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This paper introduces a novel application of spatial-temporal graph neural networks (ST-GNNs) to 
predict groundwater levels. Groundwater level prediction is inherently complex, influenced by various 
hydrological, meteorological, and anthropogenic factors. Traditional prediction models often struggle 
with the nonlinearity and non-stationary characteristics of groundwater data. Our study leverages 
the capabilities of ST-GNNs to address these challenges in the Overbetuwe area, Netherlands. We 
utilize a comprehensive dataset encompassing 395 groundwater level time series and auxiliary data 
such as precipitation, evaporation, river stages, and pumping well data. The graph-based framework 
of our ST-GNN model facilitates the integration of spatial interconnectivity and temporal dynamics, 
capturing the complex interactions within the groundwater system. Our modified Multivariate Time 
Graph Neural Network model shows significant improvements over traditional methods, particularly 
in handling missing data and forecasting future groundwater levels with minimal bias. The model’s 
performance is rigorously evaluated when trained and applied with both synthetic and measured 
data, demonstrating superior accuracy and robustness in comparison to traditional numerical models 
in long-term forecasting. The study’s findings highlight the potential of ST-GNNs in environmental 
modeling, offering a significant step forward in predictive modeling of groundwater levels.
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The complexity of groundwater level (GWL) prediction and modeling arises from its nonlinearity and sensitivity 
to various hydrological, meteorological, and anthropogenic influences1–3. Conventional GWL models, such 
as physical-based and traditional statistical methods, are limited by their high parameterization needs. This 
requirement makes the models computationally difficult to calibrate, as each parameter must be accurately 
estimated to reflect real-world conditions. Additionally, the models are challenged by computational intensity 
and difficulty in capturing the temporal evolution and nonlinearity in GWL data4–7. In this context, deep 
learning models and, in particular, spatial-temporal graph neural networks (ST-GNNs) offer promising new 
avenues for accurate and efficient groundwater forecasting. Our study focuses on leveraging ST-GNNs to predict 
groundwater levels in the Overbetuwe area, Netherlands. The selection of this area is driven by the availability 
of data8.

Machine learning methods, particularly data-driven ones, have been successfully applied in groundwater 
level prediction studies without requiring detailed physical process knowledge9–11. Recent works have observed 
an evolving landscape in groundwater level forecasting, shifting from conventional shallow networks to deep 
learning techniques12. Unlike physically-based models, which usually require a detailed understanding of local 
conditions and extensive calibration, data-driven models such as artificial neural networks can predict target 
variables using only relevant driving forces. LSTMs, designed for long-term time series data prediction, are 
equipped with memory cells capable of retaining critical information about historical events, making them 
well-suited for extracting non-linear spatio-temporal groundwater patterns. Zhang et al.’s study employing 
LSTM models to simulate water table fluctuations using a range of inputs over 14 years showed extremely high 
accuracy, illustrating the potential of these models to outperform traditional ANN approaches13. A previous 
study has instead shown that 1D-convolutional neural networks (CNNs) are a good choice for groundwater 
level simulation, as they outperform LSTM models in terms of accuracy and calculation speed.10 However, these 
methods focus predominantly on temporal dynamics and often overlook the spatial relationships in GWL data, 
a gap that ST-GNNs are well-equipped to address. This gap in research is where this paper contributes.

ST-GNNs, rooted in graph theory and neural network methodologies, are particularly effective in datasets 
where spatial interconnectivity and temporal changes are significant. The ST-GNNs process inputs consisting 
of multivariate time series data, accompanied by a graph structure which delineates the interconnections 
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between the variables within the multivariate time series. In these networks, spatial correlations among nodes 
are effectively represented through graph convolution techniques, while the temporal relations among past states 
are analyzed using recurrent neural network architectures14–21

While ST-GNNs have primarily been used in traffic prediction and skeleton-based action recognition, their 
application has recently extended to broader scientific fields, including meteorology22,23 and seismology24. 
This study harnesses the power of ST-GNNs to predict GWL in the Overbetuwe area, Netherlands. Unlike 
traditional methods, ST-GNNs adeptly handle unstructured spatial data and capture the complex interplay 
of spatial and temporal dynamics affecting GWL. The selection of ST-GNNs for this task is motivated by the 
distinct characteristics of the data and the specific challenges they introduce to modeling. Firstly, the nature 
of groundwater data, characterized by its complex spatial and temporal interactions, aligns well with the 
capabilities of spatial-temporal graph modeling. This approach offers the necessary granularity and flexibility to 
accurately model the intricate relationships within multivariate time series data. Secondly, the data encountered 
in this study is inherently hybrid, containing both continuous and discrete elements. This heterogeneity requires 
a modeling solution that can adeptly manage such diverse data types. Furthermore, the data’s noisiness and 
sparsity, spanning both spatial and temporal dimensions, pose significant challenges25. These conditions 
necessitate a modeling strategy capable of discerning correlations between observations at various locations and 
times, yet the reliance on black-box learning methods is constrained by the limited quantity of data available. 
Therefore, the deployment of ST-GNN, infused with a degree of prior knowledge, emerges as a requisite strategy. 
By incorporating control variables like pumping rates and considering multiple aquifers, the proposed ST-GNN 
model extends the applicability of GNNs in hydrological forecasting beyond current capabilities, addressing 
challenges such as missing data and ensuring model generalizability.

One recent study that does address spatial relationships in groundwater forecasting is by Bai et al.26. In their 
work, they employ a graph neural network to forecast groundwater dynamics in the southwest area of British 
Columbia, Canada. Bai et al.’s model demonstrates superior performance compared to baseline models like 
LSTM27 and Gated recurrent unit (GRU)28. However, there are notable differences between Bai et al.’s approach 
and our study. While Bai et al. focus on groundwater dynamics in a region predominantly influenced by rainfall 
and characterized by high seasonality in groundwater level (GWL) fluctuations, our research extends to the 
Overbetuwe area, Netherlands, which does not exhibit such pronounced seasonal patterns. Our study area is 
influenced by a broader range of hydrological, meteorological, and anthropogenic factors, including the effects 
of pumping wells and river stages, contributing to more complex and nuanced groundwater behavior. Moreover, 
our choices of GNN architectures and predefined adjacency matrix contrast with Bai et al.’s use of Graph WaveNet 
and a self-adaptive adjacency matrix. Our model is tailored to our unique dataset and the specific challenges it 
presents, including the integration of control variables such as pumping rates, and the definition of the graph 
structure to represent the differet hydrological connections. Lastly, a critical advancement in our methodology, 
compared to Bai et al., is our approach to handling data gaps. Bai et al. exclude wells with gaps larger than one 
month and interpolate smaller gaps, potentially overlooking valuable information. Conversely, we introduce a 
masking strategy to track the locations and times of missing values, seamlessly integrating this information into 
our loss function to avoid training on these gaps, thereby enhancing model accuracy and reliability.

This study goes beyond traditional forecasting by exploring the ST-GNN model’s utility in scenario planning 
and decision-making for drinking water extraction, considering varying weather condition scenarios months 
in advance. This capability is pivotal for managing water resources sustainably, ensuring that the extraction 
volumes are optimized to prevent drought conditions. Furthermore, the deep learning model supports rapid 
computational capabilities. This feature enables the quick generation and simulation of multiple scenarios, 
making it an invaluable resource for strategic planning and promoting efficient water usage.

The paper is structured as follows: following the introduction, we describe our methodology, including 
data description, preprocessing, and model architecture in Section 2. Section 3 presents the results, including 
an abation study and a comparative analysis with the state-of-the-art traditional numerical model. Finally, we 
conclude in Section 4 with a discussion on the implications of our findings for hydrological forecasting and 
future research directions.

Methodology
This section outlines the methodology for predicting groundwater levels using ST-GNNs. It starts with a detailed 
description of data from the Overbetuwe area in the Netherlands, focusing on hydrological, meteorological, 
and anthropogenic factors affecting groundwater levels. The preprocessing steps for model training are then 
presented, followed by an explanation of a graph-based framework designed to capture the complex spatial-
temporal relationships in groundwater data. Finally, it discusses training strategies and error metrics to optimize 
model performance and accurately evaluate its predictive capabilities.

Data description
The study focuses on the Overbetuwe area in the Netherlands, a polder region approximately 30 km by 10 
km in size, flanked by two branches of the Rhine river. The land surface elevation varies from around +10 m 
NAP (Amsterdam Ordnance Datum) in the east to around +7 m NAP in the west. The shallow subsurface 
is characterized by a low-permeable phreatic layer, underlain by two aquifers separated by an aquitard. The 
groundwater is relatively shallow, with the depth to the water table varying between 0.8 and 4.2 m. The near-
surface layer features a low-permeability phreatic zone composed mainly of clay and sandy clay. Beneath this 
zone lie two aquifers, which are divided by an aquitard. This aquitard is made up of clay, with its thickness 
ranging from 0 to 15 meters8. For a more comprehensive understanding of the hydrological system, the reader is 
referred to the work of Brakenhoff et al8.
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The study encompasses data from 213 observation wells, also called piezometers, yielding a total of 395 
groundwater level time series. Some of these time series originate from the same geographical location (but 
differing in terms of depth). While each time series begins in a different year, some starting as early as the 
1950s, the frequency and availability of data have evolved significantly over time. Initially, the data collection 
for these time series was on a monthly basis. However, the introduction of automatic loggers at the turn of 
the new millennium enabled an increase in frequency to daily or even more frequent recordings. Due to the 
higher frequency and availability of modern data, we preferred to use these for a weekly analysis to ensure more 
consistent and detailed temporal coverage. Figure 1 visually showcases the distribution and types of sensors 
across the Overbetuwe area.

In addition to the groundwater levels from the observation wells, which represent the primary variable of 
interest, other types of time series data are recorded as exogenous variables: precipitation, evaporation, river 
stages, and pumping wells. Of these, only the pumping well serves as the control variable. Daily precipitation 
data is available from seven measurement stations, and evaporation data from two weather stations. Additionally, 
river stage measurements are taken every 10 minutes, and drinking water extraction data is gathered daily from 
4 stations. The metadata for each of these time series includes location coordinates and depth where applicable.

Data preprocessing
In addressing the critical challenges of data sparsity and noise inherent in the dataset, the preprocessing 
strategy lays a foundational stone for the subsequent analysis and modeling phases of this study. The complexity 
introduced by noisy data and sparse datasets-characterized by significant gaps and intermittent recordings-
necessitate a rigorous approach to data cleaning and selection. Refining the dataset to mitigate these challenges, 
enhances the reliability of the analysis and establishes a robust basis for the modeling phase. The approach 
to preprocessing not only addresses the immediate issues of data quality and completeness but also serves as 
a crucial contribution of this study, illustrating the significance of a well-considered preprocessing phase for 
robust forecasting results.

The starting point for this analysis is established as the year 2004. This choice rests on two key factors: the 
comprehensive availability of time series data from observation wells starting from this year, and the significant 
portion of these data recorded on at least a daily basis. To balance maintaining sufficient data and managing its 

Fig. 1.  Illustration of the sensor network. Different types of sensors are represented by distinct colors, 
providing an overview of the spatial distribution and categorization of each sensor within the study area. 
Notably, one evaporation sensor is located outside the depicted map area. Additionally, the precise locations 
of some observation points may not be distinctly visible, as certain sensors share the same coordinates but 
are situated at different depths, and others are too closely positioned to be distinguished on the map. The 
underlying map data is © OpenStreetMap contributors and is available under the Open Database License 
(ODbL)29.
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variability, and considering the relatively slow daily variations, the data frequency is adjusted to a weekly basis, 
with values averaged.

Out of the 395 available time series, 200 are selected, prioritizing those with the most complete data. The 
excluded time series had an exceedingly high amount of missing data points, corresponding to more than 20% of 
their data missing. Initially, the overall percentage of missing values for the observation wells stands at 29.3%; this 
selection reduces the overall percentage of missing values to 8.1%. Missing values undergo linear interpolation, 
and a mask is introduced to track the locations and times of these missing values. This mask proves instrumental 
in the loss function, ensuring that these points are not used for training. The purpose of the linear interpolation 
is to provide a continuous dataset for model input, while the masking ensures that only real data points are used 
in the training loss function, maintaining the integrity and accuracy of the training process. For the river stage 
data, only five locations with no missing data are retained: Dodewaard, IJsselkop, Nijmegen haven, Grebbe, and 
Pannerdense Kop. The other types of measurements exhibit no missing data issues.

All data are rescaled within the range (0, 1).The dataset is chronologically divided, with 80% allocated for 
training starting from 2004-01-04, and 10% reserved for validation. However, using a separate 10% for testing 
resulted in overconfident and unrepresentative outcomes. To address this, the validation and test sets were 
combined, leading to the use of the full 20% of the data, starting from 2018-04-01, for testing purposes. This 
adjustment provided a larger and more representative test set, which is particularly relevant for assessing the 
model’s performance on more recent data. While this combined set does not include a separate validation set, it 
effectively maximizes the use of available data given the constraints of our limited dataset.

Graph-based framework in groundwater level forecasting
In this study, a deep learning graph-based approach is adopted to forecast groundwater levels in the Overbetuwe 
area. Each measurement, whether from observation wells (the subjects of the forecasting task), precipitation, 
or other hydrological data points, represents a node in a graph. The values at each time step t are denoted by 
zt ∈ RN ′

, where N ′ is the number of time series of groundwater levels and zt[i] ∈ R represents the specific 
measurement value at that time step.

Objective The primary goal is to predict future groundwater levels using historical observations 
within an input window of W  time steps, leading up to time step P . This historical data is represented as 
X = {ztP−W+1

, ztP−W+2
, . . . , ztP}. The aim is to forecast a sequence of future values over a forecasting window of 

Q time steps, denoted as Y = {ztP+1
, ztP+2

, . . . , ztP+Q
}.

Incorporating Auxiliary Data To enhance the model’s predictive capability, auxiliary features are 
integrated including precipitation, evaporation, river stages, and pumping well data, with their number 
of time series being N ′′. These features are considered up to and including the forecasting window tP+Q: 
X′ = {s′tP−W+1

, s′tP−W+2
, . . . , s′tP+Q

}, where each s′ti ∈ RN ′′
 contains the auxiliary data at time step ti. This 

auxiliary dataset X′ then concatenates with the historical input data X, which only includes observations 
from time step tP−W+1 to tP . Padding applies to align the different lengths of historical and auxiliary data for 
concatenation. In practical applications, while exogenous variables such as precipitation and river stages will be 
forecasted (or modelled), the pumping well data is treated as a controllable variable. The approach constructs a 
mapping function f : (X,X′) → Y, where X includes the historical data up to time step tP , and X′ comprises the 
extended auxiliary data up to tP+Q, with the goal of predicting future values Y. The assumption of deterministic 
forecasts for exogenous variables is made for several reasons. Firstly, forecast data for those periods are not 
readily available to us. Secondly, using deterministic inputs simplifies the initial modeling process by allowing 
the concatenation of historical and future data without introducing the complexities of forecast uncertainty. 
Additionally, this design choice provides a robust framework for conducting ensemble, sensitivity, and scenario 
analyses.

Graph Definition
This study conceptualizes a graph G = (V,E) to represent the hydrological system. V  signifies the set of 

nodes, each corresponding to a distinct hydrological measurement, while E encapsulates the connections or 
relationships among these measurements. The total number of nodes in the graph N  is the sum of two subsets: 
N ′ representing groundwater level measurements and N ′′ comprising other hydrological factors. Forecasting 
efforts focus on N ′, utilizing both historical groundwater levels and various exogenous variables.

For each node v ∈ V , corresponding to a specific hydrological measurement or time series, its neighborhood 
N(v) is defined. This neighborhood consists of other measurements that are hydrologically interconnected or 
influenced by v. Each piezometer is linked to its three closest counterparts, determined by Euclidean distance, 
a choice that balances the graph’s connectivity without making it too sparse or overly dense, as established 
through an ablation study presented in 3.1. Furthermore, each piezometer establishes connections with all 
pumping locations, the nearest precipitation and evaporation stations, and the two closest river measurement 
points. The adjacency matrix A ∈ RN×N  where N=N ′+N ′′ represents these hydrological connections. In this 
matrix, an entry Aij  assigns a non-zero value if there is a connection between nodes i and j, and zero if no such 
relationship exists. The assigned values in the adjacency matrix, ranging from 0.1 to 0.5, differentiate the types of 
hydrological connections, such as those between piezometers, between piezometers and pumping wells, and so 
on. Currently, no explicit geological variables are included in the model; instead, the graph structure is designed 
to capture spatial relationships indirectly through the connections between nodes. Future work could investigate 
incorporating explicit geological variables, such as aquifer properties, as edge weights to potentially enhance 
the model’s performance. As the study area increases, the number of nodes in the graph N  will also increase, 
resulting in higher computational costs due to the increased complexity and size of the adjacency matrix A. In 
larger study areas, it might be more efficient to construct sparser graphs by reducing the number of connections 
per node. Sparse graphs could still capture the essential hydrological relationships without overwhelming the 
computational capacity, thus providing a balanced trade-off between accuracy and efficiency.
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Model architecture
A modified version of the Multivariate Time Graph Neural Network (MTGNN) model, originally described 
by14, is adapted in this study. This adaptation omits the graph learning layer, favoring predefined graph structures 
which we found to yield significantly improved results.

The architecture, visualized in Fig. 2, demonstrates the sequential processing of data through the model. 
Input data is first subjected to a starting convolution operation, after which it progresses through multiple 
graph and temporal convolution modules, designed to capture spatial and temporal dependencies, respectively. 
These modules are interconnected by skip connections, enhancing the model’s ability to preserve information 
across layers. The graph convolution module operates on spatial relationships by aggregating node information 
with neighboring nodes, leveraging mix-hop propagation layers for this purpose. Meanwhile, the temporal 
convolution module employs dilated 1D convolution filters to analyze temporal patterns, utilizing a combination 
of filter and gating layers to modulate the flow of information. Finally, the output module itself consists of two 
1x1 convolution layers, adjusting the channel dimension of the input to meet the desired output dimension.

For a more detailed description of the architecture, readers are referred to the original article14, while the 
subsequent sections of this paper will only briefly present the temporal and spatial modules, highlighting the 
innovations in this work.

Graph convolution module
The graph convolution modules address spatial dependencies by aggregating information from each node 
with its neighbors. This involves two mix-hop propagation layers, which facilitate the inflow and outflow of 
information at each node14. The mix-hop propagation layer, given by Equation 1 and Equation 2, handles the 
spatial information flow across nodes in the network:

	 H(k) =βHin + (1− β)ÃH(k−1), � (1)

	
Hout =

K∑
k=0

H(k)W(k). � (2)

In Equation 1, H(k) represents the hidden states at the k-th propagation step, β is a hyperparameter controlling 
the retention ratio of the root node’s original states, Hin denotes the input hidden states from the previous layer, 
Ã is the normalized adjacency matrix including self-connections, and H(k−1) are the hidden states from the 
(k − 1)-th propagation step. In Equation 2, Hout represents the output hidden states of the current layer, K is 
the depth of propagation, and W(k) is the parameter matrix acting as a feature selector at each propagation step.

Temporal convolution module
The temporal convolution modules focus on capturing the temporal dynamics within the data. These modules 
utilize standard dilated 1D convolution filters, arranged in two layers: a filter layer followed by a tanh activation 
function and a gating layer with a sigmoid activation function14. The temporal convolution module utilizes 
dilated 1D convolution filters:

	 z = concat(z ⋆ f1×1, z ⋆ f1×2),� (3)

where z is the input 1D sequence, f1×k are the convolution filters of varying sizes and z ⋆ f1×k represents the 
dilated convolution operation. This study deviates from the original model’s filter sizes of 1× 2, 1× 3, 1× 6, and 
1× 7, whose combinations were designed to capture a variety of inherent periods typical of temporal signals. 
Given our data is measured in weeks without significant seasonal fluctuations, this broad spectrum of filter sizes 
was not deemed necessary and the choice of the filters is based on an ablation study presented in 3.1. Dilated 

Fig. 2.  The model architecture includes both graph and temporal convolution modules, highlighted by their 
sequential processing and integration of skip connections to facilitate data flow and information preservation 
across layers.
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convolution introduces “gaps” in the convolution kernel to extend its coverage on the input feature map without 
increasing parameters or computation. This efficiently broadens the receptive field, enabling the incorporation of 
wider input information without escalating the model’s parameter count. The outputs of convolution operations 
across different filter sizes are concatenated by the concat function. Finally, the skip connection layer and output 
module, which standardize and transform the data for final output, follow the temporal and spatial modules.

Training approach
Our model harnesses historical observations to forecast future groundwater levels. It adopts a recursive 
forecasting approach, wherein the groundwater level prediction at time t + 1 serves as an input for the subsequent 
time step t + 2, thereby recursively using forecasted outputs as historical inputs when the prediction window 
exceeds a single time step. This approach is applied consistently during both training and testing phases. This 
recursive strategy is enhanced by incorporating exogenous variables, which, although they might originate from 
forecasts of different models or be based on scenarios to be considered, are given as inputs for the next time step 
without being forecasted themselves. Groundwater management entities need to determine the amount of water 
to extract and assess the corresponding impacts, making the pumping rate a controllable variable rather than 
one subject to forecasting. This distinction is crucial because the pumping rate is based on strategic decisions, 
whereas other exogenous variables such as precipitation and evaporation are subject to forecast uncertainties. 
By assuming deterministic forecasts for these variables, it enables the user to conduct ensemble, sensitivity, and 
scenario analyses, providing a comprehensive assessment of the model’s robustness and performance under 
various conditions.

Furthermore, the training regime involves adjusting the size of the prediction window dynamically, thus 
tailoring the model for different forecasting scenarios.

The training employs an iterative process that gradually extends the prediction window. Specifically, our 
model utilizes a past window size W  of 5 time steps, with each time step representing a week, to incorporate 
recent observations and a future prediction window F  of up to 8 time steps. For the ablation study, training is 
confined to forecasts up to only 2 weeks ahead to expedite the processing of numerous model configurations. 
During testing, the model extends its forecasting to a future prediction window F of up to 100 weeks to assess 
long-term predictive capabilities. Through this methodology, the model concurrently optimizes forecasts across 
the entire prediction horizon during training, ensuring a comprehensive learning process. During inference, 
exogenous variables are provided as actual values rather than forecasts, avoiding forecast errors and relying 
solely on previous groundwater level predictions. This justifies extending the prediction window to 100 weeks, 
as it remains practical for long-term planning and allows for the assessment of error propagation.

The loss function, as defined in Equation 4, is designed to accommodate missing data within the time series 
through a masked mean squared error method. The maski,t is a binary indicator where the value is set to 0 when 
data is missing and 1 otherwise. This binary mask ensures that while the missing points are linearly interpolated 
and used as inputs, they do not contribute to the loss calculation, thereby preserving the integrity of the model’s 
training process. In this way, the model concentrates on accurately predicting the available data points, while 
effectively disregarding the segments with missing or unreliable data.

	
Loss =

B∑
i=1

F∑
t=1

maski,t · (yi,t − ŷi,t)
2,� (4)

Here, B represents the batch size and F  is the length of the future prediction window. The actual observed 
values are denoted by yi,t, and the model’s predicted values are represented by ŷi,t. The use of the mask in the loss 
function ensures that the model is trained primarily on the robust data points, providing a reliable performance 
metric that truly reflects the model’s forecasting capabilities.

To quantify the accuracy of our forecasting model, we utilize the Root Mean Square Error (RMSE) as the primary 
error metrics. The RMSE, detailed in Equation 5, quantifies the forecast error’s magnitude and indicates the 
average deviation between the model’s predictions and the actual observed values.

	
RMSE =

√√√√ 1

M

M∑
i=1

(yi − ŷi)2,� (5)

In Equation 5, M  denotes the number of forecasts, yi the actual observed values, and ŷi the values predicted by 
the model. A lower RMSE value indicates a more accurate model.

Results
This section presents a rigorous evaluation of the deep learning model’s efficacy in long-term groundwater level 
forecasting. The first part presents an ablation study, analyzing the influence of various model components and 
parameters on the forecasting results. Subsequently, the model’s efficacy is evaluated on real-world data, with 
performance comparisons drawn against the traditional numerical MODFLOW model.
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Ablation study
This section explores various model configurations and parameters with the goal of assessing the impact of 
these variables on forecasting accuracy, quantified by the Root Mean Square Error (RMSE). A key focus is the 
evaluation of spatial and temporal convolution modules, alongside the influence of graph parameters on model 
performance. In the ablation study, using a historical window size W  of 5 time steps, each corresponding to one 
week, training is confined to forecasts up to only 2 weeks ahead to expedite the processing of numerous model 
configurations. During testing, the model extends its forecasting to a future prediction window F  of 100 weeks.

To facilitate the ablation study and comprehensively assess model performance under controlled conditions, 
a synthetic dataset is employed. The synthetic dataset is derived from the MODFLOW groundwater model 
for the Overbetuwe area, a component of the larger MORIA model30, which represents a collaborative effort 
involving several organizations, including provinces, waterboards, and drinking water companies. The model 
leverages a comprehensive range of input data to simulate groundwater dynamics accurately, including 
subsurface schematization through REGIS II.230. It accounts for the actual meteorological conditions and 
known groundwater abstractions during the period in question, facilitating a balanced comparison with the 
real-world data. Additionally, it incorporates factors like anisotropy, drainage, boundary conditions, initial 
heads, and storage coefficients. The dataset includes over 800 observation wells and spans from 2008 to 2019, 
with daily recordings. To ensure a consistent evaluation, the dataset consists of 188 observation wells that have 
both simulated and real-world data. The unavailability of simulated data for 12 out of the original 200 wells leads 
to selecting alternative wells with real data, which are not chosen among the real-world observations due to their 
higher rates of missing data. Although the dataset includes spatial coordinates, depth, and node type as static 
features, certain aspects like the top and bottom elevations of aquifers and hydraulic conductivity for aquifers are 
not directly used in model training. Instead, they are considered intrinsic properties learned by the GNN. Using 
synthetic data from a MODFLOW model in the ablation study helps understand the model’s performance and 
optimize its configuration before applying it to real-world data. However, this approach is not limited to areas 
with synthetic data or a MODFLOW model. In regions without such models, the methodology can proceed 
directly with observed data, maintaining the model’s robustness. Synthetic data may not inherently capture real-
world changes in time or shifts in distribution unless explicitly modeled. For this reason, the model is retrained 
using real-world data to ensure its effectiveness under diverse conditions.

The analysis demonstrates a notable improvement in performance when using synthetic data (see below 
for details), for which the ST-GNN model secures a baseline RMSE of 8.13 cm, in contrast to RMSE of 16.9 cm 
obtained with real data. This underscores the utility of synthetic data in honing forecast accuracy and in refining 
the model parameters during the ablation study. The increased error observed with real data can likely be 
attributed to the inherent noise present in such real-world data. Subsequent studies could explore the estimation 
of this noise and its introduction into synthetic datasets to achieve a more authentic representation of measured 
data, particularly when such data are insufficient for training deep learning models.

Furthermore, the ablation study assesses the performance of different hyperparameters and model 
configurations, beginning with the examination of the utility of both the temporal and graph convolutional 
modules. Initially, replacing each dilated 1D convolution layer in the temporal module with an LSTM, followed 
by a fully connected layer, results in an increased error, raising the RMSE to 34.6 cm. Removing the graph 
convolution module from the model incurs a pronounced increase in RMSE to 31.0 cm as well, clearly illustrating 
the vital contribution of both modules to maintaining accuracy. This analysis focuses on modifying the internal 
structure of the ST-GNN to highlight the importance of its components. However, a thorough comparison 
with a broader range of machine learning and deep learning models remains an important direction for future 
research. Furthermore, the choice of evaluation metrics should reflect the specific goals of the groundwater level 
prediction task and model evaluation should also consider other metrics such as training time and memory 
usage to reach a performance level.

The network graph’s definition is also shown to be crucial for performance. The series of adjacency matrices 
depicted in Fig.  3 illustrates various connectivity levels among observation wells and exogenous variables. 
Figure  3a illustrates the proposed network configuration, establishing connections for each well to its three 
nearest counterparts, all pumping sites, the closest precipitation and evaporation monitoring stations, and the 
two nearest river gauging points. Within the adjacency matrix, the values assigned to these connections range 
from 0.1 to 0.5, reflecting the varying types of hydrological interactions. Conversely, setting all non-zero values 
in the matrix to 1 leads to a significant error increase of approximately 112.75%. This change highlights the 
critical role of detailed connectivity, affirming that this configuration yields a balanced and empirically validated 
network structure. The matrix’s denser lower segments reveal more intense connections with external variables. 
By contrast, Fig. 3b, which features only half of the observation wells-randomly selected-connected to exogenous 
variables, results in a more sparse matrix and an elevated RMSE of 15.0 cm. This underscores the importance 
of linking all observation wells to exogenous variables. The minimal connectivity scenario in Fig. 3c, where 
each well is linked to only its nearest neighbor, results in the sparsest matrix and an increased error of 10.3 cm. 
Similarly, connecting each well to four of its neighbors results in a higher error of 10.7 cm. Enabling the network 
to learn the adjacency matrix, as described by Wu et al.14, resulted in an higher error of 10.90 cm. In contrast, 
employing the predefined adjacency matrix with the proposed connectivity achieved a 25.4% improvement in 
RMSE compared to allowing the network to learn the adjacency matrix. This indicates that while the strategy of 
allowing the network to autonomously learn the adjacency matrix can be beneficial initially, it does not lead to 
the optimal outcome when compared to the adjustments made to address the deficiency.

The ablation study further evaluates the model’s sensitivity to a range of hyperparameters, encompassing 
those impacting both temporal and spatial convolutional layers, with the aim of optimizing forecast accuracy. 
In the finalized implementation of the ST-GNN model, the depth of the graph convolution is set to four layers, 
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with kernel sizes selected as 1 and 2. To prevent overfitting, a dropout rate of 50% is implemented. Moreover, the 
model employs a β value of 0.05 to preserve the original states of the root nodes.

Finally, the impact of the multi-step-ahead function on the model’s training efficacy is investigated. Drawing 
inspiration from the approach taken by31, the effect of extending the forecast horizon on model performance is 
examined. The results align with Bentivoglio et al.’s findings, showing that increasing the number of steps ahead 
consistently improves model accuracy. However, this enhancement comes with higher memory requirements 
and longer training times. Specifically, the duration needed for each training epoch increases from 2 seconds 
with a single forecast horizon to 93 seconds for 10 forecast windows, equating to a period of 10 weeks. An 
optimization analysis of the forecast horizon reveals that the model achieves notable performance within just a 
three-week timeframe. While further extension of the forecast horizon does yield improved outcomes, the rate 
of performance gain diminishes, nearly reaching a plateau beyond three weeks. Therefore, a six-week period 
is chosen for real-world data analysis in the following section to strike an optimal balance between enhancing 
performance and managing the increased memory demands associated with a longer forecast horizon. This 
strategy ensures peak performance while maintaining computational efficiency.

Real-world data application
This section examines the application of the deep learning model to real-world datasets. Figure 4 presents a 
comparison between forecasts for four randomly selected observation wells and actual data that was not seen by 
the model during training, beginning in April 2018. The solid lines represent the actual measured groundwater 
levels, while the dashed lines depict the model’s forecasts. This figure illustrates that the model closely aligns 
with the actual observed groundwater levels. Despite being trained to forecast up to 6 weeks ahead, the model 
demonstrates remarkable extrapolation capabilities for up to 100 weeks, as evidenced by its predictions, which 
closely follow the trends observed in the actual groundwater measurements without any significant error 
propagation or accumulation. In contrast to synthetic data, these real-world datasets include missing values. As 
indicated in the figure, where there is a prediction for a missing window in an observational well, it underscores 
the model’s ability to predict for periods where data are unavailable. This highlights another potential application 
of the model for data infilling.

Figure 5 showcases two contrasting results, featuring selected wells with very high and very low RMSE values. 
The green lines depict the best testing outcome, which achieves an RMSE of 4.2 cm; this result closely follows the 
target trajectory with only minor prediction errors that do not result in error amplification. Conversely, the red 
line represents a test sample with an RMSE of 53.4. In this scenario, a larger variation in groundwater levels is 
observed; however, the model still manages to forecast within this wider range. Although the trend is predicted, 
there is a notable discrepancy in the values towards the end. This sample ranks as the second worst, surpassed 
only by another with an RMSE of 67.6 cm, which is not depicted here due to its relatively stationary trend. It 
is noteworthy that these worst two samples originate from the same site but at different depths, hinting at a 
potential issue within the system, possibly missing some external information. This suggests that the model could 
also serve as a tool for identifying such anomalies. Despite these findings, no specific pattern or geographical 
distribution of errors could be determined.

Fig. 3.  Comparison of adjacency matrices representing different levels of connectivity in the modeled 
groundwater network. The first 200 rows represent observation wells in random order, while the last 19 rows 
and columns represent exogenous variables. Figure 3a depicts the adjacency matrix corresponding to the best 
case scenario where each observation well is connected to its three nearest wells based on Euclidean distance. 
Additionally, connections extend to all pumping stations, the nearest precipitation and evaporation monitors, 
and the two proximal river measurement sites, explaining the increased density seen in the last 19 rows and 
columns beyond the 200 observation wells. Figure 3b and c illustrate matrices with reduced connectivity: the 
former with only half of the observation wells linked to exogenous variables, and the latter with each well 
connected to only its single nearest counterpart.
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When benchmarked with real data, the traditional MODFLOW model exhibits an RMSE of 25.2 cm, thus 
showcasing the enhanced precision of the deep learning model in the forecasting task. Figure 6 presents a scatter 
plot comparison of the RMSE values for the ST-GNN and MODFLOW models. In this plot, each data point 
corresponds to a unique piezometer in the test set, with the inclusion of an equality line serving as a reference 
to easily discern which model achieves a lower RMSE. Moreover, observation wells featured in Figs. 4 and 5 are 
marked with a star, with colors matching their depiction in the plots. Data points situated beneath the equality 
line indicate superior performance by the ST-GNN model. The aggregation of points below the equality line 
corroborates the ST-GNN model’s consistent outperformance, validating its efficacy in predicting groundwater 
levels. It is noted that, with the exception of the observation well with the highest error, all other high-RMSE 
predictions, such as the one visualized in Fig. 5, do not lie far from the equality line in Fig. 6.

In conclusion, evaluating the ST-GNN model on real-world data showcases its robustness and reliability. The 
model yields more accurate forecasts than traditional MODFLOW models, showcasing the profound potential 
of deep learning in groundwater level forecasting.

Summary and conclusions
This study successfully applies Spatial-Temporal Graph Neural Networks (ST-GNNs) to predict groundwater 
levels in the Overbetuwe area, Netherlands, demonstrating their effectiveness in handling the complex 
nonlinearity and spatial-temporal dynamics of groundwater systems. The ST-GNN model significantly 
outperforms traditional numerical models like MODFLOW, particularly in long-term forecasting accuracy, and 
proves robust in managing missing data. By integrating a comprehensive dataset, including 395 groundwater 
level time series and auxiliary data, the model excels in capturing intricate interactions within the groundwater 
network. The graph-based framework, with its predefined adjacency matrix, further enhances model 

Fig. 5.  Comparative analysis of the model’s forecasting accuracy for observation wells, highlighting those 
with the highest (red) and lowest (green) RMSE. Solid lines indicate observed data, while dashed lines denote 
forecasts.

 

Fig. 4.  Comparative performance of the model’s predictions over four randomly selected piezometers. The 
model utilizes a past window of 5 weeks and extends its forecasts to demonstrate its proficiency in capturing 
groundwater level trends over a longer horizon. Solid lines correspond to observed data, while dashed lines 
represent forecasts.
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performance, as highlighted by an ablation study that underscores the importance of the temporal and graph 
convolutional modules.

Future research could focus on enhancing the model’s predictive accuracy by integrating additional variables 
into the model architecture, such as incorporating resistance as weights within the graph’s edges. Explicitly 
including features such as the top and bottom elevations of aquifers, their hydraulic conductivity, and the 
resistance in aquitards within the dataset could significantly improve the model’s performance. Moreover, the 
scalability of this approach to encompass larger networks of groundwater measurements and the integration 
of additional exogenous variables present promising avenues for research and application. The development 
of networks capable of processing multi-modal inputs, including continuous geological information, could 
further enhance the model’s predictive accuracy and utility. Importantly, by incorporating additional continuous 
variables, it would be interesting to develop a model that can extrapolate and predict also in points that are not 
observation wells, thereby truly competing with traditional models which currently provide solutions in the 
whole domain.

The application of ST-GNNs in groundwater level prediction not only demonstrates superior accuracy over 
traditional models but also offers significant potential for strategic water resource management and planning, 
making it a valuable tool for addressing future hydrological challenges. In summary, this study contributes 
significantly to advancing the application of machine learning in hydrology, establishing the potential for ST-
GNNs to become a a powerful tool for predictive modeling of groundwater levels.

Data availability
The real-world data supporting the findings of this study, will be made available along with the associated code. 
However, the synthetic data, privately provided by Vitens and essential for our research, will not be freely avail-
able due to licensing requirements associated with users of the MORIA model. To request access to the data, 
please contact Maria Luisa Taccari at marialuisa.taccari@outlook.com.

Code availability
All codes used to generate the datasets and train the model will be made available at https://github.com/mlttac/
GroundwaterFlowGNN.
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