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Abstract
Route choice modelling is a critical aspect of analysing urban rail transit (URT) networks and provides a foundation 
for URT planning and operation. Unlike in a free-flow road network, the consideration set for route choice 
decisions in a URT network does not depend purely on the physical connectivity of the network and decision 
makers’characteristics. Instead, it is also contingent on the train schedules. This paper delves into the evolution of 
research on route choices in URT networks, encompassing both probabilistic route choice modelling derived from 
utility maximisation theory and logit curve with physical connectivity, and retrospective route choice modelling 
based on travel time chaining along with comprehensive transport data. The former is noted for its conciseness, 
simplicity, and interpretability in real-world applications, even though the methodologies may not be cutting-edge. 
The latter incorporates dynamic temporal information to understand activities of passengers in URT networks. 
Enhancements of each genres are also examined. However, these improvements might not fully address the 
inherent limitations of models relating to a dependency on the quality of parameters, experience of experts, 
and calculation efficiency. In addition, novel research adopting contemporary data mining techniques instead of 
classical models are introduced. The historical development of research on URT network route choices underscores 
the importance of amalgamating independent information networks such as surveillance networks and social 
networks to establish a comprehensive multi-dimensional network. Such an approach integrates passenger 
attributes across networks, offering a multi-dimensional understanding of passengers’ route choice behaviours. Our 
review work aims to present not only a systematic conceptual framework for route choices in URT networks but 
also a novel path for transport researchers and practitioners to decipher the travel behaviours of passengers.
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1  Introduction
As urban rail transit (URT) systems become increasingly 
prominent within urban public transportation, especially 
in highly populated areas, their availability and quality of 
service affect both the operations of cities and activities 
of citizens. Understanding the travel behaviours of pas-
sengers provides a foundation for subsequent transport 
operations, encompassing tasks such as train schedul-
ing, network coordination, emergency responses, etc. An 
accurate and timely travel demand analysis is required to 
better support transport operations in a URT system. The 
route choice analysis of passengers is a key component 
of travel demand analysis. The restoration of accurate 
route choices and comprehension of travel patterns are 
thus important to making precise passenger flow assign-
ments, forecasting transfer volumes, distributing fares, 
and shaping future passenger service customisation. 
Therefore, the development of route choice modelling for 
route choice analysis is essential to improving the quality 
of transport operations.

In most countries, such as Australia, the United States, 
the United Kingdom, Singapore, Japan, South Korea, 
China, etc., “seamless transfer” is applied to improve pas-
sengers’ travel experience and alleviate congestion at bot-
tleneck points. This means that passengers only need to 
tap in at the origin station and tap out at the destination 
station. Hence, only the tap-in and tap-out time stamps 
and locations are recorded, and the activities between 
tap-in and tap-out remain inaccessible to researchers. 
In this context, investigating route choice behaviour in 
a URT network becomes challenging due to three main 
reasons:

 	• Increasing network complexity: By the end of 2022, 
545 cities in 78 countries or regions had introduced 
URT systems, among which 111 cities had a total 
operating distance exceeding 100 km [1]. Integrating 
individual lines into a connected and unified URT 
network may provide additional feasible routes for 
an origin-destination (OD) pair. The flexible train 
schedules further increase the difficulty of route 
choice estimation.

 	• Unobserved choice outcome: The “black-box” nature 
of route choice behaviour in a URT network means 
that in cases where multiple routes are available, the 
route choice outcome cannot be directly observed 
and instead has to be inferred based on other 
information [2].

 	• Preference heterogeneity: Route choice decision-
making is affected by various factors, the influence 
of which might vary across individuals. Neglecting 
preference heterogeneity in route choice analysis 
would lead to biased estimation and impair the 
prediction of passenger flow assignment.

This paper aims to present not only a systematic concep-
tual framework for route choices in URT networks but 
also provide a novel path based on multi-dimensional 
perspectives for transport researchers and practitioners 
to decipher the route choice behaviours of passengers. 
A systematic review of route choice modelling for a URT 
system with seamless transfer is needed as extant review 
papers on route choice analysis do not cover recent 
advances such as restoring trajectories of individual pas-
sengers from transport big data and telecommunication 
information [3–5]. By tracing the development of model-
ling route choices in a URT network, we conduct a sys-
tematic review that sheds light on the current state of 
research in this domain. Our review provides a compre-
hensive understanding of route choices in URT networks 
and outlines future research directions.

The remainder of the paper is organised as follows. 
First, the review criteria and article classification are 
explained. Second, the approaches in the aforemen-
tioned two stages are introduced. Third, recent progress 
is reviewed from the perspective of improving existing 
models. Future research directions are then envisioned 
for better understanding the route choice behaviours of 
URT passengers. Finally, conclusions are presented.

2  Classification and review method
We adopt a systematic review methodology to extract 
pertinent papers from an extensive body of work. The 
detailed procedure is illustrated in Fig.  1. Initially, we 
scrutinise classic review papers on route choice model-
ling. Adopting the snowballing approach [6], we begin 
with a tentative set of papers sourced from Google 
Scholar. Three highly cited review papers written by Bovy 
[3], Prashker & Bekhor [7], and Prato [4] are included. 
Subsequently, we adopt forward snowballing and Bool-
ean operations to refine the scope for manual filtering. In 
augmenting our data set, we incorporate the CNKI1 data 
set to capture journals and thesis-type literature from 
mainland China, where there are a number of rapidly-
developing URT systems and relative up-to-date research 
works. Notably, highly reputed transportation journals 
are included to uphold the quality of the review pro-
cess. We implement filtering criteria, focusing on titles, 
abstracts, and even full papers, to exclude articles outside 
the scope. Adhering to these criteria, a total of 90 articles 
are retained for the subsequent analysis of route choices 
in URT networks.

Following Prato [4], we introduce the development of 
route choice modelling for a URT network. The research 
methods for the route choice problem in a URT network 

1  China National Knowledge Infrastructure (CNKI) owns numerous jour-
nals, doctoral and master’s dissertations, proceedings, newspapers, year-
books, statistical yearbooks, e-books, patents, and standards for researchers 
seeking Chinese academic materials.
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have undergone two main stages over the past few 
decades, which are adopting probabilistic route choice 
modelling and retrospective route choice modelling. Prob-
abilistic route choice modelling assumes passengers have 
bounded rationality and align with the most economical 
route. Commonly adopted criteria include the shortest 
travel distance or the minimum travel time. However, 
these assumptions ignore heterogeneities in the percep-
tion of the route cost among independent passengers, 

and operational constraints such as train schedules, 
which might generate bias. Moreover, these indicators 
change dynamically through passenger–passenger and 
passenger–environment interactions. Retrospective 
route choice modelling dissects the whole travel proce-
dure of a passenger into plenty of actons, such as tapping 
in at the fare gate, walking to the platform and boarding 
on the train. Each action corresponds to a time segment. 
Some time segments can be determined from automated 

Fig. 1  Procedure of literature selection
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fare collection (AFC) and automatic train supervision 
(ATS) data. Consequently, the trajectories of individual 
passengers can be deduced in a retrospective logic.

Both the probabilistic route choice modelling approach 
frequently adopted in route choice research and the ret-
rospective route choice modelling are illustrated. The 
pros and cons of each approach are discussed, provid-
ing guidance for researchers and practitioners to select 
appropriate approaches that in line with the characteris-
tics of the urban rail transit network and data availability. 
Furthermore, our review work also depicts an analysis 
framework with multi-dimensional network that incor-
porates the physical topology of the URT network, train 
schedules, surveillance video at stations and in trains, 
telecommunication data of passengers, and social rela-
tionships among passengers. It provides a novel path 
for further research on route choices in URT networks 
as well as for transport researchers and practitioners to 
decipher the travel behaviours of passengers. We believe 

our work will inspire transportation researchers and 
agencies working on route choice estimation for URT 
networks.

3  Probabilistic modelling of route choices in a URT 
network
Research on route choice analysis in the transport area 
can be traced back to an economic choice theory referred 
to as Manski’s paradigm [8], which describes the prob-
ability of an actor i choosing alternative r from consider-
ation set CSi . In the transport research area, this theory 
is expressed as

	
pi (r|USi) =

∑

CSi∈PSi

pi (r|CSi) p (CSi|USi) , � (1)

where pi (r|USi)  is the probability that passenger i 
chooses route r from the universal route choice set USi  
from all alternatives available to i; pi (r|CSi)  is the con-
ditional probability that passenger i chooses route r from 
his/her consideration route choice set CSi , which is a 
subset of USi ; and p (CSi|USi) is the probability that 
CSi  is the consideration set of passenger i based on USi

. Manski’s paradigm emphasises the generation of finite 
feasible routes to form consideration choice set CSi and 
the determination of the probability of each feasible route 
within the consideration set CSi .

Route choice modelling is thus decomposed into two 
conceptual stages, namely feasible route choice set gen-
eration and probability determination for each feasible 
route in the consideration set. Generating a feasible route 
choice set CSi  involves a generalised cost formulation 
and feasible route filtering. The feasible route choice set 
is assumed to be generic for all passengers to reduce 
the complexity of calculation. The probability of each 
feasible route pi (r|USi)  is then determined adopting 
a logit-based model. This process makes up a complete 
probabilistic route choice modelling framework for the 
URT network (Fig. 2).

3.1  Generalised cost formulation
In transport economics, the generalised cost is the 
weighted sum of the monetary cost and non-monetary 
cost of a journey [9]. Assuming all passengers are ratio-
nal, they tend to minimise their moving effort. The gen-
eralised cost represents this effort incurred from one 
location to another along a specific route. The generalised 
cost is usually composed of components that reflect the 
level of service, for example, monetary cost, travel time, 
number of transfers, and crowding level. Given that the 
monetary cost remains consistent across different routes 
for the same OD pair in the URT system, it is excluded 
from the generalised cost formulation. Travel time can be 
further broken down into in-vehicle time, walking time, Fig. 2  Framework of probabilistic route choice modelling
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and waiting times at origin and transfer stations [10–12]. 
Psychological experiments have revealed that passen-
gers are more sensitive to time spent outside vehicles 
[13]. Amplification factors have been widely introduced 
in calculating the perceived transfer time to transform 
the negative feelings of passengers into time elements. 
The number of transfers during a journey has also been 
shown to negatively affect the route choices of passengers 
[14, 15]. Furthermore, the role of latent factors in route 
choice behaviour is also increasingly recognised. For 
instance, the perceptions of crowding level might affect 
the route choice [16]. As the travel demand increases, 
passengers in URT networks confront crowding disutil-
ity, especially in megacities. The level of crowding both 
on the platform and in the train might result in subjective 
or passive alterations in the route choices of passengers. 
Shimamoto et al. [17] introduced boarding resistance 
to the generalised cost formulation to account for the 
impact of crowding. In addition, passengers’ trip, socio-
economic and demographic characteristics, such as the 
travel purpose and income level, have also been included 
in the generalised cost formulation [18, 19].

3.2  Generation of a set of feasible route choices
The generation of a choice set is a process of generating 
alternatives for each decision maker, which could be an 
individual or a group of homogeneous passengers. Only a 
subset of the universal set is accessible in real situations. 
Moreover, constraints such as physical connectivity and 
dynamic train schedules narrow the set of passengers’ 
options.

The size of the feasible route choice set affects the per-
formance of route choice estimation [3]. In the case of a 
URT network, the generation of a feasible route choice 
set can be based on different methods, among which the 
shortest-path method is widely used. However, a valida-
tion experiment revealed that passengers did not always 
prefer the shortest path and detoured by approximately 
13% for convenience [20]. To relax this rigorous assump-
tion, the K shortest path method has been adopted to 
narrow the route choice set on account of its simplic-
ity and acceptable precision, though it has also been 
criticised for purely relying on travel distance [21, 22]. 
Modified route searching methods based on additional 
filtering criteria such as time-saving, habit and level of 
service have been proposed to mitigate the sole-criterion 
problem [23, 24]. Other studies apply travel cost thresh-
olds on top of the narrowed-down choice set to further 
refine the composition of the feasible route choice set 
[25–27]. Both absolute threshold and relative thresh-
old are commonly used route filtering indicators that 
are determined through on-site investigation [28, 29]. 
Moreover, the availability of train service ought to be 

considered as a new constraint for the generation of a 
feasible route choice set [30].

3.3  Determination of the route choice probability
The determination of the route choice probability in a 
URT network primarily adopts logit models or probit 
models. Among logit curves, the multinomial logit model 
is the most well-known owing to its simple and operable 
characteristics. Nonetheless, the multinomial logit model 
neglects the issue of overlapping that arises for the route 
choice problem. Modified methods including the C-logit 
model and path size logit model have been shown to effi-
ciently overcome the overlapping issue. Detailed expres-
sions and performance comparisons of these models 
have been presented [7, 24, 31]. In analogy, probit models 
are also efficient in solving the route overlapping problem 
via introducing multivariate distribution [32, 33].

The above research on route choice analysis in a URT 
network has shown the good performance achieved in 
estimating the route choices of individual passengers. 
However, the trade-off between the computational effi-
ciency and accuracy in practice ought to be carefully 
measured. A route probability determination method 
based on normal distribution is widely adopted in prac-
tical application [34]. The specific utility function of a 
feasible route, which is related to the generalised cost 
function, is calculated. The generalised travel cost dif-
ference between the shortest route and a feasible route 
from an origin to a destination is then obtained. The 
standard deviation of the normal distribution is consid-
ered a constant value for all OD pairs, derived from travel 
surveys of URT passengers. The proportion coefficient is 
also obtained in a similar way. Passengers wish to arrive 
at their destination with less travel time and travel cost 
to minimise their negative utilities. A larger utility value 
corresponds to a greater possibility of selection.

3.4  Limitations in probabilistic route choice modelling
Probabilistic route choice modelling does not perfectly 
adapt to the schedule-based behaviour of the URT sys-
tem [35]. Taking the feasible route choice set genera-
tion as an example, diverse train operation schedules are 
released for a variety of passengers, which increases the 
complexity of generating a feasible route choice set. In 
addition, probabilistic route choice modelling faces chal-
lenges in accurately deducing route choices for OD pairs 
with minor passenger flow and abnormal travel, such as 
travelling backwards, group travelling, and an unreason-
ably long travel time. For the former problem, the route 
choice estimation for OD pairs with minor travel demand 
reveals a strong individual preference, which introduces 
huge uncertainty to the probabilistic route choice model-
ling. For the latter problem, improvements of the proba-
bilistic route choice modelling method are one sided and 
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locally effective. On the one hand, establishing compre-
hensive adapted probabilistic route choice modelling that 
considers all related attributes seems impossible. On the 
other hand, the reliability of probabilistic route choice 
modelling is contingent on the quality of prior knowl-
edge. However, the nature and extent of abnormalities 
in travel behaviour can vary across different scenarios. 
Consequently, the reproducibility and transferability 
of probabilistic route choice modelling is the subject of 
controversy.

In view of the above inherent defects of probabilis-
tic route choice modelling, a new modelling framework 
from the perspective of the individual passenger that 
considers both personal characteristics and a dynamic 
network service without reliance on expert experience is 
required for research on refined route choice deduction 
under diverse scenarios.

4  Retrospective route choice modelling for a URT 
network
In contrast to a flexible road traffic service, passengers 
in a URT network access the transportation service by 
adhering to train running timetables. Thus, the route 
choice of a passenger within the URT network is subject 
to not only the physical network topology but also the 
train operation information network, especially during 
peak hours, which may be a more important issue [36]. 
Estimating the train choice of the passenger is the key to 
analysing passenger flows on a schedule-based rail transit 
network for the following three reasons.

(1)	As the premise for subsequent refined passenger flow 
analysis, the route choice of a passenger is essentially 
a sequence of train choices and hence requires the 
inference of the choice for each sequential train.

(2)	The estimation of train choices can offer useful 
insights regarding individual passengers’ spatial-
temporal status and behavioural explanations. For 
example, probabilistic route choice modelling cannot 
explain the travel behaviour of a failure to board due 
to overcrowding especially during peak hours.

(3)	A better understanding of passengers’ train choices 
can be beneficial to the assessment and enhancement 
of URT services. For instance, rail transit agencies 
can collect the responses of passengers and compare 
the train selection before and after improvements to 
provide adaptive timetables [37].

The probabilistic route choice modelling method faces 
challenges in estimating passenger route choices under 
dynamic train operation constraints. These challenges 
include difficulty in generating a feasible route choice 
set that considers all possible train itineraries, handling 
increased uncertainty during a journey, dealing with 

increased computational complexity in determining 
train selection probability, and making complex validity 
judgments for feasible choice sets and probabilities of 
each feasible alternative. To overcome these difficulties 
and cater to booming big data technology, retrospective 
route choice modelling based on the travel time chaining 
method and transport big data has been established for 
train choice deduction and route choice estimation.

4.1  Retrospective logic based on the travel time chaining 
method
The proficient use of AFC data [38] has made spatial 
and temporal information at the origin and destination 
available. The total travel time of the individual passen-
ger is made up of deterministic terms that are the same 
for all individuals and variable terms that need to be 
studied intensively. The travel time chain of each pas-
senger is decomposed into time segments via in-station 
activities (Fig.  3), including walking to the platform at 
the origin station, waiting for trains on platforms, trav-
eling on trains, walking and waiting at transfer stations, 
and walking out of the destination station from the plat-
form. Among these segments, the travel time on train 
is the deterministic term. An accurate value is obtained 
from train running timetables once the train selection of 
passengers is available. A train choice inference method 
based on AFC data and the transfer network has been 
proposed using the travel time chain [39]. A set of routes 
were generated referring to two assumptions about the 
travel preferences of passengers, namely (1) the minimum 
waiting time at the origin and lost time at the destina-
tion and (2) the minimum frequency of transfer. Differ-
ent routes that satisfy these two assumptions with the 
same transfer times are assigned equal probabilities. The 
effects of the waiting and walking times at different trans-
fer stations have not been discussed in depth. According 
to the logic of travel time chaining [40], Bayesian proba-
bilistic method was introduced for the calculation of the 
probability of candidate train selections on routes with-
out transfer [41]. On the basis of that study, methods of 
estimating the egress and access time were improved and 
the probability of a train choice on routes with one trans-
fer was confirmed [42]. Similar research has been con-
ducted adopting Bayesian approach [43–45]. Sometimes, 
trains do not strictly stick to running schedules, and 
transport studies have introduced ATS data to account 
for feasible route filtering and route choice probability 
calibration [46]. ATS data store abundant and latest train 
operation information that is used in retrospective route 
choice modelling. In accordance with the passengers’ 
behaviour of not hesitating at the destination station, the 
travel trajectory of an individual passenger can be back-
tracked from the destination step by step. The egress time 
can be estimated from the walking speed and distance, 
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which are known values obtained from a walking speed 
survey and the layout information of each station. The 
last boarding train can then be estimated by comparing 
the estimated arrival time of the individual passenger 
and train arrival time in the ATS data. Once the train 
is confirmed, the in-vehicle time can be extracted from 
train running records of the ATS data. The behaviour of 
the individual passenger to walk consistently supports 
the estimation of the walking time at the transfer and 
origin stations. For travel without transfer, the waiting 
time at the origin station can be directly acquired. How-
ever, for journeys involving transfers, the waiting time at 
the transfer station is assumed to be identical to that of 
passengers entering the station without any transfer. All 
variable terms are transformed into deterministic terms 
reasonably and multi-source data are fully mined, inte-
grated, and utilised.

The complete journey of an individual passenger can be 
clearly displayed by a spatial temporal graph (Fig. 4). In 
addition to the feasible route filtering via ATS data, the 
probability of each candidate route is calculated clearly 
according to the determination of the success to board, 
which distinguishes the probabilities of feasible routes 
with the same numbers of transfers. Considering unfore-
seen operational events such as a delay or malfunction, 
a retrospective route choice modelling method without a 
train running timetable has been generated by inferring 
train arrival times from passenger volume spikes at exit 
gates [47].

4.2  Retrospective logic based on the travel time chaining 
method and additional constraints
Building upon the work reviewed in Sect. 4.1, given the 
substantial volume of daily AFC data, the array of feasible 
train combination choices is extensive, which increases 
the redundancy of restoring a complete trajectory of 
passengers. To improve the efficiency of generating fea-
sible train combinations without discarding the spatial 
and temporal details of transport big data, travel time 
thresholds are determined for each OD pair in different 
time spans based on a feasible route set and all feasible 
train combinations from ATS data in advance [48]. The 
number of transfers, walking features, and train num-
bers serve as additional constraints for the restoration of 
more accurate trajectories. Case studies indicate that 95% 
of route choices can be accurately estimated in common 
situations. Consequently, the integration of additional 
data sources as supplementary constraints aids transport 
researchers and agencies to gain a profound understand-
ing of passengers’ route choice behaviours.

4.3  Limitations of retrospective route choice modelling
In contrast to probabilistic route choice modelling, ret-
rospective route choice modelling incorporates dynamic 
train running information and thus better matches URT 
operation and suits big data mining. Nonetheless, ret-
rospective route choice modelling must obey rigorous 
assumptions, such as the walking consistency of the same 
passenger, the different waiting times of different passen-
gers at the same location, no hesitation after alighting, 
and the passenger boarding on the first arriving train. 

Fig. 3  Retrospective logic based on travel time chaining
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Although trajectory backtracking at the individual level 
retains as much characteristic information as possible 
in contrast with probabilistic route choice modelling, 
some important decisive attributes are still missed, which 
might result in erroneous outcomes. For instance, some 
passengers might stay within stations for leisure purposes 
if there are enticing stores such as grocery stores and 
restaurants within toll zones [49]. These travel records 
are marked as abnormal in both probabilistic and retro-
spective route choice modelling, yet they are meaningful 
especially to future transit-oriented development. Addi-
tional information ought to be incorporated for compre-
hensive route choice and travel behaviour analysis.

5  Recent progress in route choice modelling for a 
URT network
In real URT operation, route choice methods should sat-
isfy benchmarks of operability and accuracy. From the 
perspective of operability, as probabilistic route choice 
modelling has the prominent advantage of easy opera-
tion with acceptable accuracy, it dominates route choice 
deduction for URT networks in most cities. Retrospective 
route choice modelling preserves ample features of travel 
records, which improves the accuracy of route choice 
deduction. However, it increases the computational com-
plexity and processing time while retaining features of 
data. To avoid redundancy and take advantages of the 

two methods, retrospective logic is retained as an aux-
iliary part of probabilistic route choice modelling. From 
the perspective of accuracy, the calibration and valida-
tion are meaningful processes by which to maintain the 
robustness of models. Calibration and validation undergo 
the upgrade of data collection from limited-scale manual 
investigation to abundant spatiotemporal transport big 
data, which enables rolling calibration and validation 
with a data-driven approach, and thus strengthens the 
robustness of route choice deduction.

According to the pros and cons of the above two exist-
ing methods, route choice modelling can be enhanced by 
improving present route choice models and incorporat-
ing additional information networks for comprehensive 
route choice analysis.

5.1  Improvement of existing models
Calibration and validation are main measures used in 
qualifying the feasibility of existing models. The for-
mer involves statistical or heuristic method to endow 
parameters of models with appropriate values. The lat-
ter implements models into scenarios with different 
locales or time spans to test the adaptability of models. 
The performance of models relies heavily on the quality 
of parameter calibration and model validation. Given that 
probabilistic route choice modelling dominates main-
stream research in route choice estimation, this paper 

Fig. 4  Illustration of the process of train choice deduction
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focuses on the calibration and validation of these models 
as the primary means of improving existing models. In 
the meantime, improvements to the retrospective route 
choice modelling are considered as a secondary aspect.

The overarching goal of model calibration and valida-
tion is to ensure the reasonableness of the model and the 
reproducibility of currently observed travel patterns. The 
integrity of influencing attributes, the quality of param-
eter calibration, and the performance validation of the 
probabilistic formula are the three decisive criteria used 
in measuring the overall performance of probabilistic 
route choice modelling.

Section  3.1 partially discussed the incorporation of 
attributes. However, researchers adopt the number of 
transfers to measure the disutility of transfer, which 
assumes all transfers during a journey have an equally 
negative impact on the passenger. Some researchers 
debate the applicability of this assumption, and inter-
change-oriented research has thus been conducted to 
analyse the effects of the interchange environment and 
order of interchange on passengers’ route choices [50]. In 
addition, guidance information is likely to affect the route 
choice of an individual passenger. Passengers who are not 
familiar with a URT network choose the visually short-
est path. In contrast to probabilistic route choice model-
ling based on the minimum travel cost, the deviation of 
a map from the real network topology leads to different 
route probabilities. Variables related to visual illusion on 
a network topology have been introduced to enrich pre-
vious probabilistic route choice models [51]. Distortions 
between a map and network topology have been shown 
to affect the decisions of passengers [52]. Analyses on 
other specific characteristics, including historical expe-
rience, information guidance, and travelling backwards, 
also have been presented [53–55].

In parameter calibration, adopting an appropriate 
methodology alongside transportation big data facilitates 
a timely update to explore the most suitable parameters 
at the present moment [56–59]. As influencing factors 
are dynamic, calibration ought to be conducted in a roll-
ing manner to ensure the ongoing robustness of exist-
ing models. AFC data contain rich spatial and temporal 
travel information, which is widely used in parameter 
calibration of the probabilistic model and enriching the 
route choice set. A genetic-algorithm-based calibra-
tion method with nonparametric statistics techniques 
has been proposed to cyclically calibrate parameters 
[60]. Analogously, a data-driven automated calibration 
method based on the particle swarm algorithm and smart 
card data has been established [56]. Researchers have ini-
tially focused on improving the parameter calibration of 
models [61, 62]. The important role of feasible choice set 
generation has been neglected, and route omissions also 
have an impressive negative impact on the precision of 

probabilistic route choice modelling. The Rodriguez-Laio 
clustering method has been introduced to calibrate the 
feasible route choice set. On the basis of travel time clus-
ters, new routes have been discovered through the auto-
mated update of the route choice set [63].

For retrospective route choice modelling, a synchro-
nous clustering algorithm has been applied to AFC data 
trimmed by the train operation plan to reveal the travel 
behaviours of passengers [64]. Compared with the results 
of probabilistic route choice modelling, the results of the 
clustering method reveal that the probability of a feasi-
ble route varies across different periods of the day (i.e., 
morning-peak, evening-peak, and off-peak periods). 
From the perspective of passengers, the perception of 
crowding affects the train choice and route choice sub-
jectively. The perceived crowding disutility generates an 
additional cost in the utility function. In addition, the 
trainload constraint results in passengers unwillingly 
remaining on a platform, which introduces uncertainty in 
route choice deduction. Past retrospective route choice 
research defaults to a URT system under normal travel 
demand, yet during peak hours, it can be impossible 
to board the first arriving train owing to the imbalance 
between the insufficient capacity and high travel demand. 
Hence, the estimation of denied boarding is crucial in 
modelling the real operational situation.

The fail-to-board sector has been explicitly modelled 
for the overcrowding scenario during peak hours [65]. 
Analogously, considering the trainload constraint, a 
left-behind model based on classical maximum likeli-
hood calibration has been proposed [66] and added to 
retrospective route choice modelling [67]. Observations 
of denied boarding are required for calibrating the left-
behind probability. To avoid the high cost of observa-
tions, a data-driven approach with the generalised EM 
algorithm has been developed for solving the mixture 
distribution framework [68]. In addition, simulation-
based optimisations are effective for parameter calibra-
tion in route choice deduction [69, 70]. For a large and 
complex network, the simulation framework is adept at 
recognising rapid changes in the physical topology and 
the dynamic preferences of passengers.

Few studies have addressed the validation process in 
transport research. As conducting experiments in trans-
port research are costly, the introduction of observation 
data is a popular approach for model validation. A review 
[71] of 226 transport research articles on discrete choice 
modelling between 2014 and 2018 showed that an over-
reliance on goodness-of-fit measures rather than valida-
tion performance is unwise. Even though models show 
a high fitness in statistical examination, they might be 
unpersuasive in terms of guiding policy in real applica-
tion. Only 18% papers incorporated a validation process, 
and most of these processes were internal validations 
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owing to the limited observation data available. Trans-
portation researchers and agencies should adopt valida-
tion processes to ensure the effectiveness of their models.

5.2  New data sources
The calibration and validation of existing models rely 
heavily on the quality and quantity of observation data. 
Inspired by the application of AFC and ATS data, the 
accuracy of route choice modelling can be improved 
using appropriate models and abundant transport data. 
Researchers should thus broaden their horizons beyond 
the rail transit network and the model itself.

Currently, additional networks, such as surveillance 
and telecommunication networks, are being explored 
in route choice analysis. Setting Wi-Fi collectors at sta-
tions enables the frequent capture of information on the 
interaction between the Wi-Fi base station and individ-
ual passengers. The intermediate locations of passengers 
are likely to be inferred from the latitude and longitude 
of a base station. This technology tends to be extended 
to analyse the waiting time and transfer time at stations, 
revealing the microscopic trajectory within the station 
and the macroscopic trajectory within the URT network 
[72, 73]. Addressing incompleteness, the overlapping 
and redundancy problems of raw Wi-Fi data have been 
explored [74, 75], providing a premise for using Wi-Fi 
data in travel behaviour analysis. However, information 
on passengers who have turned off the Wi-Fi function of 
their devices is not available. As an accompanying device, 
the cell phone is adept at tracking human movement by 
generating dense and sequential spatiotemporal data 
for the travel trajectory restoration of individual pas-
sengers. Comparing with a manual survey that includes 
daily and weekly travel behaviours, cell phone data tends 
to fill gaps in research on monthly and seasonal regular-
ity and irregularity in human travel behaviour. In gen-
eral, the conceptual theory of trajectory reconstruction 
via cell phone data is simple whereas in real application, 
noise data cleaning encounters technical barriers, includ-
ing data redundancy, data error, and critical data loss. 
Researchers attempt to extract passengers’ trajectories 
from subway base station cell phone data within a URT 
system and further improve the accuracy of trajectory 
by introducing ground base station cell phone data when 
encountering data omissions. There are other relevant 
areas of research on trajectory reconstruction in URT 
networks [76–79]. Furthermore, in the transportation 
research area, video data can be applied for the determi-
nation of passenger flow statuses and the early warning of 
massive passenger flows [80–82]. High-definition camera 
images are applied for coarse passenger flow detection in 
collaboration with Wi-Fi probe data for passenger flow 
forecasting adopting a convolutional neural network [83]. 
However, matching the same individual accurately across 

different surveillance cameras is a technical bottleneck in 
backtracking route choices. Current person re-ID meth-
ods generate multiple top candidates whereas matching 
an individual passenger across multiple cameras requires 
the identification of the best-fit candidate, which places 
higher requirements on the accuracy of the matching 
algorithm [84]. In addition, researchers integrate Global 
Positioning System (GPS) data and survey data for trajec-
tory and time matching rather than utility maximisation 
[85]. Integrating GPS data as a reference for trajectory 
restoration has been confirmed to provide better perfor-
mance than using purely cell phone data [86]. There is no 
doubt that integrating multi-source data increases the 
performance of route choice deduction, but the technical 
deficiency of data fusion hinders the progress of research. 
Recently, advanced data integration techniques such as 
those of the Internet of Things (IoT) and blockchains 
have shown promise in overcoming data barriers and 
unleashing the potential of data integration. Data integra-
tion heralds a new era for URT route choice analysis.

5.3  Research gap in recent progress in route choice 
modelling
According to the above review of recent progress in URT 
route choice modelling, processes of calibration and vali-
dation are seriously underestimated. Although research 
on model calibration has attracted the attention of trans-
port researchers in recent years, the contributions are 
scattered and insufficiently convincing. The problem 
of data sparsity motivates researchers to broaden their 
horizons and use different data sources. With the devel-
opment of communication technology, advanced infor-
mation such as Wi-Fi data, cell phone data, and video 
data has proven effective in addressing the black-box 
problem and enhancing refined route choice analysis of 
a URT network. As each data source has pros and cons, 
integrating multiple data sources tends to provide bet-
ter performance in route choice deduction. Breaking 
the barriers among data sources deserves specific atten-
tion. Furthermore, integrating data sources will help 
transportation researchers and practitioners to mine 
the route choice behaviours of passengers from a multi-
dimensional perspective. For example, presently avail-
able supportive data do not reveal whether the comfort 
consideration or the perceived travel time is the more 
important indicator of the route choice [87]. Additional 
networks such as social networks, complete information 
and communication technology networks, and surveil-
lance networks tend to reveal the comprehensive route 
choice behaviours of passengers.
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6  Future prospects of route choice modelling for a 
URT network
The development from probabilistic route choice mod-
elling to retrospective route choice modelling reveals 
the importance of incorporating multi-dimensional net-
works. In probabilistic route choice modelling, the route 
choice analysis mainly relies on the physical topology 
of the URT network along with the prior knowledge of 
individual characteristics obtained from on-site investi-
gations or AFC data. In retrospective route choice mod-
elling, the train running network provides abundant 
spatial and temporal information of trains within the 
overall URT network, which indirectly narrows the set 
of feasible route choices and reveals hidden travel behav-
iours of passengers.

Moreover, attempts at integrating video data from sur-
veillance networks or cell phone data, Wi-Fi probe data, 
or Bluetooth data that belong to the information and 
communication technology network contribute to the 
mining of the latent attributes of route choice. There-
fore, discovering related information networks, integrat-
ing these isolated networks into a multi-dimensional 
network, and interpreting the activity of an individual 
passenger will help researchers comprehend the pas-
senger’s route choice and make precise deductions. Fig-
ure  5 presents two scenarios of gradually incorporating 
additional information networks. Scenario 1 shows that 
the number of possible routes reduces with the enrich-
ment of data sources. Sometimes, additional information 
networks not only narrow the set of possible routes but 
also reveal omitted feasible routes. For example, the cell 
phone data presents offset positions in Scenario 2. To 
further confirm whether the cell phone records are effec-
tive, the social network and point of interest (POI) assist 
researchers to understand such “abnormal choices”. In an 
ideal situation, all travel is reasonable under abundant 
information, and the tendencies of passengers are infer-
able without the limitations of scale and time span.

Last but not least, recent research has presented the 
merging of graph theory with machine learning or deep 
learning methods as a possible solution to URT route 
choice problems. A knowledge graph (KG) provides an 
integration platform for multi-source information net-
works and is adept at storing relations and searching for 
indirect relations between different databases. Normally, 
the graph convolutional network of the deep learning 
method is applied in extracting and learning features of a 
knowledge graph, with the network adapting to synchro-
nously reveal the attributes of route choices via a data-
driven approach. Furthermore, this framework can be 
applied to mobility prediction [88], short-term passenger 
flow estimation [89, 90], and emergency prediction [91] 
in a URT network.

7  Summary
This paper reviewed and discussed progress and pros-
pects in the research area of URT route choice modelling.

The developments of probabilistic route choice model-
ling were introduced and discussed. Two critical stages 
of probabilistic route choice modelling, namely feasible 
route choice set generation and probability determina-
tion in the URT network, were interpreted in detail. The 
feasibility of a route relies on not only the connectivity 
of physical routes but also the availability of trains. Ret-
rospective route choice modelling based on travel time 
chaining was then discussed for the trajectory restora-
tion of an individual passenger. The route choice problem 
transforms into a series of train selections adopting AFC 
data and ATS data.

Recent progress in route choice modelling was reviewed 
from two perspectives, namely the improvement of exist-
ing models via rolling calibration and validation and the 
incorporation of data sources. The review of recent prog-
ress highlighted shortcomings. First, although research 
on calibration has drawn the attention of researchers in 
recent years, most researchers focused only on a part 
of the modelling framework, such as the calibration of 
parameters or distribution formats in the probability 
deterministic procedure. The calibration of feasible route 
choices, which greatly affects the accuracy of results, 
has been seriously undervalued. Second, the connec-
tion between calibration and validation has been over-
looked. Validation plays an important role in ensuring 
the robustness of models yet few studies have empha-
sised the importance of validation. The development 
of data science is making possible data-driven rolling 
calibration and validation that improves the accuracy 
and extends the lifecycle of route choice models. Third, 
advanced communication and information technology 
enable refined route choice deduction without additional 
expenditure for specific transport research. The incor-
poration of these technologies is capable of compensat-
ing the limitation of AFC data by providing intermediate 
information between origins and destinations. However, 
technical barriers of data integration have not yet been 
overcome.

Inspired by the developments of two genres of route 
choice modelling and recent progress, integrating data 
sources to construct a multi-dimensional network is 
expected to reveal the behaviours of individual passen-
gers thoroughly. The latest research introduces POI infor-
mation from the field of sociology and achieves better 
performance into travel behaviour analysis. We believe 
with the integration of interdisciplinary information 
networks, all travel by passengers will be reasonable and 
inferable, which will enable refined transport operations.
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