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ABSTRACT  

This scoping review aimed to synthesise methodological steps taken by 
researchers in the development of formal, dynamical systems models of 
health psychology theories. We searched MEDLINE, PsycINFO, the ACM 
Digital Library and IEEE Xplore in July 2023. We included studies of any 
design providing that they reported on the development or refinement 
of a formal, dynamical systems model unfolding at the within-person 
level, with no restrictions on population or setting. A narrative synthesis 
with frequency analyses was conducted. A total of 17 modelling projects 
reported across 29 studies were included. Formal modelling efforts have 
largely been concentrated to a small number of interdisciplinary teams in 
the United States (79.3%). The models aimed to better understand 
dynamic processes (69.0%) or inform the development of adaptive 
interventions (31.0%). Models typically aimed to formalise the Social 
Cognitive Theory (31.0%) or the Self-Regulation Theory (17.2%) and varied 
in complexity (range: 3–30 model components). Only 3.4% of studies 
reported involving stakeholders in the modelling process and 10.3% drew 
on Open Science practices. We conclude by proposing an initial set of 
expert-derived ‘best practice’ recommendations. Formal, dynamical 
systems modelling is poised to help health psychologists develop and 
refine theories, ultimately leading to more potent interventions.
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Introduction

Modifiable health behaviours including tobacco smoking, alcohol consumption, low physical 

activity, unhealthy dietary behaviour, unsafe sexual health behaviour, and poor medication adher-

ence are leading preventable causes of premature morbidity and mortality (de Ridder et al., 2017; 

de Wit et al., 2022; Kuntsche et al., 2017; Rhodes et al., 2017; Stewart et al., 2022; West, 2017). Under-

standing how to predict, explain, and influence health behaviours is one of the most pressing issues 

facing health psychologists. In this service, our field has been occupied with the development and 
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refinement of theories – broadly defined here as ‘a systematic way of understanding events or situ-

ations. It is a set of concepts, definitions, and propositions that explain or predict these events or situ-

ations by illustrating the relationships between variables’ (Glanz & Rimer, 2005) – with a view to 

devising effective interventions which can engender improved health and wellbeing for all. 

However, progress is hindered by the ‘reproducibility crisis’ in general (Munafò et al., 2017; Nosek 

et al., 2018) and the ‘theory crisis’ in particular – i.e., our available health psychology theories 

exist as underspecified box-and-arrow diagrams and imprecise natural language descriptions of 

the interrelationships between constructs (Eronen & Bringmann, 2021; Oberauer & Lewandowsky, 

2019). More specifically, our theories are ‘weak’ – i.e., they do not strongly imply testable hypotheses, 

but researchers must first add a substantial number of auxiliary assumptions about the study design 

and measurement of social reality constructs (see [Peters & Crutzen, 2024] for a detailed discussion 

about the ‘measurement crisis’). This makes it impossible to systematically develop, test, and refine 

our theories, which in turn stifles progress towards our central goal: improving understanding of 

health behaviours and devising effective interventions.

Thus far, health psychology theories such as the Social Cognitive Theory and the Self-Regulation 

Theory have been developed based on (and used to inform) studies that have been characterised 

as falling within a ‘low-resolution measurement paradigm’ (Chevance, Perski et al., 2021; Riley et al., 

2011). This is illustrated by the high volume of health psychology studies which have adopted 

cross-sectional or longitudinal (non-intensive) survey designs and pre- and post-intervention study 

designs to examine between-person associations or estimate the average (between-group) treatment 

effect (Chevance, Perski et al., 2021; Spruijt-Metz et al., 2015). Recent technological and methodological 

advances, however, including the widespread uptake and use of smartphones and wearable devices, 

have enabled researchers and practitioners to capture health behaviours at high sampling frequencies 

in people’s daily lives and at the within-person level. For example, a recent systematic review identified 

>600 studies that used Ecological Momentary Assessments (EMAs) to study how health behaviours 

unfold within and between individuals in real-life contexts (Perski et al., 2022). Compared with previous 

empirical observations that were made under the ‘low-resolution measurement paradigm’ (e.g., 

measurements taken at baseline and at a 3- and 6-month follow-up), observations facilitated by 

these technological and methodological advances have also enabled (and challenged) researchers 

to consider that many health behaviours display characteristics of dynamical systems (Baretta et al., 

2023; Chevance, Perski et al., 2021; Chevance, Baretta et al., 2021; Heino et al., 2021). A dynamical 

system is any system (e.g., a population, an individual) which changes over time in response to 

different inputs (e.g., motivation, weather). Dynamical systems modelling provides a mathematical 

framework for understanding and predicting dynamical systems by formulating a series of rules or 

equations which describe how the system changes over time. Importantly, the state of the system 

at any time point is determined by its initial state and its evolution over time based on the rules 

(Sayama, 2015). Recent studies have shown that health behaviours such as physical activity, cigarette 

smoking and alcohol consumption fluctuate irregularly and non-linearly over time (e.g., from day to 

day, or hour to hour) in response to time-varying internal and external factors (Businelle et al., 2016; 

Chevance, Baretta et al., 2021; Chevance, Perski et al., 2021; Hekler et al., 2019; Perski et al., 2019). In 

addition, research shows that these fluctuations can be idiosyncratic (i.e., they differ from person to 

person), which may make group-to-individual generalisability unreasonable to assume (Fisher et al., 

2018). Studies have also shown that feedback loops occur within individuals over time, with recursive 

relationships between behaviours (e.g., physical activity, sleep) and/or psychological constructs (e.g., 

self-efficacy, positive affect, negative affect) observed in studies that fall within a ‘high-resolution 

measurement paradigm’ (Lydon-Staley et al., 2021; McGowan et al., 2023). Importantly, these recent 

observations have highlighted the inherent ‘complexity’ and ‘system-ness’ of many health behaviours 

(Heino et al., 2021), which cannot be adequately represented using formalisms that have traditionally 

been used to develop and refine health psychology theories (e.g., applying mediation/moderation 

techniques to cross-sectional data) (Hofmann et al., 2020). At the same time, health psychologists 

have begun to recognise that, to make progress on the most pressing issues of our times (e.g., 
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addiction, obesity, mental health, and climate change), we must become better able to theorise about 

and influence dynamical systems (Chevance et al., 2023; Gomersall, 2018; Heino et al., 2021).

A strong candidate approach for counteracting the theory crisis is the use of ‘formal modelling’ – 

i.e., the translation of a theory’s structure into a mathematical framework – e.g., a series of mathemat-

ical equations or logical statements (Borsboom et al., 2021; Chevance, Perski et al., 2021; Farrell & 

Lewandowsky, 2010; Fried, 2020; Guest & Martin, 2021; Haslbeck et al., 2021; Robinaugh et al., 

2021; Smaldino, 2017; van Rooij & Blokpoel, 2020). It should be noted that both explanatory theories 

and their formalised counterparts are intended to be interpreted causally (i.e., the theory explains 

how the phenomenon of interest arises). As such, the development of a formal model which acts 

as the ‘empirical interface’ of a given theory allows a variety of empirical studies to be conducted. 

In turn, interpreted observations generated from these empirical studies (e.g., data collected via 

EMAs or wearable sensors, qualitative interviews with people with lived experience) have clearly 

expected effects of strengthening, weakening, or changing the theory (Guest, 2023; Guest & 

Martin, 2021). It is important to highlight how formal modelling differs from related computational 

approaches, such as machine learning. Machine learning is largely a data-driven approach, where 

functions (i.e., input-output mappings) are learnt directly from the data. Partly due to their 

flexible structure, machine learning algorithms can capture complex relationships, but this comes 

at the cost of limited interpretability (Henninger et al., 2023). Formal modelling, on the other 

hand, relies largely (but not solely) on abduction – i.e., reasoning and inference to the best expla-

nation (Borsboom et al., 2021; Haig, 2005). As such, formal models are less flexible than machine 

learning algorithms, but more precise and verifiable. As mentioned above, learning from data is 

an important part of the formal modelling process, but it is only one piece of the puzzle. The use 

of formal modelling was pioneered within the health psychology field by translating the Theory 

of Planned Behaviour (Navarro-Barrientos et al., 2011) and subsequently the Social Cognitive 

Theory (Martín et al., 2018; Riley et al., 2016) into a series of differential equations. This was followed 

by a sequence of ‘system identification’ experimental studies to test and iteratively refine the formal 

model at the within-person level (Park et al., 2023; Phatak et al., 2018). See Box 1 for a practical 

example of the translation of the Social Cognitive Theory into a formal, dynamical systems model. 

The addition of a dynamical systems lens to the formal modelling process (i.e., not simply the use 

of any mathematical or logical formalism, but specifically the use of formalisms that can accommo-

date non-linear, recursive causal relationships, such as time series analysis, Bayesian dynamic models, 

state-space models, etc) has the potential to narrow the gap between emerging empirical evidence 

generated under a ‘high-resolution measurement paradigm’ and our current health psychology the-

ories, which were mostly developed and tested under a ‘low-resolution measurement paradigm’ 

(Chevance, Perski et al., 2021).

Box 1. Example of how the Social Cognitive Theory was translated into a formal, dynamical systems model.

In a series of publications, an interdisciplinary research team set out to formalise Bandura’s Social Cognitive Theory 
(Martín et al., 2018; Riley et al., 2016), which proposes that human behaviour arises due to the interaction of attributes of 
the person (e.g., self-efficacy, outcome expectancies), their behaviour, and their environment (e.g., others’ behaviours) – 
referred to as ‘reciprocal determinism’ or a ‘triadic causation model’. As such, Bandura implicitly proposed that human 
behaviour can be represented as a dynamical system with feedback loops.

The first step of the formalisation process involved clearly specifying the constructs of interest (e.g., self-efficacy, 
outcome expectancies, behavioural outcomes, self-management skills) and their interrelationships. For example, it was 
proposed that self-management skills influence self-efficacy and outcome expectancies.

Next, the expected interrelationships were translated into a series of mathematical equations. For example, the 
change in self-management skills (η1) with respect to time was represented as a function of itself at time t, skills training 
at time t, behaviour at time t and disturbances at time t. In turn, the change in self-management skills was represented as 
influencing other theoretical constructs (e.g., self-efficacy), according to the interrelationships specified in the first step.

In the final step, the system dynamics were simulated through selecting plausible parameter values (i.e., numeric 
weights/constants) for the different inputs. Next, the parameter values were estimated from real-world data, retaining 
the pre-specified model structure, and allowing the parameters to take different plausible values. Visual inspection of the 
time series plots of the simulated and the real-world output data, in addition to calculating the percentage fit between 
the time series, led to refinements of the model structure.
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The researchers concluded that the formalisation process, simulations, and fitting the dynamical systems model to 
real-world data was useful for specifying many implicit assumptions of the Social Cognitive Theory and testing different 
scenarios that were considered more/less plausible. As a consequence, going through the formal modelling cycle served 
as a direct test of the Social Cognitive Theory and led to further theory refinements.

In addition to having the potential to bridge the gap between emerging empirical observations 

and currently under-specified and static health psychology theories, there are additional reasons 

why formal, dynamical systems modelling constitutes a useful addition to the health psychologist’s 

toolbox. First, it can help enable greater consilience between seemingly disparate phenomena that 

operate across different systems levels and timescales (e.g., micro-scale brain ‘computations’ 

involved in decision-making or learning, macro-scale interactions between agents in a neighbour-

hood or city). ‘Scale bridging methodologies’, which are commonly used as part of multiscale mod-

elling efforts in engineering, physics, chemistry, biology, and public health can enable theorising 

about health behaviours at different spatiotemporal scales (Hoekstra et al., 2014). For example, 

despite implicit theorising that some psychological processes are fast- and others are slow-evolving 

processes (e.g., affect and social identity, respectively), to our knowledge, few theories and empirical 

studies have examined the different temporal dynamics with formal explication on exactly how to 

operationalise and distinguish ‘fast’ and ‘slow’ processes. In a formal, dynamical systems model, 

however, researchers can explicitly incorporate the expected dynamics beyond natural language 

descriptions. This can also help with the development of standards for the sampling frequency of 

psychological constructs, instead of perpetuating unprincipled or strictly pragmatic sampling prac-

tices, such as sampling rates selected based on past convention (e.g., measurements taken at base-

line and at 3- and 6-month follow-ups).

Second, a dynamical systems lens allows researchers to incorporate historically important and 

fundamental psychological processes such as habituation or learning into our theories, which can 

only be meaningfully conceptualised and modelled over time and within individuals. Third, the for-

malisation of theories facilitates in silico analyses (i.e., computer simulations) of the dynamics of the 

focal system under varying conditions (e.g., following the introduction of an intervention or policy), 

thus allowing researchers to explore issues of interest that would be difficult or impossible for ethical 

reasons or due to a lack of resources to measure in a study. Such simulations can support theory 

refinement and, in turn, the generation of more precise hypotheses to be empirically tested 

pending increased resource or improved measurement instruments, as evidenced within refined 

‘system identification’ experiments (Park et al., 2023; Phatak et al., 2018). Fourth, formal, dynamical 

systems modelling is poised to accelerate the development of adaptive interventions, including but 

not limited to ‘just-in-time adaptive interventions’ (JITAIs), which aim to provide the right type of 

support to individuals at the right time (Hardeman et al., 2019; Nahum-Shani et al., 2016; Perski 

et al., 2021). The iterative process of formal, dynamical systems modelling allows for a progressively 

better understanding of within-person dynamics, which is required for robust control to achieve 

desired health outcomes (Collins et al., 2004; Rivera et al., 2007). To date, however, few JITAIs 

have been underpinned by formal modelling efforts (Perski et al., 2021).

Arguably, formal, dynamical systems modelling as a method for iteratively developing and 

refining health psychology theories is necessary for researchers and decision-makers to tackle the 

biggest challenges facing our societies today. Although several scientific disciplines (e.g., ecology, 

biology, engineering, physics, neuroscience, psychiatry) have engaged in formal modelling exten-

sively for decades (Chen et al., 2015; Huys et al., 2016; Montague et al., 2012; Nassar & Frank, 

2016; Stephan & Mathys, 2014; Wilson & Collins, 2019), its use in health psychology remains relatively 

rare. With a view to making theory development and refinement through formal, dynamical systems 

modelling more accessible to health psychologists, we therefore aimed to conduct a scoping review 

to summarise the extent and nature of activities relating to the formal modelling of health psychol-

ogy theories pertaining to health behaviours that unfold at the within-person level. We aimed to syn-

thesise methodological steps, reflect on these from the perspective of an interdisciplinary expert 
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review team, and provide a set of initial expert-derived ‘best practice’ recommendations for health 

researchers who intend to use formal, dynamical systems modelling in their future work. To ensure 

the review remained sufficiently focused and to avoid overlap with available reviews of agent-based 

models in public health (Boyd et al., 2022; Nianogo & Arah, 2015; Tracy et al., 2018; Yang, 2019), we 

focused here on within-person processes (as opposed to agent-agent interactions, as in agent-based 

models), which also aligns with the proposition that useful health psychology theories should apply 

to individuals (Johnston & Johnston, 2013). It should, however, be noted that formal, dynamical 

systems models can account for between-person processes or variables in different ways. For 

example, social interactions including social influence could be explicitly modelled (which is typically 

the case in agent-based models), with the agents having different between-person characteristics 

(e.g., age, gender, socioeconomic position). Traditional between-person variables could also be 

implicitly incorporated in a within-person dynamical systems model through varying the starting 

conditions or parameter values. For example, if a theory proposes that individuals have different 

probabilities of stress exposure or reactivity depending on their age, gender, or socioeconomic pos-

ition, this could be incorporated into a formal, dynamical systems model’s structure.

Specifically, this scoping review aimed to address the following research questions (refined fol-

lowing the pre-registration of the review protocol, as discussed in the ‘Data items and data collection 

process’ subsection of the ‘Methods’):

(1) In which areas of health behaviour research has formal, dynamical systems modelling been used 

to develop, test and/or refine theory? 

a. What team expertise was considered useful?

b. What were the researchers’ modelling objectives?

(2) What methodological steps have researchers taken as part of the formal modelling process? 

a. Have stakeholders been involved in the formal modelling process and if so, how?

b. What sources of knowledge have been used to identify the model components and 

structure?

c. Has iteration been used as part of the modelling process and if so, how?

d. Have internal (e.g., use of simulation) and/or external (e.g., fit to real-world data) consistency 

checks been carried out?

(3) How clear and comprehensive is the model reporting? 

a. Are descriptions of the model components and structure provided?

b. Have justifications for the model time steps (i.e., points in time at which the model makes 

calculations or predictions) and run length (i.e., the total length of time the model is set to 

run to observe its behaviour) been provided?

c. Have researchers reported what mathematical frameworks/formalisms and software were 

used?

d. Is pseudo-code and/or code openly available?

e. What did researchers report having learnt from their modelling efforts?

Methods

Study design

This was a scoping review, which followed the methodological guidelines developed by Arksey and 

O’Malley (2005), extended by Levac and colleagues (Levac et al., 2010) and Peters and colleagues 

(Peters et al., 2015). We opted for a scoping, rather than a systematic, review as the use of formal, 

dynamical systems modelling in health behaviour research is still in its infancy. Therefore, a focus 

on methods and applications across a diverse range of studies was judged to be most useful. As 

there is no agreed-upon method for evaluating the quality of or potential risk of bias within 

formal modelling studies in health behaviour research, standard assessment tools used for such 

HEALTH PSYCHOLOGY REVIEW 5



purposes in systematic reviews were not considered appropriate. The scoping review protocol was 

pre-registered on the Open Science Framework (https://osf.io/7htkd); however, this was necessarily 

minimalistic and required several refinements during the review process (see details below). The 

PRISMA extension for scoping reviews (PRISMA-ScR) was used in the design of the review protocol 

and the checklist was used in the reporting of the review results (Tricco et al., 2018) (see the Sup-

plementary Materials 1).

Eligibility criteria

We included studies of any design (e.g., conceptual, empirical) providing that they reported on the 

development, refinement and/or testing of a formal, dynamical systems model of a health behaviour 

or a health behaviour theory unfolding at the within-person level. We defined a formal, dynamical 

systems model as any explanatory theory or framework which proposes that health behaviour is 

the output of a dynamical system with recursive relationships, providing that the explanatory 

theory or framework was represented using a mathematical framework (e.g., difference equations, 

differential equations) and where the development process relied at least in part on abduction 

(rather than solely on induction). In addition, the formal, dynamical systems model needed to 

operate at the within-person level, as several published reviews have focused on the formal model-

ling of agent-agent interactions and between-person processes (Boyd et al., 2022; Nianogo & Arah, 

2015; Tracy et al., 2018; Yang, 2019). There were no restrictions on age group (e.g., child, adolescent, 

adult, older adult) or setting (e.g., country, city). Health behaviours were defined here as ‘any activity 

undertaken for the purpose of preventing or detecting disease or for improving health and well- 

being’ (Conner & Norman, 2015).

Information sources and search strategy

We searched MEDLINE, PsycINFO, the ACM Digital Library and IEEE Xplore in July 2023. Terms were 

searched for in titles and abstracts as free text or index terms (e.g., Medical Subject Headings), as 

appropriate. Three groups of terms were combined: the first group included terms related to 

health behaviours (e.g., ‘tobacco smoking’, ‘alcohol consumption’, ‘substance use’, ‘physical activity’, 

‘sedentary behaviour’, ‘dietary behaviour’, ‘medication adherence’, ‘sexual health behaviour’, ‘sleep’, 

‘hand hygiene’, ‘cancer screening’). The second included terms related to formal, dynamical systems 

modelling (e.g., ‘formal model’, ‘mathematical model’, ‘computational model’, ‘dynamical systems 

model’, ‘drift diffusion model’, ‘Markov model’, ‘difference equation’, ‘differential equation’, 

‘control engineering’, ‘time series’, ‘state-space model’). The third included terms related to 

within-person processes (e.g., ‘within-person’, ‘individual’, ‘idiographic’). Due to observed differences 

in retrieval qualities between academic search systems (e.g., use of Boolean operators, use of trunca-

tions and wildcards, use of ‘’) (Gusenbauer & Haddaway, 2020), the final search string for each data-

base was tweaked to fit its architecture. The search was restricted to human studies available in 

English that were published in peer-reviewed journals (see the Supplementary Materials 2).

In addition to the electronic searches, we scanned the reference lists in the included studies (back-

wards reference chaining) and ran a search for studies that cited the included studies (forwards refer-

ence chaining). Expertise within the review team was used to identify additional studies.

Study selection

Identified records were merged and duplicate records were removed. OP screened the titles and 

abstracts against the pre-specified eligibility criteria, with a random 20% of titles and abstracts inde-

pendently screened by AC. Any discrepancies, including the need to further refine the eligibility criteria 

definitions (e.g., the definition of a dynamical system, the definition of a formal model), were resolved 

through discussion and through involving GC if needed. OP subsequently went back over all the 
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screening decisions, applying the refined eligibility criteria. Next, full texts were independently 

screened, following the same procedure as for the title and abstract screening. A primary reason for 

exclusion was recorded at the full text stage (Moher et al., 2009). Inter-rater reliability was not assessed.

Data items and data collection process

A data extraction form was iteratively developed in Microsoft Excel through discussion among the 

review team about methodological steps that we, as experts in formal, dynamical systems modelling, 

believe are important. Some data items had been specified in the pre-registration of the review pro-

tocol to align with the research questions (e.g., whether and if so, how, stakeholders were involved; 

whether empirical data were leveraged; whether any model testing/validation techniques and sen-

sitivity checks were deployed). However, after piloting the data extraction form on the first 10% of 

included studies and following several rounds of discussion among the review team, a few amend-

ments were made to the research questions and the corresponding data items (including their 

definitions and extractor instructions). We thus extracted information on: (i) the study characteristics 

(i.e., authors; year of publication; country; team expertise and the authors’ reflections on what exper-

tise was considered useful; the health behaviour of interest; the modelling purpose/objective; and 

the time required to complete the modelling effort), (ii) the modelling methods (i.e., whether and 

if so, how, stakeholders were involved (defined here broadly as individuals with an interest in, but 

not direct responsibility for, the modelling efforts – e.g., ‘external’ researchers from different scientific 

disciplines, people with lived experience, health practitioners, industry professionals, leaders of com-

munity organisations, policy makers, and so on); what sources of knowledge were used to identify 

the model components and structure; internal consistency checks, including the use of simulation, 

descriptions of the simulated participant characteristics, whether a simulation benchmark(s) was 

defined, and sensitivity checks on the parameter values or other assumptions; external consistency 

checks, including whether the model was fit to real-world data and the calculation of goodness-of-fit 

statistics, descriptions of the participant characteristics, and any model comparison(s); and the use of 

iterative modelling practices), and (iii) the clarity and comprehensiveness of the model reporting (i.e., 

the mathematical framework/formalism and software used; the model time steps and run length and 

justifications for these; whether a schematic of the model components and structure was provided; a 

summary of the model components; and the modelling outcomes). See the Supplementary Materials 

2 for the final data item definitions and the extractor instructions used.

OP extracted the data. In the pre-registration, we had specified that data from a random 20% of 

the included studies would be independently extracted. However, given the complexity of many of 

the included modelling papers, an amendment was made to independently double check the 

extracted data from 100% of the included studies. The double checking was performed by AC, JA, 

and GC using the final list of data item definitions and the extractor instructions. Any discrepancies 

were resolved through discussion. A few lengthy data items benefitted from being further reduced 

prior to the frequency analysis (e.g., the modelling purpose/objective, the modelling outcomes). 

These were inductively coded by OP and amended following discussion with GC (see the Sup-

plementary Materials 3).

Quality appraisal

Consistent with methodological guidance on scoping reviews, we did not appraise the quality or risk 

of bias of the included studies (Arksey & O’Malley, 2005; Levac et al., 2010; Peters et al., 2015).

Data synthesis

A narrative synthesis with frequency analyses was conducted. Due to the relatively small number of 

included studies, the findings were arranged according to the research questions (as opposed to, for 
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example, the health behaviour or theory of interest). Through reflection on the review findings and 

discussion within the review team, we subsequently proposed an initial set of expert-derived ‘best 

practice’ recommendations for health researchers interested in applying formal, dynamical systems 

modelling in their future work. These initial recommendations were not intended to be comprehen-

sive (e.g., through synthesising recommendations across the interdisciplinary formal modelling lit-

erature); we reflected instead on the practices observed in the reviewed studies and what we, as 

an interdisciplinary team of experts with knowledge and experiences of formal, dynamical 

systems modelling, would encourage researchers to consider going forwards.

Results

A total of 1,872 records were identified for the title and abstract screening, with 70 full texts 

screened. An additional 14 full texts were identified through reference chaining and expertise 

within the review team. Of these, 17 modelling projects reported across 29 studies were included 

(see Figure 1; see the Supplementary Materials 3 for a mapping between the projects and 

studies). Given important nuances across the studies reporting on activities pertaining to the 

same modelling project, the denominator in the narrative synthesis was set to the study rather 

than the project level.

Study characteristics

Most studies were conducted in the United States (23/29; 79.3%) and were published between 1984 

and 2022 (see Table 1). The modelling efforts were focused on physical activity (10/29; 34.5%), ciga-

rette smoking (4/29; 13.8%), any (i.e., a non-specified) health behaviour (3/29; 10.3%), multiple health 

behaviours (i.e., the simultaneous study of physical activity and eating behaviour, 3/29; 10.3%), 

general substance use (3/29; 10.3%), alcohol consumption (2/29; 6.9%), cocaine use (1/29; 3.4%), 

or eating behaviour (1/29; 3.4%).

The modelling teams included researchers and practitioners from mathematics/engineering 

departments (20/29; 69.0%), psychology/behavioural science/cognitive science departments (14/ 

29; 48.3%), public health/epidemiology departments (13/29; 44.8%), computer science departments 

(8/29; 27.6%), medicine/psychiatry departments (4/29; 13.8%), and neuroscience departments (3/29; 

10.3%). Most studies (27/29; 93.1%) did not provide a reflection as to what expertise was considered 

useful in the modelling process. Two studies mentioned that an interdisciplinary approach is needed 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of included studies.
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Table 1. Characteristics of the included studies.

Authors 
(year) Country

Health behaviour 
(s) Team expertise

Modelling purpose/ 
objective

Time 
required for 
modelling

Banks et al. 
(2014)

United States Alcohol 
consumption

Psychology, mathematics, 
epidemiology, and 
engineering; a reflection 
on what expertise was 
considered useful is not 
provided.

To improve understanding 
of the behavioural 
mechanisms 
underpinning drinking 
behaviour.

Not 
reported.

Banks et al. 
(2017)

United States Alcohol 
consumption

Data science and 
neuroscience; a reflection 
on what expertise was 
considered useful is not 
provided.

To help understand 
mechanisms of behaviour 
change in problem 
drinkers.

Not 
reported.

Baretta et al. 
(2019)

Italy Physical activity Psychology and applied 
mathematics; a reflection 
on what expertise was 
considered useful is not 
provided.

To develop a computational 
model of behaviour 
change, which can be 
used to propose adaptive 
physical activity goals.

Not 
reported.

Berardi et al. 
(2018)

United States Any health 
behaviour

Psychology, mathematics, 
epidemiology, and 
engineering; a reflection 
on what expertise was 
considered useful is not 
provided.

To develop a computational 
model of behaviour 
shaping, with a view to 
leveraging the model in 
future just-in-time 
adaptive interventions.

Not 
reported.

Bobashev 
et al. 
(2017)

United States Cigarette smoking Data science and 
neuroscience; a reflection 
on what expertise was 
considered useful is not 
provided.

To develop a multi-scale 
computational model 
that simulates realistic 
daily smoking patterns 
and links to visualisations 
of brain areas that are 
activated during binge/ 
intoxication, withdrawal, 
and craving.

Not 
reported.

Caselles 
et al. 
(2010)

Spain Cocaine use Psychology and applied 
mathematics; the authors 
mention that an 
interdisciplinary approach 
is needed when 
modelling complex 
systems but do not 
further elaborate on this.

To present a dynamic 
model of a stimulant drug 
addiction (cocaine) that 
integrates personality, the 
acute effect of the drug, 
and addiction.

Not 
reported.

Dong et al. 
(2012)

United States Eating behaviour 
and physical 
activity

Engineering, mathematics, 
and public health; a 
reflection on what 
expertise was considered 
useful is not provided.

To present a dynamical 
systems model that 
describes how a 
behavioural intervention 
can influence weight gain 
during pregnancy, which 
can be used to underpin 
future adaptive 
interventions

Not 
reported.

El Mistiri 
et al. 
(2022)

United States Physical activity Engineering and public 
health; a reflection on 
what expertise was 
considered useful is not 
provided.

To improve understanding 
of multi-timescale 
behavioural dynamics 
(i.e., within-day and day- 
to-day) within the context 
of an adaptive digital 
intervention for physical 
activity.

Not 
reported.

Ghosh 
(2015)

United States Any health 
behaviour 
(cigarette 
smoking is used 
as case study)

Computer science; a 
reflection on what 
expertise was considered 
useful is not provided.

To develop a formal model 
of persuasive actions for 
behaviour change, within 
the context of mobile and 
wearable devices.

Not 
reported.

(Continued ) 
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Table 1. Continued.

Authors 
(year) Country

Health behaviour 
(s) Team expertise

Modelling purpose/ 
objective

Time 
required for 
modelling

Giraldo et al. 
(2017)

United States Alcohol 
consumption

Engineering; a reflection on 
what expertise was 
considered useful is not 
provided.

To improve understanding 
of the dynamic interplay 
between the 
environment, the 
interactions between 
individuals, and personal 
motivations and 
characteristics that affect 
unhealthy patterns of 
consumption during 
drinking events.

Not 
reported.

Giraldo et al. 
(2017)

United States Alcohol 
consumption

Engineering; a reflection on 
what expertise was 
considered useful is not 
provided.

To propose a model that 
explains the ‘physics’ of 
an individual’s blood 
alcohol content (BAC) 
during a drinking event 
(i.e., how the output of 
the decision-making 
process translates into 
BAC variations and how 
BAC variations in turn 
affect decision-making).

Not 
reported.

Grasman 
et al. 
(2016)

The  
Netherlands

Substance use Mathematics and 
psychology; a reflection 
on what expertise was 
considered useful is not 
provided.

To explore the applicability 
of a dynamical systems 
approach in the analysis 
of addictive behaviours 
and the development of 
addiction.

Not 
reported.

Guastello 
(1984)

United States Substance use Mathematics and 
psychology; a reflection 
on what expertise was 
considered useful is not 
provided.

To explore whether the 
class of theories referred 
to as ‘opponent process 
models’ that underpin 
addictive behaviours can 
be considered examples 
of cusp and butterfly 
catastrophes.

Not 
reported.

Klein et al. 
(2013)

The 
Netherlands

Any health 
behaviour

Computer science and 
cognitive science; a 
reflection on what 
expertise was considered 
useful is not provided.

To understand and detect 
the causes of unhealthy 
behaviour to devise 
tailored interventions via 
an intelligent coaching 
system.

Not 
reported.

Levy et al. 
(2013)

United States, 
Israel

Substance use Computer science, 
psychology, and 
neuroscience; a reflection 
on what expertise was 
considered useful is not 
provided.

To understand and model 
the role of allostasis in 
drug addiction.

Not 
reported.

Martín et al. 
(2014)

United States Physical activity Engineering and public 
health; a reflection on 
what expertise was 
considered useful is not 
provided.

To explore and better 
understand Social 
Cognitive Theory through 
dynamical systems 
modelling and simulation, 
in addition to exploring 
the role of habituation.

Not 
reported.

Martín et al. 
(2015)

United States Physical activity Engineering and public 
health; a reflection on 
what expertise was 
considered useful is not 
provided.

To improve understanding 
of the system dynamics 
through designing and 
testing input signals 
within an adaptive 
physical activity 
intervention.

Not 
reported.

(Continued ) 
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Table 1. Continued.

Authors 
(year) Country

Health behaviour 
(s) Team expertise

Modelling purpose/ 
objective

Time 
required for 
modelling

Martín et al. 
(2016)

United States Physical activity Engineering and public 
health; a reflection on 
what expertise was 
considered useful is not 
provided.

To develop a closed-loop, 
intensively adaptive 
intervention for physical 
activity, informed by a 
dynamical model of Social 
Cognitive Theory.

Not 
reported.

Martín et al. 
(2020)

United States Physical activity Engineering, behavioural 
science and public health; 
the authors mention that 
the application of control 
engineering principles to 
the behavioural sciences 
is useful but do not 
further elaborate on this.

To explore the concept of 
setting ‘ambitious but 
doable’ daily step goals in 
a closed-loop physical 
activity intervention, 
informed by a dynamical 
model of Social Cognitive 
Theory.

Not 
reported.

Navarro- 
Barrientos 
et al. 
(2011)

United States Eating behaviour 
and physical 
activity

Engineering and public 
health; a reflection on 
what expertise was 
considered useful is not 
provided.

To improve the 
understanding of 
behavioural weight loss 
interventions by 
expressing these as 
dynamical systems.

Not 
reported.

Neuser et al. 
(2020)

Germany Eating behaviour Psychiatry and psychology; 
a reflection on what 
expertise was considered 
useful is not provided.

To outline a dynamic 
variability model of food 
intake, with a view to 
better understanding 
aberrant eating 
behaviour.

Not 
reported.

Pavel et al. 
(2016)

United States Physical activity 
and eating 
behaviour

Engineering, computer 
science, and behavioural 
science; a reflection on 
what expertise was 
considered useful is not 
provided.

To describe a 
computational model 
based on a dual process 
theoretical framework for 
behaviour change.

Not 
reported.

Pirolli 
(2016a)

United States Physical activity Cognitive science; a 
reflection on what 
expertise was considered 
useful is not provided.

To present a computational 
model that can explain 
and predict the day-to- 
day dynamics of health 
behaviour change within 
an mHealth study and to 
formalise self-efficacy as a 
learning/memory process.

Not 
reported.

Pirolli 
(2016b)

United States Physical activity Cognitive science; a 
reflection on what 
expertise was considered 
useful is not provided.

To better understand the 
dynamics of behaviour 
change, with a view to 
developing algorithms 
that can personalise the 
selection and intensity of 
adaptive interventions.

Not 
reported.

Pirolli et al. 
(2017)

United States Physical activity Cognitive science; a 
reflection on what 
expertise was considered 
useful is not provided.

To test predictions from a 
computational model 
regarding health 
behaviour goal success 
under conditions of 
implementation 
intentions and different 
reminder dosing 
schedules.

Not 
reported.

Riley et al. 
(2016)

United States Physical activity Engineering, computer 
science, behavioural 
science, and public 
health; a reflection on 

To develop a dynamic 
computational model of 
Social Cognitive Theory.

Not 
reported.

(Continued ) 
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when modelling complex systems and that control engineering principles can be usefully applied to 

the behavioural sciences.

The purpose of the modelling efforts could be broadly categorised as ‘understanding dynamic 

processes that influence health behaviours’ (20/29; 69.0%) and ‘developing an adaptive intervention’ 

(9/29; 31.0%). None of the included studies reported the time required for the interdisciplinary teams 

to complete their modelling efforts (0/29; 0.0%).

Modelling methods

Only one of the included studies (1/29; 3.4%) reported actively involving stakeholders in the model-

ling process, with personal trainers consulted to help specify an ‘exercise difficulty’ parameter (see 

Table 2). Most studies (25/29; 86.2%) drew solely on theory to identify the model components 

and structure. A minority of studies drew on clinical expertise within the project team and observed 

statistical patterns from prior work (2/29; 6.9%) or observed statistical patterns only (2/29; 6.9%). The 

three most commonly formalised theories were: the Social Cognitive Theory (9/29; 31.0%) (Bandura, 

1986), the Self-Regulation Theory (5/29; 17.2%) (Carver & Scheier, 1998), and the Theory of Planned 

Behaviour (4/29; 13.8%) (Ajzen, 1991).

A minority of studies explicitly mentioned taking an iterative approach to the model develop-

ment and validation process (4/29; 13.8%), with two studies providing further details. In these 

studies, iteration involved the formulation of an initial model structure, simulation, comparing the 

simulated against the empirical data, which was followed by model refinement.

With regards to internal consistency checks, most studies simulated data from their model (21/29; 

72.4%). However, only a minority of studies described the simulated participant characteristics (e.g., 

their expected age, gender, or health behaviour profile; 7/29; 24.1%), any pre-specified simulation 

benchmark(s) (i.e., qualitative or quantitative patterns that the model was expected to reproduce, 

such as the different stages of addiction; 5/29; 17.2%), or any sensitivity checks on the parameter 

values or other model assumptions (e.g., whether the qualitative or quantitative model outputs 

remained robust across a range of parameter values; 4/29; 13.8%).

With regards to external consistency checks, many studies fit their model to real-world data from 

intensive longitudinal study designs and calculated goodness-of-fit statistics, such as the residual 

sum of squares or the percentage of fit between the data and the model output (12/29; 41.4%). 

Table 1. Continued.

Authors 
(year) Country

Health behaviour 
(s) Team expertise

Modelling purpose/ 
objective

Time 
required for 
modelling

what expertise was 
considered useful is not 
provided.

Timms et al. 
(2013b)

United States Cigarette smoking Engineering, medicine, and 
public health; a reflection 
on what expertise was 
considered useful is not 
provided.

To develop a dynamical 
systems model that 
describes smoking 
behaviour change during 
cessation as a self- 
regulatory process.

Not 
reported.

Timms et al. 
(2014)

United States Cigarette smoking Engineering, medicine, and 
public health; a reflection 
on what expertise was 
considered useful is not 
provided.

To describe the process of 
behaviour change during 
a smoking cessation 
attempt.

Not 
reported.

Timms et al. 
(2013a)

United States Cigarette smoking Engineering, medicine, and 
public health; a reflection 
on what expertise was 
considered useful is not 
provided.

To better understand 
smoking cessation as a 
self-regulation process.

Not 
reported.
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Table 2. Modelling methods in the included studies.

Authors 
(year)

Stakeholder 
involvement

Method for identifying model 
components and structure Internal consistency checks External consistency checks The use of iterative practices

Banks et al. 
(2014)

Not reported. Clinical practice and observed 
statistical patterns (i.e., prior clinical 
knowledge within the project team 
from substance use therapy and 
intensive longitudinal data from a 
clinical trial).

Simulation was merged with model 
fitting to empirical data in a type of 
iterative simulation-based 
sensitivity analysis, and therefore 
assumed the same participant 
characteristics as the empirical data. 
This involved selecting the initial 
parameter values, manually 
adjusting these, and observing the 
effects on the solution as compared 
with the empirical data.

Although data were simulated from 
two models, manual adjustment of 
parameter values was performed 
through iterative comparison with 
the real-world data. Participant data 
were collected from 89 adult drinkers 
with an alcohol use disorder who 
wanted to reduce their drinking. 
Participants were asked to complete 
daily interactive voice recordings for 
eight weeks. Two ‘model subjects’ 
were selected for the dynamical 
systems modelling based on 
observing their change trajectories 
over time and selecting individuals 
with interesting/prototypical patterns 
(i.e., subject 1 was selected because 
their drinking had changed in a 
seemingly systematic way and 
subject 2 because their drinking data 
displayed a clear and consistent 
downward trend). Model comparison 
was used to determine whether more 
complex versions of the two models, 
compared with simpler models 
without specific parameters, resulted 
in a statistically significant 
improvement in model fit to data, 
using the residual sum of squares.

A type of iterative simulation-based 
sensitivity analysis was used. This 
involved selecting the initial 
parameter values, manually 
adjusting these, and observing the 
effects on the solution as compared 
with the empirical data.

Banks et al. 
(2017)

Not reported. Clinical practice and observed 
statistical patterns (i.e., prior clinical 
knowledge within the project team 
from substance use therapy and 
intensive longitudinal data from a 
clinical trial).

Not reported. The model was fit to real-world data. 
Data were collected from 200 adult, 
problem drinking men who have sex 
with men. Participants were 
randomised into one of four 
treatment groups: naltrexone (NTX) 
and modified behavioural self-control 
therapy (MBSCT), NTX only, MBSCT 
only, or placebo. The treatment was 

An iterative modelling approach was 
used. First, a psychological 
hypothesis was proposed through a 
preliminary model formulation. Data 
were simulated from the preliminary 
model, and the results were 
compared against the clinical data. 
This led to an improved 
understanding of the relationships                                                                                                                                                                                                                                                 
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Table 2. Continued.

Authors 
(year)

Stakeholder 
involvement

Method for identifying model 
components and structure Internal consistency checks External consistency checks The use of iterative practices

delivered for 12 weeks, during which 
participants were asked to respond to 
daily ecological momentary 
assessments. A ‘model subject’ was 
selected for the dynamical systems 
modelling based on the following: 
latent-class growth analysis was used 
to determine cohorts based on the 
change in alcohol consumption over 
the treatment period. The cohort with 
the largest reduction was then 
selected. From this cohort, a 
prototypical participant was selected. 
Parameter estimation was performed 
through inverse problem 
methodology (i.e., the fmincon 
function in MATLAB). Data were 
subsequently simulated from the 
model with the optimal parameter 
values and compared with the 
empirical data.

among the variables. The cycle was 
repeated by proposing a revised 
model, which incorporated the new 
psychological understanding. The 
revised model solutions more 
accurately reflected the dynamics in 
the data compared with the 
preliminary model, which suggested 
that the revised model captured the 
relationships among the variables 
better.

Baretta et al. 
(2019)

Not reported. Theory (i.e., Self-Efficacy Theory). Not reported. An ‘optimal profile’ was generated by 
the researchers, reflecting 
progression towards a long-term 
behavioural goal. Data were collected 
from 60 adult participants, who were 
asked to use the app with the 
embedded computational model for 
a period of eight weeks. The empirical 
data were subsequently compared 
against the optimal profile and 
participants were clustered into four 
behavioural subtypes (i.e., static, 
complicated, slow but gradual, and 
capable).

Not reported.
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Berardi et al. 
(2018)

Not reported. Theory (i.e., Behaviour Shaping/ 
Operant Conditioning).

Data were simulated from the model, 
first varying the parameter values, 
and subsequently running more 
targeted ‘computational 
experiments’ to examine the role of 
two specific parameters. The 
characteristics of the simulated 
participants were not described. No 
benchmarks for the simulations 
were specified. Sensitivity checks on 
the parameter values were not 
explicitly mentioned.

Not reported. Not reported.

Bobashev 
et al. 
(2017)

Not reported. Theory (i.e., Control Theory, Allostasis 
Theory, and Opponent-Process 
Theory).

Data were simulated from the model, 
with parameter values calibrated to 
produce a steady state of smoking 
approximately one pack of 
cigarettes per day. Sensitivity checks 
on the parameter values were not 
explicitly mentioned. The model 
was calibrated to the following 
typical participant: the participant 
starts smoking seven cigarettes per 
day and over a period of nine 
months progresses to smoking a 
pack a day. The participant was 
assumed to have unrestricted access 
to cigarettes during the day, except 
for eight hours at night during 
sleep. Two simulation scenarios 
were subsequently tested: (1) access 
to cigarettes was restricted for a 
short period of time; and (2) access 
to cigarettes was restricted for a 
longer time period. Neither 
sensitivity checks nor benchmarks 
for the simulations were explicitly 
mentioned.

Not reported. Not reported.

Caselles et al. 
(2010)

Not reported. Theory (i.e., Unique Personality Trait 
Theory).

Data were simulated from the model, 
with parameter values manually 
adjusted. The characteristics of the 
simulated participants were not 
described. Sensitivity checks on the 

Not reported. The model structure was obtained 
after ‘a long trial and error process’; 
however, further details about the 
iterative process are not provided.
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Table 2. Continued.

Authors 
(year)

Stakeholder 
involvement

Method for identifying model 
components and structure Internal consistency checks External consistency checks The use of iterative practices

parameter values were not explicitly 
mentioned. The simulations were 
used to examine if the model could 
reproduce three ‘classical phases’ of 
the addictive process (i.e., 
sensitisation, habituation, and 
return) and the ways in which 
personality influences and is 
influenced by this process (i.e., these 
were the simulation benchmarks).

Dong et al. 
(2012)

Not reported. Theory (i.e., Theory of Energy Balance, 
the Theory of Planned Behaviour, 
and Self-Regulation Theory).

Data were simulated from the model 
under conditions of no intervention 
and with an intervention, with 
manually selected parameter values. 
The simulations assumed a 32-year- 
old pregnant woman with pre- 
gravid parameters of height and 
weight which placed her in the 
overweight BMI category. Sensitivity 
checks on the parameter values 
were not explicitly mentioned. No 
benchmarks for the simulations 
were specified.

Not reported. Not reported.

El Mistiri 
et al. 
(2022)

Not reported. Theory (i.e., Social Cognitive Theory). Data were simulated from the model 
under conditions of an adherent 
and a non-adherent participant. The 
simulations assumed inactive 
participants with 2,000 steps/day at 
baseline. It is unclear how 
parameter values were selected. 
Sensitivity checks on the parameter 
values were not explicitly 
mentioned. No benchmarks for the 
simulations were specified.

Not reported. The process of input signal design is 
‘iterative by nature’; however, 
further details about the iterative 
process are not provided.

Ghosh (2015) Not reported. Theory (i.e., The Fogg Behaviour 
Model).

The computational feasibility (e.g., 
simulation run time) of the model 
was evaluated through test 
simulations and a series of logical 
queries, checking that the number 
of states were reasonable for future 
model simulations and applications. 
The characteristics of the simulated 
participants were not described.

Not reported. Not reported.
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Giraldo et al. 
(2017a)

Not reported. Theory (i.e., Lewin’s Theory of Group 
Dynamics) and observed statistical 
patterns (i.e., field data from people 
surveyed when visiting a bar).

Data were simulated from the model. 
Some of the initial parameter values 
were informed by field data 
collected from 1,024 people 
surveyed at 30 different bars. The 
characteristics of the participants 
were not described. The simulations 
were used to gain a better 
understanding of how the model 
parameters affect the possible 
blood alcohol content (BAC) level 
trajectories that can be described by 
the system, assuming different 
parameter starting values. Standard 
dynamical systems techniques 
(Lyapunov stability analysis of non- 
smooth systems) were used to 
investigate the stability of the 
system. No benchmarks for the 
simulations were specified.

Not reported. Not reported.

Giraldo et al. 
(2017b)

Not reported. Observed statistical patterns (i.e., a 
controlled experiment to estimate 
blood alcohol content levels under 
conditions of fasting and being fed, 
and field data from people 
surveyed when visiting a bar).

Data were simulated from the model. 
Initial parameter values were 
selected through a combination of 
the following: random draws from a 
uniform distribution; a controlled 
experiment with 12 participants; 
field data from 1,024 people 
surveyed at 30 different bars; and 
manual selection. The 
characteristics of the participants in 
the controlled experiment and the 
observational study were not 
described. The simulations were 
used to gain a better understanding 
of how the model parameters affect 
the possible blood alcohol content 
(BAC) level trajectories that can be 
described by the system, assuming 
different parameter starting values. 
Standard dynamical systems 
techniques (Lyapunov stability 
analysis of non-smooth systems) 
were used to investigate the 
stability of the system. No 
benchmarks for the simulations 
were specified.

Not reported. Not reported.
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Table 2. Continued.

Authors 
(year)

Stakeholder 
involvement

Method for identifying model 
components and structure Internal consistency checks External consistency checks The use of iterative practices

Grasman 
et al. 
(2016)

Not reported. Not reported (but the concepts of 
self-control and craving are at the 
core of the model).

Data were simulated from the model 
under conditions of cues and 
developing an addiction, repeated 
relapses, and a therapeutic 
intervention. The characteristics of 
the simulated participants were not 
described; however, the authors 
mention that they imagined 
situations in which individuals 
become a member of a community 
where customs exist that may lead 
to addiction, such as adolescents at 
the brink of the legal drinking age, 
or adults who enter a new peer 
group or start a new living in a 
different culture. It is unclear how 
the parameter values were selected. 
The authors report that the system 
behaviour was robust to changes in 
the parameter values, although 
details about the sensitivity checks 
were not described. No benchmarks 
for the simulations were specified.

Not reported. Not reported.

Guastello 
(1984)

Not reported. Theory (i.e., Opponent Process 
Theory).

Not reported. Not reported. Not reported.

Klein et al. 
(2013)

Not reported. Theory (i.e., the Transtheoretical 
Model, Social Cognitive Theory, 
Self-Regulation Theory, the Theory 
of Planned Behaviour, Attitude 
Formation Theory, the Health Belief 
Model, and Relapse Prevention 
Theory).

Not reported. Data were collected from 40 healthy 
adults. A second study included 14 
adults with chronic conditions (i.e., 
cardiovascular disease and type 2 
diabetes). The model was applied to 
the empirical data to identify 
‘bottlenecks’ for intervention.

Not reported.

Levy et al. 
(2013)

Not reported. Theory (i.e., The Allostatic Theory of 
Drug Abuse).

Data were simulated from the model 
under ‘archetypal patterns of drug 
seeking’, with parameter values 
informed by the available literature. 
The characteristics of the simulated 
participants were not described. 
Sensitivity checks on the parameter 
values were performed. No 
benchmarks for the simulations 
were specified.

Not reported. Not reported.
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Martín et al. 
(2014)

Not reported. Theory (i.e., Social Cognitive Theory). Data were simulated from the model 
under conditions of low self- 
efficacy, initiation of the behaviour 
followed by maintenance, and 
habituation. The characteristics of 
the simulated participants were not 
described. It is unclear how the 
parameter values were selected. 
Sensitivity checks on the parameter 
values were not explicitly 
mentioned. No benchmarks for the 
simulations were specified.

The model was fit to empirical data, 
with parameter estimation 
performed. Data were from a subset 
of participants from a larger study - 
i.e., 68 adults aged 45+ years who 
agreed to participate in an 
experiment with the support of a 
smartphone for a period of eight 
weeks. Data were subsequently 
simulated from the updated model 
with the optimal parameter values 
(i.e., following parameter estimation), 
and compared with the empirical 
data, calculating the goodness of fit.

Not reported.

Martín et al. 
(2015)

Not reported. Theory (i.e., Social Cognitive Theory). Data were simulated from the model, 
with parameter values selected 
based on a previous study. The 
characteristics of the simulated 
participants were not described. 
Sensitivity checks on the parameter 
values were not explicitly 
mentioned. The validity of the 
model was explored through 
specifying desired behaviour 
change (i.e., noisily increasing daily 
steps). The model parameters were 
then calibrated to ensure that the 
expected behaviour could be 
produced by the model. Based on 
this informative model, different 
interventions were tested to 
understand how a real-world 
participant could be intervened on 
to reach the desired levels of daily 
steps.

Not reported. Not reported.

Martín et al. 
(2016)

Not reported. Theory (i.e., Social Cognitive Theory). Data were simulated from the model, 
with parameter values selected 
based on a previous study. The 
characteristics of the simulated 
participants were not described. 
Sensitivity checks on the parameter 
values were not explicitly 

Not reported. Not reported.
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Table 2. Continued.

Authors 
(year)

Stakeholder 
involvement

Method for identifying model 
components and structure Internal consistency checks External consistency checks The use of iterative practices

mentioned. The validity of the 
model was explored through 
specifying desired behaviour 
change (i.e., noisily increasing daily 
steps). The model parameters were 
then calibrated to ensure that the 
expected behaviour could be 
produced by the model. Based on 
this informative model, different 
interventions were tested to 
understand how a real-world 
participant could be intervened on 
to reach the desired levels of daily 
steps.

Martín et al. 
(2020)

Not reported. Theory (i.e., Social Cognitive Theory). Data were simulated from the model. 
It is unclear how parameter values 
were selected. The characteristics of 
the simulated participants were not 
described. Sensitivity checks on the 
parameter values were not explicitly 
mentioned. No benchmarks for the 
simulations were specified. Next, a 
series of simulations were 
conducted to show the model’s 
ability to produce well-known 
responses predicted by Social 
Cognitive Theory, including: 
conditions of low self-efficacy, 
initiation of the behaviour followed 
by maintenance, and habituation. 
Simulations to identify ‘ambitious 
but doable’ goals were performed, 
including if the model could 
reproduce the ‘inverted U’ response 
to the continuous application of a 
positive stimulus. The system was 
checked for stability of solutions.

The model was fit to real-world data to 
estimate the model parameters. Data 
were from a subset of participants 
from a larger study - i.e., 68 adults 
aged 45+ years who agreed to 
participate in an experiment with the 
support of a smartphone for a period 
of eight weeks. Data were 
subsequently simulated from the 
updated model with the optimal 
parameter values (i.e., following 
parameter estimation), and compared 
with the real-world data, calculating 
the goodness of fit.

Not reported.
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Navarro- 
Barrientos 
et al. 
(2011)

Not reported. Theory (i.e., Theory of Energy Balance 
and the Theory of Planned 
Behaviour).

Data were simulated from the model 
under conditions of understanding 
participant variability and 
optimising the intervention. Data 
from the Minnesota semi-starvation 
experiment (i.e., 32 healthy men) 
were used to inform the energy 
balance sub-model. For the full 
model simulations, a healthy male 
participant was assumed. Parameter 
values were partly selected based 
on the available literature. 
Sensitivity checks on the parameter 
values were not explicitly 
mentioned. No benchmarks for the 
simulations were specified.

Not reported. Not reported.

Neuser et al. 
(2020)

Not reported. Theory (i.e., Variable Reward 
Sensitivity).

Data were simulated from the model 
for 400 participants under 
conditions of high/low reward 
sensitivity and high/low variability 
(i.e., four crossed groups), with 
parameter values drawn from a 
distribution or informed by the 
available literature. The 
characteristics of the simulated 
participants were not described. The 
model was subsequently fit to the 
simulated data to estimate the 
parameters and to confirm that the 
intended differences in mean and 
variability of reward sensitivity were 
recovered by the model (i.e., 
‘parameter recovery’). Next, 
simulations were run to explore 
how variability in reward sensitivity 
may relate to calorie intake across 
multiple days.

Not reported. Not reported.

Pavel et al. 
(2016)

Not reported. Theory (i.e., Dual Process Theory and 
Learning Theory).

Not reported. The model was fit to real-world data. 
Data were collected from 204 
participants who spent more than 
120 min/day in sedentary leisure 
activity, exercised less than 60 min/ 

Not reported.
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Table 2. Continued.

Authors 
(year)

Stakeholder 
involvement

Method for identifying model 
components and structure Internal consistency checks External consistency checks The use of iterative practices

day, consumed more than 8% of their 
intake energy in saturated fat, and ate 
less than five portions of fruits and 
vegetables per day. Participants were 
randomised into one of four 
treatment groups. The characteristics 
of the participants were not 
described. It is unclear what method 
of parameter estimation was used. 
Correspondence between the data 
simulated from the model with the 
optimised parameter estimates and 
the real-world data was visually 
determined.

Pirolli 
(2016a)

Experts (i.e., certified 
personal trainers) 
were asked to rate 
the difficulty of a 
range of physical 
exercises.

Theory (i.e., ACT-R, Social Cognitive 
Theory, and Goal Setting Theory) 
and statistical patterns (i.e., an 
experimental study investigating 
the effects of adaptive daily goal 
assignments).

Data were simulated from the model. 
The simulations were informed by 
an experimental study with 65 adult 
participants who were randomly 
assigned to three conditions with 
different 28-day goal progressions. 
It is unclear how the parameter 
values were selected, apart from the 
exercise difficulty parameter values, 
which were selected based on a 
prior Rasch model that was fitted to 
experimental data. Sensitivity 
checks were performed, with no 
major effects on the model results. 
No benchmarks for the simulations 
were specified.

A model-tracing approach was used to 
compare initial model predictions 
with real-world data from an 
experimental study with 65 adult 
participants (i.e., the same sample 
that was used to inform the model 
building and simulations). Next, the 
model was fit to the real-world data, 
using a non-linear least squares 
algorithm. This led to an improved fit 
compared with the model-tracing 
step.

Not reported.

Pirolli 
(2016b)

Not reported. Theory (i.e., ACT-R, Social Cognitive 
Theory, and Goal Setting Theory) 
and statistical patterns (i.e., 
experimental study investigating 
the effects of adaptive daily goal 
assignments).

Data were simulated from the model. 
The simulations were informed by 
an experimental study with 65 adult 
participants who were randomly 
assigned to three conditions with 
different 28-day goal progressions 
(i.e., easy, challenging, and 
personalised). It is unclear how the 
parameter values were selected. 
Sensitivity checks on the parameter 
values were not explicitly 
mentioned. No benchmarks for the 
simulations were specified.

Not reported. Not reported.
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Pirolli et al. 
(2017)

Not reported. Theory (i.e., ACT-R, the Theory of 
Planned Behaviour, and Habit 
Theory).

Not reported. The model was fit to real-world data. 
Data were collected from 64 adult 
participants who were randomly 
assigned to the 10 cells of an 
incomplete factorial design. 
Parameter estimation was conducted 
by minimising the Brier score 
between model-predicted probability 
of success and observed success 
using the optimx R package using a 
quasi-Newton method (i.e., limited- 
memory BFSG). Correspondence 
between the data simulated from the 
model with optimised parameter 
estimates and the real-world data 
was visually determined.

Not reported.

Riley et al. 
(2016)

Not reported. Theory (i.e., Social Cognitive Theory). 
In addition, the authors’ best 
judgement was used as a 
complement due to the lack of 
precision of the Social Cognitive 
Theory.

Data were simulated from an initial 
model, which resulted in 
modifications to the parameter 
values. Next, data were simulated 
from the refined model under 
conditions of low and high self- 
efficacy. The characteristics of the 
simulated participants were not 
described. Sensitivity checks using 
different parameter values were 
mentioned but no details were 
provided. The model behaved 
consistent with theory, with weaker 
effects of cues under conditions of 
low self-efficacy and stronger effects 
under conditions of high self- 
efficacy (i.e., these were the 
simulation benchmarks).

Not reported. Not reported.

Timms et al. 
(2013)

Not reported. Theory (i.e., Self-Regulation Theory). Simulations were conducted for a 
new, hypothetical intervention 
compared with no intervention. The 
simulations were informed by data 
from 403 participants who were 
assigned to one of four treatment 
options in a clinical trial. No further 
details of the participant 
characteristics were provided. No 
benchmarks for the simulations 
were specified.

The model was fit to real-world data, 
with parameter estimation performed 
through a prediction-error 
minimisation algorithm. Data were 
collected from 403 participants who 
were assigned to one of four 
treatment options in a clinical trial. 
No further details of the participant 
characteristics were provided. 
Goodness of fit statistics were 
calculated.

Not reported.
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Table 2. Continued.

Authors 
(year)

Stakeholder 
involvement

Method for identifying model 
components and structure Internal consistency checks External consistency checks The use of iterative practices

Timms et al. 
(2014)

Not reported. Theory (i.e., Self-Regulation Theory). Not reported. The model was fit to real-world data, 
with parameter estimation performed 
through a prediction-error 
minimisation algorithm. Data were 
collected from 403 participants who 
were assigned to one of four 
treatment options in a clinical trial. 
No further details of the participant 
characteristics were provided. 
Goodness of fit statistics were 
calculated.

Not reported.

Timms et al. 
(2013)

Not reported. Theory (i.e., Self-Regulation Theory). Not reported. The model was fit to real-world data, 
with parameter estimation performed 
through a prediction-error 
minimisation algorithm. Data were 
collected from 403 participants who 
were assigned to one of four 
treatment options in a clinical trial. 
This study focuses on one active 
treatment and the no treatment 
control arm. In the active treatment 
group, 100 participants received both 
active bupropion and counselling: 
46.0% female; 1.0% Hispanic, 90.0% 
White, 7.0% Black, and 3.0% other; 
mean age, 36.9 ± 11.5 years; mean 
baseline Fagerström Test for Nicotine 
Dependence score, 5.0 ± 2.5. In the 
no treatment control group, 100 
participants received a placebo drug: 
54.0% female; 0.0% Hispanic, 92.0% 
White, 5.0% Black, and 3.0% other; 
mean age, 39.2 ± 11.4 years; mean 
baseline score, 5.1 ± 2.1. Goodness of 
fit statistics were calculated.

Not reported.
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However, just over a third of studies described the participant characteristics in the real-world 

studies (10/29; 34.5%). Only one study reported that any model comparisons (i.e., the comparison 

of goodness-of-fit statistics for multiple model versions against the empirical data) had been 

made (1/29; 3.4%).

Model reporting

The model reporting is described in Table 3. The most frequently used mathematical formalisms/ 

frameworks were differential equations (17/29; 58.6%) or difference equations (7/29; 24.1%), with 

a minority of studies (4/29; 13.8%) using formalisms categorised as ‘other’ (e.g., Bayesian dynamic 

networks, cusp catastrophe models). Differential equations represent the relationship between 

one or more changing quantities (e.g., self-efficacy) with respect to another quantity (e.g., time). 

Differential equations are closely related to difference equations; the former represent continuous 

time, and the latter represent discrete time (i.e., separate time points). The studies using differential 

equations typically embedded these within a broader control systems or fluid dynamics framework, 

which, for example, assume the fundamental physical principles of the conservation of mass and 

energy. In contrast, mathematical frameworks such as Bayesian dynamic networks do not make 

such assumptions. The software used to implement the models was most frequently not reported 

(13/29; 44.8%), followed by MATLAB (9/29; 31.0%), R (3/29; 10.3%), or software that was categorised 

as ‘other’ (4/29; 13.8%).

The most commonly reported model time step was daily, with models describing changes from 

one day to the next (17/29; 58.6%); however, the model time steps in the remaining studies ranged 

from minute-to-minute to weekly. The model run lengths (i.e., the total length of time the model was 

set to run to observe its behaviour) varied widely, from six hours to 500 weeks. Most studies did not 

provide a rationale for the selected model time steps or run length (17/29; 58.6%), with the remain-

ing studies referring to the availability of data from prior work or arguing that the health behaviour 

of interest fluctuates at the specified frequency (12/29; 41.4%).

A schematic of or table with the model variables and free parameters (i.e., a comprehensive 

summary of the model itself) was provided in most studies (23/29; 79.3%). The models varied 

widely in complexity, with the approximate count of the number of model variables and free par-

ameters ranging from three to 30. The type of variables and free parameters included in the 

models were aligned with the formalised theories. For example, the models grounded in the 

Social Cognitive Theory included variables such as ‘self-efficacy’ and ‘outcome expectations’, while 

the models grounded in the Theory of Planned Behaviour included variables such as ‘intention’ 

and ‘perceived behavioural control’. Code or pseudo-code was publicly available only in a minority 

of studies (3/29; 10.3%).

The outcomes of the modelling efforts (see Table 3) could be broadly categorised into ‘dynamic 

processes were better understood’ (22/29; 75.9%), ‘the efforts can be used to inform future interven-

tion development’ (17/29; 58.6%), ‘calibration against real-world data is needed’ (9/29; 31.0%), and 

‘practical modelling challenges were articulated, including those relating to the data collection, 

model implementation, or computational requirements’ (6/29; 20.7%).

Discussion

Principal findings

This scoping review aimed to provide an overview of formal, dynamical systems models of health 

psychology theories unfolding at the within-person level. Formal, dynamical systems modelling is 

a promising method which stands to (at least partly) counteract the theory crisis in psychology 

and beyond. We sought to probe the existing literature on this topic to summarise the characteristics 

and purposes of current modelling efforts in the health psychology domain. In addition, we aimed to 
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Table 3. Model reporting in the included studies.

Authors 
(year)

Mathematical 
formalisms and 

software Model steps and run length Model reporting Model summary Modelling outcomes/what was learnt

Banks et al. 
(2014)

Differential equations; 
software not 
reported.

The model steps (triweekly) and run 
length (eight weeks) were selected 
due to the availability of data from a 
clinical trial (run length) and 
following inspection of meaningful 
data patterns (model steps), which 
indicated that a triweekly rather than 
daily timescale would be most 
suitable for observing trends in 
alcohol consumption (i.e., the daily 
data had too many fluctuations).

Schematics of the model 
components/parameters and 
structure for two individuals are 
provided (approximate count of 
model components: 6). Strong 
relationships are depicted by solid 
lines and weak relationships by 
dashed lines. Code/pseudo-code is 
not publicly available.

Different dynamical models were 
generated for the two ‘model 
subjects’. Model 1: Number of drinks 
consumed, limit, commitment to 
quit, desire to drink, guilt (shorthand 
for norm violation), and weight 
parameters. Model 2: Number of 
drinks consumed, mood, 
commitment, desire to drink, guilt, 
pleasant events, and weight 
parameters.

Developing dynamical models of 
complex systems is an iterative 
process. Usual regression 
methodologies which involve 
averaging responses over several 
individuals/questions are inferior 
when it comes to understanding the 
behavioural mechanisms of change 
in alcohol use. The way data are 
usually collected presented some 
issues when developing a formal, 
dynamical systems model of alcohol 
use/behaviour change.

Banks et al. 
(2017)

Differential equations; 
MATLAB.

No rationale is provided for the model 
steps (daily) or run length (12 
weeks).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 7). 
Code/pseudo-code is not publicly 
available.

Number of drinks consumed, norm 
violation, confidence, commitment, 
personal norm, desire to drink, 
weight parameters.

The method and results illustrate a 
preliminary proof-of-concept for 
using within-person dynamical 
systems modelling in research 
investigating behaviour change. 
However, there are difficulties in 
pursuing quantitative dynamic 
modelling with Likert scale data. 
Developing dynamical models is an 
iterative process, and the revised 
model (compared with the 
preliminary model) better captured 
the relationships among the 
variables.

Baretta et al. 
(2019)

Dynamic decision 
network; software 
not reported.

No rationale is provided for the model 
steps (weekly) or run length (eight 
weeks).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 4). 
Code/pseudo-code is not publicly 
available.

Goal, behaviour, self-efficacy, and 
factors external to the training.

A mathematical description of a 
behaviour change model based on 
self-efficacy theory and adaptive 
goal setting is presented, which 
requires tuning to real-world data.

Berardi et al. 
(2018)

Difference equations; 
MATLAB.

No rationale is provided for the model 
steps/run length (250 unspecified 
time units).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 7). 
Code/pseudo-code is not publicly 
available.

Range of behaviours, target behaviour 
class, number of behaviours in 
repertoire, fitness function 
(reinforcement strength), cloning, 
proportion mutated, mutation, and 
scaling parameters.

This work demonstrates the viability 
of using computational models to 
investigate behaviour shaping 
routines. The results indicate that 
shaping was effective at 
engendering higher levels of the 
target behaviour compared with 
when only the target behaviour  
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class is reinforced. The translation to 
real-world scenarios may present 
challenges.

Bobashev 
et al. 
(2017)

Differential equations; 
R and Java.

No rationale is provided for the model 
steps (hours and days) or run length 
(17 to 90 days).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 14). 
Code/pseudo-code is not publicly 
available.

Effect of the drug, accumulation of the 
drug/toxicity, habit, long-term 
consumption, long-term hedonistic 
memory, trigger that prompts self- 
administration, binge/intoxication, 
stressors, external cues, availability of 
cigarettes, withdrawal, craving, 
scaling parameters, and threshold 
parameters.

A multiscale simulation model of drug 
self-administration was developed. 
Implementing this simple model 
yielded insights that were 
interpreted as important (e.g., ‘the 
feeling of craving will eventually 
subside if the subject stays 
abstinent for long enough’). The 
results of the simulations are as 
good as the model assumptions, of 
which there are many. There are 
several avenues for expanding the 
model, and in doing so, simulating 
data can provide a translational link 
between animals and humans.

Caselles et al. 
(2010)

Differential equations; 
Visual Basic in the 
SIGEM system.

No rationale is provided for the model 
steps (minutes) or run length 
(unclear).

A schematic of and table with the 
model components/parameters 
and structure are provided; 
however, there are some 
inconsistencies between these 
(approximate count of model 
components: 30). Code/pseudo- 
code is not publicly available.

Drug unit dose, resistance time, delay 
reducing rate, absorption rate 
constant, elimination rate constant, 
tonic or basal activation level, 
homeostatic control rate, rate of 
increase of the excitation effect 
power, rate of decrease of the 
excitation effect power, rate of 
increase of the inhibitor effect power, 
rate of decrease of the inhibitor effect 
power, consumption rate, absorption 
rate, ingested an non-absorbed drug, 
elimination rate, drug level in the 
body, activator effect, homeostatic 
control, excitation effect, inhibitor 
effect, excitation-inhibitor balance, 
activation level, extraversion, 
increase of the excitation effect 
power, reduction of the excitation 
effect power, excitation effect power, 
delay, increase of the inhibitor effect 
power, reduction of the inhibitor 
effect power, and inhibitor effect 
power.

A dynamic mathematical model of a 
stimulant (cocaine) drug addiction is 
presented. The model can, via 
simulations, reproduce expected 
short- and long-term dynamics and 
can help explain the interaction 
between personality and addiction.

(Continued ) 
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Table 3. Continued.

Authors 
(year)

Mathematical 
formalisms and 

software Model steps and run length Model reporting Model summary Modelling outcomes/what was learnt

Dong et al. 
(2012)

Differential equations; 
software not 
reported.

The model steps (daily) and run length 
(40+ weeks of pregnancy) were 
selected because physical activity 
and energy intake guidelines operate 
at the daily level and the total 
duration of pregnancy is ∼40 weeks.

Schematics of the model 
components/parameters and 
structure are provided 
(approximate count of model 
components: 19). Code/pseudo- 
code is not publicly available.

Behaviour, intention, attitude towards 
the behaviour, subjective norm, 
perceived behavioural control, 
behavioural belief, evaluation of 
outcome, normative belief, 
motivation to comply, control belief, 
power of control belief, goal, self- 
regulatory controller, fat-free mass, 
fat mass, energy intake, energy 
expenditure, weights, and 
disturbances.

A dynamical model which can be used 
to underpin a behavioural 
intervention to control gestational 
weight gain is proposed.

El Mistiri 
et al. 
(2022)

Differential equations; 
software not 
reported.

The model steps (within-day and day- 
to-day) and run length (260 days, 
split into 10 cycles) were selected as 
such a design was expected to be 
required for eliciting transient 
responses (i.e., system responses to a 
change from an equilibrium).

A schematic of the model 
components/parameters and 
structure is provided; however, the 
final model contains added/ 
removed elements (approximate 
count of model components: 16). 
Code/pseudo-code is not publicly 
available.

Behavioural outcome, behaviour, 
outcome expectancy, self-efficacy, 
cue to action, perceived barriers/ 
obstacles, environmental context, 
goal setting, inspiring bouts (i.e., a 
categorical four level input signal 
combining a pseudo-random binary 
sequence with a random multi-level 
sequence), availability, opportunity, 
inflow resistances, outflow 
resistances, time constants, time 
delays, and unmeasured 
disturbances.

This work provides proof-of-concept 
of the utility of system identification 
approaches in input signal design 
for behavioural intervention 
experiments, focusing specifically 
on the selection of ideal times to 
deliver just-in-time adaptive 
interventions.

Ghosh (2015) State transition model 
(Kripke structure); 
NuSVM (symbolic 
model checking 
software).

No rationale is provided for the model 
steps (unclear) or run length 
(unclear).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 5). 
Code/pseudo-code is not publicly 
available.

Behaviour, state, motivation, ability, 
and trigger.

This work formalises a possible set of 
persuasive actions for wellbeing. 
The formalisation was applied to 
smoking cessation as a proof-of- 
concept case study.

Giraldo et al. 
(2017a)

Differential equations; 
MATLAB.

No rationale is provided for the model 
steps (hours) or run length (four 
hours).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 9). 
Code is available.

Blood alcohol content (BAC), BAC rate 
of change, alcohol intake, perception 
of BAC rate of change, BAC 
acceleration, desired effect, 
neighbour’s BAC, environmental bias, 
and scaling parameters.

The model provides a framework for 
studying the effect of social 
processes on individual alcohol 
intake during a drinking event. This 
paper illustrates how field data and 
computational and mathematical 
modelling complement each other. 
As part of the iterative modelling 
process, these efforts will help refine 
future field studies.
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Giraldo et al. 
(2017b)

Differential equations; 
MATLAB.

The model steps (minutes) and run 
length (six hours) were selected 
based on research focused on the 
pharmacokinetics of alcohol.

No schematic of or table with the 
model components/parameters 
and structure is provided 
(approximate count of model 
components: 7). Code is available.

Blood alcohol content (BAC), BAC rate 
of change, alcohol intake, subjective 
intoxication, desired level of 
intoxication, metabolism, and scaling 
parameters.

The model was developed to 
characterise the BAC dynamics of an 
individual during a drinking event. 
The results provide useful insights 
into the mechanisms that drive the 
decision-making process during 
drinking events. Additional real- 
time drinking event data that 
includes individual, group, and 
environmental level variables will 
help validate and update 
hypotheses about drinking event 
dynamics.

Grasman 
et al. 
(2016)

Difference equations; 
Microsoft Excel.

The model steps (weekly) were 
selected based on the authors’ 
assumption that lifestyle behaviours 
exhibit cyclic patterns with a 
periodicity of one week (although no 
reference was provided for this). No 
rationale is provided for the run 
length (500 weeks).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 9). 
Code/pseudo-code is not publicly 
available.

Acting out, external forces, self-control, 
craving, vulnerability, impact, decay, 
maximum capacity, and constants.

Not reported.

Guastello 
(1984)

Cusp catastrophe 
model; software not 
reported.

No rationale is provided for the model 
steps (unclear) or run length 
(unclear).

No schematic of or table with the 
model components/parameters 
and structure is provided 
(approximate count of model 
components: 5). Code/pseudo- 
code is not publicly available.

Drug use, social support, dosage, drug 
history, and availability.

Addiction and withdrawal can be 
considered part of the same process.

Klein et al. 
(2013)

Discrete maths/ 
threshold model; 
bespoke software.

No rationale is provided for the model 
steps (unclear) or run length 
(unclear).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 22). 
Pseudo-code is available.

Susceptibility, severity, pros/cons, 
emotions, social norms, barriers, 
skills, cues, threat, attitude, self- 
efficacy, coping strategies, mood, 
high-risk situations, awareness, 
motivation, commitment, stage of 
change, threshold, lifetime, age, and 
bottleneck.

Preliminary results demonstrate the 
model’s ability to help the digital 
system perform intelligent 
reasoning and intervene as needed, 
although further validation efforts 
are needed.

Levy et al. 
(2013)

Difference equations; 
MATLAB.

No rationale is provided for the model 
steps (multiple: minutes and hours) 
and run length (160 days).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 18). 
Code/pseudo-code is not publicly 
available.

Mood, drug intake, drug concentration 
in the brain, reward set point, 
baseline reward threshold, lowering 
effect on reward threshold, cognitive 
state, rationality density, cognitive 
weights, healing intervention, stress, 
pain, drug craving, saliency to drug 

This multiscale computational model 
promotes the identification of 
plausible hypotheses which, if 
experimentally tested, could 
provide knowledge to further 
improve the computational model.

(Continued ) 
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Table 3. Continued.

Authors 
(year)

Mathematical 
formalisms and 

software Model steps and run length Model reporting Model summary Modelling outcomes/what was learnt

cues, acute shock, acute trauma, 
acute drug priming, and acute drug 
cue.

Martín et al. 
(2014)

Differential equations; 
MATLAB.

No rationale is provided for the model 
steps (daily) and run length (20 
days).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 13). 
Code/pseudo-code is not publicly 
available.

Behavioural outcome, behaviour, 
outcome expectancy, self-efficacy, 
cue to action, self-management skills, 
skills training/social persuasion, 
observed behaviour/vicarious 
learning, perceived social support/ 
persuasion, perceived barriers/ 
obstacles, intrapersonal states, 
internal cues, external cues, 
environmental context, inflow 
resistances, outflow resistances, time 
constants, time delays, and 
unmeasured disturbances.

This paper describes a dynamical 
system model of Social Cognitive 
Theory and illustrates how control 
systems engineering principles 
provide a promising approach for 
advancing health behaviour theory 
development (e.g., by better 
specifying implicit assumptions 
made within the Social Cognitive 
Theory) and for guiding the design 
of more potent interventions. The 
model also shows that habituation 
may have an impact on behaviour 
change dynamics, thus 
demonstrating its importance 
within models of Social Cognitive 
Theory.

Martín et al. 
(2015)

Differential equations; 
MATLAB.

The model steps (daily) and run length 
(273 days) were selected to obtain 
sufficient simulated data for analysis.

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 13). 
Code/pseudo-code is not publicly 
available.

Behavioural outcome, behaviour, 
outcome expectancy, cue to action, 
outcome expectancy for 
reinforcement, external cues, 
reinforcement, environmental 
context, inflow resistances, outflow 
resistances, time constants, time 
delays, and unmeasured 
disturbances.

The study demonstrated that through 
building onto a dynamical model of 
Social Cognitive Theory, it was 
possible to design a set of simulated 
interventions that increased 
physical activity in a realistic way.

Martín et al. 
(2016)

Differential equations; 
MATLAB.

No rationale is provided for the model 
steps (daily) and run length (273 
days/160 days).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 15). 
Code/pseudo-code is not publicly 
available.

Behavioural outcome, behaviour, 
outcome expectancy, expected 
points, cue to action, internal cues, 
external cues, self-efficacy, goal 
attainment, environmental context, 
inflow resistances, outflow 
resistances, time constants, time 
delays, and unmeasured 
disturbances.

The study demonstrated that through 
building onto a dynamical model of 
Social Cognitive Theory, it was 
possible to design a set of simulated 
interventions that increased 
physical activity in a realistic way.
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Martín et al. 
(2020)

Differential equations; 
MATLAB.

No rationale is provided for the model 
steps (daily) and run length (20 
days).

A schematic of and table with the 
model components/parameters 
and structure is provided 
(approximate count of model 
components: 20). Code/pseudo- 
code is not publicly available.

Behavioural outcome, behaviour, 
outcome expectancy, self-efficacy, 
cue to action, self-management skills, 
skills training/social persuasion, 
observed behaviour/vicarious 
learning, perceived social support/ 
persuasion, perceived barriers/ 
obstacles, intrapersonal states, 
internal cues, external cues, 
environmental context, inflow 
resistances, outflow resistances, time 
constants, time delays, and 
unmeasured disturbances.

This paper described how Social 
Cognitive Theory can be 
represented as a dynamical system 
that can be used to design 
controllers, with the ultimate goal of 
improving intensively adaptive 
interventions in mHealth.

Navarro- 
Barrientos 
et al. 
(2011)

Differential equations; 
software not 
reported.

The model steps (daily) and run length 
(180) were partly informed by a well- 
known experimental study (i.e., the 
Minnesota semi-starvation 
experiment).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 20). 
Code/pseudo-code is not publicly 
available.

Behaviour, intention, attitude towards 
the behaviour, subjective norm, 
perceived behavioural control, 
behavioural belief, evaluation of 
outcome, normative belief, 
motivation to comply, control belief, 
power of control belief, carbohydrate 
intake, fat intake, protein intake, 
sodium intake, lean mass, fat mass, 
extracellular fluid, weights, and 
disturbances.

A dynamical model for a behavioural 
intervention associated with weight 
loss and body change composition 
was proposed, which provides a 
potentially useful framework for 
understanding and optimising such 
interventions. The simulation results 
point to the need for data from 
experimental trials or observational 
studies that can be used to estimate 
parameter values in these models 
and validate the modelling 
framework.

Neuser et al. 
(2020)

Difference equations; 
software not 
reported.

No rationale is provided for the model 
steps/run length (30 runs of 150 
experimental trials each).

No schematic of or table with the 
model components/parameters 
and structure is provided 
(approximate count of model 
components: 5). Code/pseudo- 
code is not publicly available.

Learning rate, reward prediction error, 
obtained reward, known reward 
magnitude for each option, and 
reward sensitivity.

The proposed model integrates 
disparate findings and leads to 
novel predictions in a quantitative 
framework. Model simulations can 
be used to make testable 
predictions about how latent 
variables such as reward sensitivity 
may guide eating behaviour in 
different settings. The results call for 
a stronger emphasis on within- 
person variability to improve 
mechanistic insights into eating 
disorders.

Pavel et al. 
(2016)

Difference equations; 
software not 
reported.

The model time steps (daily) and run 
length (200 days) were informed by 

No schematic of or table with the 
model components/parameters 
and structure is provided 

Goal, rate of forgetting/extinction, and 
rate of learning.

This paper illustrates the importance 
of computational predictive 
modelling for optimisation of                                                                                                                                                                                                                                                 
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Table 3. Continued.

Authors 
(year)

Mathematical 
formalisms and 

software Model steps and run length Model reporting Model summary Modelling outcomes/what was learnt

the availability of data from a clinical 
trial.

(approximate count of model 
components: 3). Code/pseudo- 
code is not publicly available.

precision interventions to improve 
health behaviours.

Pirolli 
(2016a)

Difference equations; 
R.

The model steps (daily) and run length 
(28 days) were informed by the 
availability of data from an 
experimental study.

No schematic of the model 
components/parameters and 
structure is provided. A table is 
provided; however, it does not 
contain all model components 
(approximate count of model 
components: 10). Code/pseudo- 
code is not publicly available 
(although some pseudo-code is 
available for the ACT-R model 
component).

Behavioural goal, activities, ability, 
exercise difficulty, memory-based 
assessment of self-efficacy, memory- 
based assessment of intended effort, 
memory decay, gain, offset, and 
stress of the goal.

This model suggests that behaviour is 
influenced by self-efficacy, which 
follows an ‘impulse’ model, whereby 
individuals performing the 
behaviour of interest adds to the 
impulse but that this decays over 
time.

Pirolli 
(2016b)

Not reported. The model steps (daily) and run length 
(100 days) were informed by the 
availability of data from an 
experimental study.

No schematic of the model 
components/parameters and 
structure is provided. A table is 
provided; however, it does not 
contain all model components/ 
parameters (approximate count of 
model components: 10). Code/ 
pseudo-code is not publicly 
available.

Behavioural goal, activities, ability, 
exercise difficulty, memory-based 
assessment of self-efficacy, memory- 
based assessment of intended effort, 
memory decay, gain, offset, and 
stress of the goal.

The computational model presented 
in this paper refines current 
psychological theories by exploring 
the dynamic interaction between 
goal difficulty, intended effort, and 
self-efficacy.

Pirolli et al. 
(2017)

Difference equations; 
R.

The model steps (daily) and run length 
(28 days) were informed by the 
availability of data from an 
experimental study.

No schematic but a table with the 
model components/parameters is 
provided (approximate count of 
model components: 11). Code/ 
pseudo-code is not publicly 
available.

Scaling parameter for the activation for 
predicting goal recall, weight 
parameter for implementation 
intention activation in predicting 
probability goal recall, weight 
parameter for memory activation of 
performing goals in predicting 
probability goal recall, scaling 
parameter for the utility of goal 
striving productions, weight 
parameter for implementation 
intention activation in utility of goal 
striving productions, weight 
parameter for memory activation of 
performing goals in utility of goal 
striving productions, scaling 
parameter for base-level activation 

This paper showed that a 
computational model can be used 
to make precise quantitative 
predictions of physical activity goal 
achievement in response to 
implementation intentions and 
reminders.
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learning, slope parameter for base- 
level activation learning, initial utility 
of new habit, utility learning rate for 
habit, and reward value for new 
habit.

Riley et al. 
(2016)

Differential equations; 
software not 
reported.

No rationale is provided for the model 
steps (daily) or run length (unclear; 
approximately 20 days).

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 19). 
Code/pseudo-code is not publicly 
available.

Behavioural outcome, behaviour, 
outcome expectancy, self-efficacy, 
cue to action, self-management skills, 
skills training/social persuasion, 
observed behaviour/vicarious 
learning, perceived social support/ 
persuasion, perceived barriers/ 
obstacles, intrapersonal states, 
internal cues, external cues, 
environmental context, inflow 
resistances, outflow resistances, time 
constants, time delays, and 
unmeasured disturbances.

This paper showed that an initial 
dynamical model generates precise 
and testable quantitative 
predictions for future intensive 
longitudinal research. The process 
of developing the model led to 
important insights about the system 
dynamics, which require further 
testing with empirical data.

Timms et al. 
(2013a)

Differential equations; 
MATLAB.

The model steps (daily) and run length 
(6 weeks) were informed by the 
availability of data from a clinical 
trial.

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 8). 
Code/pseudo-code is not publicly 
available.

Quit (i.e., whether the person has made 
an attempt to quit smoking or not), r 
(i.e., the craving set point), e (i.e., the 
deviation between the craving set 
point and the current craving), 
cigsmked (i.e., the total number of 
cigarettes smoked each day), craving, 
gain, time constant, and system zero.

The current model helps to 
conceptualise smoking cessation as 
a dynamical process. The model was 
presented as a first step towards 
developing an adaptive smoking 
cessation intervention.

Timms et al. 
(2014)

Differential equations; 
MATLAB.

The model steps (daily) and run length 
(6 weeks) were informed by the 
availability of data from a clinical 
trial.

A schematic of the model 
components/parameters and 
structure is provided (approximate 
count of model components: 8). 
Code/pseudo-code is not publicly 
available.

Quit (i.e., whether the person has made 
an attempt to quit smoking or not), 
rcrav (i.e., baseline craving level), e 
(i.e., the deviation between the 
baseline and the current craving 
level), cigsmked (i.e., the total 
number of cigarettes smoked each 
day), craving (i.e., current craving 
level), gain, time constant, and 
system zero.

A dynamical systems model is 
presented, which focuses on the 
interplay between craving, self- 
regulation, and smoking cessation. 
The model can be used to develop 
an adaptive smoking cessation 
intervention.

Timms et al. 
(2013b)

Differential equations; 
MATLAB.

The model steps (daily) and run length 
(6 weeks) were informed by the 
availability of data from a clinical 
trial. The authors emphasise that this 
is a critical time frame for smoking 
cessation.

A schematic of and a table with the 
model components/parameters 
and structure are provided 
(approximate count of model 
components: 8). Code/pseudo- 
code is not publicly available.

Quit (i.e., whether the person has made 
an attempt to quit smoking or not), 
baseline craving level, daily craving 
difference, CPD (i.e., the total number 
of cigarettes smoked each day), 
current craving, gain (i.e., the 

A dynamical systems model is 
presented, which can effectively 
leverage intensive longitudinal data 
to better understand self-regulatory 
processes during smoking cessation.
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Table 3. Continued.

Authors 
(year)

Mathematical 
formalisms and 

software Model steps and run length Model reporting Model summary Modelling outcomes/what was learnt

magnitude of change in an output 
variable per unit change of an input 
variable), time constant (i.e., the 
speed at which an output variable 
changes in response to a change in 
an input variable), and system zero 
(i.e., a negative value indicates 
inverse response, which refers to an 
output variable whose initial change 
is in a direction opposite to the net 
change).
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summarise and synthesise the methodological steps in published modelling studies, and to reflect 

on our synthesis to generate a set of expert-derived initial ‘best practice’ recommendations for 

health researchers who intend to use formal, dynamical systems modelling in their future work 

(see Table 4).

We found that formal modelling efforts in the health psychology domain thus far have been 

largely concentrated to a small number of interdisciplinary teams based in the United States, 

which is likely due to the novelty of this method within the health psychology field. Most modelling 

teams included a combination of psychologists/public health researchers and mathematicians/ 

engineers. The purpose of the modelling efforts was either to better understand dynamic processes 

underpinning health behaviours (i.e., theory-focused objectives) or to inform the development of an 

adaptive intervention (i.e., practice-focused objectives). The former objective aligned with our 

Table 4. Initial expert-derived ‘best practice’ recommendations.

General recommendations
. Form an interdisciplinary modelling team with complementary expertise in, for example, psychology/public health and 

mathematics/engineering/computer science.

. Adopt Open Science practices to help researchers and practitioners better understand and examine the formal model. For 
example, make code or pseudo-code openly available to enable uptake and reuse.

. Devise strategies for checking that modelling papers have a sufficient degree of readability for health psychology and public 
health researchers without a technical background.

Specific recommendations
Model development 

. Draw on and document diverse sources of knowledge (e.g., interdisciplinary scientific knowledge, clinical know-how, lived 
experience of participants, statistical patterns from observational or experimental studies) to help fill theoretical gaps 
pertaining to: 

i The model components/structure and which mathematical framework/formalism to use;
ii The phenomenon/phenomena of interest (i.e., qualitative or quantitative patterns that the formal model should be able 

to reproduce);
iii The temporal resolution (e.g., the model time steps and run length) of the processes being formalised.

. Provide a comprehensive summary of the model variables and free parameters (including their plausible ranges) such that the 
formal model can be understood and replicated by another interested researcher.

. If aiming to fit the model to empirical data in a subsequent step, consider the number of free parameters in the model and 
potential consequences for the amount and complexity of data required.

Model evaluation – internal consistency checks 

. Specify the simulation benchmark(s) by being clear on the phenomenon or phenomena of interest. If such knowledge is 
currently lacking, document this.

. Specify the characteristics (e.g., age, gender, health behaviour profile) of the simulated participants.

. Conduct and document systematic sensitivity checks on the parameter values and other model assumptions. For example, 
conduct and document model comparisons to help arbitrate between potential explanatory frameworks (e.g., can a simpler 
model give rise to the phenomenon of interest?).

. Document any model iterations (e.g., changes to the model components/structure) resulting from the simulations and any 
new research questions/knowledge gaps arising from this step.

Model evaluation – external consistency checks 

. If within the project scope, fit the model to empirical data that match the temporal resolution of the processes being 
formalised, consistent with the Nyquist-Shannon Sampling Theorem.

. Specify the participant characteristics (e.g., age, gender, health behaviour profile) and explain any discrepancies with the 
simulated participant characteristics.

. Specify the parameter estimation technique used.

. If relevant, conduct and document model comparisons to help arbitrate between potential explanatory frameworks (e.g., 
does a simpler model with fewer components provide a better fit?).

. Document any model iterations (e.g., changes to the model components/structure) resulting from the model fitting stage and 
any new research questions/knowledge gaps arising from this step.
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expectations that formal, dynamical systems modelling can be used to accelerate the development 

and refinement of robust, testable theories that elucidate health behaviours and thus improve our 

understanding of how and why specific health behaviours fluctuate non-linearly over time and in 

response to a myriad of factors (e.g., contextual factors). The latter objective was also aligned 

with our expectations that formal, dynamical systems modelling can help accelerate the develop-

ment of adaptive interventions, including ‘just-in-time adaptive interventions’ (Nahum-Shani et al., 

2016), as these interventions require clearly formulated hypotheses about the dynamics of health 

behaviours and when and where real-time interventions may be helpful.

Contrary to our expectations, however, most studies did not involve stakeholders in the model-

ling process. This stands in contrast to recent modelling efforts in the clinical psychology field 

(Burger et al., 2020) in addition to a recent scoping review of system dynamics applications in addic-

tion research, which reported that a third of included studies engaged people with lived experience 

or other stakeholders in the modelling process (Naumann et al., 2022). A plausible explanation for 

the discrepancy with our review is their inclusion of agent-based models (which were not included 

here). Agent-based modelling has a long-standing tradition of stakeholder involvement and often 

seeks to inform public health decisions (Hammond, 2015). In addition, the teams responsible for 

the modelling efforts reviewed here typically included researchers and health practitioners with 

interdisciplinary and complementary expertise, which may have reduced the perceived need to 

involve external stakeholders. Linked to this finding, we note that few of the included studies 

reported drawing on any other source of knowledge than available health psychology theories 

when specifying the model variables, free parameters, and structure. In some studies, the need to 

compensate for the lack of precision within health psychology theories was explicitly mentioned 

– i.e., it was argued that the available details about the theories of interest were insufficient for for-

mulating the precise model equations (Riley et al., 2016). Drawing on diverse sources of knowledge 

to help fill theoretical gaps and documenting this – including lived experience of participants/ 

patients, practitioner know-how, and statistical patterns from observational or experimental 

studies – would be fruitful going forwards (Gibbs et al., 2023).

Although iteration was likely deployed in most (if not all) modelling efforts reviewed, it was typi-

cally not explicitly reported. Particularly for novices who are learning how to model, it would be 

useful for model development papers to describe what aspects of the model were refined at 

different stages and why. Most studies used simulation to examine the models’ internal consistency; 

a smaller subset of studies progressed to fit their model to empirical data as part of external consist-

ency checks. We found that few studies had specified any simulation benchmark(s) – i.e., qualitative 

or quantitative patterns that the model was expected to be able to reproduce. Without clarifying the 

phenomenon or set of phenomena that a formal model should be able to give rise to in simulations, 

it is difficult to judge its quality as an explanatory framework (i.e., does the specific model instantia-

tion serves as an adequate causal explanation for the phenomenon of interest?). Without such simu-

lation benchmark(s), any model instantiation can be argued to be adequate (van Dongen et al., 

2024). If following up on the simulations with external consistency checks, this point is less relevant 

as a poor fit to data serves a similar purpose; however, not every modelling project can include exter-

nal consistency checks due to limited resource, practical challenges, or ethical considerations. In 

addition, few studies reported conducting systematic checks on the parameter values or explicitly 

testing other model assumptions as part of their simulations. As astutely argued by modellers in 

adjacent fields, ‘the need to test assumptions and not just predictions of a model can hardly be over-

emphasised’ (Kokko, 2007). These considerations notwithstanding, as the formal modelling of health 

psychology theories is still in its infancy, and further work is required to specify the phenomena of 

interest that our theories seek to explain (van Dongen et al., 2024), we note that it is a great effort to 

first formalise available health psychology theories even without specifying simulation benchmarks/ 

the phenomenon of interest that the formal model should give rise to. Since each model requires 

several rounds of iteration, such benchmarks may also be iteratively specified as more knowledge 

about the system dynamics becomes available.
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Most of the studies did not provide a rationale for the selected model time steps (e.g., day-to-day 

changes) or run length (e.g., the system dynamics projected over two days or 40 weeks). This is argu-

ably at least as important as specifying the model components and structure and should closely 

match the phenomenon or set of phenomena of interest, consistent with the Nyquist-Shannon 

Sampling Theorem (i.e., when converting a continuous- to a discrete-time signal, it needs to be 

sampled at a rate that is at least twice the highest frequency present in the signal). For example, 

hourly dynamics may not be necessary for understanding infrequently performed health behaviours 

(e.g., cancer screening) but may be vital for modelling smoking or dietary lapse dynamics. As men-

tioned in the Introduction, psychological processes are expected to evolve over different time scales, 

from fast- (e.g., affect) to slow-evolving processes (e.g., habits, identity) (Rhodes, 2021). In addition, 

both technological and methodological advances mean that health behaviours can be monitored in 

(or near) real-time across different contexts and situations. As formal, dynamical systems models can 

accommodate temporal hypotheses, including different timescales, and data are available from 

studies conducted under a ‘high-resolution measurement paradigm’, we believe that clearer justifi-

cations for the selected model time steps and run lengths would greatly help the field going 

forwards.

The most frequently used mathematical formalisms were differential or difference equations, 

often embedded within the broader frameworks of control systems and fluid dynamics. For 

novice modellers with little experience, it is not always straightforward which mathematical frame-

work to use, what the pros and cons are of different approaches, and what assumptions they engen-

der (e.g., is there a preferred choice of mathematical formalism/framework for my modelling 

question?). Therefore, guidance as to how to select the mathematical approach would be helpful. 

A primer on different mathematical frameworks for modellers to consider is provided in Hanna 

Kokko’s book ‘Modelling for Field Biologists and Other Interesting People’ (Kokko, 2007); however, 

the examples provided are not specifically geared towards health psychologists. In addition, a poten-

tial explanation for the low variability in the mathematical frameworks and formalisms applied in the 

reviewed studies is that, as with other areas of science, many researchers tend to apply the method 

(s) they know well for any problems they see or have a tendency to seek out problems that fit a par-

ticular method (Kokko, 2007). This is understandable, as things get quicker and more robust with rep-

etition (e.g., limitations of the approach can be improved on with increased experience), and likely 

applies more broadly to how researchers tend to select which quantitative or qualitative method to 

use (c.f. ‘If the only tool you have is a hammer, it is tempting to treat every problem as if it were a nail’ 

[Maslow, 1966]). However, this can also lead to ‘development inertia’ – i.e., not considering a wider 

range of options and potentially over-looking a more suitable mathematical framework (Kokko, 

2007).

Although most studies provided an overview of the model variables, free parameters, and struc-

ture, we deemed it challenging to extract more detailed information about the model inputs, model 

outputs, the variable ranges, and the number of free parameters. Instead, we devised a less fine- 

grained data item – i.e., ‘the approximate count of the number of model components’ – to be 

able to summarise the model complexity. From this rather crude measure, we could glean that 

the models varied widely in complexity, which has consequences both for their explanatory 

power and the ability to fit the model to empirical data. However, due to the typically sparse 

model reporting in the reviewed studies, our interdisciplinary team could not extract more 

precise model information with an acceptable level of confidence and within our available resources. 

Related to the sparse model reporting, Open Science practices do not yet appear to be the norm 

within formal modelling efforts in the health psychology field. A small minority of studies made 

their code or pseudo-code publicly available, and the software used for the model implementations 

was typically not reported. Directly linked to the reproducibility crisis highlighted in the Introduction, 

if researchers do not share code, then the outputs cannot be scrutinised or reproduced by others, 

which in turn hinders model uptake or reuse by other researchers. For example, the ‘ODD protocol’ 

has gained traction within agent-based modelling to make model descriptions more understandable 
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and complete (Grimm et al., 2010). Modellers are strongly encouraged to apply Open Science prac-

tices going forwards, notably to help others who are starting from existing models and examples 

when embarking on new modelling initiatives. See Table 4 for our initial expert-derived ‘best prac-

tice’ recommendations.

Strengths and limitations

This review was strengthened by the interdisciplinary team expertise, encompassing health psychol-

ogy, behavioural science, mathematics, and engineering. To our knowledge, this is the first review 

summarising and communicating the role of formal, dynamical systems modelling for health psy-

chologists. Additional strengths include the pre-registration of the scoping review protocol and 

double checking 100% of the data extracted from the studies.

This review also has several limitations. First, due to the challenging nature of defining what con-

stitutes formal, dynamical systems modelling, it was difficult to determine which studies were suited 

for inclusion in the review. To mitigate this concern, the study screening and selection process was 

guided by regular discussion among the interdisciplinary review team. However, it is likely that rel-

evant studies were not identified by our searches, as indicated by the additional studies identified 

through reference chaining and expertise within the review team. Future reviews on this topic are 

encouraged to spend additional time crafting and validating the search strategy, ensuring that all 

known relevant sources are being captured. This should, at least in part, be facilitated by the 

work done in this review to clarify what constitutes formal, dynamical systems modelling. Second, 

the focus on health behaviours at the within-person level, rather than at the within- and 

between-person level, constitutes another limitation. However, as several systematic reviews have 

mapped out practices related to agent-based modelling, the focus on within-person processes in 

the present scoping review was deemed appropriate. Third, our review focused on the formalisation 

of health psychology theories pertaining to health behaviours (e.g., tobacco smoking, alcohol con-

sumption). However, health psychology also encompasses theories that seek explain phenomena 

such as differing illness perceptions or the self-management of chronic conditions. Future reviews 

would therefore benefit from expanding the scope to a wider range of health psychology theories. 

Finally, we did not extract information about models being deterministic (i.e., they always produce 

the same outputs) or stochastic (i.e., there is a degree of randomness embedded in the model, 

leading to variability in the outputs), or what parameter estimation techniques were used; these 

aspects would be interesting to consider in future work.

Avenues for future research

First, although a review of published modelling studies provides a useful lay of the land (i.e., a 

bottom-up approach looking at existing practices in the modelling community), to accelerate the 

application of formal, dynamical systems modelling to mitigate the theory crisis in health psychology 

and beyond, it would be useful for modellers from adjacent fields to come together to produce a set 

of suggested ‘how to model’ guidelines. This would be with a view to ensuring that there is room for 

debate about different modelling practices, reflecting on their pros and cons and documenting 

these. For example, one important aspect of formal models that is rarely discussed is the relationship 

between the number of free parameters and the amount/complexity of data required for model 

fitting, which merits further consideration. Second, bespoke and accessible training courses and 

tutorials should be developed for health psychologists without a mathematical background to 

help the community adopt these methods. Third, following the lead of computational modellers 

in the cognitive science field, an open-ended pre-registration form for formal, dynamical systems 

models is lacking (Crüwell & Evans, 2021). Producing such a fit-for-purpose pre-registration form 

would be a fruitful avenue for future research. Fourth, as mentioned in the Introduction, formal, 

dynamical systems modelling can support multiscale modelling efforts to distinguish fast- and 
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slow-evolving psychological processes and their interrelations. However, few of the included studies 

explicitly considered different time scales; this should be studied in future health psychology mod-

elling projects. Fifth, although psychological phenomena such as ‘ego-depletion’ or ‘the concurrence 

of depression and anxiety’ are rather well-defined (van Dongen et al., 2024), clearly specifying the 

phenomena of interest under a ‘high-resolution measurement paradigm’ remains more elusive. 

For example, it might be of interest to generate an explanatory framework for why two individuals 

who are both motivated to stop smoking at a given point in time either end up abstinent or return to 

regular smoking a few weeks later. If so, a formal model might be expected to give rise to both absti-

nent and lapsing/relapsing system behaviour (i.e., the simulation benchmark), results from which 

could contribute to further refinements of powerful frameworks that explain the complex dynamics 

of smoking cessation and relapse and guide intervention development. This is important, particularly 

in the fields of psychology and public health where enhancing health and well-being is a central 

goal. However, further work is required to support researchers to more clearly specify the phenom-

ena of interest that formal, dynamical systems models within health psychology should be able to 

reproduce and explain (van Dongen et al., 2024). Finally, we note that many of the included 

studies were published in mathematical or engineering journals rather than journals specifically tar-

geting health psychologists. ‘Mathematically beautiful’ models can look scary to non-modellers and 

typically aim to advance mathematics rather than allow health psychologists and public health 

researchers to engage with the theoretical claims made (Kokko, 2007). However, to support the 

uptake of modelling practices in the health psychology community, at least a proportion of model-

ling papers should be written with this audience in mind. Interdisciplinary teams could, for example, 

devise strategies for checking that papers in progress have a sufficient degree of readability for 

health psychology and public health researchers. For example, as part of our ongoing project ‘COM-

PLAPSE’, which aims to develop and validate a formal, dynamical systems model of lapses in smokers 

attempting to stop, we aim to provide resources and guidance on ‘how to model’, which will be 

specifically targeted to health psychologists (https://www.olgaperski.com/research/complapse) 

(Perski, 2024).

Conclusion

This scoping review of formal, dynamical systems models applied to health psychology theories ident-

ified a total of 17 modelling projects reported across 29 studies. We found that current health psychol-

ogy modelling efforts have largely been concentrated to a small number of interdisciplinary teams in 

the United States. Most models aimed to better understand dynamic processes or to inform the devel-

opment of adaptive interventions. Models commonly aimed to formalise the Social Cognitive Theory 

or the Self-Regulation Theory and varied in complexity. Few studies involved stakeholders in the mod-

elling process or drew on Open Science practices. Formal, dynamical systems modelling – particularly if 

developed based on the principles of Open Science – can help health psychologists develop and refine 

theories, ultimately leading to a deeper understanding of the dynamic nature of many health beha-

viours and enabling the development of more potent interventions.
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