
This is a repository copy of A Road Description Language for the Leeds Driving Simulator
Guide (V1.0).

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/2184/

Monograph:
Gallimore, S. (1993) A Road Description Language for the Leeds Driving Simulator Guide
(V1.0). Working Paper. Institute of Transport Studies, University of Leeds , Leeds, UK.

Working Paper 389

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose Research Online

http://eprints.whiterose.ac.uk/

Institute of Transport Studies
University of Leeds

This is an ITS Working Paper produced and published by the University of
Leeds. ITS Working Papers are intended to provide information and encourage
discussion on a topic in advance of formal publication. They represent only the
views of the authors, and do not necessarily reflect the views or approval of the
sponsors.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/2184/

Published paper
Gallimore, S. (1993) A Road Description Language for the Leeds Driving
Simulator Guide (V1.0). Institute of Transport Studies, University of Leeds.
Working Paper 389

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

http://www.its.leeds.ac.uk/
http://eprints.whiterose.ac.uk/
http://www.its.leeds.ac.uk/

UNIVERSITY OF LEEDS

Institute for Transport Studies

ITS Working Paper 389 ISSN 0142-8942

January 1993

A ROAD DESCRIPTION LANGUAGE
FOR THE LEEDS DRIVING SIMULATOR
USER GUIDE (V1.0)

S Gallimore

ITS Working Papers are intended to provide information and encourage discussion on a topic in

advance of formal publication. They represent only the views of the authors, and do not

necessarily reflect the views or approval of the sponsors.

CONTENTS Page

ABSTRACT

1.INTRODUCTION 1

2.USING THE COMPILER 1

3.SIMPLE ROADS 2
3.1The main road 2
3.2The current position 2
3.3Straight 3
3.4Curves 4
3.5Branches 4
3.6White lines 5

4.MORE ROAD PRIMITIVES 6
4.1Patches 6
4.2Corners 6

5.ROAD SIGNS AND OBJECTS
5.1Road signs 7
5.2Road furniture 7

6.ROAD PATHS 8
6.1Environment stack 8
6.2Manipulating paths 8
6.3Defining network topology 9

APPENDIX A - ROAD SIGN NAMES 10

APPENDIX B - SYNTAX SUMMARY 11

ABSTRACT

GALLIMORE, S (1993). A road description language for the Leeds driving simulator user guide
(V1.0). ITS Working Paper 389. Institute for Transport Studies, University of Leeds.

A driving simulator has recently been developed at the University of Leeds. Part of this work has
been to provide a method of creating a wide variety of road networks to meet the demands of
different experiments. This paper describes a simple language that specifies road networks and their
appearance, including the definition of road markings, sign posts and roadside objects. It is
intended for use by prospective users of the simulator facility in order that they could either build
networks themselves or know what information is required for simulator staff to build a network for
them.

KEY-WORDS: Driving simulation; scene databases; road networks.

Contact: Stephen Gallimore, Institute for Transport Studies (tel: 0532-335730)
 E-Mail: stephen@psyc.leeds.ac.uk

A ROAD DESCRIPTION LANGUAGE

FOR THE LEEDS DRIVING SIMULATOR

USER GUIDE (V1.0).

1.INTRODUCTION

This document describes the language and compiler used to generate scene databases for the Leeds
Driving Simulator. Trying to build a database, by hand coding a program to generate the required
database objects, is impractical. While not impossible it would prove to be very time consuming and
 the resulting program would be very difficult to modify and reuse. The ideal tool for building road
systems would be one that allowed the user to interactively draw the road and white lines using
some graphical interface, signs and other objects being placed with a single click of the mouse.
However it was considered that this would take a large amount of time to create, so while this
remains a long term goal it was decided that a text based system would be created first. Eventually it
is expected that this will be merged with the Scene Database Preview program and gradually a
graphical interface will be substituted for the text system.

2.USING THE COMPILER

The database compiler is called cr - compile road, its use is very simple:

$ cr source_file database_file [cpp options]

The source_file contains a text description of the database to be built. The database will be created
with the filename database_file, overwriting any previous file of that name. The source file is first
passed to the C preprocessor generating a temporary file which is then passed to the actual build

program. This file is created in /tmp unless the environment variable TMPDIR is set, in which case
its contents are used as the temporary directory path name. Any command line options after the
database filename are passed to /usr/lib/cpp, allowing for instance additional include search paths to
be specified (see the cpp manual page for further details). The default road library directory is
automatically passed to cpp, this contains include files with standard definitions and pre-defined
pieces of road which may be included into your databases. The file standard.rd should be included
at the top of your files as it includes some basic definitions which are used throughout this text.

An example compilation command might look like this:

$ cr motorway.rd motorway.db -Imyroadlib

3.SIMPLE ROADS

3.1THE MAIN ROAD

A source file contains a number of definitions which consist of pieces of road. Each definition has a
name which must start with a letter and can have letters and digits after this. Both upper and lower
case letters can be used and case is significant. No two definitions can have the same name and one
of the definitions must have the name main. This will be the first definition to be translated into the

database although it does not have to be the first definition in the file. Here is an example:

#include <standard.rd>

/* A first simple road map */
main {
 straight 500.0 {}
 road1
 road1
}

road1 {
 curve left 700.0 300.0 {}
 straight 250.0 {}
}

This file defines a road network containing a straight road five hundred metres long. The straight is
followed by two copies of road1, which consists of a left hand curve with a radius of seven hundred
metres and length three hundred metres and another straight, two hundred and fifty metres long.
Definitions may be called as many times as you like, but these must not lead to direct or indirect
recursion, that is calls must not form a loop. This example also shows the use of facilities provided
by the C pre-processor, include files and C style comments are two such facilities. Finally this
example shows that all distances are measured in metres.

3.2THE CURRENT POSITION

After every piece of road has been built, the current position and direction of travel is updated to
match the end of the new road. The compiler maintains a current environment which contains the:

- width of the road;
- direction of travel, in degrees;
- position in the world;
- precision of curves.

Initially the width is set to 9.3m, a single carriageway road with 1m hard strips. The direction is set
to zero (due North), the position set to the (x,z) origin and the curve precision set to one degree. For
reasons associated with the graphics system we work with the X and Z axis, where Z takes the role
of Y in a graph. In fact the Y axis is the up/down axis, that is height, in the graphical model.
Furthermore if we look down on the world the -Z axis goes up the page, hence if we are going due
North (the default) we are going down the -Z axis. Most of the time all of this is hidden to the user,
everything is defined relative to the current position and direction. However it may be necessary to
directly set the direction and position, in this case you must be aware of how the axis work. The
curve precision determines how curved roads and white lines are turned into polygons. If the arc of
the curve is greater than the precision it is split up into polygons every precision degrees. The
default setting should cope with any curve but this may generate more polygons than really
necessary for most, this may become significant in reducing the size of large databases and in
keeping the number of polygons down to a manageable level. The following commands directly
affect the environment without building a road:

- width <width in metres>
- position X Z

 3

- direction <angle in degrees>
- turn [left|right] <angle in degrees>
- precision <angle in degrees> or prec <angle>

In all the commands that need a left or right qualifier, the first letter, that is l and r, can be used as an
abbreviation. In addition to the above there are three control flags contained in the environment and
three key words to set them, these are:

- build [on|off]
- step [on|off]
-verbose [on|off]

The build flag allows the building of graphical objects to be turned on or off. When turned off, no
objects are added to the scene database but the environment is updated as if they were. When step is
turned on only one command is interpreted at a time, currently this is of little use but will be used as
a debugging tool when the compiler is integrated with the graphical system. The build flag works in
a nested fashion, if turned off more than once it must be turned back on again the same number of
times before the building of objects resumes. When verbose mode is turned on information about
each generated road segment is printed on the console.

3.3STRAIGHT

The simplest piece of road is a straight, this has constant width and does not change the direction of
travel. The syntax for a straight is:

straight <length in metres> {}
or
str <length> {}

Normally there would be commands between the curly braces describing road furniture such as
white lines and road signs, these will be described later. This command will build a road using the
current width and road direction, the centre line of the road starts at the current position and ends
length metres away in the current road direction. An example of a straight is:

straight 250.0 {} /* A 250m straight road */

3.4CURVES

The next most basic piece of road is a constant radius curve, that is an arc of a circle. The syntax for
a curve is:

curve [left|right] <radius in metres> <length in metres> {}
or
cu [left|right] <radius> <length> {}

The length refers to the length of the centre line which is an arc of a circle of radius radius, starting
at the current position with its initial tangent being the current direction. The centre of the circle and
hence the direction the road turns is determined by the left or right qualifier. The current
environment is updated with the position and tangent at the endpoint of the centre line, see figure 1.

 Figure 1

3.5BRANCHES

Branches allow the quick construction of simple junctions by temporarily allowing construction to
take place along a path at ninety degrees to the current road direction. The syntax is as follows:

branch [left|right] { <road statements> }
or
br [left|right] { <road statements> }

The following example will make its use clear.

main {
 width 10.0 /* Major road, no hard strips */
 str 150.0 {}
 br l { /* Branch left, using the abbreviated form */
 width 7.3 /* Minor road, no hard strips */
 str 50.0 {}
 cu r 300.0 200.0 {}
 } /* End of Branch */
 str 20.0 {} /* Continuation of the original road */
 cu l 700.0 300.0 {}
}

Here we have a branch off the main road consisting of a narrower road made up of a short straight
and right bend. Any changes to the current environment are local to the branch, hence when the
statement:

str 20.0 {}

 4

 5

is translated the road width is again ten metres and the position and direction are returned to those
values before the branch, that is back to the end of the initial straight. Inside the branch the direction
is initially set at right angles to the original direction, either to the left or the right. The starting
position of the new road is at the left or right edge of the previous road, the width of that road is
used to calculate this. Branches may be nested at will to produce complex road networks. Only
ninety degree turns are created with branches, although the turn statement could be used in a branch
to alter this to help create, for example a slip road.

3.6WHITE LINES

Adding white lining to a road is done by placing pieces of lines relative to the road they are painted
on. Lines may be straight or curved, solid or dashed, the main restriction is that curved lines cannot
be placed on straight roads. There are four basic variations of lines:

solid <line type> <width> <start length> <end length>
 straight <start offset> <end offset>

solid <line type> <width> <start length> <end length>
 curve <offset>

dashed <line type> <width> <start length> <dash length> <gap length>
<number of dashes> straight <start offset> <end offset>

dashed <line type> <width> < start length> <dash length> <gap length>
<number of dashes> curve <offset>

Solid straight lines can be placed on straight and curved roads. Valid line types are FA and HA
(defined in standard.rd), giving fully and half anti-aliased lines respectively. If several lines are
going to be connected together at their ends then HA should be used, this avoids dark lines
appearing at the joins. The white line is placed relative to the centre line of the road, starting and
ending at the specified lengths along this line and the start and end points shifted tangentially from
the centre line by the start and end offset respectively. A positive offset shifts to the right of the
centre and a negative value to the left. Note that when putting a straight line on a curved road the
tangent at the end point will not be the same as the start because of the change of direction along the
curve. Also note that curved lines can not be currently placed on straight roads.

With dashed lines an end length is not directly specified, it is calculated from the other parameters.
In the case of curved dashed lines, the size of the dashes and gaps refers to the sizes they would be if
placed along the centre line. They get larger as you shift them towards the outside of the curve and
smaller when shifted towards the inside. This may seem strange but it does allow all the dashed
carriageway markings on motorways to line up at the ends, using the same size parameters. There
are two values of line type, STRT and CURVED, defined in standard.rd. Only STRT is valid for
straight lines but both are valid for curved lines. In this case the line type determines whether the
dashes are straight or curved. For most curves using straight lines is desirable, in order to keep the
number of polygons used to a minimum, this is often the case on real roads anyway. However on
radical bends, particularly in urban situations the white lines need to curve with the road.

 6

The following is an example of some white line markings:

str 150.0 {
 solid HA 0.1 0.0 150.0 str -4.8 -4.8 /* Line along the while left edge */
 solid FA 0.1 100.0 100.0 str -4.8 4.8 /* A line directly across the road */
 dashed STRAIGHT 0.2 20.0 2.5 0.5 30.0 str 0 0 /* Dashed lines along the
 centre of the road */
}

4.MORE ROAD PRIMITIVES

4.1PATCHES

A patch is a straight road which varies in width along its length, this is useful for the creation of
roads that vary in width, laybys and so on. The syntax of the statement is:

patch <length> <left width> <right width> { [road furniture] }

The centre line is the same as for a straight road, however the distances between the centre and the
edges at the end of the patch are controlled by the arguments. A new centre point and width is then
calculated for the environment. White lines are placed in the same way as for straight roads.

4.2CORNERS

There are four corner pieces available to round off junctions. The syntax of these is:

corner [left|right] <type> <radius>

There are the following definitions in standard.rd for the type argument:

- LEFT_FORWARD
- RIGHT_FORWARD
- LEFT_BACK
- RIGHT_BACK
The corners are placed on the specified edge of the road, this does not change the current
environment, nor can white lines be placed on corners at the moment.

 7

5.ROAD SIGNS

5.1SIGN POSTS

Road signs may also appear in the road furniture part of road primitives along with white lines. First
a pole is defined, then any number of signs may then be attached to the pole. The syntax is as
follows:

pole simple <type> <length> <offset> <height> <radius> { <signs> }
or
pole complex <length> <offset> <height1> <radius1> <height2> <radius2>
 { <signs> }

In the simple case type can be either SQUARE or ROUND, these are defined in standard.rd. A pole,
either a flat shaded square tube or a smooth shaded hexagonal tube, which looks round because of
the shading, is created at a position relative to the centre line of the road in the same way as white
lines. The pole's height and radius is specified as well, in the case of a square pole the radius is half
the length of the sides. The square pole is rotated to the direction of the road, taking into account the
change in direction of curves, so that the faces of the pole are aligned with the edge of the road.

A complex pole is always hexagonal and consists of two parts, of different height and radius, one
placed on top of the other with an angled sleeve joining the two parts. It is used to create lit poles
with a fat power box at the bottom with a thinner pole on top for the actual signs.

The syntax for the signs is as follows:

<Sign Name> <height> <angle>

The name of the sign is looked up in a database of signs held in the file signs.db in the same
directory as the standard header file (a list of valid road sign names is given in appendix B). If an
unknown name is given to the compiler an error message is displayed and that sign is ignored, the
compiler then continues with the next statement. The sign is placed at the specified height up the
pole and is rotated around the outside of the pole so that it would be facing a driver traveling along
in the same direction as the road is being built. It is then rotated further by angle in a clockwise
direction. An example of signposts is given on the next page:

str 50 {
 pole simple ROUND 25.0 -6.0 3.0 0.05 {
 NationalSpeedLimit 2.6 0.0
 }
 pole complex 25.0 6.0 1.0 0.06 2.0 0.04 {
 Clearway 2.6 180.0
 }
}

5.2ROAD FURNITURE

It is also possible to add other objects to the scene either on the road or by the roadside. The syntax
for this is:

 8

object <object name> <length> <offset> <angle> <height>

The object name is looked up in a database of available objects. If found the object is placed
relative to the road in the same way as white lines and sign posts and is oriented in the same way as
a road sign. Additionally it is placed at the specified height above the current road surface. An
example is:

str 30 {
 object RedRover216 15 - 1.5 0 0.005
}

It is also possible to print the exact position and orientation that an object would be placed in by
using the command:

print <identifier> <length> <offset> <angle> <height>

6.ROAD PATHS

6.1ENVIRONMENT STACK

So far we have only used the current environment and hence a single path, except in the case of a
branch where the environment is saved then restored at the end of the branch. The compiler keeps
a+ stack of environments, it is the environment at the top of this stack that is used to build roads.
There are a number of statements that allow direct manipulation of this stack:

- drop <number of items>
- copy <nth item>
- swap
- rotate

Drop removes items from the stack and copy makes a duplicate of the specified item (where 1 is the
original top of the stack) on top of the stack. Swap, swaps the top two items on the stack and rotate
turns around the top three items on the stack such that the third item becomes the top of the stack,
the top the second and the second the third.

6.2MANIPULATING PATHS

The branch statement is a shortcut for the following code:

copy 1
turn l 90.0
build off
str 5.0 /* if a ten metre wide road */
build on
/* Statements in the branch */
.
.
drop 1

 9

Directly manipulating the stack is useful for creating multi-exit pieces of road such as cross roads
and roundabouts and putting them into definitions on their own so that they can be used again and
again. Here is an example of a simple roundabout which leaves three items on the stack, one for
each exit.

roundabout {
 build off
 str 5.0 {}
 build on
 br l {
 swap
 drop 1
 cu r 20 31.415927 {}
 exit
 cu r 20 31.415927 {}
 exit
 cu r 20 31.415927 {}
 exit
 cu r 20 31.415927 {}
 str 10 {}
 }
}

exit {
 str 5 {}
 br l {
 str 10 {}
 copy 1
 }
 swap
 str 5 {}

6.3DEFINING NETWORK TOPOLOGY

As well as the graphical description of the road it is also possible to specify the topology of the road
netowrk. This creates a cyclic graph of road paths linking together nodes which are either junctions
or a road end point. For each link an ordered list of road segments is automatically generated using
information from the graphical description of the road. A path between two points is started by the
junction command:

junction <type> <start junction number> <end junction number>

A path is ended either when another junction command, branch instruction or stack operation is
encountered. Between these two points all road segments are assumed to belong to this path. Paths
can either be created in both directions along the road or only in one of the directions. This is
controlled by the type argument which take the values TWOWAY, F_ONLY and B_ONLY.
F_ONLY specifies that only the forwards path should be built, that is the one going in the direction
the graphical road is being built. B_ONLY creates only the opposite path to the direction the road is
being built.

 10

APPENDIX A

ROAD SIGN NAMES

StopCommand
OneWay
NoThroughRoad
NoEntry
NationalSpeedLimit
Clearway
AheadOnly
TurnLeft
KeepLeft
TurnLeftAhead
TurnRightAhead
NoVehicles
NoRightTurn
NoLeftTurn
GivePriority
GivewayCommand
GivewayWarning
CrossroadPriority
Crossroad
JunctionLeftPriority
JunctionRightPriority
TJunction
LFStaggeredXPriority
RFStaggeredXPriority
LFStaggeredX
RFStaggeredX
LeftMinorJunction
RightMinorJunction
StopWarning
BendToLeft
BendToRight
DoubleBendToLeft
DoubleBendToRight
DualCarriageWayEnd
TwoWayTrafficAhead
TwoWayTrafficAcross
TrafficMergesFromLeft
TrafficMergesFromRight
RoadNarrowsBothSides
RoadNarrowsOnLeft
RoadNarrowsOnRight
ChangeCarriageWay
BlueCountdown300

BlueCountdown200
BlueCountdown100
GreenCountdown300
GreenCountdown200
GreenCountdown100
RGreenCountdown300
RGreenCountdown200
RGreenCountdown100

 11

APPENDIX B

SYNTAX SUMMARY

Definition
 name { [Road Primitives] }

Road Primitives
 straight length { [Road Furniture] }
 str length { [Road Furniture] }
 curve [left | right] radius length { [Road Furniture] }
 cu [left | right] radius length { [Road Furniture] }
 branch [left | right] { [Road Primitives] }
 br [left | right] { [Road Primitives] }
 patch length left_width right_width { [Road Furniture] }
 corner [left | right] type radius
junctiontype start_junction end_junction

 width width
 position X Y
 direction angle
 turn [left | right] angle
 precision angle
 prec angle
 build [on | off]
 step [on | off]
verbose[on | off]

 drop item
 copy item
 swap

 rotate

Road Furniture

 solid type width length length straight offset offset
 solid type width length length curve offset
 dashed type width length length dashes straight offset offset
 dashed type width length length dashes curve offset

 pole simple type length offset height radius { [Signs] }
 pole complex length offset height radius height radius { [Signs] }
objectname length offset angle height
printidentifier length offset angle height

Signs

 12

 name height angle

	WP389 cover.pdf
	WP389.pdf

