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We consider the issue of solution uniqueness of the mean-deviation portfolio optimiza-
tion problem and its inverse for asset returns distributed over a finite number of scenar-
ios. Due to the asymmetry of returns, the risk is assessed by a general deviation mea-
sure introduced by [Rockafellar et al., Mathematical Programming, Ser. B, 108 (2006),
pp. 515–540] instead of the standard deviation as in the classical Markowitz optimization
problem. We demonstrate that, in general, one cannot expect the uniqueness of Pareto-
optimal profit sharing in cooperative investment and the uniqueness of solutions in the
mean-deviation Black-Litterman asset allocation model. For a large class of deviation
measures, we provide a resolution of the above non-uniqueness issues based on the prin-
ciple of law-invariance. We provide several examples illustrating the non-uniqueness and
the law-invariant solution.

Keywords: Portfolio optimization; Cooperative investment; Black-Litterman model.

1. Introduction

In the realm of portfolio analysis we consider a market with a riskless asset and n

risky assets. Portfolios are represented as combinations x1R
(1)+ · · ·+xnR

(n), where

the vector random variable R = (R(1), . . . , R(n))T denotes excess returns of risky

assets. The objective is to find a portfolio allocation (fractions of wealth invested in

the risky assets) x = (x1, . . . , xn)
T that solves the following optimization problem:

min
x

D(RTx) subject to µTx ≥ ∆, (1.1)

1
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where D is a deviation measure Rockafellar et al. (2006a) which measures the port-

folio risk, ∆ is the target excess return and

µ = (µ1, . . . , µn)
T = (E[R(1)], . . . , E[R(n)])T .

This problem generalizes the classical Markowitz portfolio optimization problem

of minimizing the standard deviation of porfolio return subject to a constraint on

the expected return. Deviation measures, which include the standard deviation as

a special case, need not be symmetric and offer more flexibility in the assessment

of various aspects of portfolio risk. The key feature of those measures is that, as

the standard deviation, they are location invariant so that the measurements of the

“risk” and of the “expected return” are explicitly separated. The reader is referred

to Rockafellar et al. (2006a) for an extended discussion of (1.1).

The suggestion to use lower semideviation σ−(X) instead of standard deviation

in (1.1) goes back to the original work of Markowitz (1959). The study of (1.1)

with mean absolute deviation MAD(X) = E[|X − E[X]|] was initiated in Konno

& Yamazaki (1991). Rockafellar et al. (2000) suggest to use the so-called condi-

tional value-at-risk CVaRα(X) in various optimization problems including portfolio

optimization. Recent works, Moresco et al. (2023) and Zabarankin et al. (2024),

introduce new important families of deviation measures called Minkowski devia-

tion measures and benchmark-based deviation measures, respectively. Since σ−(X),

MAD(X), and E[X] + CVaRα(X) are deviation measures, optimization problem

(1.1) generalises the portfolio problems studied in these and many other papers.

We also remark that deviation measures are also extensively used in many appli-

cations other than portfolio optimization, e.g., in entropy maximization Grechuk

et al. (2009) and insurance Boonen & Han (2024).

In this paper we study two uniqueness problems. The first one, called in the

sequel the forward problem, concerns the uniqueness of solution x, representing

portfolio weights, to the portfolio optimization problem (1.1). The second one per-

tains to the following inverse portfolio problem: given a vector x∗, the information

on the distribution of R sufficient to compute D(RTx) for any x, and ∆ > 0 find a

vector of mean returns µ such that x∗ is a solution to problem (1.1) for that µ.

The motivation for analyzing the uniqueness of forward and inverse optimiza-

tion problems stated above comes from the cooperative investment, c.f. Grechuk

et al. (2013), and from the Black-Litterman asset allocation model, cf. Black &

Litterman (1992) where the model is formulated and Litterman et al. (2004) for a

more detailed presentation. In the cooperative investment, agents pool resources,

invest together and share the rewards. We show that the uniqueness of the for-

ward problem is linked to the uniqueness of the fair sharing scheme. In the classical

Black-Litterman model, where the risk is modeled by the variance, the inverse prob-

lem is used to infer the so-called equilibrium mean return vector from the market

portfolio and it has a unique solution. The variance, however, is a poor measure of

risk for non-Gaussian distributions. Rockafellar et al. (2006a) promotes deviations

measures which are rooted in coherent risk measures but are indifferent to the lo-
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cation parameter of the distribution (as is the variance). The optimization problem

(1.1) retains its convexity in x, but the uniqueness of solutions to the forward and

inverse problems has not been studied. A general theory of convex optimization

implies that it depends on the interplay between the distribution of R and the

deviation measure D.

In the context of asset management, many papers assume a finite (but possibly

large) number of scenarios for the future excess return R (for example a historical

time series of asset returns) and this is the case that we research in this paper. The

reader is referred to, e.g., Krokhmal et al. (2002), Fabozzi et al. (2010), Lim et al.

(2011), Grechuk & Zabarankin (2018) for theoretical and finance-centred contri-

butions and Gaivoronski & Pflug (2005), Lim et al. (2010), Lwin et al. (2017) for

numerical methods; applications outside of finance can be found in the monograph

Conejo et al. (2010) and references therein. Although the question of existence of

optimal solutions has been solved, the problem of uniqueness for a finite number

of scenarios has not been analyzed carefully enough. We perform detailed analysis

of that problem for arbitrary discrete scenarios and a class of deviation measures

that we call “finitely generated risk measures” which includes Conditional Value-

at-Risk (CVaR), mixed CVaR and mean absolute deviation. In our approach we

use the characterization of deviation measures by their risk envelopes introduced in

Rockafellar et al. (2006b).

We mention that several authors investigated other formulations of inverse port-

folio problems. For example, Bertsimas et al. (2012) considers an inverse optimiza-

tion in a robust optimization framework with the portfolio mean as the objective

function and risk accounted for in constraints. The problem of uniqueness is not

addressed in that paper, particularly because under their assumption of normality

of asset returns the forward problem always has a unique solution. Due to the num-

ber of degrees of freedom (in the mean-variance case it is both the mean, variance

and the target return ∆ that are to be inferred from the optimal portfolio), the in-

verse problem inherently has many solutions. Grechuk & Zabarankin (2014, 2016)

attempt to infer risk preferences of an investor: assuming a complete knowledge

of the distribution of R and portfolio x∗, they look for a deviation measure D for

which x∗ is an optimal solution to (1.1).

This paper has four main contributions. They are based on a new link between

the uniqueness of an optimal portfolio x∗ in (1.1) and the number of risk identifiers

that uniquely characterize the deviation measure ρ(RTx∗). The first contribution

concerns the forward optimization problem. We show that the solution to (1.1) is

unique for any µ ∈ Rn that does not belong to a finite number of hyperplanes;

therefore, when µ is estimated from the data the uniqueness can be safely assumed.

Our second contribution demonstrates that this uniqueness has negative conse-

quences for cooperative investment. We prove that a unique optimal portfolio x∗

for the cooperative investment problem corresponds to many risk identifiers and

that this implies that there are many Pareto-optimal profit sharing arrangements
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in the cooperative investment problem. It is surprising as in Grechuk & Zabarankin

(2017), this possibility was only inferred from the general convexity theory and

treated as an unlikely and inconvenient case that was not of prime importance.

Our third contribution is related to the extension of the Black-Litterman model

(Black & Litterman 1992) to arbitrary distributions and deviation measures (Meucci

2005, Palczewski & Palczewski 2019). A key step of the classical model as well as

in the extended model is the solution of the inverse portfolio problem described

above in which x∗ is a market or benchmark portfolio. We demonstrate that if

x∗ is a unique optimal solution for a particular µ then the inverse problem has

multiple solutions for a large class of deviation measures ρ. As a consequence, the

final investment recommendation coming out of the Black-Litterman methodology

is not unique.

The fourth contribution pertains to the resolution of the non-uniqueness in the

cooperative investment and inverse optimization. We introduce the concept of a

law-invariant selector and prove its uniqueness for certain deviation measures such

as CVaR or mixed-CVaR. The law-invariance is a natural concept as it is intu-

itively related to the solution being the same for any realization of the distributions

of returns on a probability space. The law-invariance in the framework of convex

risk measures has been widely studied in the literature, see, e.g., Kusuoka (2001),

Frittelli & Gianin (2005), Jouini et al. (2006), due to its attractive mathematical

and financial properties.

The rest of the paper is organized as follows. Section 2 formulates the portfolio

optimization problem in the framework of deviation measures, defines portfolio risk

generators and discusses the portfolio uniqueness problem in terms of portfolio risk

generators. Section 3 formulates the cooperative investment problem and discusses

the issue of non-uniqueness of its solution. Section 4 discusses the dichotomy be-

tween uniqueness of solutions of the forward and inverse optimization problems.

Section 5 presents a solution to the non-uniqueness problem, which works for many

important examples of deviation measures. Section 6 considers consequences of non-

uniqueness for the Black-Litterman model for non-Gaussian distributions. Section 7

concludes the work.

2. Mean-deviation portfolio optimization

2.1. Finitely generated deviation measures

We assume that the probability space Ω is finite with N = |Ω| and P(ω) > 0 for

any ω ∈ Ω. A finite probability space Ω will be called uniform, if P(ω1) = · · · =

P(ωN ) = 1
N

.

Let R(i), i = 1, . . . , n, be random variables denoting the rates of return of fi-

nancial instruments. We assume that there exists also a risk-free instrument with

a constant rate of return R(0) =: r0. Following Rockafellar et al. (2006b), we also

assume that
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(M) any portfolio X =
∑n

i=1 xiR
(i) is a non-constant random variable for any

non-zero x = (x1, . . . , xn) ∈ Rn.

Rockafellar et al. (2006b) formulated portfolio optimization problem as follows

min
(x0,x1,...,xn)

D

(

n
∑

i=0

xiR
(i)

)

, s.t.

n
∑

i=0

xi = 1,

n
∑

i=0

xiE[R(i)] ≥ r0 +∆, (2.1)

where ∆ > 0 and D is a general deviation measure, that is, a functional D : L2(Ω) →

[0;∞] satisfying:

(D1) D(X) = 0 for constant X, but D(X) > 0 otherwise (non-negativity),

(D2) D(λX) = λD(X) for all X and all λ > 0 (positive homogeneity),

(D3) D(X + Y ) ≤ D(X) +D(Y ) for all X and Y (subadditivity),

(D4) set {X ∈ L2(Ω)
∣

∣D(X) ≤ C} is closed for all C < ∞ (lower semicontinuity).

With centered rates of return R̂(i) = R(i)−E[R(i)], i = 1, . . . , n, and µi = E[R(i)]−

r0, i = 1, . . . , n, problem (2.1) can be reformulated as

min
x∈Rn

D(R̂Tx), s.t. µTx ≥ ∆, (2.2)

where R̂ = (R̂(1), . . . , R̂(n))T , x = (x1, . . . , xn)
T , and µ = (µ1, . . . , µn)

T .

By Rockafellar et al. (2006a, Theorem 1), every deviation measure D can be

represented in the form

D(X) = EX + sup
Q∈Q

E[−XQ], (2.3)

where Q ⊂ L2(Ω) is called the risk envelope and can be recovered from D by

Q =
{

Q ∈ L2(Ω)
∣

∣ E[X(1−Q)] ≤ D(X) ∀X ∈ L2(Ω)
}

. (2.4)

Moreover, the set Q is closed and convex in L2(Ω). Elements Q ∈ Q for which

supremum in (2.3) is attained are called risk identifiers of X. The set of all risk

identifiers of X is denoted by Q(X).

A deviation measure D is finite, that is, D(X) < ∞, ∀X if and only if the

corresponding Q is bounded. In this case, Q(X) is non-empty for every X ∈ L2(Ω),

and, due to closeness and convexity of Q and linearity of Q 7→ E[−XQ], every set

Q(X) must contain at least one extreme point of Q. Therefore, supQ∈Q E[−XQ] =

maxQ∈Qe E[−XQ], where Qe is the set of all extreme points of Q. In fact, a bounded

closed convex Q is the closed convex hull of Qe, see Theorem 2 in Phelps (1974)a.

Of particular importance to this paper will be the set of such risk measures for

which the set Qe is finite:

aBecause L2(Ω) is a reflexive Banach space, it has the Radon-Nikodym property, and Theorem 2
in Phelps (1974) applies.
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Definition 2.1. A finite deviation measure D is called finitely generated if the set

Qe of all extreme points of Q is finite. We will call elements of this set extreme risk

generators.

In other words, D is finitely generated if and only if Q is a convex hull of a finite

number of points.

Example 2.1. For standard deviation, σ(X) = ||X −E[X]||2, the risk envelope is

given by Rockafellar et al. (2006b, Example 1)

Q =
{

Q
∣

∣ E[Q] = 1, σ(Q) ≤ 1
}

,

and, for N > 2, has infinitely many extreme points, hence σ is not finitely generated.

Example 2.2. For mean absolute deviation, MAD(X) = E[|X − E[X]|], the risk

envelope is given by Rockafellar et al. (2006b, Example 2)

Q =
{

Q
∣

∣ E[Q] = 1, supQ− inf Q ≤ 2
}

,

which is a convex polytope in RN with a finite number of vertices. Hence MAD is

finitely generated. In fact, extreme points Qe can be explicitly written as

Qe =
{

Q = 1 + E[Z]− Z
∣

∣ ∃S ⊂ {1, 2, . . . , N} : Zi = 1, i ∈ S; Zi = −1, i ̸∈ S
}

,

which for a uniform probability on Ω simplifies to

Qe =
{

x ∈ RN
∣

∣ ∃S ⊂ {1, 2, . . . , N} : xi =
2|S|

N
− 1, i ∈ S; xi =

2|S|

N
+ 1, i ̸∈ S

}

,

where the subset S is taken non-empty and proper. Hence, |Qe| = 2N − 2.

Example 2.3. For CVaR-deviation

CVaR∆
α (X) ≡ E[X]−

1

α

∫ α

0

qX(β) dβ, (2.5)

the risk envelope is given by Rockafellar et al. (2006b, Example 4)

Qα =
{

Q
∣

∣ E[Q] = 1, 0 ≤ Q ≤ α−1
}

.

The linearity of constraints imply that CVaR∆
α is finitely generated. In particular, if

the probability is uniform over Ω and α = k
N

for some integer 1 ≤ k < N , extreme

points Qe are

Qe =
{

x ∈ RN
∣

∣ ∃S ⊂ {1, 2, . . . , N} : |S| = k, xi =
N

k
, i ∈ S; xi = 0, i ̸∈ S

}

.

This implies that |Qe| = N !
k!(N−k)! .

Lemma 2.1. Let D1,D2, . . . ,Dm be finitely generated deviation measures. Then

functionals

(a) D(X) =
∑m

i=1 λiDi(X), with λi > 0, i = 1 . . . ,m;

(b) D(X) = max{D1(X), . . . ,Dm(X)}
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are also finitely generated deviation measures.

Proof. Proof follows from Rockafellar et al. (2006a, Proposition 4), and from the

fact that if sets Q1,Q2, . . . ,Qm are all convex hulls of a finite number of points,

then so are the sets: λ1Q1 + · · · + λmQm; the convex hull of Q1 ∪ · · · ∪ Qm; and

{Q |Q = (1− λ) + λQi for some Qi ∈ Qi}, λ > 0, i = 1, . . . ,m.

Example 2.4. Mixed CVaR-deviation

CVaR∆
λ (X) =

∫ 1

0

CVaR∆
α (X)λ(dα), (2.6)

where λ is a probability measure on (0, 1), is also finitely generated. Indeed, because

the probability space is finite, mixed CVaR-deviation (2.6) can be written as a finite

mixture of CVaR-deviations

CVaR∆
λ (X) =

m
∑

i=1

λiCVaR
∆
αi
(X),

where αi ∈ (0, 1), λi > 0, i = 1, . . . ,m, and
∑m

i=1 λi = 1, which is a finitely

generated deviation measure due to Example 2.3 and Lemma 2.1(a).

2.2. Optimal portfolios and active portfolio risk generators

We make the following standing assumptions:

(A) The deviation measure D is finitely generated.

(B) ∆ > 0 and µ ̸= 0.

The latter assumption implies the following properties of the optimal solution to

(2.2).

Lemma 2.2. The optimal objective value in (2.2) is positive and in optimum the

constraint is binding: µTx = ∆.

Proof. By Theorem 1 in Rockafellar et al. (2006b), there is an optimal solution x∗.

By assumption (B), x = 0 does not satisfy the constraint on the expected return,

and so x∗ ̸= 0. Due to assumption (M), we conclude that R̂Tx∗ is random and

hence D(R̂Tx∗) > 0. For the second part of the statement, assume that µTx∗ > ∆.

Therefore, there is η < 1 such that µT (ηx∗) ≥ ∆ and we have D(R̂T (ηx∗)) =

ηD(R̂Tx∗) < D(R̂Tx∗), a contradiction.

Since D is finitely generated, the deviation measure of a centered return of

portfolio x ∈ Rn can be expressed as a maximum of a finite number of terms:

D(R̂Tx) = max
Q∈Qe

E[−R̂TxQ]. (2.7)
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As the number of extreme risk generators for D is finite, they can be enumerated:

Qe = {Q1, . . . , QM ′}. Define D̃i = E[−R̂Qi], i = 1, . . . ,M ′. It follows from (2.7)

that the set of D̃i’s is sufficient to evaluate D(R̂Tx) for a portfolio x:

D(R̂Tx) = max
i=1,...,M ′

D̃T
i x. (2.8)

It may happen that D̃i = D̃j for some i ̸= j; for example, R̂ may be constant on a

number of elementary events in Ω. It may also happen that not all D̃i are necessary

to define D. Indeed, by the linearity of the mapping D 7→ DTx for a fixed portfolio

x, we have

max
i=1,...,M ′

D̃T
i x = sup

D∈conv{D̃1,...,D̃M′}

DTx, (2.9)

where conv{D̃1, . . . , D̃M ′} is the convex envelope of points D̃1, . . . , D̃M ′ , i.e., the

smallest convex set containing those points, or, in the terminology of (Rockafellar

1970, Section 19) the polyhedral set generated by D̃1, . . . , D̃M ′ . The convex envelope

is bounded and closed so that linear mapping D 7→ DTx attains its supremum in an

extreme point of conv{D̃1, . . . , D̃M ′}. By (Rockafellar 1970, Corollary IV.18.3.1),

the extreme points form a subset of {D̃1, . . . , D̃M ′}, so it is sufficient to restrict

optimization on the right-hand side of (2.7) to those extreme points. This will

prove convenient in the future arguments motivating the following definition.

Definition 2.2. Extreme points of conv{D̃1, . . . , D̃M ′} are denoted by Di, i =

1, . . . ,M , and called portfolio risk generators.

Remark 2.1. Portfolio risk generators are generators (in the sense of Rockafel-

lar (1970, Section 19)) of the polyhedral set {E[−R̂Q] |Q ∈ Q}, see the proof of

Theorem 19.3 in Rockafellar (1970).

By Definition 2.2 and the discussion following (2.8), we have for any portfolio x:

D(R̂Tx) = max
i=1,...,M

DT
i x. (2.10)

Definition 2.3. Those Di that realize the maximum in (2.10) are called active

portfolio risk generators for the portfolio x.

The following lemma shows that the set of portfolio risk generators is sufficiently

rich to span the whole space Rn.

Lemma 2.3. We have lin(D1, . . . , DM ) = Rn.

Proof. Assume the opposite and take any non-zero vector x in the orthogonal

complement of lin(D1, . . . , DM ). Then D(R̂Tx) = 0. However, R̂Tx is non-constant

by assumption (M), so its deviation measure should be strictly positive by (D1). A

contradiction.
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The representation (2.10) of the deviation measure of a portfolio x enables an

equivalent formulation of optimization problem (2.2) as a linear program:

minimize A,

subject to: A ≥ DT
i x, i = 1, . . . ,M,

µTx ≥ ∆,

(A, x) ∈ R× Rn.

(2.11)

Indeed, let (A∗, x∗) be the solution. Then A∗ is the smallest real number greater or

equal to DT
i x

∗ for all i = 1, . . . ,M , so A∗ = maxi=1,...,M Di
Tx

∗ = D(R̂Tx∗). As the

objective function of (2.11) equals A, the solution x∗ minimizes x 7→ D(R̂Tx) over

x ∈ Rn satisfying µTx ≥ ∆ proving the equivalence of the above linear programme

to (2.10).

Theorem 2.1. The linear program (2.11) as well as the optimization problem (2.2)

have the following properties:

(1) The set of optimal portfolios X∗ is a bounded polyhedral subset of Rn. The set

of solutions to (2.11) is of the form {A∗} × X∗ for some A∗ > 0.

(2) If the solution is not unique then µ is a linear combination of at most n − 1

portfolio risk generators.

(3) If the solution is unique, then the set of active portfolio risk generators spans

the whole space Rn, i.e., there are n linearly independent active portfolio risk

generators.

Proof. (2.11) is a linear program, so the set of solutions is polyhedral. The mapping

x 7→ D(R̂Tx) is convex, hence also continuous (Rudin 1976, Exercise 23, p. 101).

Denote by d its minimum on the sphere {x ∈ Rn | ∥x∥ = 1}. This minimum is

strictly positive due to assumptions (M) and (D1). Employing further assumption

(D2) gives that {x ∈ Rn | D(R̂Tx) ≤ A} is bounded for any A > 0; indeed, it is

contained in the ball with radius A/d. Hence, the set of solutions X′ to (2.11) is

a bounded polyhedral set. It is expressed by convex combinations of its extreme

points at which the objective function is optimal. In each such extreme point the

coordinate A is identical, so X′ = {A∗} × X∗ for some A∗ > 0; the positivity of A∗

follows from Lemma 2.2.

If X′ is a single point, then it is an extreme point of the feasible set. Since

the constraint µTx ≥ ∆ is active (see Lemma 2.2), (Bertsimas & Tsitsiklis 1997,

Theorem 2.2) implies that there are n indices i1, . . . , in such that A = DT
ij
x, j =

1, . . . , n, and vectors (Dij )
n
j=1 are linearly independent, hence generate Rn.
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The proof of assertion 2 uses the dual of problem (2.11):

maximize q∆,

subject to:

M
∑

i=1

piDi − qµ = 0,

M
∑

i=1

pi = 1,

q ≥ 0, pi ≥ 0, i = 1, . . . ,M.

(2.12)

By the strong duality, q∆ = A∗ and we know A∗ > 0, hence q > 0. Bertsimas

& Tsitsiklis (1997, Theorem 4.5) implies that the dual variables corresponding to

inactive constraints are zero. Denote by i1, . . . , ik the active constraints involving

portfolio risk generators. Then the first constraint in the above dual problem (2.12)

reads:

µ =
1

q

k
∑

j=1

pijDij . (2.13)

Assume now that the solution is not unique, i.e., X′ contains at least two extreme

points and therefore a line connecting them. Fix an internal point of that line

(A∗, x∗). Since (A∗, x∗) is not an extreme point of X′, the linear space spanned by

active portfolio risk generators Dij , j = 1, . . . , k, has dimension not larger than

n − 1 (there is at least one portfolio risk generator which is active at an extreme

point of X′ and does not belong to lin{Di1 , . . . , Dik}). This proves assertion 2 of

the theorem.

Corollary 2.1. There is a finite number of hyperplanes (of dimensions from 1 to

n − 1) such that: µ belongs to one of them if and only if a solution to (2.2) is not

unique. Therefore, the set of µ for which the portfolio optimization problem has a

unique solution has a full Lebesgue measure.

Proof. By Theorem 2.1, non-uniqueness of solutions coincides with µ being a linear

combination of at most n−1 portfolio risk generators, i.e., belongs to a linear space

spanned by at most n− 1 vectors in Rn. This is a hyperplane of dimension at most

n − 1, so it has a Lebesgue measure 0. There is a finite number of ways to choose

up to n − 1 vectors from the set of M vectors, so the number of such hyperplanes

is finite. A finite sum of sets of Lebesgue measure zero has the measure zero. Its

complement has therefore a full measure.

A practical consequence of the above theorem and corollary is that there is a

unique optimal portfolio in (2.2) unless µ is specially chosen to match the distribu-

tion of returns R̂ and the risk measure. In the following section we will show that

the uniqueness of solution, which implies multiple active portfolio risk generators,

leads to issues in optimal cooperative investment. We will also show that there are

natural settings when µ happens to be on one of the hyperplanes mentioned in the

corollary.
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Consider now a portfolio optimization problem with no shortsales of risky assets.

This corresponds to the linear program (2.11) with additional constraints xi ≥ 0,

i = 1, . . . , n. The following lemma shows that the non-uniqueness of portfolio risk

generators holds here as well.

Lemma 2.4. If the solution x∗ to the portfolio optimization problem with no short-

sales of risky assets is unique, then there are at least k active portfolio risk genera-

tors, where k is the number of non-zero coordinates of x∗.

Proof. As in Lemma 2.2, we show that µTx∗ = ∆. The assertion follows from the

fact that x∗ is an extreme point of the feasible set.

3. Cooperative investment

3.1. Theoretical framework

The general problem of cooperative investment can be formulated as follows, see

Grechuk & Zabarankin (2017). Let F ⊂ L2(Ω) be a feasible set, representing rates

of return from feasible investment opportunities on the market without a riskless

asset:

F =
{

X
∣

∣

∣
X =

n
∑

i=1

R(i)xi,

n
∑

i=1

xi = 1
}

.

An individual portfolio optimization problem for agent i, i = 1, . . . ,m, is

max
X∈F

Ui(X), (3.1)

where Ui : L
2(Ω) → [−∞,∞) is the utility function of agent i. If the unit of capital

is invested, then rate of return X ∈ F can also be interpreted as a monetary profit

from the investment. Instead of investing individually, m agents can invest their m

units of capital to buy a joint portfolio X ∈ mF := {mX |X ∈ F} and distribute it

so that agent i receives a share Yi with
∑

Yi = X. An allocation Y = (Y1, . . . Ym)

is called feasible if
∑

Yi ∈ mF , and Pareto optimal if there is no feasible allocation

Z = (Z1, . . . Zm) such that Ui(Yi) ≤ Ui(Zi) with at least one inequality being strict.

A utility function U is called cash-invariant if U(X + C) = U(X) + C for all

X ∈ L2(Ω) and C ∈ R. Proposition 2 in Grechuk & Zabarankin (2017) implies that

if all Ui, i = 1, . . . ,m, are cash-invariant, and Y = (Y1, . . . Ym) is Pareto optimal,

then X∗ =
∑

Yi solves the optimization problem

sup
X∈mF

U∗(X), (3.2)

where

U∗(X) ≡ sup
Z∈A(X)

m
∑

i=1

Ui(Zi) (3.3)
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with A(X) =
{

Z = (Z1, . . . , Zm) :
∑m

i=1 Zi = X, Zi ∈ L2(Ω)
}

. Furthermore, if

Y = (Y1, . . . Ym) is any Pareto optimal allocation, then all Pareto optimal alloca-

tions are given by

(Y1 + C1, . . . , Ym + Cm), (3.4)

where C1, . . . Cm are constants with
∑m

i=1 Ci = 0. Hence, the coalition should:

(1) solve the portfolio optimization problem (3.2) to find an optimal portfolio X∗

for the whole group;

(2) find any Pareto optimal way Y = (Y1, . . . Ym) to distribute X among group

members;

(3) agree on constants C1, . . . Cm in (3.4) to select a specific Pareto-optimal alloca-

tion among the ones available.

We consider investors employing the following utility functions:

Ui(X) = E[X]−Di(X), (3.5)

for some deviation measures Di, i = 1, . . . ,m. These utility functions are cash-

invariant and the above theory applies. U∗ in (3.3) is given by U∗(X) = E[X] −

D∗(X), where

D∗(X) ≡ inf
Z∈A(X)

m
∑

i=1

Di(Zi). (3.6)

Remark 3.1. Commonly, an investor’s optimization criterion is given by

Ui(X) = E[X]− γiDi(X),

where γi > 0 is the investor’s risk aversion. However, γiDi is a deviation measure

whenever Di is, so the expression (3.5) covers this example.

In this model, a possible approach to point (iii) above is to select constants Ci

in (3.4) such that

E[Q∗(Y1 + C1)] = · · · = E[Q∗(Ym + Cm)] (3.7)

where Q∗ is the extreme risk identifier in portfolio optimization problem (3.2) with

U∗(X) = E[X] − D∗(X). The intuition is that elements Q of risk envelope repre-

sents probability scenarios, Q∗ represents the “critical” worst-case scenario for the

coalition, and (3.7) states that the investors should receive the same profit under

the critical scenario. See Grechuk & Zabarankin (2017, Section 3) for further jus-

tification of (3.7) in the model with risk-free asset. Because a concave function is

differentiable almost everywhere, one may expect that ∂U∗(X∗) is “typically” a sin-

gleton, in which case the extreme risk identifier Q∗ is unique, and this approach

leads to the unique selection of a “fair” Pareto optimal allocation in (3.4). Below we

show, however, that this intuition may be wrong.
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Lemma 3.1. Let Di be deviation measures with risk envelopes Qi, i = 1, . . . ,m.

Then D∗ is a deviation measure with the risk envelope Q∗ = Q1 ∩ · · · ∩ Qm. In

particular, if all Di are finitely generated, then so is D∗.

Proof. Proposition 3 in Rockafellar et al. (2006a) implies that Q1, . . . ,Qm are

closed, convex subsets of the closed hyperplane H = {Q |EQ = 1} in L2(Ω) such

that constant 1 is in their quasi-interior relative to H. Because Q1, . . . ,Qm have a

common point in their relative interiors, Rockafellar (1970, Corollary 16.4.1) implies

that D∗ can be represented in the form (2.3) with Q∗ = Q1 ∩ · · · ∩ Qm. Because

Q∗ is also closed, convex subset of H with constant 1 in quasi-interior relative to

H, this implies that D∗ is a deviation measure. Because intersection of polygons is

a polygon, D∗ is finitely generated provided that all Di are.

Theorem 3.1. Assume that investors’ utility functions are of the form Ui(X) =

E[X]−Di(X) with deviation measures Di finitely generated and none of the portfolio

risk generators D∗
i for D∗ is such that (D∗

i −E[R]) is parallel to 1 := (1, . . . , 1)T or

zero. Then any solution X∗ = RTx∗ to (3.2) has at least two extreme risk identifiers.

Proof. We follow ideas from the proof of Theorem 2.1. Denote by (D∗
i )

M
i=1 the

portfolio risk generators for the deviation measure D∗ and let D̂∗
i = D∗

i − E[R].

Then, following similar arguments as those used for (2.11), we obtain that (3.2) is

equivalent to the following linear problem

minimize A,

subject to: A ≥ xT D̂∗
i , i = 1, . . . ,M,

xT
1 = 1, (A, x) ∈ R× Rn.

(3.8)

Since x∗ is a solution to this program (not necessarily unique), its dual also has a

solution (Bertsimas & Tsitsiklis 1997, Theorem 4.4):

maximize q,

subject to:

M
∑

k=1

pkD̂
∗
k − q1 = 0,

M
∑

k=1

pk = 1,

pk ≥ 0, k = 1, . . . ,M, q ∈ R.

(3.9)

If the optimal solution q ̸= 0, then the middle equation together with the assumption

that none of D̂∗
j ’s is parallel to 1 implies that there must be at least two pk’s strictly

positive. Bertsimas & Tsitsiklis (1997, Theorem 4.5) states that the corresponding

constraints in the primal problem are active, i.e., their respective portfolio risk

generators are active for X∗. When q = 0, the assumption that none of D̂∗
j ’s is zero

imply again that at least two pk’s must be non-zero.

Theorem 3.1 implies that there are at least two linearly independent active

portfolio risk generators and there are multiple fair Pareto-optimal solutions to the
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cooperative investment problem. In Section 5, we will offer a method for select-

ing a unique portfolio risk generator based on the principle of law-invariance. An

alternative approach for resolving the non-uniqueness problem in the risk sharing

and cooperative investment based on Steiner point method is discussed in Grechuk

(2023).

Remark 3.2. The portfolio optimization problem (3.2) with utility functions (3.5)

may not have a solution, i.e., an optimal value may be attained asymptotically on

a diverging sequence of portfolios. This happens, for example, when there is x such

that xT
1 = 0 and xTE[R] − D∗(xTR) > 0, i.e., when the projection of E[R] on

1
⊥ := {y ∈ Rd | yT1 = 0} is not contained in the convex envelope of projections of

portfolio risk generators (D∗
i )

M
i=1 on 1

⊥.

Remark 3.3. The issue with non-existence of solution to the optimization problem

of this section

sup
x: xT 1=1

xTµ−D(xTR), (3.10)

where µ = E[R], extends to optimization with the risk measured by a coherent risk

measure ρ (another criterion popular in the literature)

sup
x: xT 1=1

xTµ− γρ(xTR)

with the risk aversion γ > 0. Indeed, using that D(X) = ρ(X)+E[X] is a deviation

measure, the above problem is equivalent to

sup
x: xT 1=1

xTµ− γ∗D(xTR)

with γ∗ = γ/(1 + γ), which, by Remark 3.1, is of the form (3.10).

3.2. Explicit example

Cash-or-nothing binary option O returns some fixed amount of cash C(O) if it

expires in-the-money but nothing otherwise. Assume that there are two such options

A and B which expire in-the-money if P > C1 and P > C2, respectively, where P

is the (random) price of (the same) underlying asset, and C1 < C2 are constants.

Assume that options are offered for the same price p with C(A) = 2p and C(B) = 8p.

Each agent can invest a unit of capital into A and B, precisely 1 − t into A and t

into B, to get profit −(1− t)− t = −1; (1− t)− t = 1− 2t; or (1− t) + 7t = 1+ 6t

depending on the relation of the price P with respect to C1 and C2. We assume

that two agents think that these three opportunities are equally probable.

For agent 1 with U1(X) = E[X] − CV aR∆
2

3

(X) = −CV aR 2

3

(X), an optimal

individual investment can be found from the linear program

max
a1,t

a1, s.t. X = (−1, 1− 2t, 1 + 6t), E[QX] ≥ a1, ∀Q ∈ Q1,
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where Q1 =
{(

3
2 ,

3
2 , 0
)

,
(

3
2 , 0,

3
2

)

,
(

0, 3
2 ,

3
2

)}

=
{

Perm
(

3
2 ,

3
2 , 0
)}

, resulting in the

optimum t = 0, X = (−1, 1, 1), and the optimal value u∗
1 = 0.

Similarly, for agent 2 with U2(X) = E[X]− 1
2MAD(X), the linear program

max
a2,t

a2, s.t. X = (−1, 1− 2t, 1 + 6t), E[QX] ≥ a2, ∀Q ∈ Q2,

where Q2 =
{

Perm
(

5
3 ,

2
3 ,

2
3

)

,Perm
(

4
3 ,

4
3 ,

1
3

)}

, returns t = 1
5 , with the optimal value

u∗
2 = 1

15 .

The cooperative investment corresponds to the linear program

max
a1,a2,Y1,Y2,t

a1 + a2, s.t. Y1 + Y2 = 2(−1, 1− 2t, 1 + 6t),

E[QY1] ≥ a1, ∀Q ∈ Q1,

E[QY2] ≥ a2, ∀Q ∈ Q2,

that is, we are simultaneously looking for optimal portfolio (t), and an optimal way

to share it (Y1, Y2) to maximize the sum of agents utilities. The optimal t is t = 1
5 ,

with Y1 + Y2 =
(

−2, 6
5 ,

22
5

)

, and optimal value is u∗ = 2
15 > u∗

1 + u∗
2. The simplex

method returns a solution Y1 = ( 2
15 ,

2
15 ,

2
15 ), Y2 = (− 32

15 ,
16
15 ,

64
15 ), with u1(Y1) =

2
15

and u2(Y2) = 0, which is obviously unfair. Because the utilities are cash invariant,

any solution in the form Y ′
1 = Y1 + C, Y ′

2 = Y2 − C is Pareto-optimal, and the

question is how to select a “fair” C.

To this end, we compute the utility of a coalition U∗(X) as

U∗(X) = min
Q∈Q∗

E[QX], (3.11)

where Q∗ can be found as (the vertices of) intersection of convex hulls of Q1 and

Q2. In our case, Q∗ =
{

Perm
(

3
2 , 1,

1
2

)

,Perm
(

4
3 ,

4
3 ,

1
3

)}

. The optimal portfolio X∗ =
(

−2, 6
5 ,

22
5

)

is a solution to the optimization problem

maxU∗(X), s.t. X = 2(−1, 1− 2t, 1 + 6t). (3.12)

Now, let Q∗ be the minimizer in (3.11) for X∗. Then, according to (3.7), the fair C

should be selected such that

E[Q∗(Y1 + C)] = E[Q∗(Y2 − C)]. (3.13)

An intuition is that the investors should get the same profit under the critical

scenario Q∗. The problem is that, for X∗ =
(

−2, 6
5 ,

22
5

)

, the minimizer Q∗ in (3.11)

in not unique! Indeed, E[QX∗] = 2
15 for Q =

(

3
2 , 1,

1
2

)

, and also for Q =
(

4
3 ,

4
3 ,

1
3

)

.

This is not a coincidence as we have shown in Theorem 3.1. While set of random

variables X with non-unique risk identifier has measure 0, the optimal portfolio in

(3.12) is guaranteed to belong to this set. Consequently, the cooperative investment

does not have a unique solution in the case of finitely generated deviation measures.

In our example, the set of minimizers in (3.11) is the whole line segment with end-

points
(

3
2 , 1,

1
2

)

and
(

4
3 ,

4
3 ,

1
3

)

. Consequently, there are infinitely many “fair” choices

of C.
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4. Inverse portfolio problem

Following Palczewski & Palczewski (2019), let us formulate a problem inverse to

(2.2) as follows. Assume that we are given a portfolio xM = (xM
1 , . . . , xM

n ) ̸= 0, the

distribution of centered rates of return R̂, the deviation measure D, and ∆M > 0

(the expected excess return of the portfolio xM ). The inverse problem concerns

finding µ = (µ1, . . . , µn)
T such that xM is the solution to the optimization problem

(2.2). Does such µ exist for any xM ̸= 0? Is the vector µ always determined uniquely?

We will give a positive answer to the first question and discuss a dichotomy faced

by the second: if the solution of the inverse problem is unique then the forward

problem with the computed µ has multiple solutions, while if the forward problem

has a unique solution then there are many µ’s solving the inverse problem.

Assume that ∆M > 0. Necessarily, xM ̸= 0. Theorem 4 in Rockafellar et al.

(2006b) states that the portfolio xM is a solution to (2.2) if and only if there is a

risk identifier Q∗ for the random variable R̂TxM such that

µ =
∆M

D(R̂TxM )
E[−R̂Q∗] =

∆M

(xM )TE[−R̂Q∗]
E[−R̂Q∗]. (4.1)

This follows since every finite deviation measure on a discrete probability space is

continuous, c.f. Rockafellar et al. (2006b, page 518).

Let Dij , j = 1, . . . , k, be the set of active portfolio risk generators for xM . Then

(4.1) amounts to the existence of weights β1, . . . , βk ≥ 0, such that
∑k

j=1 βj = 1

and

µ =
∆M

∑k

j=1 βjDT
ij
xM

k
∑

j=1

βjDij . (4.2)

From the above formula we immediately get the following characterization of vectors

µ for which xM is a solution to (2.2).

Lemma 4.1. The set of solutions M to the inverse optimization problem is con-

vex and spanned by points δDij , where Dij , j = 1, . . . , k, are active portfolio risk

generators for xM and δ = ∆M/D(R̂TxM ):

M =
{

δ

k
∑

j=1

βjDij

∣

∣

∣
β ∈ [0, 1]k and

k
∑

j=1

βj = 1
}

.

Proof. Since Dij , j = 1, . . . , k are active portfolio risk generators, we have

D(R̂TxM ) = DT
ij
xM . Hence, from (4.2)

µ =
∆M

∑k

j=1 βjD(R̂TxM )

k
∑

j=1

βjDij =
∆M

D(R̂TxM )

k
∑

j=1

βjDij = δ

k
∑

j=1

βjDij ,

where in the second equality we used that
∑k

j=1 βj = 1.
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Remark 4.1. The conclusions of the above lemma can be immediately deduced

from the dual representation (2.12) of the portfolio optimization problem. Indeed,

multiplying both sides of (2.13) by xM yields q = 1/δ.

Equipped with this characterization of the set M we demonstrate the link be-

tween the set of solutions of the inverse and forward optimization problems.

Theorem 4.1.

(1) If xM is a unique solution to (2.2) for some µ, then the set of all solutions M to

the inverse optimization problem has at least n+1 extreme points. Moreover, all

extreme points are of the form δDij , where δ > 0 and Dij is an active portfolio

risk generator for xM .

(2) If there is a unique active portfolio risk generator for xM , then the inverse

optimization problem has a unique solution µ∗ (the set M consists of one point).

However, the optimization problem (2.2) with ∆ = ∆M and µ = µ∗ has multiple

solutions: the set of solutions X∗ is a polyhedron of dimension n− 1 and has at

least n extreme pointsb.

The proof of the above theorem requires the following simple technical result.

Lemma 4.2. Given vi ∈ Rn, i = 1, . . . , k, let n̂ = rank(vi, i = 1, . . . , k) =

dim(lin(v1, . . . , vk)). Then N = conv(v1, . . . , vk) has at least n̂ + 1 extreme points

and all extreme points are from the set {v1, . . . , vk}.

Proof. It follows from Rockafellar (1970, Corollary 18.3.1) that all extreme points

of N are in {v1, . . . , vk}. It remains to prove that there are at least n̂ + 1 extreme

points. Assume the opposite: there are only n′ < n̂+ 1 extreme points vi1 , . . . , vin′

of N . Then N ⊂ A := lin(vi1 , . . . , vin′
) and dim(A) ≤ n′+1. However, A is a linear

space containing all points v1, . . . , vk so it also contains lin(v1, . . . , vk). The latter

space has dimension n̂+ 1 by assumption, hence a contradiction.

Proof of Theorem 4.1. From Theorem 2.1, the uniqueness of solutions to (2.2)

implies that the set of active portfolio risk generators Di1 , . . . , Dik spans the whole

space Rn, i.e., the dimension of a linear space generated by those vectors is n. The

conclusions follow from Lemma 4.2.

Assume now that there is a unique active portfolio risk generator. The unique-

ness of solution to the inverse optimization problem is clear from formula (4.2).

Consider the equivalent form (2.11) for the forward optimization problem. Recall

that the set of all solutions to such a linear problem is a convex bounded polyhedral

set, a face of a polyhedral set generated by the constraints. The portfolio xM is a

bThe dimension of a polyhedron P is the maximum number of affinely independent points con-
tained in P minus 1.
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solution for which there are exactly two active constraints: one with the unique

portfolio risk generator and one encoding the minimum expected return. This im-

plies that the set of solutions is a polyhedron of dimension n− 1. By Lemma 4.2 it

must have at least n extreme points.

Corollary 4.1. In the case 1 of Theorem 4.1, if µ ∈ riM (µ is in the relative

interior of M), then the forward optimization problem (2.2) has a unique solution

for ∆ = ∆M .

Proof. The implication is equivalent to: solution to (2.2) is not unique =⇒ µ /∈

riM. This follows immediately from assertion 2 of Theorem 2.1 and Rockafellar

(1970, Theorem 6.4).

The inverse problem with no shortsales constraint admits more solutions as

shown in the following lemma.

Lemma 4.3. Let xM be a solution to the portfolio optimization problem (2.2) with

additional constraint of no shortsales of risky assets. The set of solutions to the

inverse optimization problem is given by

M′ =
{

µ ∈ Rn
∣

∣ ∃m ∈ M s.t. µi ≤ mi, mi11{xM
i

̸=0} = µi11{xM
i

̸=0}, i = 1, . . . , n
}

.

In particular, M ⊂ M′.

Proof. The dual to portfolio optimization problem (2.11) with non-negativity con-

straints on portfolio weights of risky assets is given by

maximize q∆M ,

subject to:

k
∑

j=1

pjDij − qµ ≥ 0,

k
∑

j=1

pj = 1,

q ≥ 0, pj ≥ 0, j = 1, . . . , k,

(4.3)

where Dij , j = 1, . . . , k, are the active portfolio risk identifiers. By the strong

duality, q∆M = D(R̂TxM ) > 0, hence q = D(R̂TxM )/∆M > 0. By complementary

slackness conditions, Bertsimas & Tsitsiklis (1997, Theorem 4.5), the inequality in

the first constraint above becomes equality for those coordinates for which xM is

non-zero. Using the fact that µTxM = ∆M yields the form of M′. Strong duality

implies that for any µ ∈ M′, the portfolio xM is optimal.

It is well known that optimal portfolios with shortsales constraints are often

poorly diversified, i.e., have many null portfolio weights. It then transpires from

the definition of the set M′ that the coordinates of µ corresponding to those zero

weights are unbounded from below.

Remark 4.2. If the portfolio with no shortsales xM is fully diversified, i.e., all co-

ordinates are strictly positive, then assertions of Theorem 4.1 apply to the problem

with no shortsale constraints for risky assets.
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We have seen in Section 3 that cooperative investment often leads to the solution

of the coalition optimal portfolio problem (3.2) with multiple active portfolio risk

generators. Consequently, there are multiple fair Pareto-optimal solutions to the

cooperative investment problem. Non-uniqueness is also observed in the inverse

optimization problem. If x∗ is a solution to a portfolio optimization problem (2.2)

with the deviation measure D and excess returns R̂ and the excess return mean

vector µ, Corollary 2.1 shows that this solution is unique unless µ lies on one of

a finite number of hyperplanes (belongs to a set of Lebesgue measure zero). This

uniqueness implies, in turn, that the inverse optimization problem has multiple

solutions (Theorem 4.1). In view of (4.2) as long as there is more than one active

portfolio risk generator, there are multiple solutions µ to the inverse problem. Or, in

other words, there are multiple risk identifiers Q∗ that determine µ through (4.1).

How to choose a unique point from the set of solutions to the inverse optimization

problem or a unique Pareto-optimal solution to the cooperative investment? In view

of the above discussion, this is equivalent to the choice of a unique risk identifier

Q∗ or rather a map fD : L2(Ω) → L2(Ω) that, for a deviation measure D, assigns

to a random variable X ∈ L2(Ω) one of its risk identifiers. We will call such a map

fD a selector corresponding to the deviation measure D. The following section will

suggest a natural construction of such a map. An alternative based on Steiner point

method is presented in Grechuk (2023).

5. Law invariant selector

5.1. Theoretical analysis

This section presents a partial solution to the problem of finding a unique selector,

which is based on the principle of law-invariance. Although a law-invariant selector

is, in general, not unique, it is natural from the financial and probabilistic point

of view and is unique for some important deviation measures such as CVaR and

mixed-CVaR.

Definition 5.1. A selector fD : L2(Ω) → L2(Ω) is called law-invariant if

E[Y1fD(X)] = E[Y2fD(X)] whenever pairs of r.v.s (Y1, X), (Y2, X) ∈ L2(Ω)×L2(Ω)

have the same joint laws.

A deviation measure D is called law-invariant if D(X) = D(Y ) whenever r.v.s X

and Y have the same distribution. For example, CVaR∆
α (CVaR-deviation) is law in-

variant for every α ∈ (0, 1). Notice that not every deviation measure is law-invariant:

a simple example of a non-law-invariant deviation measure can be constructed on

Ω = {ω1, ω2}, with P(ω1) = P(ω2) = 0.5, and

D(X) := max
{

X(ω1)−X(ω2), 2(X(ω2)−X(ω1))
}

. (5.1)

In the framework of uniform probability spaces, we prove below the existence,

but not uniqueness, of a law-invariant selector.
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Theorem 5.1. If Ω is uniform, then there exists a law-invariant selector fD for

every law-invariant deviation measure D.

Proof. It follows from Lemmas 5.1, 5.2, and 5.3 below.

For non-uniform finite probability spaces, the notion of law-invariance as defined

above is of little use for defining a unique selector, because, for example, on Ω =

{ω1, ω2} with P(ω1) ̸= 0.5, r.v.s X and Y have the same distribution if and only if

X = Y , and, by definition, every deviation measure, including (5.1), is law-invariant.

For similar reasons, every selector fD on such probability space is law-invariant. An

appropriate extension of the notion of law-invariance to non-uniform probability

spaces follows from results below.

A r.v. X dominates a r.v. Y in second order stochastic dominance, denoted

X ⪰2 Y , if

t
∫

−∞

FX(x)dx ≤

t
∫

−∞

FY (x)dx, ∀t ∈ R.

An r.v. X dominates r.v. Y in concave order, denoted X ⪰c Y , if E[X] = E[Y ]

and X ⪰2 Y . A deviation measure D is called consistent with concave order if

D(X) ≤ D(Y ) whenever X ⪰c Y .

Lemma 5.1. If a deviation measure D is consistent with the concave order, it is

law-invariant. If Ω is uniform, the converse statement also holds.

Proof. The first statement is trivial, and the second one is well-known, but the

proof is usually presented for atomless probability space, see Dana (2005, Theorem

4.1). For a discrete uniform Ω, let r.v.s X and Y take values x1 ≤ · · · ≤ xN and

y1 ≤ · · · ≤ yN , respectively. Then X ⪰c Y is equivalent to

k
∑

i=1

xi ≥
k
∑

i=1

yi, k = 1, . . . , N, (5.2)

with equality for k = N . Let us prove that in this case Y can be obtained from X

by a finite sequence of operations

(z1, z2, . . . , zN ) → (z1, . . . , zi−1, zi − d, zi+1, . . . , zj−1, zj + d, zj+1, . . . , zN ),

d > 0, 1 ≤ i < j ≤ N. (5.3)

The statement is trivial for N = 2, and the case N > 2 can be proved by induction.

If
∑k

i=1 xi =
∑k

i=1 yi for some k < N , we can apply induction hypothesis to pair

of r.v.s X1 = (x1, . . . , xk) and Y1 = (y1, . . . , yk), and separately to pair X2 =

(xk+1, . . . , xN ) and Y2 = (yk+1, . . . , yN ), to conclude that there exists a sequence of

operations (5.3) transforming X1 to Y1 and X2 to Y2, and hence X to Y . Otherwise,

apply operation (5.3) to X with i = 1, j = N , and d = mink
∑k

i=1(xi − yi) > 0,
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to get X = (x1, x2, . . . , xN ) → (x1 − d, x2, . . . , xN + d) = (z1, . . . , zN ) = Z. Then

condition (5.2) holds for z1, z2, . . . , zN in place of x1, x2, . . . , xN , with equality for

some k < N , hence Z can be transformed to Y by the argument above.

Because operation (5.3) can only increase a law-invariant deviation measure D,

D(X) ≤ D(Y ) follows.

Lemma 5.2. If for any r.v. X ∈ L2(Ω) the selector fD satisfies the condition

Q(ωi) = Q(ωj) whenever X(ωi) = X(ωj), (5.4)

where Q = fD(X), then it is law-invariant. If Ω is uniform, the converse statement

also holds.

Proof. Condition (5.4) implies that Q = g(X) for some function g : R → R. Then

E[Y1Q] = E[Y1g(X)] = E[Y2g(X)] = E[Y2Q] whenever pairs of r.v.s (Y1, X) and

(Y2, X) have the same joint law.

Conversely, let Ω be uniform and X(ωi) = X(ωj). Then pairs of r.v.s (Ii, X)

and (Ij , X) have the same joint law, where Ii and Ij are indicator functions for

ωi and ωj , respectively. If fD is law-invariant, this implies Q(ωi) = N · E[IiQ] =

N · E[IjQ] = Q(ωj), where N = |Ω|, and (5.4) follows.

Lemmas 5.1 and 5.2 imply that consistency with the concave ordering and (5.4)

are appropriate extensions of the notion of law-invariance to non-uniform probabil-

ity spaces for deviation measures and selectors, respectively.

Lemma 5.3. For every deviation measure D, consistent with concave ordering,

there exists a selector fD satisfying (5.4).

Proof. Fix a r.v. X, select any risk identifier Q for X, and let fD(X) := E[Q|X].

Then for all Y ∈ L2(Ω),

E[(1−fD(X))Y ] = E[(1−E[Q|X])Y ] = E[(1−Q)(E[Y |X])] ≤ D(E[Y |X]) ≤ D(Y ),

where the first inequality follows from Q ∈ Q and (2.3), while the second one follows

from consistency of D with concave ordering and the fact that E[Y |X] ⪰c Y , see

Föllmer & Schied (2011, Corollary 2.61). Hence, fD(X) ∈ Q by (2.4). Because also

E[(1− fD(X))X] = E[(1−E[Q|X])X] = E[(1−Q)X] = D(X), fD(X) is in fact a

risk identifier of X, and condition (5.4) trivially holds.

Example 5.1. For CVaR-deviation D = CVaR∆
α , there exists a unique selector

satisfying (5.4), and it is given by (see Cherny (2006))

fD(X) = Qα =















0, X > −V aRα(X),

cX , X = −V aRα(X),

1/α, X < −V aRα(X),

(5.5)

where constant cX ∈ [0, 1/α] is such that E[Q] = 1.
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Example 5.2. For mixed CVaR-deviation (2.6), there exists a unique selector

satisfying (5.4), and it is of the form fD(X) = Qµ =
∫ 1

0
Qα µ(dα), where Qα is

given by (5.5) (see Cherny (2006)).

5.2. Explicit example

Let Ω = {ω1, . . . , ωN} with P(ωj) = wj , j = 1, . . . , N , and R̂j = R̂(ωj). Consider

a given portfolio xM and denote X∗ = R̂TxM and x∗
j = X∗(ωj). Without loss of

generality, we assume that {ω1, . . . , ωN} are ordered in such a way that x∗
1 ≤ x∗

2 ≤

· · · ≤ x∗
N . Since E[R̂] = 0, we have E[X∗] = 0 and either x1 = · · · = xN = 0 or

x1 < 0 < xN . The former case is impossible for a non-zero portfolio xM under the

assumption (M), therefore, we will concentrate on the non-trivial latter case of non-

zero return X∗. We will examine the inverse portfolio problem for risk measured by

deviation CVaR.

Let k be the maximal index such that x∗
k < −VaRα(X

∗) (set k = 0 is no such

index exists) and m be the maximal index such that x∗
m ≤ −VaRα(X

∗). Then any

risk identifier Q∗ = (q1, . . . , qN ) of X∗ satisfies, c.f. Rockafellar et al. (2006b),

N
∑

j=1

wjqj = 1, 0 ≤ qj ≤ 1/α,

q1 = q2 = · · · = qk = 1/α, qm+1 = · · · = qN = 0.

(5.6)

Hence,

µ =
∆M

CVaR∆
α (X

∗)

(

1

α

k
∑

j=1

wj(−R̂j) +

m
∑

j=k+1

wjqj(−R̂j)

)

, (5.7)

where qk+1, . . . , qm are arbitrary numbers satisfying linear constraints

m
∑

j=k+1

wjqj = 1−
1

α

k
∑

j=1

wj , and 0 ≤ qj ≤ 1/α, j = k + 1, . . . ,m.

If m = k + 1, the risk identifier in (5.6) and µ in (5.7) are uniquely defined.

For m > k + 1, i.e., x∗
k+1 = · · · = x∗

m = −VaRα(X
∗), the inverse problem has

infinitely many solutions. The robust selector corresponds to qk+1 = · · · = qm,

that is, µ = ∆M

CVaR∆
α (X∗)

(

1
α

∑k

j=1 wj(−R̂j) + q
∑m

j=k+1 wj(−R̂j)
)

, where q =
(

1 −
1
α

∑k

j=1 wj

)

/
(
∑m

j=k+1 wj

)

.

Example 5.3. Let Ω = {ω1, ω2, ω3} with uniform probability P(ωj) = 1/3. There

are two risky assets with centered returns R̂1 = (−1, 0)T , R̂2 = (0,−1)T , R̂3 =

(1, 1)T . Fix α = 0.05. The solution to the forward portfolio optimization problem

with µ = (1/3, 2/3) and ∆M = 0.5 is xM = (0.5, 0.5). Then X∗ = (−0.5,−0.5, 1),

VaRα(X
∗) = 0.5, and k = 0, m = 2. The set of risk identifiers of X∗ comprises

Q = (q1, q2, 0), where 0 ≤ q1, q2 ≤ 20 and q1 + q2 = 3. Parameterizing q1 = q and
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q2 = 3− q for q ∈ [0, 3], we obtain

µ =
0.5

1

(

1

3
q(−R̂1) +

1

3
(3− q)(−R̂2)

)

=

(

q/3

(3− q)/3

)

, q ∈ [0, 3].

The law invariant selector is given by q = 1.5, resulting in µ1 = µ2 = 0.5.

6. An application to Black-Litterman portfolio framework

In this section, we apply findings of Section 4 to an extension of the Black-Litterman

model of portfolio optimization on markets with discrete distributions of returns.

Asset return distributions are commonly approximated with a finite number of

scenarios in practical financial applications, see, e.g., Krokhmal et al. (2002), Gaiv-

oronski & Pflug (2005), Lim et al. (2010), Lwin et al. (2017). We start with a short

presentation of the extension of market-based Black-Litterman model of Meucci

(2005) to general discrete distributions and deviation measures.c We demonstrate

that the non-uniqueness of solutions to the inverse optimization problem (Section

2.2) is commonly observed in this theory and means that the posterior distribu-

tion of returns is not unique. The principle of law invariance brings back the well-

definiteness of this portfolio theory.

The underlying assumption of the original Black-Litterman model (Black & Lit-

terman 1992) is that the market is in equilibrium in which the mutual fund theorem

holds, i.e., all investors hold risky assets in the same proportions. In the general set-

ting of deviation measures, Rockafellar et al. (2007) develops an analogous theory

and calls the common portfolio of risky assets a master fund. It can be recovered

by solving (2.2) for a particular choice of ∆ = ∆M . We assume, as in the original

framework, that the market is in equilibrium, so the master fund corresponds to

relative market capitalizations of stocks: we will call it a market portfolio xM . Fur-

ther, acting in the spirit of Black & Litterman (1992) we assume that the centered

equilibrium distribution is known, for example, it is equal to the centered empir-

ical distribution of asset returns. The only parameter of the distribution which is

unknown is its location. To recover the latter, we solve an inverse optimization

problem: knowing the solution xM to problem (2.2) we find the mean excess return

vector µeq for a given expected market return ∆ = ∆M . The distribution µeq + R̂

is then called equilibrium distribution or prior distribution.

Investor’s views are represented by a m×n ‘pick matrix’ P and a vector v ∈ Rm.

Each row of P specifies combinations of assets and the corresponding entry in v

provides a forecasted excess return. The uncertainty (the lack of confidence) in

the forecasts is represented by a zero-mean random variable ε with a continuous

distribution with full support on Rm, for example, a normal distribution N(0, Q).

cThe reader is referred to Palczewski & Palczewski (2019) for a detailed discussion of a parallel
extension for continuous distributions.
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The resulting Bayesian model is

prior: R ∼ µeq + R̂,

observation: V |[R = r] ∼ Pr + ε.

The posterior distribution of future returns R given V = v is concentrated on the

same points as the prior distribution but with different probabilities. It can be

described by a new probability measure Q on Ω, i.e., the posterior distribution of

asset excess returns is that of µeq + R̂ under Qd. Following Bayes formula, we set

the unnormalized “density” of the posterior distribution:

X(ω) = fε
(

v − Pµeq − PR̂(ω)
)

,

where fε is the density of ε. Then Q(ω)/P(ω) = X(ω)/EP[X]. The posterior distri-

bution of asset returns is then fed into the optimization problem (2.2).

Assume now that the deviation measure D is finitely generated. By Corollary

2.1 it should be expected that the market portfolio is a unique solution to (2.2).

Consequently, the inverse optimization problem that determines the equilibrium dis-

tribution has many solutions (Theorem 4.1 and Example 5.3) resulting in multitude

of posterior distributions and, in effect, multitude of Black-Litterman optimal port-

folios. This is obviously unacceptable in a financial context. This non-uniqueness is

caused by the existence of many active portfolio risk generators (active risk identi-

fiers for the deviation measure), Lemma 4.1. Selecting the law-invariant active risk

identifier, see Section 5 and Example 5.3, brings back uniqueness of the solution to

the inverse optimization problem and, consequently, the uniqueness of solution to

the complete portfolio optimization workflow.

In practice, an investor commonly infers the market portfolio from the market

capitalization of assets. Such a portfolio is unlikely to have more than one active

portfolio risk generator since optimal portfolios with at least two active portfolio risk

generators lie on a finite number of hyperplanes in Rn (their Lebesgue measure is

zero). Hence, the market portfolio solves an unlikely portfolio optimization problem

for which the set of solutions has dimension n − 1, see Theorem 4.1. The inverse

optimization problem has, however, a unique solution.

Example 6.1. Consider the setting of Example 5.3. Extreme risk identifiers for

CVaR∆
5% are Qe = {Perm(3, 0, 0)}. The set of portfolio risk generators consists of 3

vectors:

D1 = (1, 0)T , D2 = (0, 1)T , D3 = (−1,−1)T .

Fix a market portfolio xM = (0.2, 0.8)T and its return ∆M = 0.4. The only active

portfolio risk generator for xM is D2. From Lemma 4.1, the inverse optimization

dThe location vector of the posterior distribution is rarely equal to µeq due to the reweighing of
probabilities in Q relative to P
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problem has a unique solution µ∗ = (0, 0.5). Consider now the forward optimization

problem with expected excess return ∆M and mean excess return µ∗:

min
x1,x2

max
(

x1;x2;−x1 − x2

)

, s.t. 0.5x2 ≥ 0.4.

The set of solutions is X∗ =
{

(x1, 0.8)
∣

∣ x1 ∈ [−1.6, 0.8]
}

. Each solution in X∗ has

CVaR∆
5% equal to 0.8 and the expected excess return of ∆M .

7. Conclusions

We have analyzed in depth forward and inverse portfolio optimization problems

when asset returns follow a finite number of scenarios and deviation measure is

finitely generated (covering popular deviation measures: CVaR, mixed CVaR and

MAD). We discovered a dichotomy in the uniqueness of solutions for both problems:

the forward and inverse problems cannot be simultaneously uniquely solved (for the

same data). Nevertheless, the set of parameters for which the non-uniqueness holds

is of measure zero. Although it may seem that the uniqueness problem is practi-

cally negligible, we have demonstrated that this is not true in many applications,

like capital allocation, cooperative investment, and the generalized Black-Litterman

model. In cooperative investment, the non-uniqueness affects a “fair” way of dis-

tributing profit of joint investment between participating investors: for investors

with preferences described by utility functions derived from finitely generated de-

viation measures, when the coalition’s forward optimization problem has a unique

solution (which happens on the set of model parameters of full measure), there are

many risk identifiers for the optimal wealth which prevents a unique “fair” alloca-

tion of wealth between investors. For the generalized Black-Litterman model, the

inverse optimization problem has multiple solutions resulting in multiple posterior

distributions and optimal portfolios. This result is in contrast with the classical

Black-Litterman model where the uniqueness holds for both forward and inverse

problems.

In forward optimization problems, if the solution is not unique, we can optimize

amongst those solutions according to a secondary objective. For example, if there

are many optimal portfolios, we can choose the one which is the “closest” to our

current portfolio to minimize rebalancing, c.f. Palczewski (2018). In the inverse

optimization, we advocate selecting a law-invariant solution which is intuitive from

the perspective of applications and shown to be unique in many cases of practical

importance. This idea reintroduces uniqueness of solution to both the cooperative

investment and generalized Black-Litterman model.

While the considered applications are specific in their assumptions, e.g., short

selling is allowed, specific risk measures involved, specific constraint structure, etc.,

the theory itself is very general. Theorems 2.1 and 4.1 can be extended to a broad

class of (parametrized) linear programs, and explain why non-uniqueness issue is

“common” in direct and inverse linear optimization.
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