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Abstract

Objective: This paper aims to address the challenges in abstract screening within systematic reviews (SR) by leveraging the zero-shot capabil-
ities of large language models (LLMs).

Methods: We employ LLM to prioritize candidate studies by aligning abstracts with the selection criteria outlined in an SR protocol. Abstract 
screening was transformed into a novel question-answering (QA) framework, treating each selection criterion as a question addressed by LLM. 
The framework involves breaking down the selection criteria into multiple questions, properly prompting LLM to answer each question, scoring 
and re-ranking each answer, and combining the responses to make nuanced inclusion or exclusion decisions.

Results and Discussion: Large-scale validation was performed on the benchmark of CLEF eHealth 2019 Task 2: Technology-Assisted Reviews in 
Empirical Medicine. Focusing on GPT-3.5 as a case study, the proposed QA framework consistently exhibited a clear advantage over traditional informa-
tion retrieval approaches and bespoke BERT-family models that were fine-tuned for prioritizing candidate studies (ie, from the BERT to PubMedBERT) 
across 31 datasets of 4 categories of SRs, underscoring their high potential in facilitating abstract screening. The experiments also showcased the viabil-
ity of using selection criteria as a query for reference prioritization. The experiments also showcased the viability of the framework using different LLMs.

Conclusion: Investigation justified the indispensable value of leveraging selection criteria to improve the performance of automated abstract 
screening. LLMs demonstrated proficiency in prioritizing candidate studies for abstract screening using the proposed QA framework. Significant 
performance improvements were obtained by re-ranking answers using the semantic alignment between abstracts and selection criteria. This 
further highlighted the pertinence of utilizing selection criteria to enhance abstract screening.

Key words: automated systematic review; abstract screening; large language model; question answering; zero-shot re-ranking. 

Introduction

A systematic review (SR) in medical research is the highest 
form of knowledge synthesis of all available medical evidence 
from relevant publications on a specific topic. SR follows a 
principled pipeline, including candidate study retrieval, pri-
mary study selection, quality assessment, data extraction, 
data synthesis, meta-analysis, and reporting.1 Because of its 
thoroughness and reliability, SR underpins evidence-based 
medicine.2 It shapes medical research and practice by inform-
ing researchers of the state-of-the-art knowledge and knowl-
edge gaps as well as health practitioners and policymakers of 
the best clinical practice.3

SR also faces tremendous challenges at each step. For 
instance, it is time-consuming, expensive, and resource- 
intensive to select primary studies, a.k.a. abstract screening, 
due to the massive volume of retrieved candidate studies, 
often at tens of thousands.4,5 It is further worsened by involv-
ing multiple human annotators, which is required to reduce 
bias and disparities.6 This compound complexity calls for 
innovative solutions to automate or semi-automate abstract 
screening1 to minimize the time delays and costs of this man-
ual screening task,7 which is the focus of the current paper.  
Figure 1 shows an example of abstract screening, where the 

abstract of an included study is matched against the selection 
criteria defined in the SR protocol.
Machine learning has been the focus of research in auto-

mating abstract screening.1,7,8 First, a small set of studies is 
selected for human annotation, and then a classifier is 
trained. Typically, active learning is adopted to improve the 
classifier iteratively. Obviously, the quality of the initial 
annotations plays an important role. However, choosing ini-
tial annotations is a problem of zero-shot setting and has not 
been explored at all. Another disadvantage is that this 
approach is not generalizable, and each SR topic requires 
training a bespoke classifier from scratch.
An alternative perspective was to treat abstract screening 

as a ranking problem, a.k.a. reference prioritization,7 incor-
porating approaches from the information retrieval (IR) com-
munity.9–16 One advantage of this approach is that it can 
utilize additional information about an SR converted into 
queries to enhance screening performance. Such information 
could be review title,9,10 original Boolean queries (for candi-
date study retrieval),17 research objectives,16,18 or a set of 
seed studies.15,19 Another advantage is the possibility of 
training a cross-topic ranker to generalize to diverse SR 
topics.

Received: December 20, 2023; Revised: June 9, 2024; Editorial Decision: June 18, 2024; Accepted: July 9, 2024 

© The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association.   

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/ 

by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial 

re-use, please contact journals.permissions@oup.com 

Journal of the American Medical Informatics Association, 2024, 31(9), 1939–1952 
https://doi.org/10.1093/jamia/ocae166 

Advance access publication 23 July 2024 

Research and Applications 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ja
m

ia
/a

rtic
le

/3
1
/9

/1
9
3
9
/7

7
1
8
6
6
7
 b

y
 g

u
e
s
t o

n
 1

8
 O

c
to

b
e
r 2

0
2
4

https://orcid.org/0000-0003-4255-5445
https://orcid.org/0000-0002-6768-8394


The above analysis motivated us to explore the emerging 
capabilities of large language models (LLMs), particularly 
GPT-3.5, to facilitate abstract screening. LLMs, with their 
robust zero-shot capabilities,20 offer the potential to act as 
artificial intelligence (AI)-based reviewers, streamlining the 
abstract screening process by either replacing at least one 
human reviewer or suggesting an initial set of abstracts for 
human verification and classifier training, both significantly 
reducing the workload for human reviewers.
In addition, we witness a severe lack of study about using 

selection criteria in automated abstract screening. Indeed, the 
selection criteria set up the grounds for human reviewers’ 
decision-making. Unfortunately, only a few studies initiated 
similar attempts,21–23 but neither the effectiveness of their 
methods nor the comprehensiveness of their experiments 
could provide convincing conclusions about the feasibility of 
LLMs in this task. The current paper presents a pioneering 
LLM-based framework for facilitating automated abstract 
screening to fill this gap.
Our contributions can be summarized in 3 folds. (1) We 

proposed the first comprehensive LLM-assisted question- 
answering framework to facilitate automated abstract 
screening in a zero-shot setting. (2) We developed the first 
generalizable approach to utilizing selection criteria to 
enhance abstract screening efficiency. (3) Our study marks 
the first comprehensive exploration of leveraging LLMs for 
reference prioritization in abstract screening, utilizing a well- 
known benchmark dataset to showcase the method’s high 
potential.

Background study

Automation in abstract screening

Efforts to automate systematic reviews using machine learn-
ing have surged recently. Kitchenham and Charters’ pre-
sented a good survey of such attempts in software 
engineering.24 In evidence-based medicine, Cohen et al. pre-
sented the seminal work of abstract screening using machine 
learning,25 while Marshall and Wallace advocated active 
learning techniques for abstract screening.26 Examples like 
RobotReviewer27,28 and TrialStreamer29 showcased the 
power of integrating AI into the review process, with Robot-
Reviewer claiming to reach accuracy comparable to human 
reviewers. Despite the progress, challenges persist, including 

labor-intensive labeling and the risk of overlooking relevant 
studies.30 Acknowledging the limitation of full automation, 
tools like Rayyan and Abstracker leverage natural language 
processing (NLP) algorithms to partially automate article 
screening.31

Machine learning for abstract screening

The biggest challenge is handling large document volumes, 
particularly in nonrandomized controlled trials lacking data-
base filters.32 For instance, EPPI-Centre reviews often screen 
over 20 000 documents, necessitating more efficient 
approaches.33 Efforts include refining search queries, balanc-
ing precision and recall, and leveraging resource-efficient 
recall-maximizing models with NLP.34

The initial approach involves training a classifier to make 
explicit include/exclude decisions.25,34–39 Many classifiers 
using this approach inherently generate a confidence score 
indicating the likelihood of inclusion or exclusion (similar to 
the ranking in the second approach). Generally, this 
approach requires a labelled dataset for training, hindering 
the assessment of work reduction until after manual screen-
ing. Research within this paradigm primarily focuses on 
enhancing feature extraction methods25,37 and refining classi-
fiers.38 van Dinter et al.8 analyzed 41 studies in medicine and 
software engineering, revealing Support Vector Machines 
and Bayesian Networks as standard models and Bag of 
Words and TF-IDF as prevalent natural language processing 
techniques. Despite advancements, a dearth of deep neural 
network models explicitly designed for the systematic review 
screening phase is noted. The most prominent challenges 
include handling extreme data imbalance favoring (at least 
close to) total recall of relevant studies.

Ranking approaches to abstract screening

The second approach entails utilizing a ranking or prioritiza-
tion system.9–16,33,40 This approach might necessitate manual 
screening by a reviewer until a specified criterion is met. This 
approach can also reduce the number of items needed to be 
screened when a cut-off criterion is properly estab-
lished.33,40,41 In addition to reducing the number needed to 
screen, other benefits of this approach include enhancing 
reviewers’ understanding of inclusion criteria early in the 
process, starting full-text retrieval sooner, and potentially 
speeding up the screening process as confidence in relevance 

Figure 1. Illustration of LLM-assisted automated abstract screening.
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grows.7 This prioritization approach also aids review 
updates, enabling quicker assimilation of current develop-
ments. Various studies reported benefits from prioritization 
for workflow improvement, emphasizing efficiency beyond 
reducing title and abstract screening workload.42,43

Active learning in abstract screening

It is crucial to note that the last approach, active learning, 
aligns with both strategies above.34,33,44 This involves an iter-
ative process to enhance machine predictions by interacting 
with reviewers. The machine learns from an initial set of 
include/exclude decisions human reviewers provide. 
Reviewers then judge a few new samples, and the machine 
adapts its decision rule based on this feedback. This iterative 
process continues until a specified stopping criterion is met. 
While the classifier makes final decisions for unscreened 
items, human screeners retain control over the training proc-
ess and the point at which manual screening concludes. Wal-
lace et al. implement active learning-based article screening 
using Support Vector Machines.34 Notable tools include 
Abstrackr36 and ASReview.45 Various active learning strat-
egies existed.7 For instance, Marshall and Wallace26 pro-
posed a variant based on certainty, continuously training the 
classifier on manually screened articles and reordering unseen 
articles based on predicted relevance.

Large language models for abstract screening

Recent advancements in LLMs, notably demonstrated by 
ChatGPT (GPT-3.5 or 4.0), have brought about a revolution-
ary paradigm shift across disciplines.46,47 LLMs have shown 
impressive generalizability across diverse domains and strong 
zero-/few-shot reasoning capabilities.46,48 Leveraging LLMs 
holds promise for SRs, which, however, remains underex-
plored.7,8 This gap underscores the need for a comprehensive 
investigation into LLMs’ potential in automating SRs, eg, 
abstract screening in the current paper.
There are some initial attempts to evaluate ChatGPTs in 

automated SR, such as automating search queries.49 Alshami 
et al.50 leveraged ChatGPT to automate the SR pipeline, yet 
their methodology diverges from conventional abstract 

screening practices, rendering it distinct from traditional 
approaches. The application of ChatGPT in abstract screen-
ing has been scarcely explored. Only 2 studies tried to 
address it.51,52 However, these studies failed to achieve a 
high recall rate (preferably total or close to total recall, say 
95% in most studies), a critical factor for practical applicabil-
ity. In addition, these studies performed limited empirical 
studies on a small number of in-house datasets that were nei-
ther public nor common in the research community, making 
it even harder to do reliable effectiveness evaluation. In con-
trast, our paper introduces a novel approach by applying 
LLMs like GPT-3.5 for reference prioritization across a sub-
stantially larger and well-recogniZed benchmark,53 signifi-
cantly enhancing the method’s applicability and effectiveness 
in systematic reviews.

Methods

Overview

Our framework utilizes LLMs’ remarkable zero-shot learning 
ability to assess if a candidate study’s abstract aligns with the 
SR protocol’s selection criteria. These criteria outline aspects 
of the selected studies. Figure 1 illustrates the idea using an 
example. The inclusion criteria contain 4 parts (in different 
colors). Each can be answered by matching the relevant infor-
mation in the abstract (in corresponding colors). For 
instance, the selection criterion “We included qualitative 
studies” is answered by the text evidence “We conducted a 
qualitative study” (both in red). Theoretically, all inclusion 
criteria should be met for the study to be included in the SR.
The current paper frames automated abstract screening as 

a question-answering (QA) task and proposes to use LLMs 
like GPT-3.5 to solve it. LLMs have showcased impressive 
question-answering abilities across diverse domains and 
tasks, including encoding clinical knowledge and achieving 
success in medical licensing exams.54–57 Initially, we experi-
mented with condensing the entire selection criteria into a 
single, comprehensive question, as depicted in Figure 2A. 
This method quickly showed its limitations, as LLMs are 
notably more adept at addressing well-defined, focused 

Figure 2. Methodological framework for LLM-assisted automation screening. (A) Naive approach for LLM-based automated abstract screening using 

selection criteria. (B) An aspect-based approach for LLM-assisted automated abstract screening using selection criteria.
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questions. Recognizing the critical need for high recall—95% 
or higher—to preserve the comprehensive integrity of the SR, 
we shifted our strategy to treating each selection criterion as 
a question to be addressed using LLMs. For example, the 4 
selection criteria in Figure 1 are converted into questions 
Q1-Q4 (by the LM-based Query Generator component in  
Figure 1). Subsequent prompts are directed to LLMs to get 
individual answers (from the LM-based Question Answerer), 
which are then combined into the final decision (through the 
Answer Scorer and Ensembler). Note that, in this example, 
Q5 is basically a useless, redundant question because we 
hard-coded GPT-3.5 to generate 5 questions (also refer to the 
“Question Generation” section).
Figure 2B formally defines our proposed QA framework 

for abstract screening. The following subsections will detail 
each component. We begin with a Question Generator to 
convert the selection criteria into a set of questions. Question 
generation is done by LLM. Optionally, question analysis 
may be done to analyze the logic between questions for the 
purpose of correctly combining question answers. See the 
“Quality of Question Generation” for details. Subsequently, 
each question is addressed by a trained Question Answerer to 
determine if the corresponding selection criterion is met. 
Question answering is also done by LLM. Each question 
answer is converted into a numeric score, and question-level 
re-ranking will be applied to improve answer scores. While 
the current paper tried some primitive but effective ways for 
answer re-ranking, the framework is flexible enough to plug 
in more advanced re-ranking methods. Finally, the Decision 
Engine ensembles the answers to all questions (by aggregating 
answer scores), followed by an optional criteria-level re-rank-
ing step to calibrate the final score for decision-making.

Question generation

A substantial body of research exists on automated question 
generation from natural language text.58 These methods 
often rely on manually crafted rules or a trained model, typi-
cally a fine-tuned pre-trained language model. While these 
question generation models have demonstrated utility in 
domain-specific tasks, such as generating questions about 
product descriptions for matching purchase inquiries59 or 
creating questions about academic materials to assess learn-
ing outcomes,60 generalizing them to the vast diversity of SR 
topics presents challenges. Therefore, we entrust the question 
generation task to LLMs, here GPT-3.5.

Prompt design

Our prompt development process adhered to OpenAI’s 
guidelines.61 We went further and established a persona for 
the LLM, instructing it: “You are a researcher screening titles 
and abstracts of scientific papers for the systematic review” 
(Figure 3A). This persona was crucial in ensuring the LLM’s 
responses were accurately contextualized so that they prop-
erly aligned with the task objective. Delimiters were used to 
separate different sections of the prompt, enhancing clarity 
and coherence. A naive approach to question generation is to 
prompt the LLM to generate questions from the selection cri-
teria paragraph. However, the early evaluation revealed that 
this uncontrolled method often generated redundant, dupli-
cate or sometimes trivial questions. To enhance the quality of 
generated questions, we constrained GPT-3.5 to produce no 
more than K questions. Based on an analysis of the lengths of 
selection criteria in our datasets, K¼ 5 proved sufficient for 

most SRs. This explicitly instructed the LLM to avoid redun-
dancy. Figure 3A depicts the utilized prompt, and an example 
is shown in Figure 1. Appendix A in the online supplemen-
tary material contains all the questions generated from the 
corresponding selection criteria for all SRs in the benchmark 
we evaluated. Each sentence in the selection criteria often 
aligns with a distinct criterion. In rare cases with more than 5 
sentences, GPT-3.5 intelligently combined 2 sentences into a 
single question. In addition to diversity, we also found better 
quality of the questions (see the “Quality of Question Gener-
ation” section for the quantitative evaluation).

Question answering

The Question Answerer evaluates the relevance of each 
abstract to every selection criterion, formulated as Yes/No 
questions. Initial tests showed that LLMs generally explain 
their answers. To quantify these explanations, we incorpo-
rated sentiment analysis to score the responses (see the 
“Answer Scoring” section). We instructed LLMs (Figure 3B) 
to reply either a “Positive,” “Negative,” or “Neutral” 
answer:

� Positive: The abstract explicitly addresses the question, 
offering information that aligns with the criteria posed by 
the question. 

� Neutral: The information in the abstract is inadequate or 
too ambiguous for LLMs to derive a confirmatory 
answer. 

� Negative: A clear NO answer to the question, indicating 
irrelevance to the specified criteria. 

Prompt design

The same prompt was used by most LLMs (Figure 3B). It was 
meticulously designed using 3 randomly selected topics from 
the Intervention training set of the TAR2019 benchmark. 
This approach prevented information leakage during prompt 
development, ensuring methodological integrity. The same 
persona was used for both question generation and answer-
ing. The only exception happened with LLaMA. We found 
LLaMA was unable to output the answers (and explanations) 
in a consistent style for post-processing. Thus, we tested a 
number of output formatting rules (i) to “force” LLaMA to 
answer only what is needed to be answered and (ii) to 
“guide” LLaMA to format its answers (and explanations) in 
an easy-to-process JSON format, as shown in Figure 3C.

Answer scoring

LLMs often generate an explanation for their answer. We 
converted answers into numeric representations using BART 
as a zero-shot sentiment scorer.62 The problem definition is 
formulated as follows. Suppose the set of candidate studies 
are D¼ fdigj

N
d¼1. The system review protocol defines a set of 

selection criteria (questions) Q¼ fQkgj
K
k¼1. Given each can-

didate study di, the set of answers are Ai ¼ fAi;kgj
K
k¼1. Given 

a candidate study di and each question answer Ai;k, we 
defined 2 methods, namely, the Hard Answer and Soft 
Answer, to assign the answer score, denoted as scoreðdi;Ai;kÞ, 
using BART, which reflects the likelihood of an abstract 
meeting a selection criterion.

� Hard Answer: In the Hard Answer method, BART classi-
fies LLMs’ responses into 3 distinct categories: Positive, 
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Figure 3. Prompt design for LLM-assisted automated abstract screening. (A) Prompt for question generation. (B) Prompt for question answering: GPT 

3.5, Gemini, and Claude. (C) Prompt for question answering: LLaMA.
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Neutral, and Negative, and accordingly, we assign a fixed 

score 1, 0.5, and 0 to each category, denoted by 

scoreðdi;Ai;kÞ. Thus, 

scoreðdi;Ai;kÞ

¼

1:0 if BART assignsa Positive sentiment to Ai;k

0:5 if BART assignsa Neutral sentiment to Ai;k

0:0 if BART assignsa Negativ esentiment to Ai;k

:

8

>

>

>

>

<

>

>

>

>

:

(1) 

� Soft Answer: In the Soft Answer method, each answer is 

scored by the probability of its sentiment being positive, 

which is calculated by BART. Thus, 

scoreðdi;Ai;kÞ ¼ ProbBARTðPositivejAi;kÞ: (2) 

Question-level re-ranking

To enhance screening further, one significant contribution of 

the current paper involves re-ranking candidate studies based 

on how well abstracts are semantically aligned with the selec-

tion criteria. For each Yes/No question, the cosine similarity 

between the question (selection criterion) and the abstract is 

computed based on their text embeddings encoded by an 

LLM,63 and averaged with the original answer score, produc-

ing K re-ranked scores, defined by 

score�ðdi;Ai;kÞ ¼
1

2
scoreðdi;Ai;kÞþ cosðdi;QkÞÞ;
�

(3) 

where cosðdi;QkÞ is the cosine similarity between (the 

abstract of) a candidate study di and one selection criterion 

question Qk.

Decision engine
Ensemble

Given a candidate study di, the answer scores for each selec-

tion criterion are “averaged” as the score for the candidate 

study, denoted by scoreðdiÞ: 

scoreðdiÞ ¼
1

K

X

K

k¼1

score�ðdi;Ai;kÞ: (4) 

Criteria-level re-ranking

Criteria-level re-ranking is done by averaging the score for 

candidate study di with the cosine similarity between its 

abstract and the selection criteria Q. Note that we use the 

original selection criteria paragraph in the review protocol 

for calculation instead of the questions generated from it. 

Thus, the re-ranked score for di, denoted by score
�ðdiÞ, is cal-

culated by 

score�ðdiÞ ¼
1

2
scoreðdiÞþ cosðdi;QÞÞ;ð (5) 

where cosðdi;QÞ is the cosine similarity between the candi-
date study and the complete selection criteria. Candidate 

studies are prioritized in descending order of this final score 
score�ðdiÞ.

Experimental setup
Dataset and evaluation metrics

This study utilized the widely used benchmark for evaluation: 
CLEF eHealth 2019 Task 2: Technology-Assisted Reviews in 
Empirical Medicine (TAR2019).53 This benchmark provides 
valuable insights into the prevailing scientific consensus on 
various topics, making it a suitable resource for evaluating 
re-ranking methodologies in systematic reviews.64 We 
employed the TAR2019 test set comprising 31 SRs grouped 
into 4 topic categories: 20 about clinical intervention trials 
(Intervention), 8 about diagnostic technology assessment 
(DTA), 2 for qualitative studies (Qualitative), and 1 for Prog-
nosis. Appendix B in the online supplementary material con-
tains detailed statistics of the SRs in each category. We 
refrained from using the training set provided by TAR2019, 
aiming to highlight the effectiveness of our zero-shot method-
ology that eliminates the need for prior training.23,65 Selec-
tion criteria for each SR are included in TAR2019.
Seven evaluation metrics were employed, including the 

rank position of the last relevant document (L_Rel), Mean 
Average Precision (MAP), Recall at k% (R@k%, k¼5, 10, 
20, 30), and Work Saved Over Sampling (WSS) at a r% recall 
level (WSS@r%, r¼95, 100). Notably, WSS@r% measures 
the screening workload saved by halting the examination 
process once r% of relevant documents are identified, com-
pared to screening the entire document set.25 For each SR, we 
calculated the performance metrics. They were averaged over 
all the SRs in each category.

Baseline models

We compared our methods against a number of zero-short 
baselines, including Sheffield University’s submission17 to 
TAR2019 and the 6 BERT-based ranking models by Wang 
et al.23 To comprehensively assess performance, we imple-
mented 2 IR baselines of our own. One is cosine similarity 
between selection criteria and abstract based on GPT embed-
dings,63 named GPT_Cos_Sim_Criteria. The other is the 
classical IR approach BM25,66 using selection criteria as a 
query to rank candidate studies. The baselines are summar-
ized below:

� Sheffield-baseline: The zero-shot IR baseline sub-
mitted by the University of Sheffield to TAR2019. 

� QLM: Another IR baseline in the Query Likelihood 
Model. See Wang et al.23 for details. 

� BERT/BERT-M/BioBERT/BlueBERT/PubMedBERT: 

Use BERT-family models as neural rankers, including 
BERT,67 BERT-M (BERT fine-tuned on the MS MARCO 
machine reading comprehension dataset),68 and BERT 
models tailed to biomedical domains, such as BioBERT,69

BlueBERT,70 and PubMedBERT.71

Large language models

While we focus on GPT-3.5 (more precisely “gpt-3.5-turbo- 
16K”) as a case study to demonstrate the effectiveness of the 
proposed framework, 3 additional successful mainstream 
LLMs were also employed on the more challenging DTA sub-
set on which GPT-3.5 underperformed: LLaMA 2 (“llama-2- 
70b-chat-hf”), Gemini (“gemini-pro”), and Claude 3 
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(“claude-3-haiku-20240307”). The other rationale for choos-
ing these LLMs for question answering was model 
“comparability.” LLaMA 2 was seen as a comparable LLM 
to GPT-3.5. While both Gemini and Claude are closed-source 
LLMs, making direct comparison difficult, we used Applica-
tion Programming Interface cost as a proxy for their capabil-
ities in answering selection criterion questions and decided to 
test “gemini-pro” and “claude-3-haiku-20240307.” Besides, 
Claude is a more recent leading proprietary LLM, so we also 
expect to see a positive impact on the quality of question 
answering. For all models, we used a temperature setting of 
0.2. In rare cases when LLMs failed to give answers to all the 
questions after a number of tries, we prompted LLMs to 
answer each question one by one. For answer re-ranking, 
because LLaMA and Claude do not provide their own text 
embedding models, we focused on GPT embedding (“text- 
embedding-ada-002”) in our main results (the “Effectiveness 
of the Question-Answering Framework” section), and also 
covered Gemini embedding (“text-embedding-004”) in LLM 
comparisons (see the “Comparing Large Language Models” 
section).

Results and discussion

Effectiveness of using selection criteria

Our first experiments aimed to evaluate the effectiveness of 
selection criteria for abstract screening. For comparison, we 
also used review title and search queries, both included in the 
TAR2019 benchmark, for prioritizing candidate studies in a 
similar way. As the “Large Language Models” section 
explains, GPT embedding was used in this experiment.
The initial results in Table 1 demonstrate that selection cri-

teria contain indispensable information for abstract screen-
ing. For example, on the Intervention and DTA datasets, the 
top 5% ranked results covered 40.1% and 47.7% included 
studies, respectively, while the top 30% covered 79.7% and 
85.1% included studies, respectively. This means selection 
criteria help to push a significant number of included studies 
to the front of the ranking lists, demonstrating its potential 
for prioritizing candidate studies. The WSS@95% values 
mean that at most 52.2% and 60% manual screening time 
can be saved to achieve a 95% recall of included studies. On 
Qualitative datasets, R@10% was 47.8%, still very high, but 
the WSS values were not as good as on Intervention and 
DTA. R@k% started to stagnate when k grew (eg, beyond 
30%).

It is also observed that selection criteria significantly out-
performed search query on the Intervention and DTA data-
sets, according to most performance metrics except R@50%. 
Overall, review title seems to be most valuable for screening 
candidate studies, so it is also part of our prompt design (Fig-
ure 3). Search Query was less effective. Indeed, the imprecise-
ness of search queries resulted in a large number of studies 
being screened. The only exception was Prognosis, but the 
fact that the Prognosis category contains just one SR does not 
allow us to overturn the afore-made overall statements.
Acknowledging such contextual variability inherent in the 

initial results is crucial. The nature of the dataset appeared to 
play a substantial role in the effectiveness of selection criteria. 
For instance, datasets with more specific interventions or 
defined methodologies, like DTA, may inherently align more 
closely with selection criteria, enhancing the performance of 
this query type in prioritization. In conclusion, the above evi-
dence advocates for the integration of selection criteria in 
abstract screening automation tools.

Effectiveness of the question-answering framework

In this subsection, we summarize the main findings based on 
experiments using GPT-3.5 for both question answering and 
answer re-ranking. Table 2 compares our QA-based 
approaches (ie, the GPT_QA_Soft_Both_ReRank and 
GPT_QA_Hard_Both_ReRank 2 rows) against other zero- 
shot baselines. “Both_ReRank” means both re-raking meth-
ods were used. The GPT_Cos_Sim_Criteria rows are 
copied from Table 1. Consistent with the baselines, we 
reported the average performances of each metric for each SR 
topic category. Appendix C contains the results for each indi-
vidual SR. On 4 topic categories, our approaches outper-
formed almost all baselines across a multitude of metrics. 
Specifically, our approaches scored substantially better in 
L Rel (the lower, the better) and MAP (the higher, the better), 
indicating the potential for pruning irrelevant studies more 
efficiently (low L Rel) and accurately (high MAP). Moreover, 
WSS@95% and WSS@100% both significantly outperformed 
the baselines, except Cosine_Similarity_Criteria on 
DTA, indicating the potential for saving more work from 
human reviewers who seek a total or close-to-total recall of 
included studies.
The recall values at various percentages 

(R@5%; R@10%; R@20%) were particularly encouraging. 
Notably, R@5% shows that the top-5% ranked results cov-
ered more than 40% (40%-52.7%) of included studies (eg, 

Table 1. The results of using 3 types of queries to match abstracts of candidate studies: selection criteria, review titles, and search queries.

Dataset Models L_Rel MAP R@5% R@10% R@20% R@30% R@50% WSS@95% WSS@100%

Intervention Review Title 927 0.344 0.441 0.596 0.758 0.836 0.929 0.560 0.519
Search Query 1248 0.200 0.241 0.424 0.602 0.725 0.889 0.449 0.416
Selection Criteria 920 0.315 0.401 0.544 0.722 0.797 0.797 0.522 0.499

DTA Review Title 1379 0.170 0.283 0.497 0.678 0.807 0.926 0.525 0.446
Search Query 1593 0.203 0.228 0.412 0.658 0.781 0.909 0.473 0.417
Selection Criteria 1154 0.271 0.477 0.628 0.782 0.851 0.851 0.600 0.513

Qualitative Review Title 1992 0.113 0.200 0.278 0.609 0.650 0.950 0.506 0.406
Search Query 2221 0.046 0.105 0.173 0.255 0.591 0.923 0.369 0.329
Selection Criteria 2256 0.082 0.173 0.478 0.559 0.618 0.618 0.303 0.289

Prognosis Review Title 2983 0.136 0.147 0.258 0.495 0.668 0.837 0.247 0.106
Search Query 3017 0.200 0.237 0.400 0.605 0.768 0.900 0.311 0.096
Selection Criteria 3160 0.178 0.200 0.305 0.495 0.647 0.832 0.239 0.053

DTA, diagnostic technology assessment.
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by GPT_QA_Hard_Both_ReRank 52.7% on Intervention, 
45% on DTA, 51.4% on Qualitative and 40% on Progno-
sis). When increased to top-10%, roughly 60%-70% of 
included studies were returned (eg, 69.7%, 59.5%, 60% and 
64.2%, respectively). This result is of great significance. On 
the one hand, human reviewers could obtain 60% of included 
studies by verifying only 10% of candidate studies, 5 times 
saving compared to random sampling. This allows for creat-
ing a large-enough annotated dataset more efficiently to train 
a robust classifier for automated screening.25 On the other 
hand, R@50% achieved 95% recall on average. This roughly 
means that the 50% candidate studies ranked in the second 
half can be safely discarded, which essentially means treating 
LLM as the second reviewer or be delegated to automated 
screening, both resulting in a roughly 50% saving in the man-
ual annotation. Future work is needed to validate the pro-
posal of using LLM as the second reviewer on more SRs of a 
wider range of topics.
In summary, our QA-based approach exhibited a clear 

advantage over traditional models and bespoke BERT-family 
models that were fine-tuned for ranking tasks (ie, the BERT 
to PubMedBERT rows in Table 2). They showed not only a 
higher precision in identifying relevant studies but also a sub-
stantial increase in efficiency, demonstrated by lower L Rel 
and higher WSS values. This indicates that the proposed 
approach has the potential to significantly improve efficiency 
and reduce costs for systematic reviews by alleviating much 

of the manual annotation burden from human reviewers. In 

addition, answer re-ranking proved to be a key success factor. 

This encourages advocacy for the integration of explanatory 

narratives into LLMs’ responses for future iterations. As per 

literature,72,73 revealing the model’s reasoning could not only 

bolster transparency but also build user trust, which is pivotal 

for the adoption of automated abstract screening tools. Ena-

bling the model to provide rationales for its answers encour-

ages a constructive feedback loop, where user responses can 

inform continuous model refinement. Such an iterative proc-

ess is essential for fostering a collaborative user-model rela-

tionship, ultimately enhancing the technology’s robustness 

and acceptability.

Ablation studies

Recall from Figure 2B that there are several components in our 

proposed framework: Question generation, question answer-

ing, question-level re-ranking, and criteria-level re-ranking.  

Table 2 shows the results of GPT_QA_Soft/Hard_Bo-

th_ReRank, which uses all these components. This subsection 

investigates the impact of each component through a quasi- 

ablation study. We removed one or both re-ranking compo-

nents, removed the question answering and question genera-

tion components, and compared the performances of the 

resulting methods. Thus, in addition to GPT_QA_Soft/ 

Hard_Both_ReRank, we tested the following variants:

Table 2. Overview and comparisons of model performances on 4 systematic review categories.

Dataset Papers Models L_Rel MAP R@5% R@10% R@20% R@50% WSS@95% WSS@100%

Prognosis Sheffield17 Sheffield-baseline 2990 0.126 0.146 0.255 0.448 – 0.247 0.112
Ours GPT_Cos_Sim_Criteria 3160 0.178 0.200 0.305 0.495 0.832 0.239 0.053

BM25 3337 0.074 0.089 0.132 0.279 0.605 0.020 0.000
GPT_QA_Soft_Both_ReRank 2373 0.430 0.400 0.653 0.800 0.984 0.543 0.289
GPT_QA_Hard_Both_ReRank 2333 0.429 0.400 0.642 0.789 0.984 0.555 0.301

Qualitative Sheffield17 Sheffield-baseline 3031 0.051 0.265 0.451 0.619 – 0.135 0.082
Ours GPT_Cos_Sim_Criteria 2256 0.082 0.173 0.478 0.559 0.682 0.303 0.289

BM25 2704 0.037 0.078 0.146 0.191 0.623 0.135 0.135
GPT_QA_Soft_Both_ReRank 1682 0.159 0.505 0.600 0.673 0.978 0.576 0.507
GPT_QA_Hard_Both_ReRank 1684 0.157 0.514 0.600 0.678 0.978 0.601 0.507

DTA Sheffield17 Sheffield-baseline 2250 0.175 0.220 0.336 0.525 – 0.451 0.338
Wang et al.23 BM25 2723 0.119 0.213 0.329 0.528 – 0.314 0.208

QLM 2318 0.122 0.216 0.327 0.534 – 0.347 0.248
BERT 2514 0.092 0.132 0.238 0.391 – 0.258 0.210
BERT-M 3234 0.096 0.079 0.198 0.379 – 0.263 0.123
BioBERT 3264 0.081 0.129 0.229 0.337 – 0.137 0.095
BlueBERT 3771 0.069 0.026 0.053 0.105 – 0.023 0.016
PubMedBERT 3330 0.104 0.123 0.214 0.312 – 0.202 0.098

Ours GPT_Cos_Sim_Criteria 1154 0.271 0.477 0.628 0.782 0.941 0.600 0.513
BM25 2461 0.164 0.334 0.472 0.654 0.351 0.233
GPT_QA_Soft_Both_ReRank 1136 0.315 0.438 0.593 0.766 0.941 0.556 0.506
GPT_QA_Hard_Both_ReRank 1176 0.322 0.450 0.595 0.791 0.938 0.536 0.491

Intervention Sheffield17 Sheffield-baseline 1276 0.245 0.220 0.334 0.507 – 0.470 0.386
Wang et al.23 BM25 1716 0.211 0.305 0.399 0.554 – 0.351 0.296

QLM 1724 0.212 0.279 0.385 0.511 – 0.340 0.294
BERT 1399 0.160 0.210 0.328 0.504 – 0.362 0.333
BERT-M 1836 0.177 0.195 0.355 0.527 – 0.323 0.266
BioBERT 1833 0.146 0.135 0.198 0.307 – 0.159 0.163
BlueBERT 2057 0.046 0.028 0.051 0.107 – 0.008 0.036
PubMedBERT 1974 0.078 0.050 0.091 0.275 – 0.121 0.094

Ours GPT_Cos_Sim_Criteria 920 0.315 0.401 0.544 0.722 0.920 0.552 0.499
BM25 1545 0.146 0.191 0.300 0.497 0.837 0.270 0.238
GPT_QA_Soft_Both_ReRank 801 0.450 0.526 0.697 0.816 0.959 0.600 0.526
GPT_QA_Hard_Both_ReRank 825 0.447 0.527 0.697 0.808 0.962 0.592 0.519

Note that the baselines did not report R@50%. DTA, diagnostic technology assessment.
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� GPT_QA_Soft/Hard_Question_ReRank: Criteria- 
level re-ranking component was removed. Mathemati-
cally, this is equivalent to removing cosðdi;QkÞ from Eq. 
(3). 

� GPT_QA_Soft/Hard_Criteria_ReRank: Question- 
level re-ranking component was removed. Mathemati-
cally, this is equivalent to removing cosðdi;QÞ from Eq. 
(5). 

� GPT_QA_Soft/Hard: Both question-level and criteria- 
level re-ranking components were removed. 

� GPT_Cos_Sim_Both: Questions were generated, but 
the question-answering component was removed. Both 
the question-level and criteria-level cosine similarities 
were used in scoring candidate studies. Mathematically, 
this means removing scoreðdi;Ai;kÞ from Eq. (3). 

� GPT_Cos_Sim_Question: In addition to question 
answering, the criteria-level re-ranking component was 
also removed. This is equivalent to removing both 
cosðdi;QÞ from Eq. (5) and scoreðdi;Ai;kÞ from Eq. (3). 

� GPT_Cos_Sim_Criteria: The question generation 
component was removed, thus no questions were gener-
ated. Implicitly, the question-answering and question- 
level re-ranking components disappeared too. This means 
retreating to match each candidate study against the selec-
tion criteria. Mathematically, this is equivalent to remov-
ing score(di) from Eq. (5). 

Table 3 shows the results of the ablation study. Due to 
space limit, we focused on 3 metrics: MAP, R@50%, and 
WSS@95%. From the GPT_QA_Soft/Hard rows, we can see 
that our QA framework resulted in good performances, 
improving significantly over the non-QA baselines (first 3 
rows) on Intervention, Qualitative, and Prognosis. The last 6 
rows are the performances of our framework by using either 
one or both re-ranking methods. Comparing them against 
GPT_QA_Soft/Hard, we see that re-ranking was one suc-
cess key to significant performance improvement, although it 
is less conclusive which re-ranking method is consistently bet-
ter. To gain better insights into the latter question, we aver-
aged the performance metrics across all 31 SRs, resulting in 
the “Average” columns in the table. It looks that criteria-level 
re-ranking maybe overall stronger than question-level 
re-ranking (by comparing the GPT_QA_Soft/Hard_Cri-
teria_ReRank rows against the GPT_QA_Soft/Hard_ 
Question_ReRank rows). By comparing the GPT_QA_ 
Soft/Hard_Both_ReRank rows against the 4 rows using 

one re-ranking method, we are more or less able to conclude 
that both re-ranking methods may have their own values in 
prioritizing candidate studies towards facilitating systematic 
reviews. Meanwhile, we point out that more experiments 
need be done on more SRs of the Qualitative and Prognostic 
categories to draw more convincing conclusions on the effec-
tiveness of the 2 methods of answer re-ranking, which is one 
of our directions for future work. Surprisingly, we found that 
the non-QA baselines (ie, the GPT_Cos_Sim_Criteria/ 
Question/Both rows) worked extremely well on DTA, 
beating the baseline QA approaches (ie, the GPT_QA_Soft/ 
Hard rows). After analyzing the qualities of generated ques-
tions for the DTA SRs, we guess the cause was the quality or 
complexity of generated questions of this SR category (more 
discussions in the “Quality of Question Generation” section). 
Nevertheless, answering re-ranking and question answering 
complement each other. This is proved by the significantly 
improved performances obtained by GPT_QA_Soft/ 

Hard_Both_ReRank (ie, the last 2 rows) over others (the 
fourth to tenth rows).

Quality of question generation

We manually checked the question qualities and found nota-
ble strengths and occasional challenges of GPT-3.5 in ques-
tion generation. Figure 4A illustrates how GPT-3.5 translated 
a lengthy exclusion criterion into 2 relevant questions, Q4 

and Q5. The exclusion criterion sentence (in purple and blue) 
was automatically reworded by GPT-3.5 (see the underlined 
words) in a way that a POSITIVE response consistently signi-
fies compliance with a selection criterion. Occasionally, GPT- 
3.5 failed to generate completely independent questions, such 
as Q5 in Figure 1. This led to redundant or overlapped ques-
tions, introducing possible biases in combining answer 
scores. To avoid these issues, question generation may be 
done by humans. Less radically, it may be practical for 
humans to separate the selection criterion sentences and use 
each sentence to generate questions one by one. Humans may 
also manually decide how to convert a long selection criterion 
sentence into several questions.
Notably, GPT-3.5 also displayed difficulties with complex 

“OR” clauses in a long selection criterion sentence, errone-
ously splitting them into separate questions and complicating 
the scoring process. In such cases, matching one question 
should give a POSITIVE score, but the NEGATIVE answers 
to other questions generated from the OR clause will mistak-
enly underestimate the score. Figure 4B shows an example. A 

Table 3. Results of ablation study by removing one or several components from the processed question-answering framework.

Models MAP WSS@95%

Prognosis Qualitative DTA Intervention Average Prognosis Qualitative DTA Intervention Average

GPT_Cos_Sim_Criteria 0.178 0.082 0.271 0.315 0.286 0.239 0.303 0.600 0.552 0.536
GPT_Cos_Sim_Question 0.188 0.074 0.233 0.261 0.239 0.269 0.283 0.554 0.456 0.464
GPT_Cos_Sim_Both 0.191 0.084 0.261 0.309 0.278 0.252 0.310 0.602 0.544 0.534
GPT_QA_Soft 0.350 0.157 0.255 0.411 0.352 0.434 0.599 0.408 0.486 0.471
GPT_QA_Hard 0.315 0.110 0.228 0.356 0.306 0.417 0.650 0.364 0.466 0.450
GPT_QA_Soft_Criteria_ReRank 0.417 0.159 0.301 0.440 0.385 0.523 0.595 0.473 0.534 0.522
GPT_QA_Hard_Criteria_ReRank 0.417 0.200 0.310 0.443 0.392 0.543 0.608 0.454 0.532 0.517
GPT_QA_Soft_Question_ReRank 0.441 0.161 0.287 0.435 0.379 0.252 0.599 0.452 0.509 0.492
GPT_QA_Hard_Question_ReRank 0.452 0.156 0.297 0.435 0.382 0.501 0.633 0.441 0.516 0.503
GPT_QA_Soft_Both_ReRank 0.430 0.159 0.315 0.450 0.396 0.543 0.576 0.556 0.600 0.585
GPT_QA_Hard_Both_ReRank 0.429 0.157 0.322 0.447 0.395 0.555 0.601 0.536 0.592 0.577

DTA, diagnostic technology assessment.
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single selection criterion sentence with 3 conditions con-
nected by “OR” logic was split into 3 questions Q2-Q4. Sup-
pose a candidate study “evaluated the accuracy of the 
NEXUS criteria” and 3 questions are correctly answered. 
This results in one POSITIVE answer for Q2 (scored 1) and 2 
NEGATIVE answers for Q3 and Q4 (scored 0). The ensemble 
score is 1, lower than that by rejecting answers Q3 and Q4 (2 
NEUTRAL answers, each scored 0.5, leading to a final score 
of 2), which is obviously suboptimal. This granularity of 
analysis points toward a need to enhance the model’s ability 
to discern and maintain the integrity of compound logical 
structures within questions. We postulate that a viable solu-
tion is to train a good question generator and analyzer to 
tackle these issues.
To somehow provide a quantitative evaluation of the qual-

ity of question generation, we manually annotated the 
“correctness” of all generated questions for all 31 SRs. The 
simple guidelines for scoring generated questions are as fol-
lows: 2 marks assigned to perfect question (eg, Q1-Q4 in Fig-
ure 1); 1 mark assigned to incomplete question, ie, a question 
missing some information from the corresponding selection 
criterion; 1 mark assigned to each question generated from 
an “OR” clause (eg, Q2-Q4 in Figure 2B); 0 mark assigned to 
meaningless/redundant question (eg, Q5 in Figure 1); and −1 
mark to wrong question, ie, a question twisted the original 
meaning of the corresponding criterion, which never hap-
pened in our datasets though. Table E1 in Appendix E shows 
the mean question scores for all 4 SR categories. DTA 
recorded the lowest score, 1.50, which might be the cause for 
the under-performance of our QA framework to our own 
cosine similarity baseline using selection criteria due to the 
reasons stated in the last paragraph. Nevertheless, the mean 
score is still very high, indicating no or few meaningless ques-
tions. Prognosis scored 2.0, meaning perfect question genera-
tion. However, it is crucial to note that this category 
comprised only a single SR, potentially causing bias in evalu-
ation. We argue that the findings underscore the possibility 
of delegating question generation to LLMs like GPT-3.5, 

though further improvement can be achieved by human inter-
vention as a quality control measure.

Comparing large language models

Three additional successful mainstream LLMs, namely, 
LLaMA 2, Gemini Pro, and Claude 3, were compared against 
ChatGPT (GPT-3.5). As shown in Table C4 in Appendix C, 
we found our approach performed extremely well on the 
Intervention subset. We achieved close to 100% R@50% for 
all 20 SRs in this category by at least one variant of our 
approach. Accordingly, because 50% samples can be safely 
delegated to our approach for decision, the WSS@95% was 
also very high for all Intervention SRs. However, GPT-3.5 
struggled a bit on the DTA subset, mainly on 2 SRs (see 
“CD012768” and “CD012233” in Table C3 in Appendix 
C). Therefore, the experiments in this section focused the 
comparison on DTA. Table 4 compares the screening per-
formances using the 4 LLMs as the question answering 
engine and 2 LLMs for answer re-ranking (see the “Large 
Language Models” section for details). For example, LLa-
MA_QA_Soft__Gemini_Both_ReRank means LLaMA 2 
was used for question answering, and Gemini embedding was 
used for answer re-ranking.
We have several interesting findings from Table 4. The first 

4 rows show that, in a certain sense, Claude 3 did perform 
significantly better in question answering, as was expected to 
see. Using QA alone, it could achieve more than 90% 
R@50%. The WSS@95% and WSS@100% were both greatly 
improved too. We envision that the overall effectiveness of 
our QA-based framework will be continuously improved 
with more powerful LLM-backed QA engines. However, 
Gemini Pro and GPT-3.5 had better R@5%; R@10% and 
R@20% values, suggesting them to be more useful in an 
active learning setting. By comparing the last 8 rows against 
the first 4 rows, we observe that answer re-ranking consis-
tently improved the overall performance using different 
LLMs as the QA engine, further justifying the effectiveness of 
our proposed re-ranking methods. Additionally, Gemini 

Figure 4. Examples of strengths and challenges of GPT-3.5 in question generation. (A) Handling exclusion criteria. (B) Problems with “OR” clauses.
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embedding proved to be significantly more helpful than GPT 
embedding. Note that the GPT embedding model we used 
was “text-embedding-ada-002,” strong but much older than 
the Gemini embedding model “text-embedding-004.” From 
this angle, the results further underscore the necessity of 
answer re-ranking. We anticipate that improvements in text 
embedding will bring added benefits to our proposed frame-
work. Overall, a strong QA engine (Claude 3 in our case) and 
a strong text embedding for re-ranking (Gemini embedding 
“text-embedding-004” in our case) resulted in the best- 
performing system, achieving a 95.5% average R@50% and a 
0.653 average WSS@95%. This implies that, on average, a 
maximum of 65.3% of human labor can be saved with the 
assistance of LLMs. Finally, and not least, the performance 
of different LLMs varies a lot across different SRs (see Tables 
D1 and D2 in Appendix D). This variability provides us with 
an opportunity to integrate the strengths of various LLMs, 
which will be one of the main directions of our future work.

Quality of question answering

As shown in the previous section, the quality of question 
answering is one key success factor for our approach. In this 
subsection, we attempted to evaluate the quality of responses 
from GPT-3.5 and 3 additional LLMs, including LLaMA 2 
(70B), Gemini Pro and Claude 3 (see the “Large Language 
Models” section). We randomly selected 10 samples from 
each systematic review in the DTA category. The correctness 
of each answer for each question on each sample was checked 
by the first author. To further minimize human annotation 
bias, we annotated these responses using 3 much more 
powerful versions of LLMs—GPT-4, Gemini 1.5 Pro, and 
Claude 3 Opus. The ground truth was determined by major-
ity voting among the human annotator and all 3 LLM anno-
tators. In total, 400 answers and their explanations were 
manually annotated, 50 per review topic.
The results in Table E2 in Appendix E show that the LLMs 

are nearing human-level accuracy in question answering in 
several instances. ChatGPT (GPT-3.5) lead with an average 
accuracy of 0.673 compared to 0.720 achieved by human 
annotators. Claude 3 Haiku and Gemini Pro also showed 
promising results (0.648 and 0.620, respectively). The close 
proximity of LLM accuracy to the human level is a promising 
development, particularly for applications involving a zero- 
shot setting, like abstract screening. This capability could be 
harnessed to significantly alleviate human workload by ini-
tially filtering out straightforward cases, leaving only the 
most ambiguous or complex samples for human verification. 
Such an approach enhances efficiency and allows human 

expertise to be concentrated on cases requiring more nuanced 
judgement, thereby optimizing resource allocation and 
improving screening quality. Enhancing LLMs’ question- 
answering capability in the subject fields of systematic 
reviews will definitely benefit automatic abstract screening, 
which is one of our future research directions. In addition, it 
can be observed that different LLMs excelled on different 
review topics. Such diversity opens the gate to exploring 
LLM ensembles for improved accuracy.
To gain better insights, we conducted a head-to-head com-

parison and correlation analysis of the comparative capabil-
ities of various LLMs. The head-to-head comparison 
(Figure 5A) calculated the head-to-head winning rate of each 
model against others, including the human annotator. As 
partly expected, all models outperformed LLaMA 2, with 
Claude 3 excelling among all LLMs but surprisingly only 
rivalling GPT-3.5. This corroborates with the first 4 rows in  
Table 4, where GPT-3.5 showed better performance than 
LLaMA 2 and Gemini across most metric while Claude 3 
excelled in L Rel; R@50% and WSS but not others. The cor-
relation map (Figure 5B) counted the percentage of times 2 
LLMs gave the same answer (Positive/Neutral/Negative). 
Different LLMs exhibited substantial variability on the 400- 
question human-annotated sample set. GPT-3.5 had the high-
est correlation with human annotator, which corroborates its 
closer performance to human in the head-to-head contest. 
Although all models share higher answer similarity than 
LLaMA 2, the fact that LLaMA 2 presented good perform-
ance in term of the important metrics L Rel and WSS, which 
are directly linked to each other, cannot rule out LLaMA 2 
from serving as an AI assistant for abstract screening, espe-
cially when open-access is factored into consideration. Never-
theless, we believe the in-depth analysis presages the 
synergistic potentials of different LLMs to improve the effi-
ciency of systematic reviews.

Conclusion

This paper proposed an effective LLM-assisted question- 
answering framework to facilitate abstract screening and 
advance automated systematic review. Our framework starts 
with converting selection criteria to binary questions, answer-
ing and scoring questions using LLMs, adjusting answer 
scores using question- and criteria-level re-rankings, and 
combining answer scores to prioritize candidate studies. 
Extensive experiments emphasized the particular pertinence 
of selection criteria of included studies to automated abstract 
screening and LLMs’ proficiency in understanding and 

Table 4. Performance comparison of different large language models on the DTA category.

Models L_Rel MAP R@5% R@10% R@20% R@30% R@50% WSS@95% WSS@100%

GPT_QA_Soft 1979 0.255 0.319 0.495 0.674 0.765 0.878 0.408 0.334
Llama2_QA_Soft 1809 0.152 0.254 0.435 0.603 0.710 0.803 0.377 0.336
Gemini_QA_Soft 2487 0.232 0.309 0.526 0.678 0.725 0.847 0.382 0.235
Claude_QA_Soft 1800 0.163 0.304 0.410 0.545 0.763 0.905 0.436 0.411
GPT_QA_Soft__GPT_Both_ReRank 1136 0.315 0.438 0.593 0.766 0.858 0.941 0.556 0.506
GPT_QA_Soft__Gemini_Both_ReRank 679 0.347 0.503 0.669 0.825 0.886 0.953 0.630 0.600
Llama2_QA_Soft__GPT_Both_ReRank 1250 0.259 0.423 0.614 0.779 0.851 0.930 0.540 0.452
Llama2_QA_Soft__Gemini_Both_ReRank 833 0.325 0.514 0.651 0.825 0.875 0.951 0.636 0.540
Gemini_QA_Soft__GPT_Both_ReRank 1920 0.293 0.456 0.627 0.755 0.815 0.906 0.488 0.357
Gemini_QA_Soft__Gemini_Both_ReRank 1162 0.330 0.528 0.684 0.800 0.862 0.952 0.597 0.511
Claude_QA_Soft__GPT_Both_ReRank 1475 0.244 0.406 0.564 0.742 0.855 0.950 0.548 0.479
Claude_QA_Soft__Gemini_Both_ReRank 924 0.305 0.522 0.659 0.808 0.881 0.955 0.653 0.573
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utilizing selection criteria to prioritize candidate studies. 
LLMs demonstrate exceptional capability in parsing and 
applying these criteria to discern and prioritize candidate 
studies to facilitate filtering relevant studies. Specifically, 
LLMs such as GPT-3.5 successfully handled the complexity 
of a mixture of inclusion and exclusion criteria by correctly 
phrasing the questions. The overall quality of question gener-
ation was very high based on human verification. However, 
it faces challenges in formulating several juxtaposed criteria 
with a logical OR relationship. The positive results of LRel 

(position of the last relevant study), R@5% (recall at top 
5%), R@10%; WSS@95% (Workload Saved over Sampling at 
95% recall level), and WSS@100% not only showed the com-
petency of the proposed framework as a zero-shot abstract 
screening methodology but also indicated its potential use in 
reducing human effort in building a high-quality dataset for 
training an abstract screener. The comparative study of sev-
eral mainstream LLMs in question answering, including 
GPT-3.5, LLaMA 2, Gemini Pro, and Claude 3, has shown 
promising results, with some models nearing human-level 
accuracy. This progress suggests that LLMs can significantly 
reduce the human effort required in the initial filtering stage 
of abstract screening by handling clear-cut cases, thereby 
allowing human experts to focus on more ambiguous or com-
plex instances. Such strategic deployment of LLMs enhances 
operational efficiency and elevates the quality of systematic 
reviews. Notably, the comparative analysis of various LLMs 
has broadened our understanding of the variability in per-
formance across different models, highlighting the potential 
for leveraging the comparative strengths of diverse LLM to 
enhance screening accuracy. Thanks to the high R@95%
(mostly >95%), we conjecture that LLMs can replace the 
second reviewer by more or less safely delegating 50% 
screening job to LLMs or machine learning models trained 
with the assistance of LLMs, although large-scale validation 
studies are needed.
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