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ABSTRACT

Pollination is an ecosystem process that is crucial to maintain biodiversity and ecosystem function. Bats are important pollina-

tors in the tropics and are an integral part of complex plant–pollinator interaction networks. However, network analysis–based 

approaches are still scarce at the plant species and bat community levels. We used metabarcoding to identify plant taxa present 

in pollen from fur and faecal samples collected across 1 year from three nectar- feeding bat roosts in central Mexico. We calcu-

lated the frequency of occurrence of plant taxa and assembled a zoocentric network of bat–plant interactions. We constructed 

a year- long network, encompassing the entire period of sampling, two seasonal networks comprising the wet and dry seasons, 

and six individual networks from sampling at two- month intervals across the year. Four species of nectar- feeding bats interacted 

with 36 plant species from 16 families. We found highly generalised interaction patterns across networks corresponding with 

opportunistic feeding behaviour by bats, with little seasonal variation in network structure. There was high resource overlap 

between bat species, and bats visited a diverse range of plant species even during periods with a high abundance of particular 

resources in the landscape. The diverse diet of nectar- feeding bats emphasises the importance of floristically rich natural hab-

itats in the landscape to provide reliable foraging resources year- round in a seasonally variable system. While a generalised 

network structure is thought to increase robustness, further research is necessary to understand how fluctuations in pollinator 

abundance and diversity in the face of land use and climate change may impact bat–flower networks and the consequences to 

plant communities.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is 

properly cited.

© 2024 The Author(s). Ecology and Evolution published by John Wiley & Sons Ltd.
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1   |   Introduction

Pollination is a crucial process for maintaining ecosystem 

function and biodiversity and is one of the most vulnerable 

stages to disturbance in the life cycle of plants (Neuschulz 

et al. 2016). Bats are important pollinators in the tropics and 

form an integral part of complex plant–pollinator dynamics 

(Fleming, Geiselman, and Kress  2009; Kunz et  al.  2011). In 

Mexico, nectar- feeding bats are keystone pollinators of much 

of the dominant vegetation in tropical forests and arid and 

semi- arid zones, including columnar cacti (Cactaceae), panic-

ulate agaves (Agavaceae) and canopy trees in the Malvaceae 

family (Fleming and Valiente- Banuet  2002; Fleming, 

Geiselman, and Kress  2009). The study of plant–pollinator 

interactions allows for an increased understanding of com-

munity structure, with implications for ecosystem function 

and stability in the face of environmental change (Montoya, 

Pimm, and Solé  2006; Kaiser- Bunbury and Blüthgen  2015; 

Zamora- Gutierrez et al. 2021).

Across different ecosystems, plants generally have numer-

ous potential pollinators, which can each visit various plants 

(Waser et  al.  1996; Lucas et  al.  2018). Generalised networks 

are thought to be more robust to fluctuations in pollinator di-

versity and abundance, allowing plant species to exchange one 

pollinator for another (Johnson and Steiner 2000). However, 

higher specialisation may be beneficial from the perspective 

of both the plant and pollinator (particularly when consider-

ing functional groups of pollinators rather than species), po-

tentially increasing delivery of conspecific pollen to the plant 

(Armbruster 2014) and reducing interspecific competition for 

the pollinator (e.g., Maglianesi et  al.  2014). Insect pollina-

tion networks typically show significantly higher specialisa-

tion than other mutualistic networks such as seed dispersal 

or ant–nectar networks (Blüthgen et  al.  2007), while most 

hummingbird–plant networks across the Americas have mod-

erate specialisation (Dalsgaard et  al.  2011). Patterns of bat–

flower network structure in the Neotropics vary according to 

abiotic variables and the bat species assemblage considered 

(Liévano- Latorre, Varassin, and Zanata  2023; González- 

Gutiérrez et al. 2022). However, studies of nectar- feeding bat 

diets have revealed broad niches, even for morphologically 

specialised species (Gonzalez- Terrazas et al. 2012; Diniz and 

Aguiar 2023a; Muchhala et al. 2024).

Patterns of generalism in a pollination network are dynamic, 

as diet breadths of pollinators can shift depending on envi-

ronmental factors and resource availability (CaraDonna and 

Waser  2020). Seasonal differences in plant phenology and 

pollinator diversity and abundance can impact the proper-

ties of network structure (Burkle and Alarcón  2011; Souza 

et al. 2018). Evidence on the effect of resource availability and 

seasonality on pollination networks is variable. While some 

studies have found that a higher specialisation of flower visi-

tors is facilitated by high resource availability (e.g., Venjakob 

et  al.  2016), most have found that specialisation increases 

as resource availability decreases (e.g., Sperr et  al.  2011; 

Tinoco et  al.  2017; Souza et  al.  2018; Sritongchuay, Hughes, 

and Bumrungsri 2019; de Oliveira et al. 2022; Stevens 2022), 

and this relationship can be influenced by multiple environ-

mental factors driven by ecosystem seasonality. Across the 

seasonally dry tropical forests of the Caatinga, Brazil, bat–

flower networks have a generalised pattern of interactions 

across seasons and years, with bat species showing high levels 

of interaction overlap (Cordero- Schmidt et al. 2021). However, 

a meta- analysis of 22 Neotropical bat–plant pollination net-

works found that higher seasonality (particularly in terms 

of precipitation) resulted in a lower niche overlap between 

bat species (Liévano- Latorre, Varassin, and Zanata  2023). 

Functionally specialised species can switch seasonally to ex-

ploit different resources at different times of the year (Bender 

et  al.  2017), and differences in the ability of nectar- feeding 

bats to track lower density nectar sources (due to body size, 

flight characteristics and home range size) can impact in-

terspecific competition and patterns of specialisation in net-

works (Tschapka 2004). Interaction patterns can therefore be 

flexible, influenced by multiple environmental and biological 

factors, leading to variation in network structure.

Studies on the diet of nectarivorous bats are extensive, and 

there is increasing interest in characterising bat–plant interac-

tions through network analysis. However, network analysis–

based approaches are still scarce at the plant species and bat 

community levels, with most studies addressing plant iden-

tification at coarse taxonomic resolution and focussing on a 

few interactions (but see Queiroz et al. 2021; Cordero- Schmidt 

et al. 2021; González- Gutiérrez et al. 2022; Diniz and Aguiar, 

2023b). Reflecting on the importance of bats as pollinators 

across the Neotropics, network analysis, particularly at spe-

cies level, is an important tool to help us identify key polli-

nator species and assess the vulnerability of plant–pollinator 

interactions to anthropogenic disturbance (Memmott, Waser, 

and Price 2004; Memmott et al. 2007; Sritongchuay, Hughes, 

and Bumrungsri 2019).

Here, we used metabarcoding to identify plant species in the 

year- round diet of a nectarivorous bat community to character-

ise the seasonal dynamics of bat pollinator–plant interactions 

in a semiarid tropical landscape in central Mexico. This ecosys-

tem harbours an extremely rich floristic (Banda et al. 2016) and 

nectarivorous bat diversity (Valiente- Banuet et  al.  1996), with 

a marked seasonality driven by well- defined wet and dry sea-

sons (Macías- Rodríguez et al. 2018). However, compared with 

other studies conducted in seasonally dry landscapes, our study 

site is unique as it is located in one of the most important areas 

for the cultivation of an endemic columnar cactus named ‘pi-

tayo’ (Stenocereus queretaroensis F.A.C Weber Buxbaum). Pitayo 

plants start flowering at the beginning of spring within the dry 

season, with fruits maturing into the early wet season. In this 

region, pitayos provide an unusually high availability of nec-

tar, pollen and fruit that is not present in other seasonally dry 

landscapes.

We recorded the frequency of interactions between bats and 

plants, and assembled year- long, seasonal and bimonthly bat–

flower interaction networks. We calculated network indices to 

describe patterns of specialisation and the foraging behaviour 

of bat pollinators in all networks. We hypothesised that (1) there 

would be seasonal variation in network structure, due to likely 

differences in resource availability; (2) the overall network 

would be relatively generalist, owing to the broad diet of nectar- 

feeding bats recorded by previous studies; and (3) pitayo would 
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form the predominant part of the diet of all bat species during 

the flowering period, owing to the high availability of floral re-

sources provided by pitayo plantations.

2   |   Materials and Methods

2.1   |   Study Area

Sampling was conducted at three bat roosts (Atoyac 19.99174, 

−103.50488; San Cayetano 20.13014, −103.5658; Cueva del 

Ermitaño 20.0812, −103.5965) in the Sayula Basin, Jalisco, in 

central Mexico. The Sayula Basin consists of a seasonal fresh-

water lagoon, framed by tropical deciduous forest (25% of total 

area; containing the highest floristic diversity), semiarid low-

land areas with thorn scrub (2%), human settlements (7%) and 

agriculture (38%, Macías- Rodríguez et al. 2018). The endemic 

cactus Stenocereus queretaroensis is an important regional 

crop that is mainly bat- pollinated (Tremlett et al. 2020). The 

average annual rainfall is 660 mm, which mostly falls between 

June and October (around 65% of total annual rainfall occurs 

between June and August), with the dry season lasting from 

November to May (Pimienta- Barrios, Pimienta- Barrios, and 

Nobel 2004).

2.2   |   Sample Collection and DNA Extraction

We visited the three roosts every 2 months from April 2017 to 

February 2018, making a total of six sampling trips. We cap-

tured bats returning to the roost from feeding (numbers cap-

tured depended on activity) and collected samples of pollen from 

the head, chest and wings of captured bats using a cotton swab 

dabbed in 96% ethanol. The cotton swabs were subsequently 

placed in Eppendorf tubes of 1.5 mL with 96% ethanol. Bats were 

then placed individually in clean cotton bags for a maximum 

of 2 h to collect faecal samples. Faecal samples were placed in 

tubes with 96% ethanol, which was poured off after 24–36 h and 

replaced with fine silica gel following Nsubuga et al (2004). All 

samples were stored at −20°C until further processing in the 

laboratory.

We extracted DNA from the faecal samples using a modified 

CTAB method adapted from Doyle  (1991), and from the pol-

len samples using an ammonium acetate method (Nicholls 

et al. 2000; Richardson et al. 2001). Further details are available 

in the Supporting Information.

2.3   |   PCR Amplification, Sequencing and DNA 
Reference Library

We used primer pair UniPlantF and UniPlantR to amplify part 

of the second internal transcribed spacer of nuclear ribosomal 

DNA (ITS2), a short region typically of 187–380 base pairs 

that provides a high taxonomic resolution (Chen et  al.  2010; 

Moorhouse- Gann et al. 2018; Table S1). All samples were pro-

cessed in duplicate from the first PCR stage (after DNA ex-

traction) resulting in two PCR replicates of each sample. Final 

pools contained 260 samples (including eight PCR negatives) 

and were sequenced on an Illumina MiSeq sequencing platform, 

using 250 bp paired- end reads. Further details are available in 

the Supporting Information.

To improve taxonomic resolution, reference DNA sequences 

were generated and submitted to GenBank for some plant spe-

cies that would potentially be visited by nectarivorous bats in 

the study region, which were selected after a literature review 

(Table S2; Supporting Information).

2.4   |   Bioinformatics

We processed the sequencing data for further analysis using 

VSEARCH v2.14.2 (Rognes et  al.  2016) following the pipeline 

available at https:// github. com/ chiras/ metab arcod ing_ pipeline 

(Leonhardt, Peters, and Keller 2022). Paired ends of forward and 

reverse reads were joined, and all reads shorter than 150 bp were 

removed. We then performed quality filtering (EE < 1) as de-

scribed by Edgar and Flyvbjerg (2015) and de- novo chimera fil-

tering following UCHIME3 (Edgar 2016a). VSEARCH was used 

to define amplicon sequence variants (ASVs) (Edgar 2016b). By 

using VSEARCH against an ITS2 reference database for plant 

species of the sampled region, reads were directly mapped with 

global alignments with an identity cut- off threshold of 97%. 

The reference database was compiled with the BCdatabaser 

(Keller et  al.  2020) based on a list of plant species of Mexico 

(Villaseñor 2016) and then curated (Quaresma et al. 2023). To 

classify remaining reads still without taxonomic allocation at 

this point, SINTAX (Edgar  2016c) was used with a reference 

database comprising global plant species (Sickel et  al.  2015; 

Quaresma et al. 2023).

Reads from the PCR negatives were then checked to provide a 

baseline for background contamination. The maximum num-

ber of reads from each plant species identified in negatives 

were subtracted from all other samples from the same plate 

(Drake et al. 2021). Negatives were then excluded from further 

analyses.

We converted read numbers to relative abundances to account 

for the variation in read depth both between samples and be-

tween sequencing runs, after excluding plant taxa from families 

not documented to have bat- pollinated members (see below), to 

mitigate against the likely inclusion of pollen present in samples 

due to wind drift, pollen present on flowers due to dispersal from 

other pollinating agents such as birds or insects, or pollen acci-

dentally inhaled or ingested by bats while grooming or drinking 

from nectar sources (families from Fleming, Geiselman, and 

Kress  2009; updated to reflect current taxonomic classifica-

tion). We specified a minimum sequence percentage threshold 

of 1% to determine occurrences and retained for analysis plant 

taxa found in either replicate at above the 1% threshold (Deagle 

et al. 2018; Drake et al. 2021).

We used published databases of bat- pollinated species 

(Fleming, Geiselman, and Kress  2009; Liévano- Latorre, 

Varassin, and Zanata 2023) to generate a reference list of spe-

cies and genera of plants that could be visited by bats for nectar 

or pollen (i.e., not fruit; Table S3). We excluded species from 

genera not included in this list. We then manually checked all 

remaining species to ensure that the taxonomic assignment 
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was appropriate (i.e., the plant species has a geographical 

distribution within the study area), and the flower morphol-

ogy has some characteristic associated with chiropterophily 

(i.e., time of flower opening, flower shape, size and colour, 

documented records of pollination syndrome), and excluded 

observations that did not meet these criteria (Supporting 

Information). We therefore took a cautious approach in in-

cluding plants in the network, with the presence of pollen on 

the bodies of bats alone insufficient to assume floral visita-

tion, as opposed to contamination due to the potential sources 

listed above.

We aggregated records of Ceiba aesculifolia and C. acuminata as 

we found it is not possible to distinguish between these species 

with the primers used. Pollen assigned to one taxon each in the 

Agave, Bauhinia and Calliandra genera were not classified to 

species owing to an inappropriate distribution of the species re-

turned by the bioinformatics pipeline. These taxa are therefore 

shown on the bipartite network as Agave sp. 1, Bauhinia sp. 1 

and Calliandra sp. 1 but are not included in analyses of network 

structure. All remaining taxa included in the network were 

classified at species level. Where we found documented flow-

ering phenologies of plant species included in the network, we 

filtered results to keep occurrences of plant species only within 

their flowering season, to reduce the possibility of recording in-

stances of frugivory in the bat–flower network (23% of occur-

rences were lost during this step; Table S3).

2.5   |   Network Analyses

We calculated the presence/absence of plant taxa in pollen and 

faecal samples collected from each bat individual in each month 

sampled and used these data to create a weighted adjacency 

matrix showing the summed interactions between bat species 

and plant taxa. Although occurrence- based diet summaries can 

overestimate the importance of food items consumed in small 

quantities, we opted to use occurrence- based metrics to avoid 

possible biases in DNA extraction, amplification and sequenc-

ing, and a lack of mock community data (Deagle et al. 2018), as 

well as potential differential digestion rates between pollen of 

different plant taxa (Herrera and Martinez Del Rio 1998).

We constructed a year- long network, encompassing the entire 

period of sampling, two seasonal networks comprising the wet 

and dry season, and individual networks for each bimonthly 

sampling period. We calculated three network- level metrics, fo-

cussing on quantitative indices, which have been found to be 

less sensitive to sampling intensity and network size:

1. Linkage density: represents the diversity of interactions per 

species, weighted by total interactions (Bersier, Banašek- 

Richter, and Cattin  2002; Dormann et  al.  2009) and com-

puted as the average of the mean number of bat species 

visiting each plant species and the mean number of plant 

species visited by each bat species.

2. H2’: a quantitative index of network- level complementary 

specialisation, which describes how strongly the interactions 

between bat–plant pairs differ from a random pattern where 

all bat species have the same preferences (Blüthgen, Menzel, 

and Blüthgen 2006). The expected minimum and maximum 

specialisation for the fixed diversity and abundance per 

species (marginal totals of observed network) defines the 

possible range for this index. Resulting values of H2’ range 

between 0 and 1, with values close to 1 indicating a highly 

specialised network (strongest flower species partitioning 

across bat species), and values close to 0 indicating a highly 

generalist network (highest overlap).

3. Niche overlap: mean similarity in interaction pattern be-

tween bat species, calculated using Horn's index. Values 

close to 0 indicate no common use of niches, while values 

close to 1 indicate complete niche overlap.

We tested values of quantitative metrics (H2’, linkage density 

and niche overlap) of constructed networks against 1000 iter-

ations of a null model using a Patefield algorithm, which cre-

ates null models with marginal totals identical to those of the 

observed model (Dormann et al. 2009). Comparisons between 

observed networks and Patefield null models are recommended 

when considering network metrics sensitive to the abundance 

and diversity of interaction partners (Blüthgen and Staab 2024). 

All interaction network metrics were calculated using the 

‘Bipartite’ package (Dormann et al. 2009) in R version 4.2.3 (R 

Core Team 2022), including only plant taxa identified to the spe-

cies level in analyses.

2.6   |   Bat Foraging Behaviour and Resource 
Overlap

To assess the role of the bat pollinators within networks, we also 

calculated the discrimination/selectivity index d’ for each bat 

species, which measures how selective a flower visitor is rela-

tive to the abundance of available resources. The total number 

of interactions for each species is used as a measure of partner 

availability (Blüthgen, Menzel, and Blüthgen 2006). Values of d’ 

closer to 0 indicate an opportunistic flower visitor (i.e., the bat 

visits similar flowers to all other bat species), while those close 

to 1 indicate a highly selective flower visitor (i.e., the bat exhibits 

exclusive preferences for certain flowers). We compared values 

of d’ calculated for each bat species in each month in the wet sea-

son (n = 6) and each bat species in each month in the dry season 

(n = 8) with a Welch's t- test.

We visualised resource overlap year- round, and in the wet and 

dry seasons, using bat species as a predictor in a nonmetric mul-

tidimensional scaling ordination on a Bray–Curtis matrix, using 

the Vegan package (Oksanen et al. 2017). We plotted the scaling 

ordination on two dimensions. We then performed an ANOSIM 

to investigate whether seasonal resource use differed between 

bat species.

2.7   |   Sampling Completeness

We estimated the sampling completeness of bat–flower interac-

tions in our constructed networks (year- long, dry season and wet 

season) using the iNEXT package (Hsieh, Ma, and Chao 2016; 

Chao et al. 2014), considering each combination of bat- plant in-

teraction to be a ‘species’ and their frequency as ‘abundances’. 
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We estimated the completeness of our sampling by dividing the 

observed interaction richness by the estimated richness. We also 

plotted individual- based rarefaction and extrapolation curves 

with Hill numbers for each constructed network, using the same 

package (Figure S1).

3   |   Results

3.1   |   Nectar- Feeding Bats

We captured a total of 233 nectar- feeding bats throughout the 

year across the three roosts: 135 Leptonycteris yerbabuenae 

individuals, 49 Choeronycteris mexicana, 35 Anoura geoffroyi 

and 13 L. nivalis. L. yerbabuenae was present year- round at 

Roost 1 with fluctuating abundance; low numbers of C. mex-

icana were present year- round at Roost 2 except for during 

August; and Roost 3 was occupied by Anoura geoffroyi in June 

and October (wet season) and by L. nivalis in December and 

February (dry season). Across all bat species, we collected a 

total of 149 pollen samples from fur and 113 faecal samples 

for sequencing (we sequenced both faecal and pollen samples 

from 63 bats, faecal samples only from 23 bats, and pollen 

samples only from 76 bats). A higher proportion of captured 

Leptonycteris yerbabuenae bats carried pollen in the dry sea-

son, while there was no clear pattern for Choeronycteris mex-

icana (Table S4). L. nivalis and A. geoffroyi were each caught 

only in one season.

3.2   |   Bat–Plant Interactions

We identified 36 plant species in pollen and faecal samples, from 

16 plant families. Of these, 32 species were found in pollen sam-

ples while 27 species were found in faecal samples. Ten species 

were found in pollen samples only (Agave salmiana, Cleome 

spinosa, Combretum farinosum, Cresecentia alata, Croton mori-

folius, Hibiscus rosa- sinensis, Hintonia latiflora, Ipomoea stans, 

Pithecellobium dulce and Pseudobombax palmeri) while four 

species were found only in faecal samples (Calliandra erio-

phylla, Cucurbita argyrosperma, Leucaena esculenta and Ruellia 

jaliscana). Fewer plant species were recorded in samples from 

the wet season compared with the dry season (a total of 20 and 

35, respectively; Figure 1). We identified a mean 5.0 (±2.5 SD) 

plant species per bat sampled (pooled across bat species), and a 

mean of 3.8 (±1.8 SD) and 3.6 (±1.5 SD) plant genera and fami-

lies, respectively.

Estimated sampling completeness of bat–plant interactions was 

highest when considering the complete year network than for 

the dry or wet season networks (Table 1; Figure S1).

3.3   |   Network Analyses

The complete network consisted of 802 occurrences of plant taxa 

in pollen and/or faeces sampled from bat individuals (Table S5). 

The three constructed networks showed a highly opportunistic 

distribution of bat species across plant species visited, with low 

values of H2’ (network- level specialisation) and linkage den-

sity (diversity of interactions) and high values of niche overlap. 

Patterns of linkage density were significantly nonrandom (i.e., 

lower than expected if bats randomly interact with flowers) in 

the yearly, dry and two of the monthly networks, while H2’ 

was significantly non- random (i.e., larger than expected if bats 

randomly interact with flowers) in all networks except April 

and June (Figure 2; Table 2). There was no difference in H2’ or 

niche overlap between the wet season months and the dry sea-

son months, while linkage density was lower in the wet season 

(Figure S4).

3.4   |   Bat Foraging Behaviour and Resource 
Overlap

Low values of the discrimination/selectivity index d’ were ob-

served throughout the year, with no difference between dry 

season and wet season months (Welch's t- test: t = 0.28, p = 0.78; 

Table 3).

Bat species was a small but significant predictor of resource use 

during the wet (R = 0.212, p < 0.001) and dry (R = 0.075, p < 0.05) 

seasons, but not when considering resources used across the en-

tire year (R = −0.007, p = 0.56; Figure 3). The contribution of bat 

species to explain resource use was higher in the wet season.

4   |   Discussion

The year- round bat- flower network showed a highly generalised 

pattern of interactions, despite changes in bat species composi-

tion and differing resource overlap in the wet and dry seasons, 

indicating high overall network stability. Furthermore, low 

values of discrimination/selectivity (d’) for all bat species, low 

values of network specialisation (H2’) and high niche overlap 

suggest largely opportunistic feeding behaviour. Our results 

are consistent with other generalised interannual bat–flower 

networks in the Neotropics and corroborate the relatively high 

feeding plasticity of nectar- feeding bats (Cordero- Schmidt 

et al. 2021; Queiroz et al. 2021).

Network structure is influenced by various factors, including 

study design, the timing of resource availability, phylogenetic 

relationships between bat species and differences in foraging be-

haviour. Studies basing network metrics on direct observations of 

flower visits (e.g., Sritongchuay, Hughes, and Bumrungsri 2019) 

tend to report a higher specialisation and lower niche overlap 

than those identifying plant taxa from pollen samples, as visita-

tion records are less effective at capturing the full range of plant 

resources used by the bat community (Bosch et al. 2009; Dorado 

et al. 2011).

Our network focussed on specialist nectarivorous bats sam-

pled at the roost on return from foraging trips and included 

both pollen and faecal samples. We were therefore able to 

characterise a representative network of flowers visited by 

these nectarivorous bat species, removing any bias of sam-

pling caused by choice of study sites or habitats. However, this 

approach also meant that facultative nectar- feeding bats from 

other guilds (i.e., frugivores) were not included in our network 

(as these species did not roost communally with the specialist 

nectar- feeding bats sampled and occur at lower abundances 
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than our focal species), which could impact aspects of network 

structure in some temporal subsets of the network. For exam-

ple, bat–flower networks were found to be more specialised 

in the Brazilian Cerrado, where frugivorous bats dominated 

the flower- visiting niche in forests, and during times of very 

low fruit availability (Diniz and Aguiar 2023b). Thus, niches 

of flower- visiting bats were driven not only by their ability to 

exploit certain flower types (i.e., morphology) but also by spa-

tiotemporal overlap of resources and pollinators (Diniz and 

Aguiar 2023a). We found the lowest network specialisation in 

the month where only the two nectar- feeding bat species with 

resident populations were present (in all other months an ad-

ditional species was present).

Phylogenetic distance between specialist nectar- feeding bat spe-

cies may be a more important factor than morphological differ-

ences in determining resource partitioning: lower niche overlap 

was found in communities composed of species from different 

phylogenetic groups, unrelated to morphological traits (Liévano- 

Latorre, Varassin, and Zanata 2023), while morphological spe-

cialisation appears to allow nectar- feeding bats to access a wider 

range of floral resources without necessitating switching to 

other resources such as insects or fruit (Diniz and Aguiar 2023a; 

Gonzalez- Terrazas et al. 2012; Muchhala et al. 2024). The low 

network specialisation and high niche overlap found in our 

study is likely influenced by the low phylogenetic distance be-

tween the four bat species included in our bat–plant network, 

which are all found within the obligatory nectar- feeding sub-

family Glossophaginae (with two species in the same genus; 

Rojas, Warsi, and Dávalos  2016). Modules of bat- flower genus 

networks across central- North America were found to be domi-

nated by five bat genera including both specialist and facultative 

nectar- feeders (Anoura, Artibeus, Glossophaga, Hylonycteris 

and Leptonycteris; González- Gutiérrez et  al.  2022). Specialist 

nectar- feeders acted as hubs, interacting with a high num-

ber of plants. Of these modules, the Leptonycteris and Anoura 

genera are included within our network, which demonstrated 

strong associations with the Cactaceae and Asparagaceae, and 

Campanulaceae plant families, respectively.

We found little seasonal difference in network structure, de-

spite seasonal fluctuations in floral resources and bat pollina-

tor diversity and abundance in our system (Lobo et al. 2003; 

Borchert et al. 2004). A higher seasonality in precipitation is 

associated with lower niche overlap, likely due to influences 

on floral resource availability (Liévano- Latorre, Varassin, and 

Zanata  2023). The abundance of nectar- feeding bats at the 

roosts was highest in the dry season, when we also identified a 

higher number of plant taxa in pollen and faecal samples, and 

captured a higher percentage of bats carrying pollen, all pre-

sumably indicating a higher floral resource availability during 

this time. The abundance of nectar- feeding bats is highly cor-

related with food availability, as bat populations time their re-

productive activity and local and long- distance migrations to 

synchronise with peak resource availability (Heideman and 

Utzurrum 2003; Stoner et al. 2003; Peñalba, Molina- Freaner, 

and Rodríguez 2006). A higher availability of floral resources 

during the dry season and the large foraging ranges of bats 

may allow the convergence on favoured resources and re-

duce competition (Fontaine, Collin, and Dajoz  2008; Tinoco 

et al. 2017; Stevens 2022). However, though we found (slightly) 

greater resource overlap in the dry season, consistent with 

some previous studies of nectar- feeding bats (Sperr et al. 2011; 

Sritongchuay, Hughes, and Bumrungsri  2019), both the dry 

TABLE 1    |    Observed and estimated (95% CL) species richness of plants visited by bat pollinators for the year and seasonal networks.

Complete Dry Wet

Leptonycteris yerbabuenae

Observed 34 32 16

Chao 1 36 (34–48) 43 (32–64) 17 (16–21)

Sampling completeness 94% 74% 94%

Leptonycteris nivalis

Observed 21 21 —

Chao 1 26 (21–43) 26 (21–43) —

Sampling completeness 81% 81% —

Choeronycteris mexicana

Observed 26 24 16

Chao 1 27 (26–35) 32 (24–61) 26 (16–54)

Sampling completeness 96% 75% 62%

Anoura geoffroyi

Observed 10 — 10

Chao 1 11 (10–20) — 11 (10–19)

Sampling completeness 91% — 91%
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FIGURE 2    |    Bipartite interaction networks of plant species visted by nectar- feeding bats in the Sayula Basin, Mexico, across the entire year, and 

during the wet (June to October) and dry season (December to April). Bat species labels correspond to: AnoGeo—Anoura geoffroyi, ChoMex—

Choeronycteris mexicana, LepNiv—Leptonycteris nivalis, LepYer—Leptonycteris yerbabuenae. Plant species codes are defined in Table S6. The names 

of some infrequently encountered plants were removed from the plots for readability, but the interaction network data can be found in Supporting 

Information. Bipartite interaction plots for the bimonthly networks are shown in Figures S2, S3.

TABLE 2    |    Network metrics across the year- round network, seasonal networks, and bimonthly networks (sample size too small to compute 

network metrics in August). Networks include plant species identified in pollen and/or faecal samples.

Network No. samples No. bat species No. plant species Linkage density H2’

Niche 

overlap

Year 149 4 36 9.74***↓ 0.09***↑ 0.72***↓

Dry 88 3 35 9.05***↓ 0.12***↑ 0.79***↓

Wet 61 3 20 6.40NS↓ 0.14**↑ 0.77**↓

Apr 28 2 20 7.08NS 0.05NS 0.96NS

Jun 12 3 10 4.20NS 0.14NS 0.81NS

Aug 19 1 11 — — —

Oct 30 3 13 4.55NS 0.12*↑ 0.82NS

Dec 28 3 20 5.33*↓ 0.18*↑ 0.77NS

Feb 32 3 24 6.97**↓ 0.18*↑ 0.66*↓

Note: Observed pattern ↑higher or ↓lower than random associations in null models.
***p ≤ 0.001. 
**p ≤ 0.01. 
*p ≤ 0.05.
NSNot significant.
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and wet seasons showed a highly generalised pattern of bat–

flower interactions. Nevertheless, the inclusion of facultative 

nectar- feeding frugivore species in the network may impact 

patterns of specialisation between seasons, depending on the 

temporal availability of fruit (Diniz and Aguiar 2023a, 2023b).

Furthermore, nectar- feeding bats in our study visited a high di-

versity of plants even during times of high abundance of par-

ticular resources in the landscape (flowering of monoculture 

plantations of the columnar cactus Stenocereus queretaroensis). 

Although S. queretaroensis appeared to be an important food re-

source, present in pollen and/or faecal samples from 22 of 32 bats 

captured in February, we found that 95% of the bat individuals 

that had visited S. queretaroensis had also visited other plant spe-

cies, and furthermore that these individuals did not visit fewer 

plant species on average than bats in the same month that had 

not visited S. queretaroensis. In contrast, bats foraging in banana 

plantations in Costa Rica had a simplified, homogeneous diet 

compared to those foraging in forests (Alpízar, Schneider, and 

Tschapka 2020). Fine- scale resource plant selection can be in-

fluenced by various factors determining foraging efficiency, in-

cluding the density and spatial distribution of floral resources 

in the wider landscape, the quantity and sugar concentration 

of nectar rewards, flight costs, and inter-  and intraspecies in-

teractions with coexisting nectar- feeding bats (Tschapka 2004). 

S. queretaroensis produces a high volume of hexose- rich nectar 

(Ibarra- Cerdeña, Iñiguez Dávalos, and Sánchez- Cordero 2005), 

and the apparent nonlimitation of available resources during 

this time suggests that competitive interactions are unlikely to 

play a role in determining the foraging behaviour of the bats. 

We suggest that the concurrent high availability of other food 

plants (indeed, we observed the highest diversity of plants in the 

diet in February) during this time allows bats to forage opportu-

nistically on their way to and from key foraging grounds from a 

TABLE 3    |    Blüthgen's discrimination/selectivity index d’, calculated for flower- visiting bat species.

Complete Dry Wet Apr Jun Oct Dec Feb

Leptonycteris yerbabuenae 0.06 0.08 0.12 0.05 0.16 0.08 0.18 0.16

Choeronycteris mexicana 0.04 0.06 0.20 0.05 0.25 0.13 0.15 0.25

Anoura geoffroyi 0.14 — 0.10 — 0.03 0.18 — —

Leptonycteris nivalis 0.21 0.24 — — — — 0.22 0.14

FIGURE 3    |    NMDS plots and convex hulls visualising distinctiveness of bat- plant interactions between bat species: (a) across the whole year; (b) 

during the dry season months; and (c) during the wet season months.

 2
0
4
5
7
7
5
8
, 2

0
2
4
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/ece3

.7
0
3
6
7
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

6
/1

0
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



10 of 14 Ecology and Evolution, 2024

diverse number of plant species. However, the use of presence/

absence metrics may have underestimated the relative impor-

tance of S. queretaroensis in the diet, as all plant species are 

given equal weighting regardless of the proportion of the food 

intake they represent.

The occurrence of plant taxa in our samples indicated a pat-

tern of sequential flowering of bat- pollinated species through-

out the year, and continuous or subannual flowering in some 

species, consistent with that observed in other bat- pollinated 

flower assemblages (e.g., Heithaus, Fleming, and Opler 1975; 

Bullock and Solis- Magallanes  1990; Sazima, Buzato, and 

Sazima  1999; Stoner et  al.  2003; Cortés- Flores et  al.  2017). 

This provides a continuous supply of floral resources for bat 

pollinators and encourages the availability of bats as pollinat-

ing agents that can reside year- round. Leptonycteris bats in 

tropical and sub- tropical areas, including central Mexico, have 

been found to have a more diverse diet than seasonal popula-

tions in northern parts of their range, which feed primarily 

on Agavaceae and Cactaceae (Fleming and Nassar 2002). Our 

study emphasises the importance of maintaining heteroge-

neous natural habitats in the landscape to provide a diversity 

of resources for nectar- feeding bats.

Generalised interactions within plant–pollinator networks have 

traditionally been viewed as competitive because of the cost 

to plants associated with the delivery of heterospecific, rather 

than conspecific, pollen (Morales and Traveset 2008; Flanagan 

et  al.  2009; Ashman and Arceo- Gómez  2013). However, there 

is increasing evidence that facilitation via pollinator- sharing 

can be advantageous to plant communities (Tur et  al.  2016; 

Aparecida Lopes et al. 2021), and generalist pollinators can be 

vital to meta- network structure and resilience by linking sub-

sets of the network and facilitating gene dispersal (González, 

Dalsgaard, and Olesen  2010). A high abundance of general-

ist pollinators can make an important contribution to pollen 

transport between conspecific plant individuals (Larsson 2005). 

Bat- pollinated species often occur naturally at low densities 

and tend to be self- incompatible and highly reliant on bats as 

mobile pollen dispersal agents (Herrerías- Diego et  al.  2006; 

Fleming, Geiselman, and Kress 2009; Quesada et al. 2013; Ratto 

et al. 2018). Morphological trait matching also influences polli-

nation success, with diverse flower shapes and designs result-

ing in differential pollen placement across the body of bats, thus 

promoting conspecific pollen delivery (Muchhala 2008; Stewart 

and Dudash 2016a).

Bats are highly mobile, and the capacity for long- distance 

travel is a particular characteristic of the bat species assem-

blage constituting our network, with three of the four species 

being migratory. Leptonycteris yerbabuenae individuals can 

travel up to 100 km per night during foraging trips (Goldshtein 

et  al.  2020), while smaller glossophagines cover 50 km or less 

(Tschapka  2004; Rothenwöhrer, Becker, and Tschapka  2011). 

Bats in our network may therefore travel greater distances 

than those in other networks in search of resources, increas-

ing the likelihood of encountering and opportunistically in-

teracting with, a higher number of plant species (Stewart and 

Dudash  2016b). The high mobility of Leptonycteris bats also 

allows them to commute further to forage even when food 

resources are present nearer to the roost, perhaps to avoid 

competition and thus reduce niche partitioning (Ober, Steidl, 

and Dalton 2005). Additionally, while we found no resource par-

titioning of plant species, nectar- feeding bat species may display 

territorial behaviour and partition individual plants or foraging 

areas (Lemke 1984; Goldshtein et al. 2020).

Higher generalisation in a plant–pollinator community should 

increase functional robustness and decrease vulnerability to 

changes in species diversity and abundance, for both plants 

and pollinators, as impacts are spread more evenly across the 

network (Kaiser- Bunbury and Blüthgen 2015). Changes in cli-

mate and land- use are projected to reduce numbers of poten-

tial bat–plant interactions in Mexico through changes in plant 

distributions, with increasing temperatures also predicted to 

cause a decrease in bat pollinator species richness, particularly 

in seasonally dry tropical forest (Zamora- Gutierrez et al. 2021). 

Furthermore, anthropogenic impacts such as deforestation 

caused mainly by agricultural and cattle ranching activities are 

exerting a strong pressure on natural vegetation cover in the 

area (Macías- Rodríguez et  al.  2018). Stenocereus queretaroen-

sis and other crop plantations are largely established in areas 

originally occupied by flower- rich tropical dry forest, and the 

area under production is increasing yearly (Macías- Rodríguez 

et al. 2018; SIAP 2018). Habitat loss or degradation can result in 

changes to bat foraging behaviour, which can lead to decreased 

visitation rates to flowers (Quesada et al. 2004), a more restricted 

diet (Alpízar, Schneider, and Tschapka  2020), and impact the 

delivery of conspecific pollen to flowers (Fuchs, Lobo, and 

Quesada  2003; Sritongchuay, Hughes, and Bumrungsri  2019), 

with possible implications for network structure.
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