
This is a repository copy of A synthetic dataset for semantic segmentation of waterbodies 
in out-of-distribution situations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/218393/

Version: Published Version

Article:

Ioannou, E. orcid.org/0000-0003-3892-2492, Thalatam, S. and Georgescu, S. (2024) A 
synthetic dataset for semantic segmentation of waterbodies in out-of-distribution situations.
Scientific Data, 11 (1). 1114. ISSN 2052-4463 

https://doi.org/10.1038/s41597-024-03929-2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1Scientific Data |         (2024) 11:1114  | https://doi.org/10.1038/s41597-024-03929-2

www.nature.com/scientificdata

a Synthetic Dataset for Semantic 
Segmentation of Waterbodies in 
Out-of-Distribution Situations
Eleftherios Ioannou  1,2 ✉, Sainath thalatam1 & Serban Georgescu1

In the past decade, substantial global efforts have been devoted to the development of reliable and 
efficient solutions for early flood warning and monitoring. One of the most common strategies for 
tackling this challenge involves the application of computer vision techniques to images obtained 
from the numerous surveillance cameras present in urban settings today. While there are various 
datasets available for training and testing these techniques, none of them specifically addresses the 
issue of out-of-distribution (OoD) behavior. This issue becomes particularly critical when evaluating the 
reliability of these methods under challenging environmental conditions. Our work stands as the first 
attempt to bridge this gap by introducing a new, highly controlled synthetic dataset that encompasses 
the essential attributes required for analyzing OoD behavior. The very high correlation between the 
accuracy of artificial intelligence (AI) models trained on our synthetic dataset and models trained on 
real-world data proves our dataset’s ability to predict real-world OoD behavior reliably.

Background & Summary
In light of growing environmental concerns in recent years and the pressing need to avert environmental dis-
asters, the field of vision-based semantic segmentation for waterbodies has gained increasing importance. This 
task aims to identify water in images and plays a pivotal role in various applications such as flood mitigation, 
aquatic ecosystem monitoring, urban planning, and resource management. However, despite the progress in 
deep learning and scene understanding, semantic segmentation models face notable challenges in accurately 
identifying and segmenting water due to its inherent properties like reflectivity, roughness, color, waviness and 
depth, compounded by environmental factors like lighting and fogginess.

Except for the well-known and widely used large-scale annotated datasets1–5 that allow for the design and 
development of computer vision applications, it is only recently that efforts have been made to collect or cap-
ture images that include water or flood-related scenes. Sazara et al.6 attempt to both classify areas as flooded or 
non-flooded using an image classifier and segment flooded areas using superpixel-based methods and Fully 
Convolutional Neural Networks. As part of their work, they generate a small dataset of 253 manually annotated 
flood images. Similarly, Sarp et al.7 propose a system for detecting and segmenting floodwater if present in an 
image and release a dataset of 441 annotated roadway flood images. The more recent work of Pally et al.8 lev-
erages data from multiple sources such as social media platforms, the Department of Transportation (DOT), 
the US Geological Survey (USGS), and online search engines to build a dataset of more than 9000 images with 
annotations of multiple object categories. The ATLANTIS dataset9 contains 5,195 pixel-wise annotated images 
including 56 labels of different waterbodies and water-related objects. This has been the most comprehensive 
attempt to create a suitable dataset for the task of semantic segmentation of waterbodies. Table 1 provides an 
overview of the datasets that contain water or flood-related images, that make segmentation of waterbodies and 
flood-related research plausible.

Existing datasets are helpful for research but fall short in addressing out-of-distribution (OoD) cases crucial 
for safety-related applications such as flood early warning systems. Most available datasets focus on ‘normal’ con-
ditions, thereby limiting the assessment of model performance in critical scenarios like severe weather conditions. 
No dataset contains annotations explicitly designed to capture the particular attributes of the water (e.g., reflectiv-
ity, color, level) or the surrounding environment (e.g., light intensity, fog density). Such information could provide 
immense insights into identifying the failure cases of the computer vision models and allow for their improvement.

1fujitsu Research of europe, Slough, United Kingdom. 2University of Sheffield, Sheffield, United Kingdom. ✉e-mail: 
eioannou06@gmail.com

Data DEScrIptOr

OpEN

https://doi.org/10.1038/s41597-024-03929-2
http://orcid.org/0000-0003-3892-2492
mailto:eioannou06@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-024-03929-2&domain=pdf


2Scientific Data |         (2024) 11:1114  | https://doi.org/10.1038/s41597-024-03929-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

In this paper, we present for the first time a large-scale highly controlled binary-labeled dataset that can be 
used to better understand and hopefully improve the OoD behaviour of segmentation models for water bodies. 
We named this dataset FlOoD10. To create FlOoD, we first define a list of relevant attributes that relate to the 
water and its surroundings and which potentially affect and degrade the performance of the current computer 
vision methods. We parameterize these attributes and implement a synthetic data generation pipeline that sam-
ples them in order to create a diverse dataset of labelled images (Fig. 1).

To gauge the effectiveness of our developed datasets, we examine the performance of state-of-the-art models 
that were originally designed, developed, and trained on standard semantic segmentation benchmark datasets, 
such as MS COCO11 and VOC2. The list of networks we investigate on real-world and computer-generated data-
sets includes DeepLabV312, PSPNet13, CCNet14, OCRNet15, OCNet16, DANet17, ANNet18, EMANet19, GCNet20 
and DNLNet12. We show that the accuracy of these models trained and tested on FlOoD correlates very well 
to that of models trained and tested on real datasets such as ATLANTIS. This implies that results obtained on 
FlOoD are good predictor of real-world OoD performance.

Methods
Dataset’s attributes. We design FlOoD10 with the goal of capturing relevant characteristics related to the 
water’s appearance, the surrounding environment’s manifestation in the scene, and the potential camera effects 
that might occur when monitoring waterbodies in real-world locations. Our attempt to identify and reproduce 
the attributes encountered in real-world imagery is inspired by the diverse recently-released dataset of ATLANTIS 
and the Farson Digital Watercams archive (https://www.farsondigitalwatercams.com/) that broadcasts live feeds 
from UK’s and Republic of Ireland’s waterways. All the defined attributes are summarized in Table 2. A short 
description and the value range are provided for every attribute. The assigned value range aims to serve both the 
implementation of the annotations that are generated for each rendered image and the implementation of the 
randomization activities that are performed during the generation process. For most of the attributes, we define 
the values to be in the range of 0.0 to 1.0; for example, a value of 0 for water reflectivity corresponds to the water 
material being dull with no reflectivity of the surroundings, whereas a value of 1 0.  means that the surroundings 
are clearly reflected on the water’s surface. For the color of the water, a set of RGB values is pre-defined. For the 
water level, we pre-define a water level position that is considered normal (not very low and not flooded) and set 
the shift range to be from 2−  to +2 meters. In addition, our pipeline supports the enablement of several post-pro-
cess effects. These aim to resemble malfunctions of the live-feed cameras e.g., ISO Noise, Black & White, or 

Dataset No. Images No. Classes Main Task

Pascal Context 19740 (899) 520 Semantic Segmentation

ADE20K 25000 (885) 3169 Scene Understanding

Mapillary Vistas dataset 25000 (∼600) 66 Semantic Segmentation

Gebrehiwot et al. 100 2 Flooding

Sazara et al. 253 2 Floodwater Segmentation

Sarp et al. 441 2 Floodwater Segmentation

ATLANTIS 5195 56 Segmentation of Waterbodies

Pally and Samadi >9000 8
Object detection, Water Level, Water 
Region

Table 1. Datasets comprising of images that include water or flooding. For the largest datasets that contain 
many classes, the number of images in parenthesis represents the number of images that contain the label 
‘water’.

Fig. 1 Overview of our synthetic dataset generator framework. A 3D scene includes multiple cameras facing 
waterbodies in the scene. Through a series of randomized parameters that control the appearance of the water, 
the environment and the applied post-process effects, RGB frames and their accompanied binary segmentation 
masks are generated.
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different external conditions that might influence the quality of the imagery such as raindrops on the camera lens 
or bloom (bright highlights or dirty lens).

Although not included in the list of attributes, our generation process also supports the randomization of 
some other environmental factors–skybox, sky color, and rain/snow–to introduce more diversity. For the sky-
box, we pre-define a set of Skybox materials. To allow for shifts in sky color, we utilize a 3D skybox model to 
resemble clouds. For rain and snow, we implement particle systems and vary the intensity levels.

To ensure that the generated dataset includes images accurately representing extreme weather conditions, we 
manually adjusted the minimum and maximum values for each attribute. This tuning was performed to corre-
spond to frames where the effect (e.g., light intensity) is at its maximum (or minimum) while still allowing the 
waterbody to be noticeable to the human eye. Each scene was carefully calibrated before the generation process. 
Manual inspection of the dataset, along with statistics on the coverage of attribute values, demonstrates that the 
complexity of real-world environments is adequately simulated.

The environment. Multiple 3D scenes are created to capture a wide variety of scenarios and to accom-
modate diversity in the generated dataset. The composition of each scene is kept consistent and it is illustrated 
in Fig. 2. To capture a waterbody from multiple views, we place several cameras at different locations with a 
variety of viewing angles and rotations. We also place a Directional Light for the simulation of different light-
ing conditions. We utilize the Water System from Staggart Creations (https://assetstore.unity.com/packages/vfx/
shaders/stylized-water-2-170386) that is accompanied by a Planar Reflection Renderer that aids the appearance 
of reflections on the water’s surface. The water model is placed in the scene according to the 3D model of the sur-
rounding area (e.g., terrain, city, bridge). The Post-Process Volume contains all the post-process effects, while the 
Simulation Scenario is responsible for the control of the randomized simulations executed for each camera in the 
scene, as well as the regulation of a number of different parameters e.g., the number of frames that are captured.

It is important to note, that although we employed high-quality 3D assets that are designed to closely mimic 
real-world water bodies, including detailed textures and realistic water surface dynamics, a domain gap between 

Attribute Description Values

Water Attributes

Water Reflectivity Degree of reflectiveness of surroundings on water’s surface [0, 1]

Water Distortion Degree of distortion of the reflections [0, 1]

Water Level Level of water relatively to a pre-defined “regular” position [−2, 2]

Water Color Color of the water (RGBA) [0–255] × 4

Water Vertical Depth Visibility of the underground underneath [0,1]

Water Horizontal Depth Visibility of the underground underneath in distance from the camera [0,1]

Water Foaming Degree of foaming on water’s surface [0,1]

Environment Attributes

Light Intensity Intensity of the light in the scene [0,1]

Fog Density Amount of fog present in the scene [0,1]

Post-processing effects

ISO Noise Simulates ISO noise/grain appearing in cameras [True, False]

Black and White Makes the rendered image black and white [True, False]

Depth of Field Simulates the focus properties of a camera lens [True, False]

Bloom Very bright highlights and dirt on lens effect [True, False]

Raindrop on Lens Simulates raindrops on camera’s lens effect [True, False]

Table 2. The defined attributes for water, environment and post-processing effects used to generate FlOoD.

Fig. 2 The Scene Hierarchy.

https://doi.org/10.1038/s41597-024-03929-2
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synthetic and real images is inevitable. We would like to emphasize that, as proven by our experiments, this gap 
does not impact FlOoD’s performance as a proxy for real-world data.

The randomizations. Our proposed synthetic dataset generator framework is illustrated in Fig. 1. In addi-
tion to providing annotations for each rendered frame and segmentation mask, we use the defined attributes and 
Unity Perception’s capacity to execute randomized simulations, to create randomizations for the generation of a 
large and diverse dataset. Through the Unity Perception package, it is possible to define an array of randomization 
activities that are performed during the lifecycle of a simulation. A simulation can last for a number of frames 
during which several parameters are varied. We make use of the attribute definitions we defined (Table 2) to create 
randomizers that sample from the given value range as a uniform or normal distribution, resulting in alterations 
of the scene and generation of various water, environment, and post-process effects. Figure 4a,b provide examples 
of frames generated with varying reflection intensity and varying water level respectively.

Data records
Data is available at figshare10. Sample frames from FlOoD are shown in Fig. 3.

The FlOoD comprises a collection of synthetic scenes, each carefully generated to encapsulate a unique com-
bination of water and environmental attributes. The dataset contains frames from 11 different scenes, with each 
scene annotated with ground truth binary masks for water body segmentation. The Unity Perception package 
provides the capability to assign labels to 3D objects within a scene. In our dataset, all water objects are assigned 

Fig. 4 (a) Varying reflection intensity of the water. (b) Varying water level.

Fig. 3 Sample frames from different scenes in FlOoD.

https://doi.org/10.1038/s41597-024-03929-2
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one label, while all other objects receive a different label. Due to the nature of Unity’s 3D rendering pipeline, 
these binary labels are accurately generated. To validate the segmentation labels and verify their consistency, 
random frames from all the scenes were manually inspected. Our approach consistently generates images and 
binary segmentation masks that are pixel-level accurate.

Our large-scale dataset consists of 9200 frames; a training-test split is performed that results in the training set 
having 8100 images and the test set having 1100 images. The images are generated to be 640 × 640, facilitating their 
direct utilization for training purposes. The values for all the attributes related to water, environment and post-process 
effects (Table 2) are also provided for each generated frame. The values are in the range depicted in Table 2.

FlOoD dataset. We split the dataset into train and test folders. The folder structure of each of the (train, test) 
directories is:

where s corresponds to the scene number, c is the camera identification number, i is the image’s name and N  is the 
number of images; m represents the binary segmentation mask corresponding to each i, and the file metadata.json contains 
the attribute values for each of the frame. These correspond to the attributes defined in Table 2, where for the post-process 
effect key (“post_effect”), the string “none” denotes that no post-processing effect is applied, and the strings “iso_noise”, 
“black_and_white”, “depth_of_field”, “bloom”, and “raindrops_on_lens” denote the effect as described in Table 2.

technical Validation
This section outlines the experiments undertaken to demonstrate the correlation between real and synthetic 
datasets through a high Pearson’s correlation coefficient of segmentation. Moreover, we explore how different 
splits of the synthetic dataset, namely 2.65k and 4k images, affect the various model’s ability to perform water 
segmentation. For testing the performance of the models, we use both water insection over union (IoU) and 
pixel accuracy as main metrics.

Dataset preparation. The real-world ATLANTIS dataset employed as reference in this research is con-
stituted of 5,195 RGB images, which contain a substantial proportion of water bodies in 56 labels of different 
waterbodies and water-related bodies. We convert it to a binary mask (water and non-water). Both FlOoD and 
ATLANTIS were subjected to pre-processing to standardize the image size, normalize pixel intensities, and apply 
data augmentation techniques to increase the model robustness.

Model training. To understand the correlation between the behaviour of models trained on real datasets such 
as ATLANTIS with the behaviour on FlOoD, we employed a wide range of state-of-the-art models: DeepLabV3, 
PSP-Net, CCNet, OCRNet, OCNet, DANet, ANNet, EMANet and GCNet. The results of five such experiments 
are reported in Table 3 where:

•	 Columns 1-2 show the test accuracy when training and testing on real data only
•	 Columns 3-4 show the test accuracy when training and testing on FlOoD only

Dataset [Training-Test]

Model

ATLANTIS -ATLANTIS Synthetic -Synthetic
ATLANTIS+SyntheticFull  
ATLANTIS

ATLANTIS+Synthetic4k 
ATLANTIS

ATLANTIS+Synthetic2.65k 
ATLANTIS

Water IoU Pixel Acc Water IoU Pixel Acc Water IoU Pixel Acc Water IoU Pixel Acc Water IoU Pixel Acc

DeepLabV3 0.853 0.948 0.836 0.932 0.847 0.946 0.845 0.945 0.853 0.948

PSPNet 0.825 0.937 0.819 0.922 0.818 0.932 0.824 0.934 0.833 0.938

CCNet 0.834 0.94 0.836 0.934 0.836 0.938 0.833 0.937 0.844 0.945

OCRNet 0.837 0.942 0.845 0.937 0.839 0.944 0.807 0.93 0.813 0.933

OCNet 0.826 0.935 0.833 0.934 0.828 0.936 0.826 0.935 0.829 0.936

DANet 0.73 0.883 0.783 0.901 0.819 0.928 0.811 0.927 0.817 0.93

ANNet 0.833 0.939 0.846 0.939 0.847 0.944 0.841 0.941 0.842 0.942

EMANet 0.847 0.946 0.855 0.94 0.846 0.944 0.816 0.932 0.817 0.93

GCNet 0.832 0.938 0.821 0.924 0.833 0.939 0.822 0.933 0.846 0.944

Average 0.824 0.934 0.830 0.929 0.835 0.939 0.825 0.935 0.833 0.938

Table 3. Experimental results of training and testing various State-of-the-Art models on different combinations 
of real and synthetic data. The default training-validation-test split is used for the ATLANTIS dataset.

https://doi.org/10.1038/s41597-024-03929-2
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•	 Columns 5-6, 7-8 and 9-10 show the test accuracy when testing on real world data but training on a combina-
tion of real and a varying amount of synthetic data

Correlation analysis. To investigate the correlation between our synthetic dataset FlOoD and real dataset 
ATLANTIS we computed the Pearson’s correlation coefficient between the IoU scores obtained when training 
and testing all models on real data (Table 3 columns 1-2) and those when training and testing the same models 
on FlOoD (Table 3 columns 3-4).

Our analysis, shown in Fig. 5, reveals a high Pearson’s correlation coefficient of 0.89, demonstrating a strong 
positive correlation between synthetic and real dataset performance. This high correlation implies that results 
obtained from OoD experiments performed using FlOoD are a very good proxy for the OoD behaviour of mod-
els trained on real-world datasets like ATLANTIS where such experiments are impossible to perform.

We further confirm the high correlation between our synthetic data and real data by a second experiment 
where we compare the accuracy on the ATLANTIS dataset of a model with randomly initialized weights with 
that of a model pre-trained on our synthetic dataset. As shown in Table 4, the accuracy of the latter far exceeds the 
accuracy of the former which provides additional evidence for the correlation between our dataset and real data.

Usage Notes
We offer a rich synthetic dataset for semantic segmentation of waterbodies in OoD scenarios. All the attributes 
defined in Table 2 can be found in the metadata files. The dataset comes split into a train set and test set which 
have been used to obtain the results show in Table 3. However, we expect users to define new splits based on 
various combinations of the provided attributes.

While the main aim of FlOoD is to allow researchers to assess the OoD performance of their models, it is 
also possible to use FlOoD for data augmentation purposes. The averages shown at the bottom of Table 3 for 
columns 5-6, 7-8 and 9-10 indicate that a small performance increase of up to 0.5 percentage point can be indeed 
achieved in this way.

Fig. 5 Strong correlation in the IoU metric between models trained on ATLANTIS and FlOoD datasets. This 
high correlation suggests that the synthetic data captures essential characteristics of real data, thereby validating 
its utility for training and evaluating models.

Model

Dataset [Training-Test]

Random-ATLANTIS Synthetic-ATLANTIS

Water IoU Pixel Acc Water IoU Pixel Acc

DeepLabV3 0.406 0.617 0.642 0.824

PSPNet 0.444 0.768 0.613 0.822

CCNet 0.394 0.617 0.615 0.825

OCRNet 0.394 0.62 0.604 0.799

OCNet 0.244 0.379 0.58 0.814

DANet 0.228 0.362 0.623 0.809

ANNet 0.447 0.77 0.617 0.819

EMANet 0.432 0.727 0.604 0.805

GCNet 0.416 0.702 0.605 0.788

Average 0.3783 0.618 0.6114 0.8117

Table 4. Experimental results of training state-of-the-art models with randomly initialized weights and training 
on FloOD, and testing on the ATLANTIS dataset.

https://doi.org/10.1038/s41597-024-03929-2
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Code availability
The code that was used to generate the data uses commercial assets and functions of the commercial Unity 
package. For reference, the code is available at https://github.com/FujitsuResearch/SyntheticWaterBodies.
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