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ABSTRACT: Terrestrial enhanced rock weathering (ERW) is the
application of pulverized silicate rock to soils for the purposes of
carbon removal and improved soil health. Although a geochemical
modeling framework for ERW in soils is emerging, there is a
scarcity of experimental and field trial data exploring potential
environmental impacts, risks, and monitoring strategies associated
with this practice. This paper identifies potential negative
consequences and positive cobenefits of ERW scale-up and
suggests mitigation and monitoring strategies. To do so, we
examined literature on not only ERW but also industry, agriculture,
ecosystem science, water chemistry, and human health. From this
work, we develop recommendations for future research, infra-
structure, and policy needs. We also recommend target metrics,
risk mitigation strategies, and best practices for monitoring that will permit early detection and prevention of negative environmental
impacts.

KEYWORDS: carbon dioxide removal, negative emission technology, monitoring, reporting, verification, environmental impacts,
silicate weathering

■ INTRODUCTION

Terrestrial weathering of silicate minerals, operating on
geologic time scales,1,2 consumes and fixes atmospheric carbon
dioxide,3 alkalizes soils,4 and provides a range of macro- and
micronutrients to soils and waters.5 This weathering process,
and provision of its associated benefits, may be accelerated by
pulverizing rock to finer, high-surface-area particles, and
dispersing them in a reactive medium, such as the soils of a
farm field where roots, microbes, and a high soil pCO2

promote weathering.6,7 This process has become known as
enhanced rock weathering (ERW).

The geochemistry of ERW and its theoretical potential for
carbon removal have been well-described in a series of reports
and studies.7,8 However, the relative novelty of the field means
that there is a shortage of experimental and field data,9 and that
existing research has largely focused on theoretical modeling of
ERW outcomes for carbon removal, with few studies
addressing impacts beyond the carbon cycle.5,10

Only recently has research begun to emerge that directly
addresses fundamental questions about how ERW practices
will affect land, water, and lifeforms.11 Recently, Vandeginste et
al. outlined environmental risks of ERW to ecosystems, water,
and air,12 while Taylor et al. detailed impacts on soil
respiration and pH on streamwater organisms.3 While
instructive, these papers also highlight the uncertainties and

distributed nature of ERW environmental impacts−there
continues to be a need for robust monitoring and mitigation
guidance that can assist practitioners and policymakers in
implementing ERW.

In this paper, we explore the potential environmental
impacts of ERW of silicate minerals on agricultural cropland
for the purpose of carbon sequestration. Rangelands, roads,
waterways, and oceans are also candidates for the application
of pulverized minerals, which may represent their own unique
environmental questions that need to be examined. Carbonate
minerals may also be used in ERW, and the wealth of research
into their application to agriculture has been used here to
inform outcomes for silicate weathering where relevant, as
discussed in the supplement.

We provide a detailed exploration of ERW environmental
risks, from point of application to final storage (Table S1). We
conclude by tabulating clear monitoring and mitigation
recommendations (Table 1). We suggest key thresholds, safe
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ranges for geochemical indicators, and best practice for
monitoring metrics (Tables S2 and S3).

■ TERRESTRIAL IMPACTS

Direct addition of powdered rock to soils affects the
composition, chemistry, and physical properties of both the
soil itself, and the microbiota, macrobiota, and crops onsite.
Accumulation of Trace and Major Elements. Pulv-

erized rocks may contain trace elements that can accumulate to
hazardous concentrations in the soil.13 In natural soils
developed on ultramafic14 and basaltic15 bedrock, parent
rock composition is the primary determinant of soil
contamination.

Ultramafic feedstocks can also contain significant quantities
of chromium, a known carcinogen at relatively low environ-
mental levels if present as chromium VI.16,17 Chromium,
nickel, and copper can also be harmful to soil biota at high
abundance.18−20 Basaltic rocks are expected to contain fewer of
these elements than ultramafic rocks, although they react more
slowly in soils and may need to be deployed in higher
volumes.21 ERW using basalt as a feedstock also has the
potential to release bioavailable phosphorus, dissolved silicon,
and other key micronutrients (molybdenum, cobalt, iron).22

Many trace elements (such as nickel and chromium) are
immobilized in soil through sorption and secondary mineral
formation23,24 under typical field conditions.25,26 In a five-
month mesocosm trial, 99% of nickel and chromium released
from olivine weathering was retained in soils.26 Trace metal
accumulation in the edible parts of crop plants cultivated in
basalt-amended soils is low, even if soil concentrations are
elevated, based on both experimental and field evidence.22,24,27

In addition, ultramafic feedstocks require screening for
asbestos or radionuclides prior to deployment to prevent
release into the environment.11,28

Suitable ERW feedstocks are usually high in major cation
concentrations because they are directly correlated to feed-
stock CDR potential.29 Hence, ERW releases large amounts of
calcium and magnesium, as well as sodium and potassium
which may alter soil physicochemical properties (e.g., porosity
and hydraulic conductivity; see also below) and the soil
microbiome. Furthermore, feedstocks that are enriched in
magnesium but not calcium (e.g., olivine, dunite) may increase
soil magnesium/calcium ratios which can cause a decrease in
grain yields (e.g., for wheat) and calcium deficiencies in
extreme cases when soil water magnesium/(calcium+magne-
sium) is greater than 90%.30,31

Soil Physical Properties. Amending soils with silicate rock
dust could alter soil porosity, soil partial pressure of carbon
dioxide, and soil moisture, to an extent that depends on
application rate, weathering rates and downward transport of
applied grains, as well as site water balance. For example, very
fine particulates with the granularity of silt or clay11,28 can
reduce soil hydraulic conductivity, oversaturate pore water
space, and promote surface runoff.32 Topsoil exposed to
carbonaceous dust can exhibit a lower hydraulic conductivity
and higher runoff.33−35 Marble powder in sandy soils may
decrease soil pore size, increase water retention, and decrease
hydraulic conductivity.36 A pedotransfer model suggested that
basalt powder, applied at the theoretical quantity needed to
supply nutrient demand of phosphorus, would have a minor
effect on soil hydraulic conductivity and plant-available
water.37 However, this requires field and laboratory studies
to evaluate. Secondary effects on soil properties may follow

ERW if cation release of silicate grains changes mineral-
organic matter interactions,37 and dissolution of calcium-rich
ERW feedstocks oversaturates pore water calcium carbonate
leading to secondary carbonate precipitation.38−41 However,
such effects depend strongly on soil pH and may be reversible
if the carbonates undergo seasonal redissolution.18,38−40

Soil Chemistry and Environmental Consequences.
Weathering of silicate minerals increases soil pH by
neutralizing carbonic acid and supplying base cations.42−46

Increasing pH via weathering tends also to increase cation
exchange capacity and cation retention.47−49 This generally
acts to improve soil fertility, although some micronutrients
(sulfur, potassium, and boron) become less available at high
pH, and realized bioavailability depends on local soil
biogeochemistry.50

Most agricultural crop species require a soil pH of around
6.5 to 7 to maintain optimum nutrient uptake and avoid
toxicity from trace metals.51 However, 50−60% of agricultural
soils are more acidic than this (Figures S2 and S3), indicating a
clear potential for ERW to increase pH to a desirable range.
About 20% of global cropland has a pH lower than 6.2,
indicating that they may lose soil organic carbon if pH is
increased.52 On circumneutral soils, ERW-mediated alkaliza-
tion may reduce iron, zinc, and manganese bioavailability.53

About 20% of soils have a pH > 7.5 (5% > pH 8) − these
calcareous soils are poorly suited for ERW, and would likely
not be further alkalized even if ERW mineral were applied. The
liming potential of ERW feedstocks can be estimated based on
the stoichiometry of their composition and expected
dissolution time frame. Adverse pH effects can therefore be
prevented by limiting feedstock application to manage pH
within the acceptable range for a given crop type.
Micronutrient Content for Crop Quality. Initial research

suggests it is possible that rock derived micronutrients may
help overcome deficiencies in crops - for instance, zinc, copper,
manganese, boron, or iron shortfalls.22,54−56 Silicon release by
silicate rock weathering can make crops more resistant to
abiotic effects such as wind damage, drought, salinity, and
heat.57,58 Increased silicon release and uptake can also inhibit
crop root uptake of heavy metals such as cadmium, arsenic,
and lead.54

Ecosystems and Organisms. Raising pH via ERW is
likely to improve bacterial and earthworm abundance,59−63

potentially improving nutrient cycling and agricultural soil
function.61 Ground-dwelling invertebrates might be affected by
increased dust64 − past studies have found sensitivity to
compost or ground cover application.65

■ AIR AND AEROSOLS

Rock dust from ERW application may be transported beyond
target croplands via wind erosion. Wind transport from fields
or storage piles can affect local air quality and be redeposited
on surrounding croplands and ecosystems. Dust particles from
the soil surface can be transported away from the target site by
wind on a regional scale. Small, dry particles will be
transported further and in larger quantity−transport generally
falls off exponentially with distance from the source.66−69

Inhalation of Particulate Matter. Potential human health
impacts of ERW will be critical to identify before widespread
scale-up. A significant concern is the effect of dust generation
on human health, during field application and management.
The effect of inorganic mineral dust on human health depends
on particle size and composition.70 Basaltic dust in Iceland has
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Table 1. Recommendations for Mitigating and Monitoring Environmental Risk of Enhanced Rock Weathering, As Well As Further Research Needs

Impact Metric Monitoring Recommendation Mitigation Recommendation

Accumulation of trace elements in soils
and biomass

Trace element
concentration

Assess absolute and bioavailable concentrations of key elements in soils and
biomass

Select feedstocks based on low trace element content: low contamination basalts
preferred, avoid ultramafic

Use hyperaccumulating plants to prevent or remediate build up in soils

Magnesium excess in soils Major element
concentration

Assess magnesium concentrations in soil exchangeable extracts and soil pore
water or effluent magnesium/(calcium+magnesium) ratios

Use or switch to feedstocks with lower magnesium/calcium ratio

Loss of soil permeability due to
carbonate accumulation in soils

Runoff/Ponding Visual evaluation by farmer or landowner Increase permeability via aeration and tillage

Salinity Assessment of electrical conductivity Improve soil water holding capacity via organic amendments

Porosity Bulk soil and particle density monitoring Reduce or halt mineral application

Alkalization of soils Nutrient
availability

Filtration and inductively coupled plasma emission spectrometer Reduce or halt mineral application

pH Check soil pH every 2−3 years, ideally sampling should take place in the
fall, defer to crop specific guidance

Soil microbial
activity

Soil respiration test

Contamination of soils Radiation Detection with Geiger counter Select feedstocks based on low radiation measure

Asbestos X-ray Diffraction Analysis and/or microscopy Select feedstocks based on low asbestos content: avoid serpentinized ultramafics

Respiratory disease from mineral dust
inhalation

Pneumoconiosis Medical research studies to assess exposure risk and outcomes Comply with health and safety guidance for all workers and operators

PM 2.5 Air quality sensor Minimize open rock dust piles

PM 10 Deploy when windspeeds low

Reduce number of tractor passes and vehicle speed

Maintain soil cover via plants and mulching

Increase soil moisture prior to deployment if water supplies allow

Loss of sensitive ecosystems and
organisms

Biodiversity Annual transect surveys Avoid sensitive environments with low nutrient inputs and pH, such as bogs or
moorlandsCommunity

composition

Physical damage to plants Mortality Annual transect surveys Minimize open rock dust piles

Yield Deploy when windspeeds low

Reduce number of tractor passes and vehicle speed

Maintain soil cover via plants and mulching

Increase soil moisture prior to deployment if water supplies allow

Alkalization of freshwater systems pH Water sampling from weirs along stream length Deploy on watersheds with a history of acidification from industry and agriculture

Avoid watersheds with historically high pH and low carbon export

Manage upstream inputs

Increase in freshwater turbidity Turbidity Water sampling from weirs along stream length Minimize open rock dust piles

Maintain a barrier between streams and application sites or mineral stockpiles: use
bioactive berms, riparian corridors, and hyperaccumulating plants

Manage upstream inputs

Freshwater bioavailability of trace
metals

Concentration Water sampling from weirs along stream length Maintain a barrier between streams and application sites or mineral stockpiles: use
bioactive berms, riparian corridors, and hyperaccumulating plants

Manage upstream inputs

Loss of sensitive freshwater ecosystems
and organisms

Biodiversity Tracking of key fisheries, changes in abundance Develop biological condition gradient responses to changes in ions

Community
composition

Water sampling from weirs along stream length Monitor changes to water chemistry including pH and trace metals

Fisheries health
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been found to reduce air quality and increase hospital
admissions.71 Carbonate mineral dust, produced by marble
factories in excess of World Health Organization safety
guidelines, increased local hospitalizations for breathing
problems.72 Inhalation of silica-containing farm dust can
cause pneumoconiosis and lung inflammation in farm workers
even in the absence of ERW.73−75 Health hazards may be
magnified in low-income and disadvantaged regions and
countries.76

Physical Impact on Plants and Ecosystems. Particles
finer than 10 μm can coat plant surfaces, reducing photosyn-
thesis and causing die-back or death.69,77 Lichens, liverworts,
and sphagnum may be particularly vulnerable, based on
observed impacts of road dust.69 Crop species have been
shown to be vulnerable as well, based on experiments with
cement and kiln dust. Saltation of larger particles may
physically damage78 or bury short-stature plants and seed-
lings.79 Dust contains micro- and macronutrients as well as
metals and other environmental pollutants, which have been
found to alter biogeochemical cycling and nutrient availability
adjacent to roads, agricultural fields, or even in distant
geographies.80−82

Alteration of pH in Nontarget Ecosystems. Noncrop-
land ecosystems may be more vulnerable to disturbance as a
result of altered pH. Highly acidic soils (pH < 5.5), such as
those found in bogs and wetlands, may host unique microbes83

and provide ecosystem services including soil carbon
stabilization.84 Liming acidic soils can be linked with loss of
soil organic carbon due either to increased microbial carbon
use efficiency or increased specific respiration, especially at pH
below ∼6.2.52 However, this pH effect is not linear and does
not continue to increase with higher lime application rates.85

■ FRESHWATER

ERW projects assume the eventual migration of carbonate ions
from their farm source to storage in the ocean. However,
carbonate and leached elements enter freshwater streams,
rivers, lakes and reservoirs. There are a number of potential
impacts on inland waters, but it is important to point out that
they have seen widespread acidification since industrializa-
tion86,87 − thus it is important to note that the anticipated
alkalization from ERW may be viewed in some regions as
recovery from past acidification and associated negative
consequences.
Alkalinity and pH in Freshwater Environments.

Enhanced weathering has the potential to increase alkalinity
and pH and lower dissolved organic carbon.88 Alkalization and
inorganic carbon limitation have been shown to restrict
phytoplankton primary productivity.89 It may also decrease
photosynthesis90−92 improve carbonate shell production in
freshwater crustaceans,93 alter food web community struc-
ture,92 and result in more nutrient-rich phyto- and
zooplankton.91,92,94 Therefore, enhanced rock weathering
may alleviate eutrophication in acidified freshwater systems.
Carbonate chemistry and pH can also alter the bioavailability
of many metals95,96 and change speciation and complex-
ation.97−100

While there has been extensive research on the con-
sequences of aquatic acidification, alkalization is far less
studied.92 However, we can anticipate that past human impacts
and natural variability will all play a role in defining outcomes.
These changes may be highly beneficial in the large number of
water basins globally with naturally low buffering capacity andT
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a history of acidification. Restoration work in catchments like
these has previously made use of mineral weathering to restore
fisheries and ecosystem function to acidified waters.101−104

ERW will likely be less beneficial to waters that are naturally
buffered with high alkalinity and low water throughput.
Erosion and Leaching of Trace Elements. Inorganic

nutrients from rock dust may also be blown or leached into
adjacent water bodies. Experimental evidence is somewhat
divided on leachability of metals from soils. Some studies show
elevated nickel concentrations in pore water24,105 while others
find little or none.22,26,106 Theoretical research on trace metal
exposure from ERW used upper bounds for element leaching
from an acidic, forest soil, citing leaching to groundwater as
high as 17% (nickel) and low as 3% (chromium).107 However,
additional research is required to identify how the assumptions
used in this review translate to ERW on agricultural soils.

Nutrients such as phosphorus can contribute to algal
blooms, leading to eutrophication and hypoxia in aquatic
ecosystems.108,109 However, silicate from ERW minerals may
reduce blooms, as it can theoretically shift freshwater
stoichiometry to favor diatoms over algae, dinoflagellates,
and cyanobacteria.54,110

Where the fine particles from enhanced rock weathering are
vulnerable to erosion, they can be washed into streams and
contribute to turbidity in the water column.51 The impact may
be to reduce photosynthesis and survival of submerged
vegetation, with subsequent impacts on the aquatic food chain.

■ MARINE

ERW at scale is expected to impact coastal and open marine
systems primarily via downstream alterations to ocean
carbonate chemistry,111 as well as through increased presence
of silicon and solutes leached upstream from ERW feedstocks.
Ocean Carbonate Chemistry. ERW solutes will generally

increase abundance of carbonate ion and calcium carbonate
saturation states in the coastal ocean (Figure S4). Simulations
of large-scale ERW roll-out show elevation in surface ocean
aragonite saturation, particularly near river mouths but also
into the open ocean.3,112 While local, transient extremes in
carbonate saturation state may have unintended ecological
impacts, increased carbonate saturation states would in many
cases be a clear benefit for coastal marine ecosystems.
Trace Elements and Fertility. Additional potential

impacts of other solutes released during ERW are less-known
and depend on feedstock used and upstream filtering. While
filtering and transfer efficiency are not well-studied at present,
model simulations have suggested ocean olivine application
will have significant ecological impacts on phytoplankton
communities via introduction of silicon and iron.113,114 In
particular, increased bioavailability of dissolved silicon may
cause ecological shifts (e.g., greater diatom abundance in
certain regions).110 Whether terrestrial ERW would have
analogous impacts−and whether most silicon and other macro-
and micronutrients are removed by upstream filtering before
introduction to the coastal ocean−represent important topics
for future research.

Lastly, a largely unexplored potential positive impact of
ERW is the potential for increased nitrogen use efficiency
(NUE) in terrestrial systems due to basalt feedstock. There is a
well-documented correlation between increasing soil pH and
increased NUE in row crops.115,116 Long-term field trials
amending a corn-soy system with basalt indicate the potential
for significant increases in NUE.22 This could have obvious

agronomic benefits, but it could also potentially impact marine
systems by reducing nutrient fluxes from managed lands into
coastal marine settings. This dynamic−in particular a multi-
nutrient budget for ERW across a range of feedstocks and
deployment scenarios−represents an important topic for
additional research.

■ DISCUSSION

ERW is an agricultural practice that could exert an environ-
mental influence across terrestrial, atmospheric, freshwater,
and marine systems, with potential to significantly impact
nontarget ecosystem services at scales from local to global.
Here, we have provided a comprehensive hierarchy of
monitoring recommendations during deployment.

At the application site, trace element accumulation from
contaminated feedstocks poses a high risk to human health and
ecosystems. However, monitoring and mitigation technologies
are accessible and well-understood (Table 1). We recommend
that ERW projects prioritize feedstocks with low harmful metal
abundances−e.g., basalt should be selected over ultramafic
rocks such as dunite and olivine. At the site-level, project
developers should provide landowners with feedstock
composition data, including not only the highest risk metals
(chromium, nickel) but also trace metals that could
accumulate to risky levels in soil on the order of decades
(zinc, copper). Finally, there is a need for regulatory policy
and/or technical assistance to define thresholds of trace metal
accumulation rates and maximum concentrations which
protect agriculture and ecosystems in the long term. These
thresholds should consider both annual and cumulative trace
element concentrations and that some soils may have higher
starting baselines of trace element content. Regulatory
thresholds for relevant trace elements in soils currently exist
in Brazil, Canada, China, Germany, and Russia.21 Thresholds
should be set for other countries where ERW is expected to or
is taking place. Monitoring of this risk is expected to be
affordable and the technology readily available (Table S2).
Low-metal sources for mineral dust can be identified through
public data in many countries, however there are significant
data gaps in the global south which may slow project
development. Testing for trace elements in both mineral dust
and soils is a well-developed science−however, there will be a
need to streamline monitoring to keep costs low for project
developers and landowners.

We considered the risk to soil porosity and hydraulic
conductivity from ERW to be medium to low, with the risk
largely dictated by the need for additional research. Mitigation
strategies are expected to be accessible and depend largely on
thoughtful selection of ERW sites. We recommend that ERW
projects avoid high-clay soils with poor drainage and arid soils
where carbonate formation is highest. Monitoring may be
prioritized particularly for pilot and demonstration plots where
data can contribute to overall knowledge of the significance of
this impact.

Impacts to human health from dust and inhalation were
considered the highest risk within air and aerosol systems.
Particularly at local scales, fine particulate matter and
pneumoconiosis may be potentially high risk. However, there
is also high mitigation potential−exposure to dust, including
silicate dust, is already well-known in agriculture. At field-scale,
dust may be addressed through reducing worker exposure as
outlined by current occupational health and safety guidelines.
Compliance with safety guidelines will be the responsibility of
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the project developer or landowner−enforcement of these
guidelines will occur at the scale of national and local
governments. Regional-scale dust transport can be prevented
by applying minerals wet, then trenching or tilling them into
the soil profile. In the United States, some regions at high risk
for agricultural dust transport already require landowners to
follow these protocols. Monitoring is technologically well-
developed, however the cost of monitoring may be high and
requires investment in infrastructure to capture an impact that
tends to be highly seasonal and weather dependent.

In freshwater ecosystems, impacts become less severe but
also less mitigatable. Impacts to waterway pH are most
significant and must be mitigated via discrimination during site
selection. Practitioners should target low-pH and high-carbon-
export watersheds.117 Acute inputs of trace elements can be
addressed via siting regulations standard in freshwater
protection including keeping mineral stockpiles away from
stream edges, supporting riparian corridors or bioactive berms,
and using hyperaccumulating plants as appropriate. Chronic
leaching must be mitigated by keeping concentrations in soils
below described safety thresholds.15 Monitoring of both pH
and trace elements is technologically developed but relatively
intensive, requiring either dedicated infrastructure or sub-
stantial human effort. It may be possible to reduce costs by
placing ERW in watersheds which already require monitoring
as part of restoration and fisheries management research.

Marine ecosystems risks are lower but have low mitigation
potential as impacts are defined by upstream decisions and
extremes in weather and time. The most significant of these
risks is a change to carbonate chemistry, although we stress
that in many cases this actually represents a cobenefit of ERW
deployment rather than an environmental risk. Mitigation
might involve reduction of ERW at a regional scale, with large-
scale monitoring reliant on new technology development and
infrastructure, or development of fine-scale modeling to predict
coastal impacts from upstream data.

Environmental impacts require large-scale, sector-level
monitoring beyond the application site.115 Counting on
suppliers to perform this function may duplicate existing
governmental monitoring efforts and lead to lower-quality
monitoring by creating conflicting incentives. Alternatively,
environmental monitoring could be performed or overseen by
public agencies. This may be mandated by overarching
frameworks of environmental governance, such as the
European Union’s environmental impact assessment directive,
which may extend to ERW projects. Alternatively, narrower
mandates may already support monitoring that can be
leveraged to inform ERW implementation. Approaching
monitoring through sector-level public policy will reduce the
potential for conflicts of interest and more efficiently leverage
learnings to reduce costs and requirements for monitoring over
time.118

Irrespective of the actual implementation path chosen, it is
paramount that policy efforts and shaping of the CDR market
proactively addresses large-scale environmental monitoring.
This is a fundamental aspect of managing environmental
impacts of ERW and cannot be left up to supplier discretion or
sporadic and uncoordinated investigation of academic actors.
Global frameworks and monitoring standards are going to be
necessary to prevent ERW outsourcing into countries with
more lax environmental regulation and related potential
exacerbation of climate justice concerns.119 It will be essential
to create space for public input and involvement, particularly as

ERW is currently not well-understood or broadly supported by
the public.118,120−122

ERW is a relatively novel proposed pathway to carbon
removal−as such it is only just developing the research base
needed to implement it at scale. We identify that while
substantial research gaps remain, parallel research from
adjacent fields can supply us with a sense of which potential
environmental impacts are anticipated to be most significant,
most monitorable, and most mitigable. This can help direct
ongoing research effort toward the most significant issues for
the field. Additionally, this approach identifies where new
policy is needed to ensure adequate monitoring is being
conducted and that best practices are being consistently
implemented.
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