never makes false negative errors.

Proof. This follows directly from Lemma 2.3, which tells us that Ui ≥ µi, where
µi is the tropical COMP estimate.

For tropical COMP, the success criterion given by (6) to recover the whole
vectorU is not equivalent to the success criterion of merely recovering the defective
set K. It is true that if any algorithm correctly recovers U , so that Û = U , then
it also recovers K as K̂ = {i : Ûi < ∞} = K. But the following example shows
that for tropical COMP the converse does not hold; that is, just because COMP
fails to recover U , that does not necessarily mean it also fails to recover K:

Example 3.6. Suppose we have two items, with true defectivity levels U = (1, 2).
Suppose further that we run just one test, which contains both items, so x = (1, 1)
and Y = (1). Then both items are in just one test with outcome Y1 = 1, so have

µ1 = µ2 = 1. Tropical COMP therefore incorrectly estimates Û = (1, 1) ̸= U .

However, it does succeed in recovering the defective set K̂ = K = {1, 2}.

Despite this, we show in Section 5 that tropical COMP asymptotically requires
the same number of tests to recover U as classical COMP does to recover K.

3.4 Tropical DD

We now describe the tropical DD algorithm. This extends the classical DD algo-
rithm introduced in [2], which works in three steps:

1. Every item appearing in a negative test is non-defective. (All other items
are ‘possibly defective’.)

2. If a positive test contains a single possibly defective item, that item is defec-
tive.

3. All remaining items are assumed non-defective.

Tropical DD works the same way, except in step 2, it takes account of the different
levels of defectivity in the tropical testing. Recalling that a PD(r) item is one with
µi = r, the tropical DD algorithm is as follows:

13



Algorithm 2: Tropical DD algorithm

Input: Test design matrix x and vector of test outcomes Y
Output: Estimated vector of defectivity levels Û
for each item i with µi = ∞ do set Ûi = ∞;
for each test t with Yt = r <∞ do

if there exists only one PD(r) item i in test t then set Ûi = r;
end

Declare all remaining unclassified items to have Ûi = ∞;

To understand why this algorithm works, consider a test t with outcome Yt = r.
Observe that (by Definitions 2.1 and 2.2 respectively):

(a) test t cannot contain any items i with Ui < r, and must contain at least one
‘special item’ j with Uj = r;

(b) every item i appearing in test t has µi ≥ r.

Suppose that (apart from j) all the other items i in test t have µi > r, so none
of them are in PD(r). Then we know (by Lemma 2.3) that each such item has
Ui ≥ µi > r, and cannot be a special item. Hence the remaining item j must be
the special item that we seek. In other words, the sole PD(r) item in the test is
marked as definitely defective at level r. This mirrors the classical case where if
there is a single PD item in a test, it is marked as definitely defective.

We can think of the problem of finding K in the classical case as now being
split into sub-problems of finding K1, . . . ,Kd in the tropical case. It is helpful to
think of moving upwards through the rows in the block formulation of Figure 1:

1. By examining the tests with outcome ∞, we can identify H∞ non-defective
items and remove them from consideration for tests of outcome r <∞.

2. In general, for r = d, d− 1, . . . , 1, by examining all the tests with outcome r,
we hope to find all the defective items i(r, 1), . . . , i(r,Kr) and to find the Hr

non-defective items that are in PD(r) and remove them from consideration
for tests of outcome lower than r.

We note that the operation of classical DD is the same as the operation of
tropical DD when d = 1. We know that classical DD never makes false positive
errors [4, Lemma 2.2]. The same is true for tropical DD:

Lemma 3.7. Tropical DD never makes false positive errors. Indeed the only errors
it can make is wrongly declaring a defective items of some finite level Ui = r to be
non-defective Ûi = ∞.
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Proof. The first step finds some non-defective items from negative tests, and so
is error-free. The second step identifies the sole defective item that can explain
the outcome of the test it is in. It is thus also error-free. The final step is the
only point at which errors can be made; specifically, false negative errors where a
defective item is marked non-defective can occur.

For tropical DD, the success criteria of recovering the vector U and recovering
the defective set K are equivalent. We know that if an algorithm recovers U , then
it recovers K. To prove equivalence of the success criteria, it suffices to show that
if tropical DD fails to recover U , then it fails to recovers K. This is done in the
following paragraph.

Suppose that tropical DD fails to recover U . Then by Lemma 3.7, the only
errors that could have been made are false negative errors where a defective item
is wrongly marked non-defective. Hence, tropical DD also fails to recover K.

3.5 Tropical SCOMP

We now describe the tropical SCOMP algorithm, which extends the classical
SCOMP algorithm introduced in [2].

Classical SCOMP starts with the estimate given by the DD algorithm, but
considers the fact that DD can leave some positive tests unexplained, since they
can contain some defective items whose status we are unsure about. Since each
such unexplained test must contain at least one such defective, we might consider
possible defective items which appear in many unexplained tests as most likely to
be defective. Hence the classical SCOMP algorithm greedily adds such items to
the estimated defective set K̂ until all tests are explained.

Similarly, the tropical SCOMP algorithm starts with the estimate given by
tropical DD. It then greedily adds items to the sets K̂r, for each r such that there
are unexplained tests of outcome r. This is done until all tests are explained.
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Algorithm 3: Tropical SCOMP algorithm

Input: Test design matrix, x, and vector of test outcomes Y
Output: Estimated vector of defectivity levels, Û
Initialize Û as the estimate ÛDD of U produced by the DD algorithm;
while unexplained tests exist do

Choose a test outcome r from the unexplained tests;
Retrieve all the tests with outcome r;
Find the PD(r) item i that occurs the most times in those tests (ties
can be broken arbitrarily);

Set Ûi = r and update the list of unexplained tests;

end

Note that tropical SCOMP attempts to solve the sub-problems of finding
K1, . . . ,Kd that are not solved by tropical DD. The action of classical SCOMP
is the same as that of tropical SCOMP when d = 1.

Remark 3.8. If tropical DD succeeds, then so does tropical SCOMP. This is because
tropical SCOMP starts with the estimate produced by tropical DD. If tropical DD
succeeds, then no tests are unexplained and tropical SCOMP also succeeds (cf. [4,
Theorem 2.5]).

We show that the success criteria of recovering U and recovering K are equiv-
alent for tropical SCOMP. Similar to the case of tropical DD, it suffices to show
that if tropical SCOMP fails to recovers U , then it fails to recovers K. This is
done in the following paragraph.

Suppose that tropical SCOMP fails to recover U . Then necessarily, tropical
DD also fails to recover U . Then there exists an item i ∈ K such that there are no
tests in which it is the only PD(µi) item. Since tropical SCOMP fails to recover
U , at least one such item i was not chosen to explain the test outcomes of any of
the tests that it is in and is marked as non-defective. Hence, K̂ ̸= K.

3.6 Comparison of tropical algorithms

Table 1 summarises the features of the tropical algorithms, while comparing them
to the classical algorithms (cf. [4, Table 2.1]). We now present a worked example
which illustrates the operation of the various tropical algorithms:

Example 3.9. Suppose we use the test design x and receive the outcomes Y as
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satisfying no false + no false −

COMP ✓ ✗ ✓

DD ✗ ✓ ✗

SCOMP ✓ ✗ ✗

tropical COMP ✓ ✗ ✓

tropical DD ✗ ✓ ✗

tropical SCOMP ✓ ✗ ✗

Table 1: Summary of features of algorithms in the classical and tropical case:
(i) whether the output estimate Û is guaranteed to explain all test outcomes; (ii)–
(iii) guarantees on false positives or false negatives.

follows:

x =




1 0 0 0 0 0 0

1 0 1 0 0 0 1

0 1 0 1 1 0 0

0 1 0 0 1 1 0

1 0 0 0 1 0 0




Y =




∞

37

∞

29

∞




.

It is convenient to first calculate µ. For example, item 1 occurs in tests 1, 2, 5.
We then deduce

µ1 = max
t∈{1,2,5}

Yt = max{∞, 37,∞} = ∞.

Proceeding similarly for the other items, we obtain

µ =
(
∞,∞, 37,∞,∞, 29, 37

)
.

Tropical COMP: We set Û = µ, obtaining the following:

ÛCOMP =
(
∞,∞, 37,∞,∞, 29, 37

)
.

Tropical DD: In the first step, we find the items with µi = ∞. These are items
1, 2, 4 and 5. We declare these to be non-defective, so ÛDD

1 = ÛDD
2 = ÛDD

4 =

ÛDD
5 = ∞.

In the second step, we check each positive test t and look to see if they
contain a single PD(Yt) item. For test 2, there are two PD(Y2) = PD(37)
items in the test, items 3 and 7, so DD does nothing. For test 4, items
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2, 5 and 6 appear, but only item 6 is a PD(Y4) = PD(29) item. Hence, the

tropical DD algorithm sets ÛDD
6 = 29.

Finally, in the third step, items 3 and 7, which have not yet been classified,
get assigned a defectivity level of ÛDD

3 = ÛDD
7 = ∞.

Hence, the output of the tropical DD algorithm is:

ÛDD =
(
∞,∞,∞,∞,∞, 29,∞

)
.

Tropical SCOMP: The algorithm initializes with the tropical DD estimate Û =
ÛDD. The corresponding outcome would be (written as the transpose, a row
vector)

Ŷ = (∞,∞,∞, 29,∞)⊤,

where Ŷ2 = ∞ ̸= 37 = Y2. Hence, test 2 is the only unexplained test. We
retrieve the PD(37) items in test 2. These are items 3 and 7. Because these
items both appear in the same number of tests with outcome 37, namely
one, the tropical SCOMP algorithm chooses between them arbitrarily – let’s
say it chooses item 7 – and assigns the defectivity level of ÛSCOMP

7 = 37 to
it. Now no tests remain unexplained, and the algorithm terminates.

Hence the algorithm returns

ÛSCOMP =
(
∞,∞,∞,∞,∞, 29, 37

)
.

4 Simulation results

In this section, we present some simulation results. We empirically compare the
performance of the tropical and classical algorithms, and investigate how changing
the probability p and the sequence K = (K1, . . . , Kd) affects their performance.
We also investigate the effect of using a combinatorial model with random defectiv-
ity levels for defective items, as opposed to the model with fixed Kr introduced in
Section 2. Finally, we compare the Bernoulli design and the near-constant column
weight design, described in [4, Section 2.7].

Figure 2 shows the performance of the tropical algorithms, relative to the
performance of the classical algorithms and to the counting bounds (7) and (8).
Figure 2 shows for the chosen set of parameters that the tropical COMP algorithm
performs almost identically to its classical counterpart (the lines are so close that
they are difficult to distinguish), and the tropical DD and SCOMP algorithms
perform better than their classical counterparts. We also notice that in this case
tropical SCOMP beats the classical counting bound (7) for small values of T ,
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Figure 2: Empirical performance of the classical COMP, DD and SCOMP al-
gorithms together with their tropical counterparts, through simulation with a
Bernoulli design. For comparison, we plot the classical and tropical counting
bounds of (7) and (8). The parameters chosen are N = 500, K = 10, p = 0.1,K =
(2, 2, 2, 2, 2). Each point is obtained through 104 simulations.

Figure 3: Simulation of the tropical COMP, DD and SCOMP algorithms with
a Bernoulli design to investigate the effect of changing the parameter p for the
Bernoulli design. The parameters are N = 500, K = 10, T = 125 and K =
(2, 2, 2, 2, 2). Each point is obtained through 104 simulations.

showing that the tropical model can allow genuine performance gains over even
adaptive classical group testing algorithms.
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Figure 3 shows how the performance of the tropical algorithms vary with p,
for fixed N , T and K. Figure 3 shows that the performance of tropical DD and
tropical SCOMP have a relatively wide plateau near their peak, indicating some
robustness to misspecification of p, and showing that in general the choice p = 1/K
is close to optimal for each algorithm.

Figure 4: Simulation of the tropical COMP, DD and SCOMP algorithms with a
Bernoulli design to investigate the effect of changing K on the performance. The
parameters are N = 1000, K = 20, T = 400, p = 0.1 and K = (K1, 20−K1). Each
point is obtained through 104 simulations.

Figure 4 shows how the performance of the tropical algorithms vary as K is
varied, for fixed N,K, T and d. We note that there are

(
K−1
d−1

)
possible vectors K

that sum to K while having each Ki > 0. Also, a d-dimensional plot is required to
visualize the performance of the algorithms for all the K simultaneously. Hence,
for simplicity of exposition, we only present the case d = 2. Figure 4 shows that
changing K has very little effect on the performance of tropical COMP. This is
quantified later in Section 5, where we find that, for tropical COMP, the error
contribution of the K defective items is small compared to that of the N − K
non-defective items. Figure 4 also shows that the performance of tropical DD and
tropical SCOMP improves as K1 increases, until reaching a peak.

Figure 5 shows the effect on the performance of the tropical algorithms when
the defective set K is chosen with a combinatorial prior, and the defectivity level
for each defective item is drawn uniformly and independently from {1, . . . , d}. We
note that that the performance of tropical DD and tropical SCOMP improves as
d increases, until reaching a peak, while the performance of tropical COMP does
not change.
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Figure 5: Simulation of the tropical COMP, DD and SCOMP algorithms to inves-
tigate their performance with a Bernoulli design when the set of defective items,
K, is chosen with a combinatorial prior, and the defectivity level for each defective
item is drawn uniformly and independently from {1, . . . , d}. The parameters are
N = 500, K = 10, T = 120, p = 0.1. Each point is obtained through 104 simula-
tions.

Figure 6: Simulation of the tropical COMP, DD and SCOMP algorithms to inves-
tigate their performance with a Bernoulli design as well as with a near-constant
column weight design. The parameters areN = 500, K = 10, p = 0.1, ν = ln 2, L =
⌊νT/K⌋,K = (2, 2, 2, 2, 2). Each point is obtained through 104 simulations.

Finally, Figure 6 compares the performance of the tropical algorithms with the
Bernoulli design and with a near-constant column weight design. We see that the
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performance mirrors the classical case (cf. [4, Figure 2.3]).

5 Analysis of tropical COMP algorithm

In this section, we give an analysis of the performance of tropical COMP. The
main result of this section (Theorem 5.1) shows that the number of tests needed
to ensure a vanishing error probability using a Bernoulli design is asymptotically
identical to that needed in the classical case.

5.1 Achievability result

Our main result for tropical COMP is the following (cf. [4, Eq. (2.9)]):

Theorem 5.1. Let δ > 0. Let p = ν/K, for 0 < ν < K. Taking

T ≥ (1 + δ)
eν

ν
K lnN

ensures that the tropical COMP error probability P(err) is asymptotically at most
N−δ.

Remark 5.2. Note that T = (1+ δ) e
ν

ν
K lnN is minimised over ν when ν = 1. This

corresponds to choosing the same optimal p as in the classical case. We note that
tropical COMP, similar to classical COMP, is reasonably robust to misspecification
of p (cf. [4, Remark 2.3]).

To reach the result of Theorem 5.1, we find a bound on the error probability
of tropical COMP using a Bernoulli design. This bound, given below, extends the
corresponding bound by Chan et al. for classical COMP, given in [7, Eq. (8)], to
the tropical setting.

Lemma 5.3. For a Bernoulli test design with parameter p, we can bound the error
probability of Tropical COMP from above by

P(err; COMP, T ) ≤
∑

r∈D

Kr(1− p(1− p)
∑

i<r Ki)T . (10)

Proof. To obtain an upper bound on the error probability of tropical COMP, we
consider each item in turn, using the fact that the union bound

P(err) = P

(
⋃

i

{Ûi ̸= Ui}

)
≤
∑

i

P(Ûi ̸= Ui), (11)
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tells us that we only need to control the individual probabilities that an item is
misclassified.

Any given item i with Ui = r is misclassified only if it is intruding. This
happens if every test which it appears in contains at least one of the

∑
i<rKi

items of lower level. For a given test, the chance that it contains i but doesn’t
contain such an item is p(1− p)

∑
i<r Ki . Hence using independence between tests,

we have that
P(Ûi ̸= Ui) ≤ (1− p(1− p)

∑
i<r Ki)T . (12)

The result follows on substituting (12) in (11).

We can now prove the main result.

Proof of Theorem 5.1. This proof is adapted from the one given in the classical
case by Chan et al. in [7]. Let T = βK lnN . The key is to observe for a given T
and p that the function f(ℓ) = (1− p(1− p)ℓ)T is increasing in ℓ.

Hence we can write (10) as

P(err) ≤
∑

r∈D

Krf

(
∑

i<r

Ki

)
≤
∑

r∈D

Krf (K) = Nf(K). (13)

Then, setting p = ν/K in Lemma 5.3, we have

P(err) ≤ N exp(−Tp(1− p)K)

= N exp(−βν(1− ν/K)K lnN)

≃ N exp(−βνe−ν lnN) as K → ∞

= N1−βνe−ν

.

Hence, taking β = (1+δ) e
ν

ν
ensures that P(err) is asymptotically at most N−δ.

5.2 Contributions to the error probability

Figure 7 illustrates the contribution of each summand to the bound (10) for a
range of values of T . It is clear that the dominant term contributing to the error
bound is r = ∞ (that the dominant error event is for a non-defective item to
be wrongly classified as defective, and that the defective items are more typically
correctly classified).

Indeed, (13) implies that the proportion of the bound (10) arising from the
r = ∞ term is at least 1−K/N , since this result gives

(N −K)f(K)∑
r∈DKrf

(∑
i<rKi

) ≥
(N −K)f(K)

Nf(K)
= 1−

K

N
.
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Figure 7: Plot illustrating the variation of min{1, Krf(
∑

i<rKr)} with T , for
each r ∈ D. The parameters chosen are N = 500, K = 10, p = 0.1 and K =
(2, 2, 2, 2, 2).

In fact in the ‘uniform’ case where K = (K/d, . . . , K/d), the contributions to
the bound

Krf

(
∑

i<r

Ki

)
≃ Kr exp

(
−Tp(1− p)(r−1)K/d

)
≃
K

d
exp

(
−Tpe−p(r−1)K/d

)
(14)

decay doubly-exponentially as r gets smaller, meaning that the errors are over-
whelmingly likely to arise from wrongly classifying items with high r.

5.3 Error probability for different defectivity sequences

For a fixed number of defective items K, it would be interesting to know what
defectivity sequencesK make the tropical group testing problem hardest or easiest.
This is explored via simulation in Figure 4, but we would also like to understand
which sequences K lead to the largest and smallest error probability for tropical
COMP. Unfortunately, we cannot directly control the error probability in this
way. However, we can use the COMP error bound (10) to induce a partial order
on sequencesK with the same sum. This will show that the error bound is smallest
in the classical case where all items have the same level and largest in the case
where each item has distinct levels.

Given a sequence K = (K1, . . . , Kd), we can sort the items in increasing order
of level, and for each item k write Lk for the number of items with a strictly
lower level. For example, with K = 8, the sequence K(1) = (2, 2, 2, 2) induces
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the sequence L(1) = (0, 0, 2, 2, 4, 4, 6, 6), while the sequence K(2) = (1, 1, 1, . . . , 1)
induces the sequence L(2) = (0, 1, 2, 3, 4, 5, 6, 7).

We can compare two sequences K(i) =
(
K

(i)
1 , . . . , K

(i)
d

)
, for i = 1, 2, and define

a partial order K(1) ⪯ K(2) if the corresponding sequences L
(1)
k ≤ L

(2)
k for all k.

Hence in the example above, K(1) ⪯ K(2). In this partial ordering, for a given K
the minimal sequence will be K = (K), giving L = (0, 0, . . . , 0), and the sequence
K = (1, 1, . . . , 1) as seen above will be maximal.

Now, note that the bound on the RHS of (10) respects this partial order. That
is, since the r = ∞ term will be the same for all such sequences, we can regard
the variable part of the bound (13) as a sum over defective items

∑

k∈K

f(Lk), (15)

and use the fact that the function f(ℓ) is increasing in ℓ to deduce that:

Lemma 5.4. If K(1) ⪯ K(2) then the corresponding error bound (15) is lower for
K(1) than K(2).

Hence, for fixed K the error bound (15) is smallest for the minimal sequence
K = (K) corresponding to the classical case and largest for the sequence K =
(1, 1, . . . , 1) where each defective item has its own unique level.

6 Analysis of tropical DD algorithm: achievabil-

ity

In this section we give an analysis of the performance of tropical DD, which extends
that given in [2] for the classical d = 1 case by taking advantage of the information
provided by the more varied test outcomes of the tests.

Our main achievability result ensures success with high probability when we
have a number of tests above a certain threshold.

Theorem 6.1. For ν > 0, write

ψr := ψr(ν) =
(
1−

ν

K

)∑
t≤r Kt

.

Also define

T∞(ν) :=
1

νψd

K ln
N

K

and

Tr(ν) :=
1

νψr

K lnKr.
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If we take
T ≥ (1 + δ)max

{
T∞(ν), Td(ν), Td−1(ν), . . . , T1(ν)

}
,

tests, then the error probability of the tropical DD algorithm for a Bernoulli design
with p = ν/K tends to 0.

Remark 6.2. Note that in the uniform case where Kr = K/d for all r, in regimes
where K = Nα and α > 1/2, the dominant term in Theorem 6.1 is

Td(ν) =
1

ν(1− ν/K)K
K ln

K

d
;

that is, the maximum over r is achieved at r = d, since ψr is decreasing in r and
lnKr is constant.

Further, in this case, since we are able to choose ν to minimise Tfin(ν), we can
maximise ν(1 − ν/K)K by taking ν = K/(K + 1) or p = 1/(K + 1). Note that
this does not necessarily mean that we minimise the error probability, since we are
minimising the number of tests to control a bound on P(err), not P(err) itself. In
other words, asymptotically we require eK ln(K/d) tests.

This means that the tropical performance bound of Theorem 6.1 represents
an asymptotic reduction of eK ln d tests over the classical bound of eK lnK tests
(see [1, Theorem 1]). While this is a second-order asymptotic term compared with
the leading order eK lnK term, it may still represent a valuable improvement in
problems of finite size.

In the next section, we will see a converse result Theorem 7.1, showing that
success probability can’t be high with a number of tests below a threshold. Further,
we show that for certain parameter regimes these two thresholds coincide, showing
that we have sharp performance bounds on tropical DD.

6.1 Proof outline

To prove Theorem 6.1, we need a general upper bound on the error probability of
DD. The key idea is that DD succeeds if and only if each defective item is proven
to be such in the second stage of the algorithm.

Definition 6.3. For any 1 ≤ s ≤ Kr, we write Lr,s for the number of tests
that contain item i(r, s), no other defective item i(t, u) with t ≤ r, and also no
non-defective PD(r) item.

A test that counts towards Lr,s is precisely one that discovers i(r, s) to be
defective at level r. So with this definition, we can say that the tropical DD
algorithm succeeds if and only if Lr,s ≥ 1 for all (r, s). Hence we have

P(err) = P

(
⋃

r,s

{Lr,s = 0}

)
≤

d∑

r=1

P

(
Kr⋃

s=1

{Lr,s = 0}

)
, (16)
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One way we could get Lr,s = 0 is if there is a large number of potentially
intruding non-defectives at this outcome level. We define Gr =

∑r
j=0Hj for the

number of intruding non-defectives (where Hj is introduced in Definition 2.4.3)
and note that there are (N − K) − Gr = Hr+1 + . . . + Hd + H∞ non-defective
items with µi > r. We observe that, provided we use sufficiently many tests, Gr

is unlikely to be large. Hence, we will condition on Gr being no larger than some
threshold level g∗r , to be chosen later. So for each level r, the summand in (16)
can be bound as

P

(
Kr⋃

s=1

{Lr,s = 0}

)
= P

(
Kr⋃

s=1

{Lr,s = 0}

∣∣∣∣∣ Gr ≤ g∗r

)
P(Gr ≤ g∗r)

+ P

(
Kr⋃

s=1

{Lr,s = 0}

∣∣∣∣∣ Gr > g∗r

)
P(Gr > g∗r)

≤ P

(
Kr⋃

s=1

{Lr,s = 0}

∣∣∣∣∣ Gr ≤ g∗r

)
+ P(Gr > g∗r)

≤ Kr P (Lr,s = 0 | Gr ≤ g∗r) + P(Gr > g∗r), (17)

where we used the union bound in the last line.
We need to show that both terms in (17) are small. The first term being small

tells us we’re likely to find the level-r defectives provided Gr is not too big; we will
show this happens when T ≥ (1 + δ)max{T∞, Tr}. The second term being small
tells us that Gr is unlikely to be too big; we will show this happens when T is big;
for example, T ≥ (1 + δ)Tr will be plenty.

In Subsection 6.2 we will analyse the first term P (Lr,s = 0 | Gr ≤ g∗r). In Sub-
section 6.3 we will bound the second term P(Gr > g∗r). Then in Subsection 6.4 we
will put the pieces together to prove Theorem 6.1.

6.2 Finding defectives

We first describe the joint distribution of certain random variables arising in the
analysis of DD. We provide additional notation to that used in Section 2.

Definition 6.4. We define the following random variables:

1. Write M∞ for the number of tests which contain no defectives – and so are
negative tests with outcome ∞.

2. For 1 ≤ r ≤ d, write Mr for the total number of positive tests with outcome
r.

3. Further, decompose Mr =
∑Kr

s=1Mr,s +Mr,+ as follows:
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(a) For 1 ≤ s ≤ Kr, writeMr,s for the number of tests that contain a single
item i(r, s) at level r and no other defective item i(t, u) with t ≤ r; note
that each such test has outcome r.

(b) Write Mr,+ for the number of tests which have outcome r but contain
multiple defective items at level r.

Write M for the collection of random variables

M = (M1,1,M1,2, . . .M1,K1
,M1,+, . . . ,Md,1,Md,2, . . . ,Md,Kd

,Md,+,M∞)

(noting this includes the terms in the decompositions of the Mr variables, but not
the Mr themselves).

Note that Mr,s = 0 means necessarily that Lr,s = 0, and this is the event we
wish to avoid. But first, let us note the joint distribution of M .

Lemma 6.5. The random vector M is multinomial with parameters T and q,
where

q = (q1,1, q1,2, . . . q1,K1
, q1,+, . . . , qd,1, qd,2, . . . , qd,Kd

, qd,+, q∞) .

Here for each r and s:

q∞ := (1− p)K ,

qr,s :=
∏

t<r

(1− p)Kt
(
(1− p)Kr−1p

)
,

qr :=
∏

t<r

(1− p)Kt
(
1− (1− p)Kr

)
,

qr,+ := qr −Krqr,s.

Proof. First, a test is negative if all defective items are absent, with happens with
probability q∞ = (1− p)K . Second, qr,s is the probability all items at levels t < r
are absent, that item i(r, s) is present, and that the Kr − 1 other items at level
r are absent. Third, qr is the probability of outcome r, which happens all items
at level t < r are absent, and also it’s not the case that all items at level r are
absent. Fourth, qr,+ is the probability qr of an outcome r minus the probabilities
of a single level-r item being the cause.

Although the distribution of the crucial variable Lr,s seems tricky to derive from
first principles, it is much easier once we know Mr,s and the number of potentially
intruding non-defectives. This is because a test counting towards Mr,s will count
also towards Lr,s provided that no non-defectives intrude on the test too.
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Lemma 6.6. The conditional distribution of Lr,s, given Mr,s and Gr, is

Lr,s | {Mr,s = mr,s, Gr = gr} ∼ Bin(mr,s, (1− p)gr). (18)

Proof. There are mr,s tests which contain item i(r, s) and no other defective item
i(t, u) with t ≤ r. Each of these mr,s tests independently contributes to Lr,s if
and only if none of the gr potentially intruding non-defective items appear in the
test. Because of the Bernoulli design, each of those gr non-defectives appears in
the test with probability p, so the probability none of them appear is (1 − p)gr ,
independent over the mr,s tests.

We can now bound the probability that of undesirable event that Lr,s = 0.

Lemma 6.7. Using a Bernoulli design with parameter p, for any g∗r , we have the
bound

P(Lr,s = 0 | Gr ≤ g∗r) ≤ exp
(
− qr,1(1− pg∗r)T

)
, (19)

where as in Lemma 6.5 we write qr,1 = p(1− p)
∑

t≤r Kt−1.

Proof. We start by conditioning on equality Gr = gr. Noting that by Lemma 6.5
Mr,s ∼ Bin(T, qr,1) and that P(Bin(m, q) = 0) = (1− q)m, we can write

P(Lr,s = 0 | Gr = gr) =
T∑

m=0

P(Mr,s = m)P(Lr,s = 0 | Gr = gr,Mr,s = m)

=
T∑

m=0

(
T

m

)
qmr,1(1− qr,1)

T−m (1− (1− p)gr)m

= (1− qr,1(1− p)gr)T

≤ exp (−qr,1(1− p)grT )

≤ exp (−qr,1(1− pgr)T ) . (20)

From the second to the third line, we used the binomial theorem, and then we
used Bernoulli’s inequality in the form (1− p)g ≥ 1− pg.

Note that (20) is increasing in gr. Thus we can bound (19) by the worst-case
conditioning, where Gr = g∗r .

6.3 Intruding non-defectives

Recall that Gr is the number of non-defectives that could intrude into tests with
outcome r. Our goal is to bound that tail probability of Gr in (17).
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Lemma 6.8. Write

M r :=M∞ +Md +Md−1 + · · ·+Mr+1

for the number of tests with outcomes higher than r. Then M r has distribution

M r ∼ Bin

(
T,

∏

t≤r

(1− p)Kt

)
(21)

Further, the conditional distribution of Gr given M is

Gr | {M = m} ∼ Bin(N −K, (1− p)m
∗
r), (22)

where m∗
r = mr+1 + · · ·+md +m∞.

Proof. By standard properties of the multinomial (see [2, Lemma 30]),

M r ∼ Bin (T, qr+1 + . . .+ qd + q∞) .

But
qr+1 + . . .+ qd + q∞ =

∏

t≤r

(1− p)Kt , (23)

since it forms a collapsing sum. This proves the first distribution.
Given M r = m∗

r, each of the N − K non-defectives will be independently
counted in Gr provided they don’t appear in any of the m∗

r tests with outcomes
higher than r. By the Bernoulli design structure, each item is independently
counted with probability (1− p)m

∗
r . This proves the second distribution.

We can calculate the expectation of Gr by conditioning on M r.

Lemma 6.9. EGr ≤ (N −K) exp(−pψrT ).

Proof. We use the facts that (21) gives thatM r ∼ Bin(T, ψr) and Lemma 6.8 gives
that Gr | {M r = m∗

r} ∼ Bin
(
N −K, (1− p)m

∗
r

)
. Hence we can use the binomial

theorem to write

EGr =
T∑

m=0

P(M r = m)E[Gr |M r = m]

=
T∑

m=0

(
T

m

)
ψm
r (1− ψr)

T−m (N −K)(1− p)m

= (N −K)(1− ψr + ψr(1− p))T ,

and the result follows.
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We will choose the threshold g∗r to be just slightly bigger than this expectation;
specifically, we take g∗r = (N − K) exp(−pψrT (1 − ϵ)) for some ϵ > 0 to be
determined later.

Lemma 6.10. With g∗r = (N −K) exp(−pψrT (1− ϵ)), we have

P(Gr > g∗r) ≤ exp(−pψrTϵ).

Proof. This is a simple application of Markov’s inequality. Using Lemma 6.9, we
get

P(Gr > g∗r) ≤
EGr

g∗r

≤
(N −K) exp(−pψrT )

(N −K) exp(−pTψr(1− ϵ))

= exp(−pψrTϵ).

6.4 Completing the proof

We are now ready to complete the proof of our main result.

Proof of Theorem 6.1. From (16) and (17), we had got as far as the bound

P(err) ≤
d∑

r=1

[
Kr P (Lr,s = 0 | Gr ≤ g∗r) + P(Gr > g∗r)

]
, (24)

and in Subsection 6.3 we had chosen g∗r = (N −K) exp(−pψrT (1− ϵ)), with ϵ still
to be fixed. We need to show that, in each summand of (24), both the first and
second terms tend to 0.

We begin with the first term. From Lemma 6.7, we have the bound

Kr P(Lr,s = 0 | Gr ≤ g∗r) ≤ Kr exp
(
− qr,1(1− pg∗r)T

)

= exp

(
lnKr − Tψrp

1− pg∗r
1− p

)
,

where we have used that qr,1 = ψrp/(1 − p). The condition T ≥ (1 + δ)Tr means
that Tψrp ≥ (1 + δ) lnKr, so we get

Kr P(Lr,s = 0 | Gr ≤ g∗r) ≤ exp

(
lnKr

(
1− (1 + δ)

1− pg∗r
1− p

))
.

This tends to 0 so long as pg∗r tends to 0, which we will now check.
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Since T ≥ (1 + δ)T∞ and ψr ≥ ψd, we know that Tpψr ≥ (1 + δ) ln(N/K).
With g∗r = (N −K) exp(−pψrT (1− ϵ)), we therefore have

pg∗r ≤

(
N

K

)
exp (−Tpψr(1− ϵ)) ≤

(
N

K

)1−(1−ϵ)(1+δ)

.

This means that pg∗r → 0 is indeed guaranteed by choosing ϵ < δ/(1 + δ).
Now the second term. From Lemma 6.10, we have

P(Gr > g∗r) ≤ exp(−pψrTϵ) < exp(−pψrTδ/(1 + δ)),

since we have just chosen ϵ < δ/(1 + δ). The condition T ≥ (1 + δ)Tr gives us
pψrT/(1 + δ) = lnKr, so this term does indeed tend to 0.

Since we have shown that all the terms in (24) tend to zero, the proof is
complete.

7 Converse results

Our achievability result Theorem 6.1 shows that tropical DD can succeed with

T ≥ (1 + δ)max{T∞(ν), Td(ν), Td−1(ν), . . . , T1(ν)} tests. (25)

We can use similar ideas to provide a converse result for the tropical DD algorithm.

Theorem 7.1. For a given ν > 0, in the limiting regime where

T ≤ (1− δ)max{Td(ν), Td−1(ν), . . . , T1(ν)}

then the error probability of the tropical DD algorithm for a Bernoulli design with
p = ν/K tends to 1.

Note that the difference between the achievablility and the converse results is
the lack of the T∞ term in the converse.

We will prove Theorem 7.1 for tropical DD in Subsection 7.1. In addition, we
will show in Subsection 7.2 that this same bound acts as a more general ‘algorithm-
independent’ converse for Bernoulli designs.

7.1 Proof for tropical DD

The key to proving Theorem 7.1 is to observe that tropical DD will definitely fail
if any Mr,s = 0, since that means that item i(r, s) never appears without at least
one other defective item with which it could be confused, so Lr,s is certainly 0 too.
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Thus we start with the bound

P(err) ≥ P

(
⋃

r,s

{Mr,s = 0}

)
. (26)

By picking out just the defective items at a given level r = r∗, we have

P(err) ≥ P

(
Kr∗⋃

s=1

{Mr∗,s = 0}

)
(27)

As in [2, Eq. (13)], we define the function

ϕK(q, T ) :=
K∑

j=0

(−1)j
(
K

j

)
(1− jq)T . (28)

We will bound the error probability in terms of ϕK as follows.

Lemma 7.2. For 1 ≤ r∗ ≤ d, the error probability of tropical DD is bounded below
by

P(err) ≥ 1− ϕK∗
r
(qr∗,1, T ), (29)

Proof. We follow the general idea from [2].
We can calculate (27) using the inclusion–exclusion formula

P

(
Kr∗⋃

s=1

{Mr∗,s = 0}

)
=

Kr∗∑

|S|=0

(−1)|S| P

(
⋂

s∈S

{Mr∗,s = 0}

)
, (30)

where the sum is over subsets S of Kr. By the multinomial distribution form of
Lemma 6.5, we have

P

(
⋂

s∈S

{Mr∗,s = 0}

)
=

(
T

0, 0, . . . , 0, T

)(∏

s∈S

q0r∗,s

)(
1−

∑

s∈S

qr∗,s

)T

=

(
1−

∑

s∈S

qr∗,s

)T

= (1− |S|qr∗,1)
T . (31)

Substituting (31) into (30) gives

P

(
Kr∗⋃

s=1

{Mr∗,s = 0}

)
=

Kr∗∑

|S|=0

(−1)|S| (1− |S|qr∗,1)
T .

Collecting together the summands according to the value of |S| = j gives the
result.
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We bound this quantity from below by deducing an upper bound on ϕK .

Lemma 7.3. For all K, q and T we can bound

ϕK(q, T ) ≤ exp

(
−

K(1− q)T+1

1 +Kq(1− q)T

)
(32)

Proof. See Appendix B.1.

We can now finish our proof of the converse for tropical DD.

Proof of Theorem 7.1. By hypothesis, T ≤ (1− δ)maxr Tr. So pick some level r∗

such that T ≤ (1− δ)Tr∗ .
We had already reached the bound (29):

P(err) ≥ 1− ϕK∗
r
(qr∗,1, T ).

We now combine this with Lemma 7.3. We deduce that

P(err) ≥ 1− exp

(
−

Kr∗(1− qr∗,1)
T+1

1 +Kr∗qr∗,1(1− qr∗,1)T

)
. (33)

The exponential term here is of the form exp(−(1 − q)u/(1 + qu)), with u =
Kr∗(1− qr∗,1)

T . Since exp(−(1− q)u/(1 + qu)) increases as u decreases (for fixed
q), it suffices to bound Kr∗(1− qr∗,1)

T from below, which we do now.
Since qr∗,1 = pψr∗/(1− p) we know that

qr∗,1
1− qr∗,1

=
pψr∗

1− p(1 + ψr∗)
.

Combining this with T ≤ (1− δ)Tr∗ = (1− δ)K lnKr∗/(νψr∗) gives

Tqr∗,1
1− qr∗,1

≤
(1− δ)P

νψr∗

pψr∗

1− p(1 + ψr∗)
lnKr∗

=
(1− δ)

1− p(1 + ψ∗
r)

lnK∗
r

≤ (1− c) lnK∗
r , (34)

for some c > 0, for Kr∗ sufficiently large. This gives us the lower bound

Kr∗(1− qr∗,1)
T = Kr∗ exp(T log(1− qr∗,1))

≥ Kr∗ exp

(
−

Tqr∗,1
1− qr∗,1

)

≥ Kc
r∗ , (35)
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where we used log(1− q) ≥ −q/(1 + q) for q > −1 and (34).
Using the bound (35) in (33), we get

P(err) ≥ 1− exp

(
−

Kr∗(1− qr∗,1)
T+1

1 + qr∗,1K(1− qr∗,1)T

)

≥ 1− exp

(
−
Kc

r∗(1− qr∗,1)

1 + qr∗,1Kc
r∗

)

= 1− exp

(
−
(1− ψr∗/(K − 1))Kc

r∗

1 + ψr∗Kc
r∗/(K − 1)

)
. (36)

where (36) follows since qr∗,1 = pψr∗/(1− p) = ψr∗/(K − 1).
Finally, that bound (36) is asymptotically equivalent to 1− exp(−Kc

r∗), which
tends to 1 as K → ∞. This completes the proof.

7.2 Algorithm-independent converse

In fact, our DD-specific converse, Theorem 7.1, helps give a converse bound for all
algorithms with a Bernoulli design.

We can write P(err; optimal, T ) for the minimum error probability that can be
achieved by any algorithm. The key observation is that in Theorem 7.1 we find
that with too few tests there is a good chance that some item i(r∗, s) appears in
no tests without other items of the same level, so a satisfying vector can be formed
without it.

Theorem 7.4. For a given ν > 0 and any T ≤ (1− δ)Tfin(ν), the error probability
of the optimal algorithm P(err; optimal, T ) for a Bernoulli design with parameter
ν/K is bounded away from zero, even for algorithms which are given access to the
values of Ki.

Proof. First note that for any T ′ ≥ 1 the P(err; optimal, T ) ≥ P(err; optimal, T +
T ′), since there exists a (possibly suboptimal) algorithm using T + T ′ tests which
simply ignores the last T ′ tests and applies the optimal T -test algorithm to the
remaining tests. Hence it will be sufficient to bound P(err; optimal, T ) away from
zero for T = (1−δ)maxr Tr, as the same bound will hold for all T ≤ (1−δ)maxr Tr.

We argue as in [1]. Recall thatMr,s is the number of tests that have a chance of
proving i(r, s) is defective at level r, and Hr is the number of non-defective items in
PD(r). The key idea is this: Suppose for some r∗ that both A =

⋃Kr∗

s=1{Mr∗,s = 0}
and B = {Hr∗ ≥ 1} occur. The event A means that there is some item i(r∗, t)
which never appears without some other item j of level Uj ≤ r, and the event B
means that there is some non-defective item which is a possible defective at that
level. So we could form an alternative satisfying vector from the true vector U by
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swapping the entries in U of these two items. Hence, if A ∩ B occurs, then there
are at least two satisfying vectors with the correct number of items at each level,
so we the success probability can only be at most 1/2.

The probability of an intersection can always be bounded with P(A ∩ B) ≥
P(A)− P(Bc), so the error probability for any algorithm satisfies

P(err) ≥
1

2
P

(
Kr∗⋃

s=1

{Mr∗,s = 0}

)
−

1

2
P(Hr∗ = 0).

Now the first term involves exactly the term we have controlled in Theorem 7.1,
so we know it is larger than 1/4 in the regime of interest for K sufficiently large.
Hence, to bound the error probability away from zero it will be sufficient to prove
that P(Hr∗ = 0) ≤ 1/4.

We will prove this in a series of technical lemmas in Appendix B.2:

1. In Lemma B.4, we will show that

P(Hr∗ = 0) ≤ P(Gr∗ = 0) + E(1− p)Mr∗ .

We deal with the two terms separately.

2. In Lemma B.5, we will show that the first term is bounded by

P(Gr∗ = 0) ≤
(
1− (1− p)m

∗
r∗
)N−K

+ exp

(
−
δ2Tψr∗

2

)
, (37)

where m∗
ℓ = Tψℓ(1 + δ).

3. In Lemma B.6, we show that the second term is bounded by

E(1− p)Mr∗ ≤ exp(−pψr∗dr∗T ), (38)

where dℓ = (1− p)−Kℓ − 1.

Recall that we consider T = (1 − δ)Tr∗ = (1 − δ)K lnKr∗/(νψr∗), for the
maximising r∗. Since pψr∗T = (1− δ) lnK∗

r , we know that (1− p)mr∗ ≃ K−(1−δ2),
so that both terms in (37) tend to zero. Similarly, (38) also tends to zero for this
choice of ℓ and T . This completes the proof.

8 Discussion

In this paper, we have considered the tropical group testing model of Wang et al.
[20] in a small-error setting. We have described small-error algorithms in Section
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3. We demonstrated the empirical performance of these algorithms in Section 4,
showing that tropical DD and tropical SCOMP outperform their classical coun-
terparts. We performed theoretical analysis of the tropical COMP algorithm in
Section 5 and of the DD algorithm in Sections 6 and 7, proving that in certain
parameter regimes the tropical DD algorithm is asymptotically optimal.

We briefly mention some open problems. Further work could explore test de-
signs with near-constant column weights in the tropical setting, as these designs
show a gain in performance in the classical case (see [4]), and Figure 6 suggests the
same may well be true here. The results could be made more practically valuable
by developing bounds in a noisy setting, under a variety of noise models similar
to those described in [4, Chapter 4]. Also, there is potential to extend the results
in this paper by considering models with random defectivity levels, as illustrated
in Figure 5. It may also be mathematically interesting to develop small-error
algorithms and bounds using the delay matrix approach of [20].
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A Proof of the counting bound

We now prove Theorem 3.2, using an argument closely adapted from [5, Proof of
Theorem 3.1].

Proof of Theorem 3.2. Given N , D and K = (K1, . . . , Kd, K∞), we write

ΣN,K =
{
u ∈ DN : |{j : uj = r}| = Kr for all r ∈ D

}
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for the collection of vectors with the correct number of each type of component.
Note that |ΣN,K | =

(
N
K

)
is precisely the multinomial term arising in Theorem 3.2.

Further, we write U for the true defectivity vector.
The testing procedure naturally defines a mapping θ : ΣN,K → DT . That is,

given a putative defectivity vector u ∈ ΣN,K , write θ(u) to be the vector of test
outcomes. For each vector y ∈ DT , write Ay ⊆ ΣN,K for the inverse image of y
under θ,

Ay = θ−1(y) = {u ∈ ΣN,K : θ(u) = y} .

As described in [5], a decoding algorithm aims to mimic the inverse image map
θ−1. Exactly as in [5], if size |Ay| ≥ 1 we cannot do better than to pick uniformly
among Ay, with success probability 1/|Ay|. (We can ignore y with size |Ay| = 0
because these are outcomes which do not occur for any possible defectivity vector).

We can find the success probability by conditioning over all the equiprobable
values of the defective set:

P(suc) =
∑

u∈ΣN,K

1(
N
K

)P (suc | U = u)

=
1(
N
K

)
∑

u∈ΣN,K


∑

y∈DT

I(θ(u) = y)


P (suc | U = u)

≤
1(
N
K

)
∑

u∈ΣN,K

∑

y∈DT :|Ay |≥1

I(θ(u) = y)
1

|Ay|

=
1(
N
K

)
∑

y∈DT :|Ay |≥1

1

|Ay|


 ∑

u∈ΣN,K

I(θ(u) = y)




=
1(
N
K

)
∑

y∈DT :|Ay |≥1

1

|Ay|
|Ay|

=
|{y ∈ DT : |Ay| ≥ 1}|(

N
K

)

≤
(d+ 1)T(

N
K

) ,

since DT is a set of size (d+ 1)T .
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B Lemmas for converse results

B.1 Properties of ϕK

We seek to prove Lemma 7.3, which gives an upper bound on ϕK and hence a
lower bound on P(err). We first need two technical results.

First, recall from [2, Lemma 32] that ϕK(q, T ) is increasing in q for fixed K
and T . We can provide a similar analysis to show that:

Lemma B.1. For fixed T and q, the function ϕK(q, T ) is decreasing in K.

Proof. We use Pascal’s identity
(
K+1
j

)
=
(
K
j

)
+
(

K
j−1

)
to expand

ϕK+1(q, T )− ϕK(q, T ) =
K+1∑

j=0

(−1)j
((

K

j

)
+

(
K

j − 1

)
−

(
K

j

))
(1− jq)T

=
K+1∑

j=1

(−1)j
(

K

j − 1

)
(1− jq)T (39)

=
K∑

ℓ=0

(−1)j
(
K

ℓ

)
(1− (ℓ+ 1)q)T

= −(1− q)T
K∑

ℓ=0

(−1)ℓ
(
K

ℓ

)(
1− ℓ

q

1− q

)T

= −(1− q)TϕK(q/(1− q), T ) ≤ 0,

using the fact (as in [2]) that (1− (ℓ+ 1)q) = (1− q)(1− ℓq/(1− q)).

Note that an alternate proof of this is to compare (39) with terms in the proof
of [2, Lemma 32] to deduce that

ϕK+1(q, T )− ϕK(q, T ) = −
1

(K + 1)(T + 1)

∂

∂q
ϕK+1(q, T + 1) ≤ 0.

The second technical result is the following:

Lemma B.2. The function ϕK(q, T ) satisfies

ϕK(q, T + 1) ≥ ϕK(q, T )
(
1 +Kq(1− q)T

)
. (40)
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Proof. As in [2, Proof of Lemma 32], since j
(
K
j

)
= K

(
K−1
j−1

)
we know that

ϕK(q, T + 1)− ϕK(q, T )

= −
K∑

j=0

(−1)j
(
K

j

)
(1− jq)T jq

= −Kq
K∑

j=1

(−1)j
(
K − 1

j − 1

)
(1− jq)T

= Kq(1− q)T
K∑

j=1

(−1)j−1

(
K − 1

j − 1

)(
1− (j − 1)

q

1− q

)T

= Kq(1− q)TϕK−1

(
q

1− q
, T

)
,

since 1− jq = (1− q)(1− (j − 1)q/(1− q)). Now, using the fact that ϕK(q, T ) is
increasing in q and decreasing in K, we know that

ϕK−1

(
q

1− q
, T

)
≥ ϕK

(
q

1− q
, T

)
≥ ϕK(q, T ),

and the result follows.

We can now prove the bound on ϕK .

Proof of Lemma 7.3. Using Lemma B.2 on the terms of a collapsing product and
the fact that ϕK(q, S) ≤ 1 for all S, we can consider S → ∞ to write

ϕK(q, T ) = ϕK(q, S + 1)
S∏

t=T

ϕK(q, t)

ϕK(q, t+ 1)

≤ ϕK(q, S + 1) exp

(
−

S∑

ℓ=T

log(1 +Kq(1− q)ℓ)

)

≤ exp

(
−

∞∑

ℓ=T

Kq(1− q)ℓ

1 +Kq(1− q)ℓ

)
, (41)

≤ exp

(
−

∫ ∞

T

Kq(1− q)ℓ

1 +Kq(1− q)ℓ
dℓ

)
, (42)

= exp

(
−
log(1 +Kq(1− q)T )

− log(1− q)

)
(43)

where a) (41) follows using the fact that − log(1+x) ≤ −x/(1+x), b) (42) follows
since f(x) := Kq(1 − q)x/(1 + Kq(1 − q)x) is decreasing in x so we can bound∑∞

ℓ=T f(ℓ) ≥
∫∞

T
f(ℓ)dℓ, c) (32) follows using the fact that (in the numerator)

log(1 + x) ≥ x/(1 + x) and (in the denominator) − log(1− q) ≤ q/(1− q).
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B.2 Lemmas for the algorithm-independent converse

This section consists of various lemmas used in the proof of Theorem 7.4.

Lemma B.3. For any ℓ, the conditional distribution of Hℓ is given by

Hℓ | {Mℓ = mℓ, Gℓ = gℓ} ∼ Bin(gℓ, 1− (1− p)mℓ).

Proof. Suppose one has already examined the tests with outcomes ∞, d, . . . , ℓ+1.
There remain Gℓ = gℓ non-defective items which have not appeared in any of these
tests. They will each independently contribute to Hℓ unless they avoid appearing
in each of the mℓ tests with outcome ℓ. Because of the Bernoulli design of the
matrix, this will happen with probability 1− (1− p)mℓ .

Lemma B.4. The probability we have no non-defectives in PD(ℓ) is bounded above
by

P(Hr∗ = 0) ≤ P(Gr∗ = 0) + E(1− p)Mr∗ .

Proof. We know from Lemma B.3 that Hℓ | {Mℓ = mℓ, Gℓ = gℓ} ∼ Bin(gℓ, 1 −
(1− p)mℓ). Since P(Bin(g, 1−Q) = 0) = (1−Q)g we know that for any gℓ

P(Hℓ = 0) =
∑

mℓ,gℓ

P(Hℓ = 0 |Mℓ = mℓ, Gℓ = gℓ)P(Mℓ = mℓ, Gℓ = gℓ)

=
∑

mℓ,gℓ

(1− p)mℓgℓ P(Mℓ = ℓ, Gℓ = gℓ)

= E(1− p)MℓGℓ (44)

≤ P(Gℓ = 0) + E(1− p)Mℓ . (45)

Here, we got (45) by considering separately the case where Gℓ = 0, and by noting
that if Gℓ ≥ 1 then (1− p)MℓGℓ ≤ (1− p)Mℓ .

Lemma B.5. Writing m∗
ℓ = Tψℓ(1 + δ) we can bound

P(Gℓ = 0) ≤
(
1− (1− p)m

∗
ℓ

)N−K
+ exp

(
−
δ2Tψℓ

2

)
.

Proof. Using Lemma 6.8 we know P(Gℓ = 0 | M ℓ = m) = (1− (1− p)m)N−K ,
which is increasing in m. Therefore we can write

P(Gℓ = 0) = P(Gℓ = 0 |M ℓ ≤ m∗
ℓ)P(M ℓ = m∗

ℓ)

+ P(Gℓ = 0 |M ℓ > m∗
ℓ)P(M ℓ > m∗

ℓ)

≤ P(Gℓ = 0 |M ℓ ≤ m∗
ℓ) + P(M ℓ > m∗

ℓ)

≤ P(Gℓ = 0 |M ℓ = m∗
ℓ) + P(M ℓ > m∗

ℓ)

≤
(
1− (1− p)m

∗
ℓ

)N−K
+ P(M ℓ > m∗

ℓ). (46)
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Recall that M ℓ ∼ Bin(T, ψℓ), so m∗
ℓ = Tψℓ(1 + δ) is slightly bigger than the

expectation, and we can bound the second term by Chernoff’s inequality.

Lemma B.6. We have the bound

E(1− p)Mr∗ ≤ exp(−pψr∗dr∗T ),

where dℓ = (1− p)−Kℓ − 1.

Proof. From Lemma 6.5 we know that Mℓ ∼ Bin(T, ψℓdℓ). Hence, using the bino-
mial theorem:

E(1− p)Mℓ =
T∑

m=0

(
T

m

)
(ψℓdℓ)

m(1− ψℓdℓ)
T−m(1− p)m

= (1− pψℓdℓ)
T

≤ exp(−pψℓdℓT ).
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