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Abstract

This paper investigates Monte Carlo (MC) methods to estimate probabilities of rare events associated with the solution to
the d-dimensional McKean—Vlasov stochastic differential equation (MV-SDE). MV-SDEs are usually approximated using a
stochastic interacting P-particle system, which is a set of P coupled d-dimensional stochastic differential equations (SDEs).
Importance sampling (IS) is a common technique for reducing high relative variance of MC estimators of rare-event proba-
bilities. We first derive a zero-variance IS change of measure for the quantity of interest by using stochastic optimal control
theory. However, when this change of measure is applied to stochastic particle systems, it yields a P x d-dimensional partial
differential control equation (PDE), which is computationally expensive to solve. To address this issue, we use the decoupling
approach introduced in (dos Reis et al. 2023), generating a d-dimensional control PDE for a zero-variance estimator of the
decoupled SDE. Based on this approach, we develop a computationally efficient double loop MC (DLMC) estimator. We
conduct a comprehensive numerical error and work analysis of the DLMC estimator. As a result, we show optimal complexity
of O (TOL; 4) with a significantly reduced constant to achieve a prescribed relative error tolerance TOL,. Subsequently, we
propose an adaptive DLMC method combined with IS to numerically estimate rare-event probabilities, substantially reducing
relative variance and computational runtimes required to achieve a given TOL, compared with standard MC estimators in the
absence of IS. Numerical experiments are performed on the Kuramoto model from statistical physics.
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1 Introduction

This paper investigates Monte Carlo (MC) methods to esti-
mate rare-event probabilities associated with the solution to
the McKean—Vlasov stochastic differential equation (MV-
SDE). We develop a computationally efficient MC method
to estimate E [G(X(T))], where G : RY — R is a given
observable and {X (1) € R? : ¢t € [0, T} is the solution to
the MV-SDE up to a finite terminal time 7. MV-SDEs are
a special class of stochastic differential equations (SDEs),
the drift and diffusion coefficients of which depend on the
law of the solution itself (McKean Jr 1966). Such SDEs
result from the mean-field behavior of stochastic interacting
particle systems, commonly used to model various phe-
nomena in pedestrian dynamics (Haji Ali 2012), collective
animal behavior (Erban and Haskovec 2011), oscillator sys-
tems (Acebrén et al. 2005; Sivashinsky 1977), biological
interactions (Dobramysl et al. 2016), and financial math-
ematics (Bush et al. 2011). Several works have studied
the existence and uniqueness of solutions to MV-SDEs
(Mishura and Veretennikov 2020), well-posedness of the
associated Kolmogorov forward and backward partial dif-
ferential equations (PDEs) (Buckdahn et al. 2017; Crisan
and McMurray 2018), and efficient numerical methods to
simulate MV-SDEs for certain classes of drift/diffusion coef-
ficients (Haji-Ali and Tempone 2018; dos Reis et al. 2022;
Szpruch et al. 2019; Crisan and McMurray 2019).

Owing to the dependence of drift/diffusion on the law
of the solution, the MV-SDE is often approximated using
a stochastic P-particle system, i.e., a set of P coupled d-
dimensional Itd6 SDEs. Under certain conditions, the stochas-
tic particle system approaches the mean-field limit as the
number of particles tends to infinity (Sznitman 1991), com-
monly referred to as the propagation of chaos. Time evolution
of the particle system’s joint probability density is given by
the P x d-dimensional Fokker—Planck PDE, the numerical
estimation of which is infeasible. Hence, we propose the
use of MC methods by simulating approximate MV-SDE
sample paths by using an Euler—Maruyama time-discretized
stochastic particle system for bounded, Lipschitz continuous
drift/diffusion coefficients (Li et al. 2023). Previous studies
have investigated MC methods using this numerical scheme
for smooth, nonrare observables (Ogawa 1992; Haji-Ali and
Tempone 2018), and they were able to achieve O (TOL™*)
computational complexity for a prescribed error tolerance,
TOL. However, the use of naive MC methods is consider-
ably expensive for rare events, owing to the blowing up of the
constant associated with the estimator’s computational com-
plexity with the increase in the rarity of the event (Kroese
et al. 2013).

The importance sampling (IS) technique (Kroese et al.
2013) is widely used to address the problem of estimat-
ing rare-event probabilities in the context of SDEs. Recent
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studies have developed IS schemes using stochastic opti-
mal control theory in various contexts, including stochastic
reaction networks (Ben Hammouda et al. 2023), and sums
of independent random variables in communication sys-
tems (Ben Amar et al. 2023). In particular, several studies
formulated the connection between stochastic optimal con-
trol and IS for standard SDEs (Hartmann et al. 2017, 2018;
Zhang et al. 2014). The derived optimal change of measure is
related to the solution of a Hamilton-Jacobi-Bellman (HIB)
equation (Kirk 2004). By employing model-reduction tech-
niques (Hartmann et al. 2015, 2016) and neural network
approaches (Nusken and Richter 2021), the curse of dimen-
sionality, which is commonly encountered in conventional
numerical schemes for solving PDEs, is partially alleviated.

The dependence of drift/diffusion coefficients on the law
of the solution complicates the formulation of the corre-
sponding HJB control PDE for MV-SDEs. This is because
the PDE for stochastic particle systems would be P x d-
dimensional, and hence infeasible to solve numerically. We
overcome this issue by utilizing a decoupling approach intro-
duced by (dos Reis et al. 2023). They defined a decoupled
MV-SDE, in which the drift/diffusion coefficients depended
on an empirical law that was computed beforehand using a
stochastic particle system. This enables the decoupling of the
law estimation from the change of measure for the decoupled
MV-SDE. In addition, (dos Reis et al. 2023) employed large
deviations and the Pontryagin principle to obtain a determin-
istic, time-dependent control that minimizes a proxy for the
variance. In the current study, we propose a stochastic opti-
mal control formulation to derive a time- and state-dependent
control that produces a zero-variance estimator for the decou-
pled MV-SDE. This optimal control is obtained by solving a
d-dimensional control PDE. We list the contributions of this
study below.

e Stochastic optimal control theory is applied to the decou-
pled MV-SDE to derive a time- and state-dependent IS
control resulting in a zero-variance MC estimator, pro-
vided that the sign of the observable does not change.
We numerically approximate the solution to a low-
dimensional control PDE by using conventional finite
difference schemes, obtaining a control that considerably
reduces the variance.

e A double-loop MC (DLMC) estimator is introduced with
IS; this is based on the decoupling approach for MV-
SDEs. We first estimate the MV-SDE law by using a
stochastic particle system and then define the decoupled
MV-SDE conditioned on the empirical law.

e Finally, we provide a detailed analysis of the numerical
bias and statistical errors for the DLMC estimator and
derive its optimal computational complexity. By combin-
ing the proposed DLMC estimator with the IS scheme, an
optimal complexity of O (TOLr_ 4) is proven, for a pre-
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scribed relative error tolerance TOL,. Additionally, the
corresponding constant is substantially reduced, enabling
the feasible estimation of rare-event probabilities in the
context of MV-SDE:s.

The remainder of this paper is structured as follows.
Section 2 introduces the MV-SDE, associated notation, and
emphasizes the need for MC methods to estimate expec-
tations associated with the solution of MV-SDE. We also
review the optimal change of measure for IS using stochastic
optimal control theory for standard SDEs. Section3 intro-
duces the specific problem and presents discussions of the
challenges related to the implementation of IS for MV-SDEs.
Section4 introduces the decoupling approach, and an opti-
mal control for the decoupled MV-SDE is derived. We also
define the DLMC estimator; provide a detailed error and
work analysis, and formulate an optimal complexity theo-
rem and an adaptive algorithm to choose optimal parameters
for the feasible estimation of rare-event probabilities. Sec-
tion 5 applies the proposed approach to the Kuramoto model
from statistical physics and provides numerical evidence for
the theoretical results. In the rest of the paper, we use |-| to
denote the absolute value, || - || to denote the Euclidean norm,
and (-, -) to denote the Euclidean dot product.

2 Preliminaries

2.1 The McKean-Vlasov stochastic differential
equation

Consider the probability space {2, F, {F;};>0, P}, where F;
is the filtration of a standard Wiener process. For functions b :
RIXR — R, 5 : RIxR —> R4 i : RIxRY —> R,
and kp : RY x RY —> R, we consider the following It6 SDE
for the stochastic process, X : [0, T] x £ — R4,

dX(t) = b (X(t), /d K1 (X (1), x)u,(dx)) dr
R

to (X(r>, fR d Kz(X(t),X)m(dX)) M

X(0) = xo ~ po € P(RY),

where W : [0, T] x 2 —> R is a standard d-dimensional
Wiener process with mutually independent components;
we € P(RY) is the law of X (¢), where P(R9) is the space of
probability measures on R?; and xo € R? is a random initial
state with distribution g € P(R?).

Functions b and o are referred to as the drift and diffusion
functions/coefficients, respectively. Existence and unique-
ness of solutions to (1) follows from the results given
in (Mishura and Veretennikov 2020; Crisan and Xiong 2010;

Hammersley et al. 2021; Sznitman 1991), under the assump-
tions therein. These assumptions involve certain regularity
and boundedness conditions on b, o, k1, and «». The time-
evolution of the deterministic mean-field law, u;, is given by
the following Fokker—Planck PDE:

d

au(s, x;t,y) d
as Z ax;

i=1

<bi (x, /d k1(x, (s, z; ¢, y)dz) nis, x;t, y))
R

I B
+ZZ§3X,'8X] (2)

(s, x;t, y)) =0, (s,x)€(t,00) % R?

u(t, x5, y) = 8y(x),

where (s, x; t,y) is the conditional distribution of X (s),
given that X (t) = y, and §,(-) is the Dirac measure at point
y. Equation (2) represents a nonlinear PDE due to the depen-
dency of b and o on u(s, x; ¢, y). This is also an integral
differential equation with nonlocal terms because the drift
and diffusion functions depend on an integral over R? with
respect to w(s, x; ¢, y). Numerically solving such a nonlin-
ear integral differential equation up to high tolerances can be
cumbersome, particularly in higher dimensions (d >> 1).

A strong approximation to the solution of the MV-SDE
(1°) is obtained by solving a system of P exchangeable 1t6
SDEs, also known as a stochastic interacting particle sys-
tem with pairwise interaction kernels (Sznitman 1991). For
p=1,..., P, process X}I; 1[0, T] x £2 — R4 solves the
following SDE:

1 P
X7 () =b | X;(0), 5 w1 (X;(0), X[ @) | dt
j=1

P
1
+o | X7, 5 D kaX] ). XT (1)
j=1

dW, (1),
X} (0) = (x0)p ~ o € P(RY) 3)

t>0

where {(x0) p} 521 are independent and identically distributed
(iid) random variables sampled from the initial distribution,
po, and (W, : [0,T] x 2 — Rd}gzl represents mutu-
ally independent d-dimensional Wiener processes, which are
also independent of {(xo)p} 5=1. Equation (3) approximates
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the mean-field law, u;, in (1) by an empirical law based on
particles {X;}f;:] .

P
1
r(dn) ~ il (dx) = 5 D7 8yr (@), @)
j=1

where the particles {X f,’ }[’;:1 are identically distributed, but
not mutually independent due to the interaction kernels in
the drift and diffusion coefficients.

Strong convergence of the particle system follows from
the results in (Bossy and Talay 1997, 1996; Méléard 1996),
under the assumptions on the drift/diffusion coefficients
therein. Given the stochastic interacting particle system (3),
we can derive the PDE governing the evolution of the joint
probability-density function of {X ,}: } [}:: | by using the multi-
dimensional Fokker—Planck equation. For convenience, we
write this only ford = 1. Let fi(¢, x) be the joint probability-
density function, where x = [x1,...,xp] € RP. Then,

i=l

G XY o D 1<
_T_ZTM b xi,F;m(x[,x_/) (s, x;1,y)

Pl a2 1<
+Z§E<¢72 Xi-,F;KZ(Xian) ﬂ(&’ﬁﬁy))

i=1
=0, (s,x) € (t,00) x R

x5 1,y) = 8y(%) (5)

where fi(s, X; ,y) is the distribution of X” (s) = [Xf)(s),
R Xﬁ(s)], given that XF' (1) =y.

Equation (5) is linear in (¢, x) and does not have integral
dependence, as in (2); however it is P-dimensional in the
case of d = | and P x d-dimensional in general. Thus, the
use of conventional numerical methods to solve (5) becomes
extremely expensive for low error tolerances. This motivates
the use of MC methods, which do not suffer from the curse
of dimensionality.

2.1.1 Example: fully connected Kuramoto model for
synchronized oscillators

Herein, we test our methodology on a simple, one-
dimensional MV-SDE (1) referred to as the Kuramoto
model, which is commonly used to describe synchronisa-
tion in statistical physics, modeling the behavior of large
sets of coupled oscillators as systems of P-fully connected,
synchronized oscillators. The Kuramoto model is widely
applied in several domains, including chemical and biologi-
cal systems (Acebrén et al. 2005), neuroscience (Cumin and
Unsworth 2007), and oscillating flame dynamics (Sivashin-
sky 1977). Consider a system of P-oscillators with state
{xf;}f;:l. Then, X} : [0,T] x 2 — R satisfies the Ito
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SDE:

P
1 )
axp 0 = [vp+ 3 sin (X;’(t) - X,f(t)) dr
q=1
+Ude(t)5

X, (0) = (x0)p ~ ko € P(R), 6)

t>0

where {v,} 1}7)=1 are time-independent iid random variables
sampled from a prescribed distribution; diffusion o € R is
constant; {(xo) p} [1:: | are iid random variables sampled from
aprescribed distribution po; {Wp : [0, T] x 2 — ]R};:l are
mutually independent one-dimensional Wiener processes;
and {vp}[le, {(xo),,};':l, and {Wp}[};:1 are independent.
This coupled particle system reaches the mean-field limit
as the number of oscillators tends to infinity. In this limit,
each particle behaves according to the following MV-SDE:

{dX(t) = (v-i—/ sin(X(t)—x)m(dx)) dt+odW (), t>0
R

X(0) = x0 ~ np € P(R) 7

where X (#) denotes the state of each particle at time #, vis a
random variable sampled from some prescribed distribution,
and i, is the mean-field law of X (7).

2.2 IS using stochastic optimal control for SDEs

First, we develop a framework for an IS scheme that min-
imizes estimator variance through the stochastic optimal
control of standard SDEs. Hartmann et al. (2017) derived
the same optimal control problem based on the variational
characterization of thermodynamic free energy, whereas we
achieve the same results by posing the optimal IS problem
as a stochastic optimal control problem, resulting in a time-
and path-dependent control that minimizes the IS estimator
variance. Let Y : [0, T] x 2 — RY be the solution to the
following standard It6 SDE:

dY (1) = b(t, Y(1))dt + o (t, Y @)dW (), 1€ (0,T]
Y(0) = yo, o €RY, ®)

where W : [0, T] x 2 — R is a standard d-dimensional
Wiener process in probability space {£2, F, P} with mutually
independent components. We aim at estimating E [G (Y (T))]
by using MC for some scalar observable G : R — R,
and we apply a change of measure to (8) such that the MC
estimator variance is minimized.

Let us first perform a discrete-time change of measure
on the Euler—Maruyama discretization of (8). We extend
this later to the time-continuous setting, obtaining a time-
continuous control problem. Consider the discretization 0 =
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to <ty < ... <ty = T of the time domain [0, T] with
N uniform time steps; it follows that t, = n x At, n =
0,1,...,N, and Ar = T/N. Next, let YV be the time-
discretized version of process Y. Then, the Euler—Maruyama
time discretization for the SDE can be expressed as follows:

YN ) = YV @) + b (10, YV 00) At
to (tn,YN(tn)) VAten, Vn=0,..., N-1 ©)

YN (t9) = Y(0) = o,

where €, ~ N(0,1;) forn = 1,..., N are iid random
variables; and I, is the d-dimensional identity matrix. For a
giventimestep,n € {0, ..., N —1}, we perform a mean-shift

measure change

€n = VALL, + €y, (10)
where ¢, = ¢ (1, YN@)) e R is a d-dimensional control.
The resulting likelihood factor L, is the ratio of two Gaus-
sians and can be written at time step n as

. 1 . 1 .
Ly (&) = exp {—Euennz} exp {Enen - @cn)uz}

1 .
=exp{EAr||r:n||2—\/E<en,¢n>}. (11)

Substituting (10) in (11) and setting L,, as a function of ¢,
we get

1
L (€y) = exp {—Emncnuz — VAt(ey, m}' (12)

Thus, the likelihood over N time steps is written as
I1 ,IIV;OI L, (e,); hence, the quantity of interest can be expressed
as

N-1
ElGuV ()| =E [G(Y;WT)) I Ln<en)} R
n=0
where Y {N is subject to
Y ty) = ¥ ) + (b URAD)
0 (1, VY @) €, VY <rn>>>Az (14)

+a(tn,Y&N(tn)) VAten, Vn=0,...,N—1

v (1) = Y™ (0) = yo.

We aim to minimize the MC estimator variance. Since (13)
is an unbiased estimator, it is sufficient to minimize the esti-
mator’s second moment:

N-1
min E |:62(ng (@) [] Laten ‘ v o) = yo]

{tn },1:/:1 n=0

N—-1
= min E[GZ(Y;V(T)) ]_[

{gn}nzl n=0

exp{—mugnnz—2(en,gn>JE} ' Y}"(O)=yo]
(15)

By considering the limit as At — 0, we define the cost
function

Cre®) =E[GP(V(T))
T
exp {— / I (s, Ye(s))Pds
t

T
—2f <c<s,Y;(s>>,dW<s>>} ‘ Y((f)=x:|,

t
(16)

where process Y : [0, T] x £2 — R? follows the dynamics:

dy, (1) = <b (1Y) +o (1Y, (D). Y, (t)))dt

+o (.Y, (0))dW (@), 0<t<T an

Y (0)=Y(©0) =yo

Here, ¢ : [0, T] x RY — R is referred to as the IS con-
trol. The additional term in the drift ensures that sample paths
for Y¢ () are shifted toward the regime of interest, where the
path change is controlled by ¢ (-, -). Hence, ¢ is a control or
IS parameter that defines the change of measure, and Y (t) =
Y(t) only when £(¢,y) =0, VY(t,y) € [0, T] x R?. This
defined measure change corresponds precisely to the Gir-
sanov theorem for change of measure in SDEs (Oksendal
2013). (Melnikov 2023) also derived the Girsanov theorem
via a discrete time formulation, as described above.

Next, we define the value function, which minimizes the
second moment of the MC estimator

u(t,x) =min C; »(¢), (18)
teZ

where Z = {f eC! ([O, T] x R4 — ]Rd)} is the set
of admissible deterministic d-dimensional Markov con-
trols (Nusken and Richter 2021).

Subsequently, we solve the optimization problem (18)
under dynamics (17) to determine optimal control £ (-, -). In
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existing literature on control theory, several methods were
proposed to solve such minimization problems (Hartmann
etal. 2017; Zhang et al. 2014), and the analytical solution for
(18)is provided by the HIB PDE (Nusken and Richter 2021).
Herein, we derive the HIB PDE by using a dynamic pro-
gramming approach, wherein cost function (16) possesses a
multiplicative structure instead of an additive structure with a
certain running plus terminal cost, commonly encountered in
optimal control problems. Therefore, we first state and prove
a dynamic programming equation for the value function u.

Lemma 1 (Dynamic Programming for Standard SDEs) Let
process Y solve the SDE (8), and controlled process Y solve
the SDE (17), where ¢ : [0, T] x RY — R4 s the control
satisfying the condition E [exp { % fOT (s, Ye(s)) |%ds }] <

o0. Assume the value functionu : [0, T]xR? — R4, defined
in (18), has bounded and continuous derivatives up to first
order in time and second order in space. Then, u satisfies the
following dynamic programming relation for all 0 < § <
T —1,

u(t,x) = min  J (), VxeR?, (19)
s:[t,t+8]—R4
where
t+6
Jix(©) = E[exp {— / (s, Ye (5))1I°ds
t
t+35
—2/ (¢ (s, Y;(S)),dW(S)>}
t
ult +38, Y, (t +96)) | Y (1) :x:|- (20)
Proof See Appendix A. O

From Lemma 1, we can derive the PDE which solves for
value function (18) and subsequently obtain the optimal con-
trol, ¢.

Theorem 1 (Optimal Control to Minimize Variance for
Standard SDEs) Let process Y solve the SDE (8), and
controlled process Y. solve the SDE (17), where ¢

[0,7] x RY — R? is the control satisfying the condi-

tion E [exp {% T e, v, (s))||2ds}]

assume that value function u defined in (18) has bounded
and continuous derivatives up to first order in time and
second order in space (Nusken and Richter 2021), and
u(t,x) #0 V(,x) € [0,T] x R4. Then, u satisfies the

< oo. In addition,
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following PDE:

Ju 1_, . T
T (b x). Vi) + SV u.(aa )(t,x)

1 .
— N0 Vu . P =0, (t.x) €[0.7) x B @D
u

u(T,x) =G*(x), xeR?,

with an optimal control that minimizes the second moment
defined in (16),

M, x) = %aT (t,x) Vlogu(t, x), (22)

where V- is the gradient vector, V2. is the Hessian matrix

of a scalar function, and - : - is the Frobenius inner product
between two matrix-valued functions.

Proof See Appendix B. O

We can obtain an HJB type PDE from (21) by considering
the change of variable u(z, x) = exp {—2y (¢, x)}, as shown
in Corollary 1.

Corollary 1 (HJB PDE) Let process Y solve SDE (8), and
controlled process Y, solve SDE (17), where ¢ : [0,T] x
R? — RY is the control satisfying the condition

E [exp {% fOT ¢ s, Ye (s))||2ds]] < o0. In addition, assume
that value function u defined in (18) has bounded and con-
tinuous derivatives up to first order in time and second order
in space, and u(t,x) # 0 V(t,x) € [0,T] x RY. Then,
y : [0, T1 x R? — R satisfies the nonlinear HIB equation,

W o bax). V) + %sz : (00T> (t, x)

Jat
1 .
— 316" Vy @) P =0, (t.x) € 0.7) x B (23)
y(T,x) = —log|G(x)|, xeR,
with optimal control
¢*(t,x) = —a T (t, x)Vy (t, %), (24)

which minimizes the second moment defined in (16).

Remark 1 (Existence and uniqueness of HJB solutions) Clas-
sical HJB solution theory requires that y has bounded and
continuous derivatives up to first order in time and second
order in space (Nusken and Richter 2021). However, these
assumptions can be relaxed by introducing the notion of
viscosity solutions (Soner 1997). Since Corollary 1 is a well-
known classical result, which we alternatively derive via an
optimal control approach, we refer the readers to (Pham 2009;
Nusken and Richter 2021) for a more formal proof.
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Remark 2 (Equivalent HIB Formulation) Previous approaches
formulated the same optimal control for IS, but through vari-
ational characterization of thermodynamic free energy (Hart-
mann et al. 2017; Nusken and Richter 2021), minimizing the
following value function

T
_ - 2
y(t, x) _JQE]EUI 2||§(s,Y;(S))II ds

—log(G (Y (T))) ' Y;(t)=X], (25)

where Y; follows dynamics (17), which leads to the HIB
equation (23).

Various approaches have been proposed to numerically
solve (23) and obtain an approximate control. (Hartmann
et al. 2019) solved the d-dimensional HIB PDE (23) using
least-squares regression, whereas (Hartmann et al. 2016)
solved it using model-reduction techniques for higher dimen-
sions. Neural networks have also been employed to solve
the HIB PDE in higher dimensions with stochastic gradi-
ent (Hartmann et al. 2017) and cross-entropy (Zhang et al.
2014) learning methods for the stochastic optimal control
formulation (25). In contrast, we use the equivalency of
nonlinear HIB and linear Kolmogorov backward equation
(KBE). It is worth recalling from previous discussions that
u is the value function that minimizes the second moment.
The proposed change of measure with optimal control in
Corollary 1 produces a zero-variance estimator, provided
that G(-) does not change sign. This can be seen by sub-
stituting u(t, x) = v2(t, x) in (21) to obtain a PDE for
v:[0, 7] x R — RY:

0 b x). V)
81‘ s X), v

n %Vzv : (aaT) (t.x)=0, (t.x)e[0.T)xRI (20)

(T, x) =|Gx)|, xeR?

with optimal control

¥t x) =0l (1, x) Viogu(t, x)- (27)

As (26) is the KBE that solves for the conditional expec-
tation E[|G(Y(T))| | Y(t) = x], where process Y follows
dynamics (8), the second moment is equal to the square of
the first moment, hence leading to zero variance, provided
that the sign of G(-) remains constant. Thus, solving the
linear KBE (26) is sufficient for obtaining an optimal con-
trol for the zero variance estimator, provided G(-) does not
change sign. For IS purposes, roughly solving (26) is suffi-
cient for obtaining substantial variance reduction. Hence, we
employ MC methods with IS by employing a control derived

by numerically solving (26) to estimate rare event proba-
bilities. This is computationally much cheaper than directly
solving the KBE to estimate the quantity of interest to achieve
relative accuracies. However, it would still be expensive to
solve the multidimensional KBE when d > 1. This work
does not consider high-dimensional problems, which are left
for future work.

Remark 3 (Using KBE for IS) Derivation of a zero variance
estimator that involves the solution to the KBE is a classical
result (Newton 1994). As IS produces an unbiased estimator,
it is sufficient to roughly approximate v and its derivatives to
get an approximate but useful control. (Hinds and Tretyakov
2023) applied this concept within the context of standard
SDEs. Herein, we apply this in the context of MV-SDEs.

3 Problem setting

Let T > 0be some finite terminal time and X be the solution
to the MV-SDE (1). Let G : R? — Rbea given scalar
observable function. Our objective is to build a computation-
ally efficient estimator, A, of E [G (X (T))] for some specified
relative tolerance TOL; > O that satisfies the following:

(28)

P [ [A-E[GXT)]|
[E[GX TN

< TOL{| >1—«,

where 0 < o < 1 determines the confidence level.

The existence and uniqueness of solutions to the cor-
responding KBE are not straightforward problems; this is
a consequence of drift/diffusion dependencies on the law
1 (de Raynal and Frikha 2021). This problem can be circum-
vented by formulating the KBE for the stochastic P-particle
system (3). Computational costs for numerically solving the
corresponding P x d-dimensional KBE for a given TOL,
scales exponentially with the dimension. In addition, con-
ventional numerical schemes are not equipped to handle
relative error tolerances, complicating error control even
in one-dimensional problems. We overcome this issue by
employing MC methods. In the context of rare events, the
feasibility of naive MC rapidly diminishes, as the number
of sample paths required to satisfy a given statistical error
tolerance scales inversely with the probability of the event
to be estimated. Thus, we combine IS with MC methods as
a variance-reduction technique, producing computationally
feasible estimates of rare-event probabilities. Section 2.2 pre-
sented the method to obtain an optimal IS change of measure
for standard SDEs. However, there are two main difficulties
while solving the variance minimization problem for MV-
SDEs.

1. Deriving optimal change of measure for MV-SDE:s is not
straightforward, due to the dependency of drift and diffu-
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sion functions on u;. Any change of measure will result
in changes in the drift b and diffusion o.

2. Suppose we use stochastic P-particle approximation (3)
and wish to apply a change of measure on it. Solving a
variance minimization problem in this context will result
inan HIB PDE in P x d dimensions. Numerical methods
to solve such an equation would suffer from the curse of
dimensionality when P x d > 1.

Therefore, we use a decoupling approach (dos Reis et al.
2023) instead of considering a change of measure on the
stochastic particle system or the MV-SDE itself.

4 DLMC with IS
4.1 Decoupling approach for MV-SDEs

The decoupling approach was introduced by (dos Reis et al.
2023) as a method to efficiently implement IS for MV-SDE:s.
This method involves replacing the deterministic mean-field
law (u;) with an empirical approximation using a stochas-
tic particle system, which is then used as an input to define
the "decoupled" MV-SDE to which a change in measure is
applied. This decouples the computation of the MV-SDE
law and the probability measure change required for IS. The
decoupled MV-SDE (1) is now a standard SDE with random
coefficients, for which change of measure can be applied, as
discussed in Sect.2.2. First, we formally introduce the gen-
eral scheme of the decoupling approach.

1. As we do not have direct access to {u; : t € [0, T]}
for the MV-SDE, we approximate it by using the empir-
ical measure, {,utP .t € [0, T]}, from (4) with particles
{X 5 (t) : t € [0, T]}g=1 obtained from the stochastic
interacting particle system (3).

2. Given the empirical law, {;Lf :t € [0, T]}, we define the
"decoupled" MV-SDE process, XP:[0,T]I x 2 — R4,
following the dynamics described as follows:

_ _ 1 & _
dXP@)y=b (X”(z), - X}x, X", Xf(z))) dr
=
- 1 & _ _ (29)
+o X”(z),FZKz(me,xf(t)) dW (), t€[0,T]
j=1
XP(0) =% ~ po. o eRY,

where the superscript in X ©' (¢) indicates that the drift and
diffusion functions in (29) are computed using an empir-
ical law {;Lf : t € [0,T]} derived from a P-particle
system. In addition, the drift and diffusion coefficients
b and o are the same as those defined in Section 2.1;
W : [0,T] x £ — R4 is a standard d-dimensional
Wiener process that is independent of the Wiener pro-
cesses {Wp}é:)=1 used in (3); and ¥y € R< is a random
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initial state sampled from the 1o distribution as defined
in (1) and is independent from {(Xo)p}II::] used in (3).
Equation (29) is a standard SDE with random coefficients,
whose randomness arises from drift and diffusion depen-
dencies on the empirical measure {/Lf) :t €0, T]}. The
existence and uniqueness of a solution to such SDEs have
been shown previously (Yong and Zhou 1999).

3. We introduce a copy space to distinguish (29) from the
stochastic P-particle system (dos Reis et al. 2023). Sup-
pose (3) is defined on the probability space (£2, F, P).
We define a copy space (£2, F,P), and (29) is defined
on the product space (£2, F, P) x (.(_2, ]:", IP’). Thus, P is
a probability measure generated by the randomness of
{,uf .t € [0,T]}, and P is the measure generated by
the randomness driving the decoupled MV-SDE dynam-
ics (29), conditioned on {u” : ¢ € [0, T1}.

4. Thus, we approximate our quantity of interest as

E[G(X(T)]
~ Epgp [GXP(T) ]

=Ep Bz |G () | (W] 1 et0.71]]. (o)

Henceforth, for ease of notation, E [G()_( s (T))] indicates
that the expectation is taken with respect to all sources
of randomness in the decoupled MV-SDE (29). First, we
estimate the inner expectation E [G (X (T)) | {uf : t €]
[0, T]}, and then we estimate the outer expectation by
using MC sampling over different realizations of the
empirical law.

The inner expectation E [G()_(P(T)) | {/Lf) 1t €0, T]}]
solves the KBE associated with (29). However, obtaining an
analytical solution is not always possible, and conventional
numerical methods cannot handle relative error tolerances
even for d = 1, which is relevant for rare events. Even if the
KBE could be solved accurately, it would need to be solved
multiple times for each empirical law realization, and this
could prove cumbersome. Therefore, we propose to use MC
methods coupled with IS, even for the one-dimensional case,
to estimate the nested expectation.

Remark 4 (Time Extension of the Empirical Law) In prac-
tice, we only have access to a time-discretized {p.f NS
[0, T']} from the Euler-Maruyama time discretization of (3).
However, 1/ must be defined continuously throughout the
time domain for the decoupled MV-SDE to be well-defined.
Therefore, we use the forward Euler-Maruyama continuous
time extension for the discretized empirical law over the
entire time domain.
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4.2 Optimal IS for decoupled MV-SDE using
stochastic optimal control

We introduced the decoupled MV-SDE to implement an
IS change of measure for a given {u/ : ¢ € [0, T]} on
a standard lower-dimensional SDE, thereby reducing MC
estimator variance for rare-event probabilities. As (29) is a
standard SDE for a fixed {M,P .t € [0, T]}, we follow the
procedure in Sect.2.2 to derive the optimal change of mea-
sure.

Corollary 2 (HJB PDE for decoupled MV-SDE) Ler the
decoupled process X P follow the dynamics (29) and let the
controlled process Xf [0, T x 2 — R? follow the given

controlled dynamics with control ¢ : [0, T] x R — R4:

B} _ e .
X! = (b (xfo), 5 2 a0, X7 (z)))
j=1

»
- 1 _ —
+a(X§’(r>,P§ Kz(Xf(n,X,’-’(t))) c(z,xg”'(t)))dt 3D

j=1

Jj=1

»
+o (Xg’(z), % > k(X o). Xf(t))) dw(@), 0<t<T

X[ = X" (0) = %o ~ po.

Assuming that E [exp {%fOT lCGs, Ye (s))||2ds}] < o0 and

that (3) is used to compute {utP 1t €[0,T]}in(29)and(31),
the value function u : [0, T] x R — R9 that minimizes the
second moment can be defined as

T
u(t,x) = migE[Gz()_(f(T))exp{—/ (s, X7 (01
¢e !
T _
_zf (g(s,Xf(S)),dW(S))}
t

‘ xXF@y=x.(u :1elo, T]}] (32)

Here, Z = {f ec! ([0, T] x RY — Rd)} is a set of admis-
sible deterministic d-dimensional Markov controls. Next,
assume that u has bounded and continuous derivatives up to
first order in time and second order in space, and u(t, x) #*
0 Y(t,x) € R%. Define a new function y : [0, T] x R? —
R?, such that

u(t,x) =exp {2y, x)}- (33)

Then, y satisfies the following nonlinear HJB equation:

] 1 <
8—7: + (b (x, - > ki, xf(z))) ,Vy)

j=1

P
+ %sz : (O‘O‘T) (x, ;;Kz()u X}D(I)))

(34)
LioTy Ly x? =0
= Zle" vy x,;;mx, G N EE)
(t,x) €0, T) x R
y(T.x) =—log|G(x)|, xeR?,
with optimal control
1 P
3 = =0l x5 Y i XT@O) | Yy (),
j=1
(35)

which minimizes the second moment (32) conditioned on
{uf 1relo, T

The HIB PDE that solves for u results in a zero-variance
estimator for a given empirical law, 1/, provided G(-) does
not change sign. Hence, we can recover the linear KBE, as
shown in Sect. 2.2, and obtain the following control PDE in
the MV-SDE context,

9 |
a—': + (b (x, - > ki, X;’(z))) , V)

j=1

1 1 &
+ EVZU : (00T> (x, 7 Zlicz(x, Xf(t))) =0, (36)
j=

(t,x) €[0,T) x R?
(T, x)=|Gx)|, xeR?,

with optimal control

P
t,x)=0" |x, % ZKQ()C, X7 (1) | Viogv(t, x)-
j=1
(37)

Remark 5 (Zero-Variance Control for MV-SDEs) Let us
assume that the deterministic mean-field law (u,) is given
beforehand. If we condition the decoupled MV-SDE (29) on
{wy : t € [0, T}, the controls given by (36) and (37) result
in a zero-variance estimator of IE [G (X (T))] for MV-SDEs,
given that the sign of G(-) remains unchanged. However, in
practice, we can only approximate i, by an empirical esti-
mate, resulting in the DLMC estimator.
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Herein, we numerically solve the one-dimensional (d =
1) KBE corresponding to the Kuramoto model (6) numeri-
cally using finite differences. Model reduction techniques (Hart-
mann et al. 2016, 2015) or the solving of minimization
problem (32) using stochastic gradient methods (Hartmann
et al. 2017) are appropriate for higher-dimensional (d >> 1)
problems. Due to the lack of closed-form solutions for the
inner or outer expectations, obtaining numerical KBE-based
solutions for both expectations that satisfy relative error tol-
erances is infeasible, even in the one-dimensional case. This
necessitates the use of a DLMC estimator in this context. The
DLMC estimator is constructed through the following steps:

1. Approximate the mean-field law u; in (1) by the empir-
ical ;L[P using (3). In practice, we obtain the discretized
empirical law with Np time steps from Euler—-Maruyama
time discretization of the particle system. Consider the
discretization 0 = fp < 1 < fp < ... < ty, = T of
the time domain [0, 7] with N; equal time steps. Hence,
th=nxAt;, n=0,1,...,Ny;and At; = T/N;. Let
us denote by X II;WI the time-discretized version for state
X[ corresponding to (3).

2. Let u”IN1 be the discrete law obtained from the above-
mentioned step, then

P
1
pN@) =5 D dyrm s Yn =0, - (38)
1

p=

In order to define a time-continuous extension for the
empirical law, we extend the time-discrete stochastic
particle system to all + € [0, T] by using the for-
ward Euler-Maruyama continuous-time extension. Given
{X,f;lNI (tn)}l';’:l forall time stepsn = 0, ..., N1, we have

P|N P|N
xp™M@y = x BN @)

P

1

+b (Xff’v‘ (). ZIK1<X,’,"N1 (1), x 1 <rn>>) )
j:

P

1

+o (X;;lNl (tn), P Z KZ(XIIJ)lNl (tn), Xfwl (tn)))
Jj=1

W@ = W), th <t <tyq1- (39)

The time-continuous empirical law is then defined as fol-
lows

P

1
P|N _ .
N = P E ij’."Nl @’ VvVt € [0, T] (40)
j=1

3. Given pPN1 from (38), we use (36) and (37) to obtain
the optimal control ¢ for IS.
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4. Given uW1 from (38) and control ¢ : [0, T] x RY —

R?, we define the controlled decoupled process X fW‘.
Its dynamics can be derived by slightly modifying (31),
indicating that the drift and diffusion coefficients depend
on the time extended version of ;”!¥1 obtained using P

particles and N time steps:

- v 1 ¢ X
axP 1 = (b (fo' . 5 2o &M@, X7 “”)

=

»
GPING ] & PIN: PINy FPIN
+a(xz 0, 5 2 &M, X <x>>)c(z,xr <z>>)dr @

j=1

»
+o ()'(f”' o), % S M@, xfM (z))) Aw(@), 0<t<T
j=1

X 0) = 5o ~ po.

5. We use the Euler-Maruyama time discretization with N»
time steps to discretize (41). In our notation, we indicate
the three discretization parameters used, namely, P, Ny,
and N,. Consider a new discretization, 0 = 7y < f; <

< fy, = T, of the time domain [0, 7] with

N uniform time steps. Hence, &, = n x An, n =

0,1,...,N2,andAt2=N%.

l_2 < ...

e For time stepn = 0,
o P|N{|Ny - -
Xgl 12 (7)) = %o

e Forn=1,..., N, —1

5 PIN{|INy - 5 PINi|INy ~
X{I 1l z(t,,+1):X{| 1l 2(7)

P

- _ 1 - _ _

+ (b (folNzan), 72 1K1<Xf'N"N2 ), x M (zn»)
J=

P

SPINIINg - ] SPINiINy - | PINy -

+a(xg' ! 2<zn),;zlxz<x§' 1 G, x 1 l(rn»)
J:

- SPIN{INg - < PIN{|Ny -
¢l X M2 @) Ary +a(xg' 2,

P
5 Y@ Mg N @))) AWy, 42)
j=1

where AW, ~ N(0, V/ARL).

6. Given (X} "% 7,)}1"

1—1» We can express the quantity of
interest with IS as

E [G(;}P\NHNQ(T))] ) [G(X§|N1\N2(T))LP|N1|N2] ’
(43)
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where, similar to (12), the likelihood factor can be
expressed as

Ny—1

LAY =TT exp{—%mzn;(r‘n,if N G 1P
n=0
—( AW g XM GN) @ay

Observe that LYVi1IN2 — | when ¢(r, x) =0, V(t,x) €
[0, T] x R4,

We propose a general DLMC algorithm (Algorithm 1) to
estimate the required quantity of interest by using Steps 1-6.
The output of Algorithm 1 is our DLMC estimator, which is
defined as follows:

M M>
1 1 o PINIIN, PIN/IN
Avc = — > G (XM ) LFMIv,
VT M, £~ M, ¢ @D

mp=1

(ff.a). (45)

my=1

In (45), notation w%,‘) denotes the mtlh realization of the
P sets of random variables (Wiener increments and initial
states) that are used in calculating {X ,I,JIN‘ (tn)}flv L, for all
particles p = 1,..., P. @2 denotes the m‘zh realization
. . . S PIN{|N2 = \\N:
of random variables used in calculating {X, INUN2 (7 ) 1

given ufV1,

Algorithm 1: General DLMC algorithm for decoupled
MV-SDE
Inputs: P, Ni, N2, M1, M;
form;=1,...,M; do
Generate realization of random variables a)Yz"Ii

).

Generate realization of law p”'M1 (a)grznfl)) with P-particle

system and N; time steps using (38);

Given pu? 1N (a)YfP') ) solve (36) to obtain control

£ (offf)):

formr,=1,..., M, do
Generate realization of random variables @2);
Given u*IM (wi':"P‘)) and ¢ (-, -) (wngl)) solve
decoupled MV-SDE with N; time steps using (42);
Compute G (}_(fw' N2 (T)) (a)ﬁ'}‘), (;,("12)>;
Compute L7 IN1IN:2 (a)Y:"PI), 5)(’"2)) using (44);

end

Approximate E [G (XPININ2 (T | P I (w%ml,'))] by

1 ZMz G ()-(lel\Nz(T)> LPINIIN (wY:"PI)’ &)(mz));

My £—mp=1

end
Approximate E [G (XPIMIN2(T))] by

1 M 1 M g PIN1IN. P|N{|N: (my)  ~
Wy Lomi=1 ¥ oma=1 G (X; l Z(T))L i (“’I;P] ’w(m2)>

4.2.1 Error analysis

We bound the global relative error introduced by the DLMC
estimator, Apmc, as

IE[G(X(T)] — Amc|
IELGX(T)]]
- |E[G(X(T)] —E[G (XPIMIN(T))]|
B [E[G(X(T)]|
=e€p, Relative bias
[E[G (XTIMI™(T))] — Awc|
EIGX(T)]] '

=¢,, Relative statistical error

+

(46)

Although Apmc should satisfy a given TOL; in the sense
of (28), we impose more restrictive conditions, which can be
expressed as follows:

Bias Constraint: €, < 6TOL,, 47
Statistical Constraint: P[e; < (1 —0)TOL;] > 1 — «, (48)

for a given tolerance splitting parameter 6 € (0, 1) and confi-
dence level determined by «. Let us first analyze the estimator
bias, which can be split into two terms:
[EIG(X(T)]—E[G (XPMIN(T))]|
@ EIGX(T))]]
- [EIGX(T)]-E[G (X" (T))]|
- [E[GX(TNII
Relative decoupling error
[E[G (X"(M)] - E[G (X"™MM@)]|
" EIGXD)]] ’

Relative time discretization error

(49)

We now make the following assumptions.

Assumption 1 (Decoupling Error) There exists a constant
C1 > 0 independent of P, such that

E[G(X(T))] —E [G ()‘(P(T))]) <c Pl
Assumption 2 (Time Discretization Error) There exist con-

stants C; > 0 and C3 > 0 independent of Ni, N», such
that

e (¥ )] - e[ (xmmm)]
<N NS
Assumption 1 is motivated by the weak convergence

with respect to the number of particles (see (Kolokoltsov
and Troeva 2019)). Assumption 2 is motivated by the weak
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convergence of the Euler—Maruyama scheme for standard
SDEs (Kloeden and Platen 1992). In order to use these error
bounds, we assume that the drift/diffusion coefficients sat-
isfy further regularity and boundedness conditions entailed
in (Kolokoltsov and Troeva 2019) and (Kloeden and Platen
1992). In Sect. 5, we numerically verify these assumptions for
the Kuramoto model (6). Note that the constants Cy, C», C3
depend on final time 7' and the regularity and boundedness
of b, 0 and G and their derivatives. By substituting Assump-
tions 1 and 2 into (49), the bias bound can be expressed as

e [E[G(X(T)]| < % + 2.6

50
vy, (50)

Consider the statistical error constraint (48); we can

approximate the statistical error €, by using the Central Limit
Theorem as

€5 ~ Coy/Var [Amc] = (1 = O)TOL; [E[G(X(T)]I, (51)

where Cy is the (1 — §)-quantile for the standard normal
distribution. Hence, (51) can be expressed as

2
(1 -60)TOL, |[E [G(X(T))]I> 52)

Var [Amc] < ( Co

leading to a constraint on the estimator variance. For nota-
tional convenience, let Y 7M1V = G ()_(f‘NllNz(T)> LPINiIN:
and /NN — <X§|N1\N2(T)> LPINIIN, (wi’:";), C;)(mz>)
be random samples of ¥ PIV1IN2 Thus, the DLMC estimator
variance can be expressed as

1 &
Var [Ayc] = Var | —
ar [Awic] = Var | - >

mi=1

1 &

3 ypmive

M2 mj,m2
my=1

M,

>y

mpy=1

1 1
= —Var
M, M;

PIN{|N2
1,mo

(53)

Then, by using the law of total variance, we obtain

M>
1 1 P|N{|N2| PIN
Var [Amc] = — Var | E EY.IZ N
[Amc] M, M, Lj H

j=1

1 1 PIN|IN2| P
E Yyl 11V2 [Ny
+ —FE| Var | — E m

— LVar [E [YP|N1|N2 | MP\Nl]:I
M,

+

E [Var [YP|N1|N2 | MP'N‘]] . (54)

MM,
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where {Y 1P]|.N‘|N2}?/[:2 |» represents independent samples con-
ditioned on p?N1. Furthermore, we make the following
assumptions.

Assumption 3 There exists a constant, C4 > 0, which is
independent of N1, N, and P such that

VIP\NllNz — Var [E [YP|N1|N2 | MP\MH <c,p

Assumption 4 There exists a constant, Cs > 0, which is
independent of N1, N, and P such that

VzP‘N”NZ — E[Var [YP|N1|N2 | MP‘NI:I] S CS < 00-

Assumption 3 is motivated by the convergence of 1V

to the deterministic mean-field law as P — oo. As the
outer variance is related to the randomness in the empirical
law pPIN, VIPW1 IN2 Vanishes with the increase in the num-
ber of particles. Assumption 4 is motivated by the bounded
conditional variance with respect to randomness driving the
dynamics (29). These assumptions are numerically verified
for (6) in Sect.5. By substituting Assumptions 3 and 4 in
(54), constraint (52) can be expressed as

2
Cy + Cs < <(1—9)T0Lr IE[G(X(T))]|> . (55)
PM, MM Co

4.2.2 Work analysis

This section analyzes the cost to run DLMC Algorithm 1.

1. The computational cost required to generate one real-
ization of empirical law using the Euler—-Maruyama
time-stepping scheme is Ny x P2, where N denotes the
number of time steps.

2. To numerically solve (36), the computational cost is
denoted by Wppg. For standard numerical solvers,
Whpg = O (h=41"), where I" > 1 is related to the qual-
ity of the solver and 4 is related to the size of mesh grids
in time/space.

3. The computational cost required to generate one real-
ization of the decoupled process (42) using the Euler-
Maruyama time-stepping scheme is P x N», where Nj
denotes the number of time steps.

The above-mentioned steps assume a naive method (with
computational cost O (P)) to compute the empirical mean in
the drift and diffusion coefficients in (3) and (42). Hence, the
total computational cost of Algorithm 1 can be expressed as

W = M, {P2N1+WPDE+M2{PN2}}' (56)
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Numerically solving (36) M times can quickly become
very expensive. Our revised Algorithm 2 addresses this issue
by solving (36) offline in a single instance, by using the drift
and diffusion coefficients obtained from one realization of
the empirical law, using large P, N values. This implies
that instead of a stochastic control, a deterministic control
is obtained that is independent of the different stochastic P-
particle system realizations in Algorithm 1. This choice was
motivated by the fact that 1!V in the drift and diffusion
coefficients converges to the deterministic mean-field law,
Iy, As P, N tend to infinity. The online computational cost
of running Algorithm 2 can be expressed as

W= M, {P2N1 + My {PNz}} , (57)

where we exclude the offline cost to numerically solve (36).
Under the constraints of (47) and (55), we must determine
optimal parameters P, N1, N>, M1, and M, to ensure min-
imal computational cost (57). This can be presented as the
following optimization problem:

min W = M{N| P2 + M{M,N> P
{P,N1,Na, My, M3}

c, C C
1 2 4+ 23 ~0TOL, [E[G(X (T,

P Ny N> (58)
Cy Cs
c2 =
* <PM1 - M1M2>

~ (1 - 0)*TOL2 |E[G (X (T))]% .

with the solution formulated in Theorem 2.

Theorem 2 (Optimal DLMC Complexity) Considerthe DLMC

estimator in (45), obtained from Algorithm 2. For any

TOL; > 0, there exist optimal parameters { P, N1, N, M1, M>}

such that (47) and (55) hold. The optimal computational
work is given as

W = MiN{ P* + M{MyN,P = O (TOL;“) : (59)

Proof Refer to Appendix C. O

Remark 6 (Optimal MC Complexity for Particle Systems)
The introduction of DLMC for this problem crucially guar-
antees O (TOLr_ 4) complexity for the proposed estimator.
From (58) and Theorem 2, the use of a single realization of
the particle system (M| = 1) results in an increase in com-
plexity to O (TOL; 5). Moreover, in comparison to previous
MC estimators (Haji-Ali and Tempone 2018), the proposed
IS scheme for the DLMC estimator also considerably reduces
the associated constant for rare-event probabilities. This is
validated in Sect. 5.

Algorithm 2: Revised general DLMC algorithm for
decoupled MV-SDE
Offline: o _ B
Generate realisation of law 71V with P-particle system and N
time steps using (38) with some large P, N;
Given PN | solve KBE (36) to obtain control Z (-, -);
Inputs: P, Ny, Na, My, M2, £(-, );
form;=1,...,M; do

Generate realization of law p M1 (a)ﬁ",})) with P-particle

system and Nj time steps using (38);

formr,=1,..., M, do
Generate realization of random variables @2);
Given ,uP‘N‘ (wif"l,‘)) and ¢ (-, -), solve decoupled
MV-SDE with N; time steps using (42);
Compute G ()_(;‘N”Nz (T)) (a)}'f;), (I)(’”Z)>;
Compute LPIN1IN2 (a)}’f}‘), d)(’”Z)) using (44);

end

Approximate E [G (XPINUN2 () | puPIN (a)}”;l))] by

M% er\:;:l G ()_(;’lNl‘NZ(T)> LPINIINy (a)itnpl), (Z)(mz));

end

Approximate E [G ()_(P‘N‘ IN2 (T))] by

1 M 1 M: v PIN1IN2 o, (m1) ~
3 St 1z T G (X)) LN (w12 )

4.2.3 Adaptive DLMC algorithm

We formulate a DLMC algorithm that adaptively selects opti-
mal parameters P, Ny, N, M1, and M>. For computational
convenience, we restrict our choices for P, Ny, and N», by
implementing the following hierarchies:

e Pi=Pyxtt ,£=0,....L
e (NDe=(Np)y=Ne=Nyxtt ,£=0,...,L

Herein, we choose T = 2. The choice of Ny = N is
nearly optimal as the optimal values of Ny and N, are both

@ (TOL; l) (Appendix C). To build an adaptive algorithm,

. . . PyIN¢|N,
we must estimate the bias and variances Vi ¢ = V| ¢INeINe

and Vo o = VZP“NMNZ for some level ¢ in a cheap and robust
manner. To satisfy the bias constraint, we must select a level
£ = L that satisfies (47). For convenience of the following
analysis, we denote G = G(X(T)) and its discretization at

level € as Gy = G ()‘(f@'Nf'Nf(T)). The likelihood factor,

L, = LPeINeINe at Jevel £ is computed using (44). Then, the
relative bias for level £ can be expressed as

IE[G — Gl 1 (61 éz>
_ < +==). (60)
Py Ny

€p = =
IE[G] [E[G]]

@ Springer



197 Page 14 of 25

Statistics and Computing (2024) 34:197

We use the Richardson extrapolation technique (Lemaire
and Pages 2017) to estimate bias for T = 2 at level £ as
[EIG — Gl ~2[E[Gerr — Ge]|- (61)

We use a robust DLMC estimate of E [AG@.H] =
E[Gey1 — Ge] using Algorithm 4 with M), M, sample.
Algorithm 4 in Appendix D incorporates an antithetic sam-
pler (Haji-Ali and Tempone 2018) to estimate the bias using
sufficiently correlated samples of Gy and G,. Given that
some level £ = L satisfies (47), we must find optimal param-
eters M and M; that satisfy (52). This can be presented as
the following optimization problem:

min W = MNP} + M{MN Py,
(M, M>}

Vi.L VoL 2 2 2
c3—= * ~ (1 — 9)*TOL? |E[G(X(T)]?,
a<M1+M1M2) ( ) T IEIGX(T)]

(62)
PLINLINL

where Vl,L = Vl — VZPLlNLlNL- By

solving (62), we get

Vi,LVa,L C?
My =(ViL+ T—— 5
P (I =0)-TOL; |[E[G(X(T)]I
VoL P
My — | V2rfr
ViL

In principle, M| and M; obtained in (63) are real-valued.
In practice, however, we use the next highest integer val-
ues for M and M». From (63), one observes that we must
estimate V1 1, and V> 1, to obtain a DLMC estimator that sat-
isfies (52). The proposed adaptive algorithm uses a heuristic
DLMC estimator for these variances, as stated in Algorithm 5
in Appendix E, with M| and M, samples.

The proposed adaptive algorithm updates a heuristic esti-
mate for E [G (X (T))] (the quantity of interest) to check the
estimator’s relative error at each step. To initialize the adap-
tive algorithm, we produce an initial rough DLMC estimate
by using IS with Ml and 1\7[2 samples. With this, we have
all the components required to formulate an adaptive DLMC
algorithm, as shown in Algorithm 3.

and VQ’L

(63)

5 Numerical results

This section provides numerical evidence for the assump-
tions and the computational complexity derived in Sect. 4.
The reported results focus on the Kuramoto model (6) with
o =04,T =1,(x0)p, ~N(0,0.2),and v, ~ U(—0.2,0.2)
forallp =1,..., P. We implemented our DLMC algorithm
on both nonrare- and rare-event observables. We demonstrate
the effectiveness of our method over naive MC.
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Algorithm 3: Adaptive DLMC algorithm for decoupled
MV-SDE
Offline:
Generate j realisation with P-particle system and N time
steps (38) with arbitrarily large P,N;
Given PN solve KBE (36) to obtain control Z (-, -);
Input: Py, No, TOL;, ¢(-, -);

P|N

L =0;
Estimate & = E[G] using Py, No, My, M>, ¢(+, -) in Algorithm
2;
while Bias > 0TOL,& do
Py =Py x 2t Np=Nyx2%
Estimate V1 ¢ and V> ¢ using Py, Ny, My, M, Z(-,+)in
Algorithm 5;
Compute optimal M1, M, with estimated V; ¢, V5 ¢ using
(63);
Estimate Bias = M with Py, Ny, Ml, Mz, ¢(-, ) in
Algorithm 4;
Update & = E [G¢] using Pg, N¢, M1, M3, (-, ) in
Algorithm 2;
{<«—L+1;
end
Amc = a.

5.1 Objective function G(x) = cos x

We implemented the proposed DLMC algorithm for the non-
rare observable G(x) = cosx. Due to the fact that this is
not a rare-event observable, IS is not required in the algo-
rithms, i.e., £(f,x) = 0, V(r,x) € [0, T] x R?. First, we
verify Assumption 1. As E [G(X(T))] is unknown, we used
Richardson extrapolation to obtain the following estimate,
which can be numerically computed.

_ - C
E[c@ )] -E[c X" @)]| < 55 (64
To achieve a robust numerical estimate, we coupled the
expectation computations in (64) by using the antithetic sam-
pler (Algorithm 4). Assumption 2 was verified using the
following three estimates for the time-discretization error

based on parameters N1 and N».

[E[GPEMIN ) | B [GXPIMIN (1) ]| < 2%21 (65)
[E[GxPMEN )| B [GRPIMIN () ]| < 2%32 (66)
[E[GXPRNEN ()| B [GRPIVN(T))]| < 2% (67)

Figure 1 verifies the proposed orders of bias convergence

withrespectto P, Ny, and N,. Figure 2 displays the estimated
le‘Nl ™2 and V2P|N' N2 using Algorithm 5, where VIPW1 IN2
converges with O (P~!) and VZPWIW2 is nearly constant.

Figures 1 and 2 validate the assumptions made in Sect. 4.
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(a) Verifying (64). DLMC estimate for
|E [G(X?P(T))] —E[G(XP(T))]| by using
Algorithm 2 with inputs Ny = Ny =
128, M; = 100 and M, = 10® with respect
to number of particles P.
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(b)  Verifying

mator for

(65):
E [G(XPI2N1IN2 (T))] _

DLMC

esti-

E [G(XFININ2(T))] | using Algorithm 2
with inputs P = 80, N, = 256, M; = 102
and M, = 103 with respect to the number of

time steps, N1
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(¢c)  Verifying  (66): DLMC  esti-
mator for |E [G(XPIN12N2(T))] —
E [G(XPIMiIN2(T))] | using Algorithm 2
with inputs P = 80, N; = 256, M; = 102,
and My = 10% with respect to the number of
time steps, No

10*

102

(d) Verifying (67): DLMC estimator for
B [GUXPRNEN(T)] = B [G(XPININ(T)]|
using Algorithm 2 with inputs P = 80, M, =
102, and My = 10% with respect to the num-
ber of time steps, N

Fig.1 Verifying Assumptions 1 and 2 for Kuramoto model (6) for G(x) = cos x

We tested the adaptive DLMC algorithm (Algorithm 3) on
the Kuramoto model (6), utilizing Py = 5, Ng = 4 as inputs.
We used Algorithm 5 with M; = 100 and M> = 3000 sam-
ples to estimate V; , and V; ¢ for each level £. In addition,
we used Algorithm 4 with Ml = M and Mz = M) to esti-
mate the bias, where M| and M, are the optimal number of
samples obtained from (63). Figure 3a shows the computa-
tional runtime for Algorithm 3 for different error tolerances.
The runtimes for sufficiently small tolerances follow the pre-
dicted theoretical rate, O (TOL™*), derived in Theorem 2.
Figure 3b shows the exact DLMC estimator error for sep-

arate runs of Algorithm 3 for different prescribed absolute
error tolerances (TOL), where the exact error was computed
using areference DLMC approximation with TOL = 10733,
Figure 3b clearly shows that Algorithm 3 produces an esti-
mate that satisfies error constraint (28).

5.2 Objective function G(x) = 1.
For a sufficiently large value of K, G(x) = 1~k cor-

responds to the probability of a rare event. Figures4 and 5
use a threshold of K = 2, corresponding to a probability of
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Fig.2 Verifying Assumptions 3 and 4 for Kuramoto model (6)
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(b) Verifying Assumption 4: DLMC estima-
tor for VQPINNV2 using Algorithm 5 with in-
puts N1 = N2 = 256,M1 = 102, and M2 =

10 with respect to number of particles P
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(b) Global error with respect to TOL

Fig.3 Adaptive DLMC Algorithm 3 applied to Kuramoto example (6) for G(x) = cos x

approximately 2.53 x 10™*. We implemented the IS scheme
(Sect.4) with IS control ¢ for the one-dimensional Kuramoto
model (6) obtained by numerically solving (36) using finite
differences and linear interpolation throughout the domain.
Two numerical experiments were initially conducted, verify-
ing variance reduction from IS. In the first experiment shown
in Fig. 4a, we verified variance reduction on the MC estima-
tor of the inner expectation conditioned on an empirical law,
uP N1 To obtain Fig. 4a, we acquired !N empirically by
using the stochastic P-particle system with P = 200 and
N1 = 32. We used this law to obtain both the IS control
¢ as well as an input to all realizations of the decoupled
MV-SDE (29). We simulated the decoupled MV-SDE by
using No = 32 time steps. Figure4a presents a comparison

@ Springer

of the squared coefficients of variation for the MC estima-
tor of the inner conditional expectation with and without IS
with respect to the number of sample paths M for the decou-
pled MV-SDE. The plots verify that the squared coefficient
of variation for the estimator reduces approximately 6000-
fold with IS. In the second experiment shown in Fig.4b, we
used P = 200 particles and N = 100 time steps in the
stochastic particle system to estimate empirical u”V, and
subsequently obtained the optimal IS control. Then, we set
P =100, N; = N, = 32, M; = 10, and varied M; as
inputs to Algorithm 2. Figure4b shows the squared coeffi-
cient of variation of the DLMC estimator with respect to
M>. We observed that the IS estimator displays a remarkably
reduced variance (approximately 1000-fold).
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We applied Algorithm 3 to Kuramoto model (6) with
P = 1000 particles and Ny = 100 time steps to estimate
empirical 1”!V by using the stochastic particle system and
obtaining control ¢. We used Py = 5, No = 4, and a relative
error tolerance TOL, as inputs to Algorithm 3. The follow-
ing heuristics were employed to ensure the robustness of the
proposed algorithm.

e We used M | = 10% and Mz = 102 to obtain an initial
rough estimate for the required quantity to aid in quanti-
fying the required relative tolerance.

e Algorithm 5 was employed to estimate V; , and V5 ¢ with
M| = 50 and M, = 103 for the first three levels, i.e., £ =
1, 2, 3. In addition, Assumptions 3 and 4 were employed
for the subsequent levels to extrapolate Vi ¢ and V2 ;.

e Algorithm 4 was used to estimate bias, with M 1 =
max (M, 100) and Mg = max(M>, 50), where M, M,
are the computed optimal sample sizes. The estimated
bias was compared with the extrapolated bias from the
last two levels, and the maximum of the three values was
selected, ensuring the bias estimate robustness for £ > 3.

Figure Sa illustrates that K = 2 corresponds to a prob-
ability of approximately 2.53 x 10~%. Figure 5b shows the
exact relative error of our DLMC estimator for different runs
of Algorithm 3 over various prescribed relative error toler-
ances. We used a reference DLMC approximation computed
with TOL; = 1.5%. Figure5c shows that the computa-
tional runtime closely follows the predicted theoretical rate
of O (TOL; 4) for small relative tolerances. Additionally, we
compared the estimated computational work, given by (57),
for the IS and crude DLMC methods. Because running a
crude DLMC is infeasible for rare events, we used a heuristic
estimate of the computational cost of crude DLMC without
actually running the algorithm. Figure 5d provides numerical
evidence that the IS estimator reduced the computational cost
to achieve a prescribed relative error tolerance, by multiple
orders (three-orders of magnitude in this case). This implies
that our IS estimator dramatically reduces the constant asso-
ciated with estimating rare-event probabilities.

Table 1 shows the average number of samples required
to reach a given relative tolerance with and without IS for
different thresholds (K). For DLMC without IS, the num-
ber of samples required to satisfy a given relative tolerance
increases as the probability reduces (Kroese et al. 2013). Our
IS scheme reduced both M and M;. In fact, the required
number of samples for IS is considerably lesser than that
without IS, and it remains of the same order regardless of
the event rarity. Thus, the proposed DLMC estimator with
IS numerically achieves the bounded relative error prop-
erty (Rached et al. 2015).
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Table 1 Naive DLMC and DLMC+IS methods estimating rare event
probabilities to satisty TOL, for different thresholds (K)

K Aumc TOL: (%) ¢ DLMC+S  DLMC
My M, M, M,

1 5.6 x 1072 20 3 59 12 157 65
10 4 111 27 284 131
5 5 167 58 456 297

15 68x1073 20 4 41 24 230 325
10 5 64 48 386 700
5 6 105 102 662 1491

2 253 x 1074 20 5 17 48 477 3629
10 6 33 90 913 6929
5 7 57 186 1711 14864

6 Conclusion

This work has shown both theoretically and numerically,
under certain assumptions which could be verified numer-
ically, the effectiveness of the novel DLMC estimator with
IS based on the decoupling approach (dos Reis et al. 2023)
when used to estimate rare-event probabilities associated
with a stochastic particle system in the mean-field limit. For
this, we used stochastic optimal control theory to derive a
zero-variance IS change of measure for the decoupled MV-
SDE (29). Our numerical experiments demonstrated that the
above obtained IS control substantially reduces the variance
of the DLMC estimator. In the rare-event regime, where the
standard DLMC approach fails, our approach yields accurate
estimates of rare-event probabilities with reduced computa-
tional effort. Our novel DLMC estimator has a computational
cost of O (TOLr_ 4) which is exactly the same complexity as
that of the MC estimator proposed by (Haji-Ali and Tempone
2018) for smooth, nonrare observables, while substantially
reducing the associated constant for rare-event probabil-
ities. Future works will involve extending the proposed
IS scheme to the multidimensional case by using model-
reduction techniques or stochastic gradient-based learning
methods, leading to a more generalized and efficient algo-
rithm. The presence of multiple discretization parameters in
the decoupled MV-SDE hints toward the use of multilevel and
multi-index MC methods coupled with IS to further reduce
the work complexity of the DLMC estimator.

A Proof of Lemma 1

Assume that the minimizer for C; x can be attained. Then,
we prove the equality in (19) by proving both inequalities >
and <. First, consider >:



Statistics and Computing (2024) 34:197

Page190f25 197

Let ¢* € Z be the optimal control for s € (¢, T') that mini-
mizes the second moment. From the value function definition
(18), we obtain

T
u(t, x) =E|:G2(Y;*(T))exp{ —/ 12* (s, Yo (s)) | 2ds
t
T
—2/ <;*(s,Y;*(s)),dW<s)>} ‘ Y;*(t)=x]
t
t+48
= E[GZ(Y;*(T))exp {— / 1£% (s, Yo ()1 *ds
t
t+48
-2 / (C*(s, Ye=(5)), dW(s))}
1

T
exp {—/ ) IE* (s, Ye= (s))[12ds
t

+

T
—2/ (C%(s, Yer (), dW(S))} ‘ Yeu(t) = X}
t

+3

t+8
_ E[E[Gz(Yc*(T))exp {‘/ 1£¥(s. Yer () [P ds
t
t+4
_2/ (g‘*(s,Y;*(S)),dW(S))}
t

T
exp {—/ ) IC* (s, Yer (5)) 1 ds
t

+

T
—2/ (¢*(s, Yo (5)), dW(S))}
t

+8

‘ Y{*(t)=x,fz+a] ‘ Yc*(t)=X} (68)

where F;4s is the Wiener process filtration until time ¢ +
3. Considering Markovianity for process Y.+, (68) can be
expressed as

T
ut, x) =E[]E[62<Y;*<T>>exp{ - / . 1E* (s, Yer (5)) |1 ds

1+

T
—Zf6(;*(&Y;*(s»,dW(s))} ‘ Yg*(r+a)=xf+s]
1+

t+6
exp{— / IE* (s, Yo () II7ds
t
1+8
-2 / (E*(s, Yo (), AW (5)) ‘Y;*m:x]

t+68
_ E[exp {— / 12 (s, Yo (s))|Pds
t

t+68
—2/ (£(s, Yex(s)), dW(s))
t

Crrsms(€h) ‘ Yool = x]~ (69)

As ¢* may not be an optimal control from time ¢ + § to T
given Y« (t +6), based on the definition of the value function
(18), we get

Cris.x5(&") > ult +8, Yeu (1 +8))- (70)
By substituting (70) into (69), we get
t+8
u(t, x) Z]E[@(P{—/ 2% (s, Yer ()) [ *ds
t
t+6
—2/ (¢*Gs, Y;*(S)),dW(S))}
t
u(t + 6, Yer(t +6)) ‘ Yo (1) =xi|; (71)

Taking the minimum over all controls ¢* in [f, t + 8], we
obtain

min

u(t,x) >
¥t 14+8]—Rd

t+6
E[exp {— / 12 (s, Yer (5))]|%ds
t
t+6
-2 / (£¥(s, Y (5)), dW<s>>}
t

u(t +38,Yex(t +9)) ‘ Y;*(l)=x:|' (72)

Next, let us consider the second inequality <. Let ¢t be
some arbitrary control from ¢ to ¢ + 8. Given Y« (¢ + §), let
™ be the optimal control from ¢ + § to 7', and define a new
control ¢’ = (¢, ¢*) over [¢, T]. According to (18),

u(t,x) < Cy (¢
T
< ]E[G2(Y;/(T))exp{—/ 1 (s, Yer(s)) 12 ds
t
T
2 / (5. Yor(5)), dW(s))}
t
’ Y;/(l) =x]
1+
< E|:G2(Y§/(T))exp{—/ £ (s, Yer ()] 7ds
t
t+45
™) / (s, Y¢+<s)>,dW<s)>}
t
T
exp{—/ 1% (s, Yer ()1 Pds
t+6

T
—2/ (¢*(s, Yo (), dW(S))} ‘ Yo (1) = X}
1+3

t+6
< E[E[G%ym))exp {— / 12 (s, Yer ()[|7ds
t

t+4
_2/ (¢t (s, Y{+(s)),dW(S))}
1
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T
exp {—/ . IS* (s, Yer (5)) 1 %ds
t

+

T
—2/ (C*(s, Y;*(S)),dW(S)>}
t

+4

‘ Yg*(t):x,]:H_ng ‘ Y;/(t):x}, (73)

and we can express (73) as

T
u(t,x) < E[E[GZ(Y;*(T))exp{ —/ lc* (s, Y;*(s))||2ds
1+6

+

T
—2/ (¢ (s, Y;*(S)),dW(S))} { Yeu(t ~I—5)}
t

+4

t+45
exp {— / g™ (s, Ypr () |1 2ds
t

148
—2/ (¢ T (s, Y§+(s)),dW(s))} ' Yo (t) = x:|-
t

(74)

Considering optimality of control ¢* in [t + 8, T'], we can
express (74) as

t+6
u(t, x) sE[exp{—/ g™ (s, Yer ()1 %ds
t
t+6
-2 / (cF s, Y;+(s)),dW(s>>}
t

By taking the minimum over all controls ¢t € Z over
[, + &], we get

t+8
u(t,x) <  min ]E[exp{—/ T (s, Yer (s) |1 ds
et t+8]1—=Rd t
t+6
—2/ (¥, Yg+(s))adW(S))}
t
ut 48, Yex(t +6)) ’ Y;/(t)=X]~ (75)

Equations (72) and (75) prove the equality (19). This com-
pletes the proof.

B Proof of Theorem 1

From Lemma 1, the value function defined in (18) satisfies
the following equation:

t+38
u(t, x) =minE|:exp{—/ ||{(s,Y;(s))||2ds}
(eZ '
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t+8
exp {—2/ (C(s, Ye(s)), dW(s))}
t
u(t+36, Y (1 +9)) ‘ Y;(t)=X] (76)

Use the following Taylor-Maclaurin expansion forexp {(} x)
for 6 — 0.

t+6
exp{—/ ||c(s,Y;<s>)||2ds}
t
t+6
=1—/ 12 (s, Ye ()] %ds
t

1 t+t 2
t5 (/ G, Yo (S))IIZdS> : (17)
13

t+6
exp {—2/ (C(s, Ye(s)), dW(S))}
t
t+48
=1 —2/ (C(s, Ye (5)), dW(s))
t

t+6
+z(/ <;(s,Y;<s)>,dW(s>>)
t

4 t+t 3
-3 (/ (¢(s, Y (5)), dW(S))) : (78)
t

2

3

for some 0 < t < §. Next, we write down Itd’s formula for
u(t+36, Ye(t +9)),

u(t+8, Y (t+98) =u(t, Y (1))

t+6 1

+/ (a,u+ (b+o0r,Vu) + 5(aaT) : Vzu) dt
tt+8

+/ (o Vu, dW (s))- (79)
t

Substituting (77), (78), and (79) in (76), we get

u(t,x) = {[212 {u(t, x) +u(t, x)

146
E[/ 2, Yes)IPde | Ye(0) = X}
t
1+8 C i
+IE|:/I (3;u+(b+a§,Vu)+§(aa ):V u>dt Y{(t):x:|
148
—2E [/ (¢, Vu)dt Yo (1) = x] + R}- (80)
1

Here R is the residual term. By repeatedly applying
Holder’s inequality, It6 isometry and Burkholder-Davis-
Gundy inequality (to bound higher moments of martingales),

one can prove that R is bounded and O (8%> We illustrate
this on some leading terms in R.

t+8 1
i.2E / (Bxu + (b+0C, Vu) + E(UO‘T) : Vzu) ds
t
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t+45
(f <:<s,Y;<s>>,dw<s>>) ‘ mz):x}
! <

1
1+ 1 2 2
<2E (/ (asu+(b+a§, Vu) + E(UUT) : Vzu) ds) ‘ Ye(t) =x s
' iv. E |:</ (s, Ye (s))szs) </ (oVu, dW(s))) ‘ Ye(t) = x:|
1 t

148 2 2 i
E (/ ({(s,Y;(s)),dW(s))) ‘ Yo =x 2 )
' 126, v o) IPs ' Ve =x

1
3 2
82u, x)CBDGE[ sup  [1£(s, Y ()] ‘ m):x}

t<s<t+§

W\-P

1 1+8 1 2 % 1
525mf BSu+(b+a{,Vu)+§(och):V2u ds | Ye() =x 2 2
! {(/ (oVu, dW(s)) ‘ Yg(t)—xj|
1438 5 %
E / R AN R ACET: !
t
! [ 155, Ye () l1*ds ‘ Y;(t):x}
3 | 2 2
<82E| sup |dsu+ (40l Vu)+ =(ool): Viu ‘ Ye() = x 1
t<s<t+6 2 +8 2 2
. E / [loVu||“ds Ye(@) =x
s t
2
E[ sup [1£Gs, Y ()12 ‘ Y;(r):x} !
t<s<t+§ 3 4 2
<O2E| sup [¢(s. YD ‘ Ye(t)=x
t<s<t+§

=

E| sup [oVul? ‘ Ye(t) =x
t<s<t+4§

148 2 1438
ii. 2E (/ (¢ (s, Ye (), dW(s))) (f (oVu, dW(s))) ’ Ye(t)=x
t t

<2E /-t+5< (5, Yr (5)), AW (5)) ! ‘ Yo (t) = : 1448 ) 146
< A &(s, Y (s)), s () =x V. 2E|:u(t, Ye (1) (/ 15 Cs, Ye (I ds) (/ (¢ (s, Y (s)), dW(s)))
t t
1

2 2

E |:(/‘t+5<(7Vu,dW(s))) ‘ Y (1) —x} ‘ Ye(t) = xi|
1 B 5
2 2 t+8
<2CpGE |:</t+8 18 Cs, Y;(S))szS> ‘ Ye () —x} <2u(t, x)E |:</; G, Ye (s))||2ds> ‘ Ye@) = x:|
0 2 JZ t+8 2 %
JE[/; loVull“ds | Y. () =x] E |:</ (¢G5, Ye (s)),dW(s))) ‘ Yo (1) = xi|
t

1 148 .
<252 CppgE /t. I£Gs, Y ()™ ds ‘ Ye(t) =x

1438
E / lo V| ds
t

3
5zﬂcBDGIE[ sup 1z (s, Ye (o)t ‘ Y;(t)=xj|

r<s<t+

Nl—

1
2

1 t+68
: <2u(t,x)82E / (s, Ye (s)[1*ds ‘ Ye(t) = x
t

2
ng:x] 1+6 3
EU 2 Gs. Y (5))1%ds ‘ Y¢<z>=x}
t

l—

1
2
<2u(t,x)531[<:[ sup  [1¢Cs, Ye()I* ' Y;(t):x]

E[ sup |\¢7Vu||2 ‘ Y[(t):)ci|7 t<s<t+§
t<s<t+§ %
4 1+t 3 E[ sup ¢ (s, Ye () ' Y;(t):x]
i 3E[u<t,yg(z>) (/ (é'(Syy{(S))ydW(S))) ‘ Y;(z>=x} r<s<i+s
t
B 3
< éu(t,x)CBDGIE </I+T e s, yg(s))nzds)z ‘ Yo () = x Taking the limit § — 0 of the dynamic programming
3 |\ lemma (76),
= 2ue.nce E_(fm (s, Ye ()P )3 ’ Y, (0) ]; ! o 2
< —u(t,x)CpG 5, Y (s s (1) =x 0= i 1e / Y d
: N tim min g8l [ s e Pas
1
4 [/ o 3 2 48
< Su(t. ¥)CppGE (/t e, Y;(s»nzds) ‘ Vet =x exp{—Z/ (;(s,Y;(s)),dW(s»}
t
1
t+4 2 — — .
gau(t x)CBDGE[/ 12(s, Yr ())1ds ‘ Y;(z):xi| ut +38, Ye (1 +8)) —ult, x) ‘ Y;(t)—X] (81)
13
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Inserting (80) to (81),

0= lim min
8—=0¢:[t,t+8]—Z

t+68
E [ f I (s, Ye (5))]1%dr
t

é[u(t, x) 4+ u(t, x)

Y (1) :x]
t+6 1
—HE[/ (8;14 +(b+0ol, Vu) + 5(cm—T) : V2u> dr
t
‘ Y;(t) =x:|
468
—2]E|:/ (o, Vu)dt ’ Yo (1) =x:|
t
+0(5%) —u(t,x)]

In the limit § — 0 and conditioning on Y, (f) = x, we
need to find a point value ¢ = ¢ (¢, x) € Z defined by

in 19 b \% ! T :
?élg { cu(t, x) + (b(t,x), Vu(t, x)) + 7 (O'O’ ) (t,x):

Vzu(t, x) — (o (t, x)¢, Vu(t,x)) + ||§||2u(t,x)} =0
= Ju(t,x) + (b(t, x), Vu(t, x))
+ % (aaT) (t,x) : V2u(, x)

+£nln{||§|| u(t,x) — (o, x)¢, Vu(t,x»} =
(82)
Under the regularity assumptions for # and ¢ made in
Theorem 1 and neglecting the trivial solution u(t, x) = 0,
we obtain the minimizer for (82) as in (22). By substituting

optimal control ¢ * in (82), we get (21), which solves for value
function u.

C Proof of Theorem 2

We use the Lagrangian multiplier method to solve (58), with
corresponding Lagrangian,

L = M;N; P>+ M{M>N, P

Cq Cy C3
IS ( R R 6TOL, |E[G(X(T))]|>

a2 (& 4 C5
2\ e \Pyvy T MM

~(1 =6 TOL [E[G(X(T)II?)., (83)

@ Springer

where A1 and A, € R are Lagrangian multipliers. Hence, we
obtain optimality conditions for (83) as follows:

L 0 NP2+ MaNoP
3M1 = 1 21V
Cy Cs
=nC | —5+—5].
? “(PM% MZM%)
oL )»2C5C2
—— =0= M|N,P = o
M, 12 M M2
—— =0= = M, P?,
IN| 1 !
L 11C3
—— =0= = M\ M>P,
A 22 1M
oL
ﬁ=0:>2M]N]P+M1M2N2
MG MCiC
-op2 M, P2’

AL Ci C  GCs
=0 — =+ =
P M T
=0TOL, |E[G(X(T)HII,
oL Cy Cs
P O C2 Iy
FYN = “(PMl +M1M2>
= (1 — 6)2TOL2 [E[G(X(T)]]?-

By solving the above equations for P, N1, No, M1, M2, A1,
and A;, we get

(c1+22 4 pcy)
~ 9TOL, [E[G (X (T’
(461 + €2 +aCy)

M = SToL E[c(xan”
v (% +2+ C3)

> 7 9TOL, [E[GX (T’

y 0 ci(ci+ %)

1 = ’
(1-6)2 (61 + 8% ﬁC3) TOL, |E [G(X(T)]|
(yC1+ 22 4 gy Cy)

My = (84)

OTOL, |E[G(X(T))]|

where constants

1 2 2 1
Cs\3 (Cr\3 Cs 3<C2 3
o = . e ’ )/: e e ’
Cy C3 Cy Cs
2C
(«*&)

b= @+y)
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By substituting optimal parameters (84) into (57), we get ~ E Estimating V7 ; and V; ; for adaptive DLMC

W = M{N; P? + M{MaN>P = O (TOL;“) : (85)
Algorithm 5: Estimating constants Vi 1 and V, 1 for
. . . . adaptive DLMC algorithm
D Estimating the bias at level ¢ for Adaptive Tnputs: PL, Np, My, Mo, (- );
DLMC form; =1,..., M do

(my),
1:P >

Generate 7z 1N ( (m1) > realization with Py -particle system

Generate realization of random variables @

Algorithm 4: Estimating E[AG,] with an antithetic and Ny, time steps using (38):

sampler form, =1,..., M, do
Inputs: ¢, My, M, ¢ (-, -); Generate realization of random variables &"2);
formy =1,..., M, do Given pfrINe ( (””)) and £ (-, -), solve decoupled
Generate realization of random variables wY”P'); MV-SDE with N, time steps using (42);
Generate pFeINe ( (m')) realization with Py-particle system Compute G ( X [rINCINL (T)) (wg’f’F}Z? 5)('"2));
and N, time steps using (38); Compute LPrINLIN. (wimPlL) 6b(mz)) using (44);
From pFeINe ( m ‘)> generate "~ 1INe=1 < (m‘)> and end
Pt (g Approximate
W ( p@) E[G (R{NNE(ry ) LPN | PN (w72))] by
fOl'm2=1,-~-,M2d0 1 M (‘PL\NLINL ) PLINLIN ( () ~(m ))
- .G (X T) ) LELINLINL (777 @l"2) ),
Generate realization of random variables &2); M Z"’?_l ¢ ™ 1Py,
Approximate

Given pFelNe ( (m‘)> and ¢ (-, ), solve decoupled
MV-SDE with N, time steps using (42);
Compute G,L, (a)i'f}‘.), J)“"”);

Var |:G ()_(cPL‘NLlNL(T)) LPLINLINL [ MPL\NL (wimPlL))] by
sample variance of
{G <X';L|NL‘NL(T)> LPLINLINL (wgn}lz g)<mz)) }Mz

Given e 1INe=1 (ml) and ¢ (-, -), solve decoupled end ma=1’

MV-SDE with Ny — l tlme steps using (42); Approximate Vi ; by sample variance of

Compute G Ly <w?£ﬁ,5,(mz)>; {E[G (J?fLINL\NL(T)> LPLINLING | PLINL ( <'"P1L)>”m] L

Given ;LP = 1IN -1 (m') ) and ¢ (-, -), solve decoupled AlpprOXMimate V2L by— PLINLIN, (m1)
L : i Loty Var [ G (X[ENINE () ) LAvN | PN (7))

My &=my=

MV-SDE with Ny — 1 tlme steps using (42);
Compute G¢IL, (w(PK')P ,5)(’"2))
2

end
end
Approximate E [Ge G- 1] by

1L M 1
i 2om=1 M Zmz 1 (Gl —

GylLy (w(m}'@) ~03(”12)>+G[]L ( () w(’"Z))
L5 T Pe
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