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A B S T R A C T   

The emergence of Automated Vehicles (AVs) promises a transformative impact on future travel 
patterns and consequently on the design of urban spaces. Despite the revolutionary prospects, the 
integration of AVs into existing and near-future road infrastructures presents a complex and 
unexplored challenge. This paper addresses this critical gap by introducing a novel and 
comprehensive assessment framework designed to evaluate the readiness of road networks for 
highly automated vehicles (Level 4 AV) operation. Recognising the uncertainties in automated 
driving technologies, the study defines two distinct AV capability levels and adopts three po
tential network scenarios to explore varied technological advancement perspectives and their 
impact on the suitability of current road network for their use. This multi-scenario approach 
offers a holistic viewpoint on the prospective circumstances and potential strategies to AV 
deployment. The proposed framework was empirically applied in a specific area in Leeds, United 
Kingdom, demonstrating its practical applicability. The findings of this research offer vital in
sights that contribute to the understanding of AV integration into road networks and support 
decision-makers and transport planners in developing informed and future-oriented policies, 
regulations, and guidelines.   

1. Introduction 

Over the past decade, Automated Vehicles (AVs) have transitioned from a conceptual possibility to an actual presence on public 
roads because of significant investments and advances in machine learning, sensor technology and computing (International Transport 
Forum, 2023a). AVs offer various potential benefits, including enhancing road safety, increasing people’s accessibility, and reducing 
energy consumption (Milakis et al., 2017; Wadud et al., 2016). However, realising these benefits hinges on ensuring the safety of the 
Automated Driving Systems (ADS), typically referenced when discussing Level 3 automation and above. AVs are often described by 
SAE automation levels, which describe the capabilities of the vehicle in terms of its ability to perform some or all of the driving tasks 
without human intervention (SAE International, 2021). Levels 1 and 2 of driving automation, which include driver assistance features 
such as lane centring and/or adaptive cruise control, have been commercially available for several years. More recently, many au
tomakers have introduced Level 3 vehicles, which offer partial automation under certain conditions (Bishop, 2024). At this level, the 
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ADSs take over all driving tasks when engaged, reducing the need for continuous human supervision. However, the higher levels of 
automation, where human intervention is required only in certain situations (Level 4, hereafter L4) or is not required at all (L5), are 
still in the early stages, with widespread adoption expected to take decades (Litman, 2023). 

Highly automated vehicles are undergoing extensive trials in numerous developed nations globally. Major automobile manufac
turers, alongside tech giants and promising startups, have embarked on a race to achieve the pinnacle of vehicle automation. While the 
design concepts differ, all these vehicles rely on the use of a set of sensors to perceive the environment, advanced software to process 
inputs and decide the vehicle’s path, and a set of actuators to act on decisions (Wevolver, 2020). Yet, their automation capabilities 
differ considerably based on their Operational Design Domain (ODD) due to variations in the type of service they provide or the specific 
sensors they are equipped with. Broadly, the ODD is characterised as the specific operational conditions under which a particular 
driving automation system is designed to function. This encompasses factors like environmental constraints, geographical boundaries, 
time-of-day limitations, and specific traffic or road attributes (SAE International, 2021). 

In practical terms, the ODD is instrumental in delineating where an AV’s automated functionalities can be effectively employed. 
Therefore, there is a growing interest in the scientific community to develop ODD taxonomies that define the conditions under which 
ADSs might operate (AVSC, 2020; BSI, 2020; Mendiboure et al., 2023; Thorn et al., 2018). In this context, there is an emphasis on 
exploring which factors have an impact on the functioning of AVs. This exploration can be done through empirical investigations of AV 
trials (Klauer et al., 2023; Ramanagopal et al., 2018) or by analysing AV-involved accident or disengagement data provided by AV 
manufacturers (Boggs et al., 2020; Ye et al., 2021). Furthermore, significant strides have been made in recent years towards developing 
risk assessment and safety verification methods for automated driving systems. Among these advancements, scenario-based strategies 
stand out; they evaluate the safety of AVs by testing individual traffic situations through virtual simulations against a variety of 
variables (Riedmaier et al., 2020). Apart from this, few studies have introduced models that evaluate the complexity of driving en
vironments or scenarios of traffic based on sensory data of AVs (Cheng et al., 2022; Li et al., 2019; Wang et al., 2018). 

On the other side, there is an expectation that AVs require a compatible road infrastructure that provides them with an environment 
fit for their use (Tsigdinos et al., 2021). However, current specifications lack information on the necessary infrastructure to support 
each level of automation or service model. The main efforts to date predominantly adopt a vehicle-centric perspective, with safety and 
reliability issues primarily viewed from the vehicle’s standpoint. The role of infrastructure in the deployment of automated driving has 
often been relegated to the background (Tengilimoglu et al., 2023a). In practice, the road network is a mosaic of varied road types with 
various conditions, and AVs must transition between them seamlessly during their operation (Chen et al., 2023). It is therefore 
important for authorities and road agencies to know how ready their current road infrastructure is for safe automated driving. 

In addition, for AVs to truly emerge as viable mobility options, they must operate not just in regions where their advanced ca
pabilities have been rigorously tested, but also beyond. Therefore, developing and implementing an assessment framework to measure 
the readiness of the infrastructure for AVs can assist authorities in identifying areas that need to be addressed, as well as planning for 
the necessary infrastructure upgrades. This is pivotal as L4 AVs can only achieve full operational capability under specific and limited 
conditions, which requires a clear understanding of the infrastructure required. Realising this objective, however, is not straightfor
ward, requiring significant effort and financial support (Saeed, 2019; Tengilimoglu et al., 2023b). 

Various road categories, their specific design requirements, traffic loads and complexities should be evaluated separately and from 
different angles to prepare the roads for AVs (Ulrich et al., 2020). However, studies to date have tended to focus on the potential 
infrastructure requirements for automated driving based on experts’ views (Tengilimoglu et al., 2023a) and presented these as a 
desirable infrastructure characteristic rather than analyse in detail the relationship between road infrastructure and the risk to per
formance of AVs (Carreras et al., 2018). This is mainly due to the lack of sufficient data to establish an empirical model for this 
relationship and differences in the technologies adopted in AVs. Therefore, there is currently very limited research on the assessment 
side of road infrastructure for AVs (Konstantinopoulou and Ljubotina, 2020) and therefore the suitability of road networks for the 
operation of AVs. Particularly, few studies have been conducted to systematically evaluate the suitability of road networks in urban 
areas for L4 AV operation and the potential impact of road infrastructure on the travel demand and network performance side. Most of 
the prior studies have predominantly focused on motorways in relation to automated driving. 

Therefore, this study seeks to address the existing gaps in the field. The primary objective is to establish an assessment framework to 
determine the readiness of urban road infrastructure for the safe deployment of L4 AVs. Moving beyond prior research approaches that 
overlooked variations in AVs, considering uncertainties in automated driving technologies, this study highlights two distinct AV 
capability levels. Additionally, it adopts three potential network scenarios, depending on the technical capability of the AV. This 
approach moves beyond the current literature on presenting infrastructure requirements, instead leveraging expert opinions to crit
ically evaluate the importance of various infrastructure elements for AV operations, and thereby determining the suitability of specific 
road sections for such technologies. To the best of the authors’ knowledge, this study is the first exploratory research that evaluates the 
compatibility of road infrastructure and the surrounding environment for automated driving based on the opinions of key stakeholders 
and experts in the field. In the absence of actual AV trials, which can be resource-intensive, such an assessment framework might offer a 
starting point for authorities to assess road segment suitability within the network. In addition, through the visualisation of assessment 
outputs, potential operational zones for initial AV deployments can be identified to prioritise road user safety. As such the aim of this 
study is not only to deepen the understanding of infrastructure readiness but also to provide guidance for policymakers and road 
agencies as they navigate the impending transformation in transport: the broader adoption of L4 AVs. 

The organisation of the rest of this paper is as follows: Section 2 summarises prior studies regarding road assessment and classi
fication concepts. Section 3 introduces the concept of an assessment framework for evaluating the readiness level of roads for auto
mated driving. It also offers a brief review of the current literature, addressing the basic principle of AVs and the challenges and factors 
that impact their performance. In Section 4, the practical application of this framework is explored, with a focus placed on the selected 
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case study area. This section provides an in-depth description of the utilised data and methodological approaches for subcomponents. 
Then, it presents insights from this implementation as well as recommendations for future AV infrastructure development. The final 
section presents the conclusions drawn from this research, coupled with recommendations for prospective studies in this arena. 

2. Literature review 

In the existing literature, one can find infrastructure-related frameworks designed for pedestrian and bicycle traffic. These 
frameworks guide the identification of optimal locations for investment, with the aim of maximising societal benefits. These studies 
often construct walkability (e.g. Zhao et al., 2019; Su et al., 2019) or bike-ability indices (e.g. Winters et al., 2013; Krenn et al., 2015; 
Arellana et al., 2020). Within these frameworks, various components are calculated for specified reference spaces, such as grid cells or 
street segments. These are then merged into a singular value, commonly referred to as an “index”, which represents the area’s suit
ability for cycling or walking. In a similar context, this approach can be applied to the road network in a given area to assess its 
suitability for the operation of AVs considering different use cases or levels of automation (Soteropoulos et al., 2020; Tsigdinos et al., 
2021). 

While several indices have been introduced in the literature to assess the readiness of countries (KPMG International, 2020) or cities 
(Jiang et al., 2022; Khan et al., 2019) for AV operations, they primarily offer aggregated insights. There is a lack of research inves
tigating which roads are relatively suitable for AVs within an urban network. To achieve this, a more detailed, disaggregated analysis is 
essential. At such a level, road assessment programs have been already developed worldwide (e.g. the iRAP Star Rating of roads for 
safety). These protocols often assign ratings to roads based on the presence or absence of key safety-related design features and are 
validated by recorded accident databases. Such protocols can be adapted to rate the ability of roads to support AVs (Konstantinopoulou 
and Ljubotina, 2020). However, there is currently an insufficient amount of data on AVs to build an empirical model for this 
relationship. 

As such, early research in this domain has largely relied on the opinions of experts, seeking to chart the unknown terrain of AVs. For 
example, Nitsche et al. (2014) pioneered the concept of an evaluation framework of road infrastructure for AVs. The study outlined 
infrastructure-related requirements for highly automated driving, focusing on 14 factors that impact the efficacy of three specific ADS 
groups: lane assistance, collision avoidance, and speed control systems. Among these factors, the complexity of the urban road 
environment, quality of lane markings, their visibility and harmonization, temporary road work zones, and discontinuous or damaged 
road edges or kerbs have been identified as the main challenges by experts. Similarly, Madadi et al. (2018) have attempted to predict 
potentially challenging road and intersection scenarios for automated driving, as well as the pertinent factors involved. This endeavour 
was grounded in workshops with experts. They presented experts with images of specific locales, prompting direct questions. Based on 
the experts’ feedback, the authors discerned correlations between certain road attributes and their appropriateness for L3-4 AVs. 

Another relevant research strategy has been to use the definition of the vehicles’ ODDs as a starting point for defining the suitable 
road sections for automated driving. This is because various infrastructure and environmental conditions significantly impact an AV’s 
interpretation of its environment, exposing it to operational limitations. Within this framework, a couple of studies have proposed 
classification schemes that categorise the capabilities of road infrastructure to support and inform AVs about the functionalities offered 
by different road facilities (Carreras et al., 2018; García et al., 2021; Poe, 2020). These classifications, called Level of Service for 
Automated Driving, range from “A” (indicating a road segment is compatible with most vehicle ODDs) to “E” (signifying the road 
segment has minimal compatibility with most automation systems). However, a notable limitation in these classification systems is the 
tendency to assign existing road infrastructures a uniform low score, neglecting the diverse characteristics and distinctions between 
them. 

On a more detailed scale, a few initiatives have pioneered inspection criteria for assessing the readiness of motorways and arterial 
roads for automated driving. Among them, for example, the Saving Lives Assessing and Improving TEN-T Road Network Safety 
(SLAIN) project evaluated the physical road infrastructure of certain road sections across four European countries: Croatia, Greece, 
Italy and Spain (Konstantinopoulou et al., 2020). Similarly, Austroads, which is a road transport agency, carried out an extensive field 
audit of Australian and New Zealand highways to assess their readiness for active safety systems and automated driving (Somers, 
2019). These studies, grounded in experimentation, aimed to identify the performance characteristics of traffic signs and road 
markings that might influence machine-vision systems’ recognition capabilities. Additionally, in 2021, the Finnish Transport Infra
structure Agency initiated a project focusing on infrastructure support and classification for automated driving on Finnish motorways 
(FTIA, 2021). The project assessed the suitability of a motorway section for operating L3 and L4 AVs. In a separate study by Carter and 
Quick (2019), certain operational issues with AVs were identified as risk factors and accordingly, potentially hazardous locations along 
the Route 65 Corridor, which is representative of regional highway corridors, located outside the City of Pittsburgh, USA. 

Regarding the readiness index for urban roads, Soteropoulos et al. (2020) have developed a framework to assess the suitability of 
roads in the network of Vienna for L4 AVs from a technological standpoint. This framework, mainly relying on publicly available data, 
combines the challenges faced by ADSs in their current technical state and considers diverse street space contexts. The study found that 
urban motorways and expressways have relatively high values of the automated drivability index. On the other hand, the lowest values 
of the index were observed in the central districts of the city, where often complex intersections, narrow streets as well as pedestrian 
crossings or non-structural separated bicycle infrastructure on the roadway are present. For a similar purpose, Cucor et al. (2022) have 
recently introduced an assessment framework to score segments of physical and digital infrastructure based on their features to 
expedite the deployment of AVs. This framework is elucidated through its application on a public transport route in Zilina, Slovakia. 
Utilising both connectivity and positioning data alongside image data, the study identified infrastructure readiness and challenges. 

In summarising the literature, current research is still evolving in terms of a generally applicable framework for assessing the 
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suitability of the road network for L4 AV operations. Most prior studies have taken either a broad approach, typically centring on 
national or city-wide indices, or a more specific one, with a predominant focus on motorways. There is a notable scarcity of research 
specifically targeting urban roads within cities due to the uncertainties in the automation domain. Additionally, studies commonly 
provide insights based on the present technological capabilities of AVs, rather than delving into the complex relationship between road 
infrastructure and the risks associated with AV operation. 

3. Framework for the assessment of road readiness for L4 AVs operation 

This section details the methodology and approach employed to develop an assessment framework that can evaluate the readiness 
level of roads for automated driving, specifically at L4. The task of identifying which road segments are more suitable in a road network 
for automated driving is complex due to the numerous criteria that affect the operation of AVs. Moreover, as mentioned earlier, there is 
limited data available on AV-involved traffic accidents or disengagement reasons of automated driving systems, which makes it 
difficult to explicitly define criteria for assessing road suitability. Furthermore, the available data predominantly originates from 
countries leading in vehicle automation, such as the USA, and may not represent regional differences. For these reasons, reviewing 
relevant literature and consulting experts about the capabilities and limitations of automated driving can be viewed as supplementary 
or alternative ways to establish evaluation criteria for the early stages of this emerging mobility service. To this end, the authors build 
upon their recent studies (Tengilimoglu et al., 2023a, 2023c), which identify limitations that certain road infrastructure features may 
impose on automated driving. Additionally, updated literature is reviewed to gather the latest knowledge on the identified components 
and corresponding subcomponents of the index. Fig. 1 depicts the steps undertaken to develop the assessment framework, along with 
the corresponding subsections. 

3.1. Identifying the components of the assessment framework 

Understanding what a typical automated driving system consists of and how it works is crucial to identifying the components of the 
framework. As a brief overview, the operation principle of automated driving systems (Level 3 and above) can be broadly categorised 
into three main subsystems: perception, planning, and control (Eskandarian et al., 2021; Pendleton et al., 2017; Tas et al., 2016). Fig. 2 
shows the general overview of typical automated vehicle architecture. The perception layer refers to the ability of an AV to collect 
meaningful information from the sensing data and extract relevant knowledge from the environment. This data can be obtained either 
directly from on-board sensors such as cameras, lidars, and radars or through sensor fusion techniques or remote data sources such as 
roadside communication units. The perception layer calculates the global and local location of the ego-vehicle and builds a map of the 
environment (Van Brummelen et al., 2018). In other words, this layer refers to the understanding of the environment, such as where 
obstacles are located, detecting road signs/markings, and categorising data by their semantic meaning (Pendleton et al., 2017). 

In the planning layer, functions such as action prediction, path planning, and obstacle avoidance are combined to generate an 
effective plan in a real-time manner. The planning layer determines the best global route from its current position of the world to the 
requested destination based on the remote map data of road and traffic information. Then, based on real-time vehicle states and the 
current environment provided by the perception layer, the planning layer computes a locally optimal trajectory through decision- 
making and trajectory planning (Eskandarian et al., 2021). Also, with vehicle connectivity, the perception layer can share its 
perception data with other road users, and the planning layer is able to perform cooperative driving with other road users (Guanetti 
et al., 2018). Finally, to follow the optimal route decision (e.g. lane change, right turn, or another manoeuvre), the control layer 
governs the longitudinal and lateral motions of the vehicle by calculating the appropriate command to control the actuators in the 

Fig. 1. Process for developing road readiness index for L4 AV operation.  
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vehicle (Meneguette et al., 2018). 
A thorough review of existing studies reveals numerous factors related to the requirements and limitations of the primary functions, 

as well as the auxiliary hardware and software integral to automated driving. These factors form a broad set of criteria to assess the 
operational design domains of emerging technologies (Thorn et al., 2018). From this comprehensive list, 15 pivotal factors have been 
identified for the proposed Road Readiness Index (RRI). These are: road geometry challenges, road surface conditions, road marking 
conditions, road boundaries, traffic signs visibility, special road sections, road lighting, speed limit, number and diversity of road users, 
precautions for roadworks and incidents, localisation challenges, communication supports, and intersections and roundabouts. 

A brief description of these index components and their associated literature references is presented in Table 1. Further details 
about these framework components are presented in Supplementary materials (see SM-1), including the rationale behind their 
selection and their impact on the capabilities of AVs. However, it is essential to note that there are several dynamic factors such as 
weather and traffic conditions, accidents, and time of day that significantly influence the safe operation of AVs. As these dynamic 
factors may change in seconds, it is challenging to incorporate them into the evaluation of road segments in the network. Therefore, 
this study concentrates primarily on relatively static factors and road environment attributes. Nonetheless, some dynamic factors can 
be indirectly captured in various subcomponents in the framework. 

3.2. Weighting of the components according to the opinions of experts 

In the previous subsection, components of the index that can affect the performance of automated driving systems (ADS) in relation 
to road infrastructure and the surrounding road environment were presented. However, it is essential for policy makers and road 
authorities to understand the significance and relevance of each component in the framework to evaluate their road infrastructure or 
prioritise their investment. To achieve this, advanced weighting methods, such as the Analytic Hierarchy Process (AHP), have been 
applied in the literature to generate reliable weights for the parameters from decision-makers or expert judgments (Odu, 2019). 
However, in the absence of evidence-based sources to determine such measures, an expert weighted score method can be implemented 
in exploratory research by averaging the weights for each parameter. In addition, indexes consisting of many parameters without 
hierarchical structures require great effort in terms of computation (i.e. pairwise comparisons by experts). 

Therefore, this study drew upon findings from the authors’ previous research (Tengilimoglu et al., 2023c) to determine the 

Fig. 2. The architecture of automated vehicles, adapted form (Eskandarian et al., 2021; Khan et al., 2023).  
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importance ratings of components. A 5-point Likert scale was utilised in a survey with experts, aiming to evaluate the factors that might 
influence the safe operation of L4 AVs in the foreseeable future. This survey gathered responses from a total of 168 experts spanning 29 
countries, who specialised in the vehicle automation domain. These experts were divided into three groups: Agency (comprising local/ 
regional authorities (9), national authorities (12), road agency/administration/operators (27), consultancy/engineering (24)); In
dustry (consisting of vehicle industry (15), technology developers (9), service providers and suppliers (4), research and development 
companies (3), insurance companies (1)); and Academia (encompassing universities (39), research institutes and organisations (25)). 
Among them, 160 experts assessed factors that were pinpointed from the current literature. Only those factors that were directly 
related to the components of the index were considered. The weight of each component (Wci) was then calculated based on their mean 
values, as shown in Table 2. 

It is worth noting that different mobility models may require different considerations and infrastructure requirements based on 
their functionalities (Aigner et al., 2019). For this reason, the ranking of the factors was based on generic driving tasks of highly 
automated vehicles, rather than focusing on specific use-case scenarios. Nonetheless, each subcomponent representing components of 
the index was evaluated based on the two different driving capability levels of L4 automated vehicles, which is explained in the next 
section. In brief, the weights of the framework components are assumed to be valid for all L4 automated vehicles, but the performance 

Table 1 
Overview of components of the road readiness index for automated driving.  

(Ci) Framework 
Components 

Description References 

C1 Road Geometry 
Challenges 

Road geometric design challenges resulting from alignment 
and cross-section conditions that can affect the driving tasks 
or capabilities of AVs 

(Amelink et al., 2020; Eskandarian et al., 2021; FTIA, 2021; 
García et al., 2021; Johnson, 2017; Konstantinopoulou and 
Ljubotina, 2020; Marr et al., 2020; Martínez-Díaz et al., 2019; 
Soteropoulos et al., 2020; Thorn et al., 2018; Wang et al., 
2020) 

C2 Road Surface Condition Appearance and quality of road surfaces ensure safe driving 
for road users and are less challenging for the perception 
systems of AVs. 

(Amelink et al., 2020; BSI, 2020; FTIA, 2021; Johnson, 2017; 
Konstantinopoulou and Ljubotina, 2020; Soteropoulos et al., 
2020; Thorn et al., 2018) 

C3 Road Marking 
Condition 

Conditions and configuration of road markings that AVs 
need to detect and read rules of the road segment. 

(Cucor et al., 2022; FTIA, 2021; Huggins et al., 2017; 
Konstantinopoulou et al., 2020; Lawson, 2018; Marr et al., 
2020; Somers and Jones, 2019) 

C4 Road Boundaries Continuous and detectable road boundaries that AVs may 
not struggle with positioning themselves on the road 
section. 

(Suleymanov et al., 2021; Transport Systems Catapult, 2017; 
Wang et al., 2022; Waykole et al., 2021) 

C5 Traffic Signs Visibility Conditions of traffic signs that AVs may not struggle to read 
and understand the rules of traffic. 

(Cucor et al., 2022; Konstantinopoulou et al., 2020; Mihalj 
et al., 2022; PIARC, 2021; Poe, 2020; Roper et al., 2018) 

C6 Special Road Section Road sections or structures that require additional attention 
and may present challenges for AVs. 

(Farah et al., 2018; FTIA, 2021; Huggins et al., 2017; Lu, 2018; 
Lyon et al., 2017; Manivasakan et al., 2021; Paulsen, 2018; 
PIARC, 2021; Rios-Torres and Malikopoulos, 2017) 

C7 Road Lightning The lighting conditions of the road segment so that AVs can 
detect and read the road infrastructure and surrounding 
elements. 

(Amelink et al., 2020; BSI, 2020; Chen et al., 2020; FTIA, 2021; 
Gopalakrishna et al., 2021; Huggins et al., 2017; Johnson, 
2017; Konstantinopoulou and Ljubotina, 2020; Liu et al., 2019; 
Soteropoulos et al., 2020; Thorn et al., 2018) 

C8 Speed Limit The maximum legal operating speed limits of road sections 
that AVs can stop within their detection range or 
conventional vehicles can travel along priority junctions 
safely. 

(Cucor et al., 2022; Easa et al., 2021; Magyari et al., 2021; 
Pendleton et al., 2017; Soteropoulos et al., 2020) 

C9 Number and Diversity 
of Road Users 

The number and diversity of road users on the road segment 
that AVs must detect and respond to. 

(Soteropoulos et al., 2020; Tabone et al., 2021; Thorn et al., 
2018; Wang et al., 2020) 

C10 Roadside Complexity The level of roadside complexity may affect the performance 
of AVs, due to street furniture, trees, or commercial 
facilities. 

(Ebrahimi Soorchaei et al., 2022; Huggins et al., 2017; 
Koopman and Fratrik, 2019; PIARC, 2021; Shladover, 2018; 
Soteropoulos et al., 2020; Ulrich et al., 2020). 

C11 Facilities for Vulnerable 
Road Users 

Infrastructure-related facilities to reduce interaction 
between AVs and VRUs (e.g. pedestrians and cyclists). 

(Johnson and Rowland, 2018; Lu et al., 2019; Madigan et al., 
2019; Manivasakan et al., 2021; Nitsche et al., 2014; Rasouli 
and Tsotsos, 2020; Tabone et al., 2021) 

C12 Precautions for 
Roadworks and 
Incidents 

Measures to reduce the risks that AVs may face in the 
roadwork area or incident scene. 

(Amelink et al., 2020; Gopalakrishna et al., 2021; Lytrivis 
et al., 2018; PIARC, 2021; Thorn et al., 2018; Transport 
Systems Catapult, 2017;Wang et al., 2022). 

C13 Localisation Challenges Road sections on the network that may have difficulty 
receiving a strong GNSS signal due to the surrounding built 
environment or nature. 

(Cucor et al., 2022; Eskandarian et al., 2021; Godoy et al., 
2015; Huggins et al., 2017; Kuutti et al., 2018; Martínez-Díaz 
et al., 2019; Meng et al., 2018; Reid et al., 2019) 

C14 Communication 
Facilities 

Digital infrastructure facilities that support critical 
information transfer or communication between road users 
and the surrounding road environment so that AVs can 
operate safely. 

(Cucor et al., 2022; Eskandarian et al., 2021; FTIA, 2021; 
Huggins et al., 2017; Lytrivis et al., 2019; Martínez-Díaz et al., 
2019; Meng et al., 2018; Mihalj et al., 2022; PIARC, 2021; Poe, 
2020; Somers, 2019) 

C15 Intersections and 
Roundabouts 

Types of intersections and roundabouts that reduce conflict 
between road users and ensure the safe operation of AVs. 

(Amelink et al., 2020; BSI, 2020; Chen et al., 2020; FTIA, 2021; 
Gopalakrishna et al., 2021; Huggins et al., 2017; Johnson, 
2017; Konstantinopoulou and Ljubotina, 2020; Liu et al., 2019; 
Soteropoulos et al., 2020; Thorn et al., 2018)  
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grading of the subcomponents may vary according to the capability levels of the vehicles as their response to measurement variables 
can differ. 

3.3. Identifying the subcomponents of the components and their performance grading in the context of UK road configuration 

This step entails the identification of subcomponents that can represent components within the assessment framework. It also 
involves assigning performance grades to their measurement variables based on the scoring system. Although each component 
identified from the literature and the views of experts has an impact on the safe operation of AVs, there is currently no official standard 
or benchmark to be used by authorities to assess the level of readiness or compatibility of roads for AVs. Similarly, it is challenging to 
propose objective and proven thresholds for each component since the level of impact of individual subcomponents on the perfor
mance of AVs is not entirely clear yet. For this reason, grading systems were established for components to be evaluated quantitatively 
or qualitatively for road environment compatibility for automated driving. These scoring systems mainly were proposed by consid
ering the current UK specifications and manuals regarding road design, operation, and maintenance. 

In this process, first, subcomponents that can represent the framework components have been selected based on current literature 
insights. The feasibility of gathering data with current technology also played an important role in these selections. Subsequently, the 
weight of these subcomponents within the components (Wci,j) was determined, with most being assigned an equal weight. In the next 
step, the measurement variables of the subcomponents were defined in binary or categorical form depending on data availability. 
Following this, each measurement variable in the subcomponents was assigned a score (Sci,j) ranging between 0 and 1 to signify the 
grade of a particular road segment, with 0 being the lowest and 1 being the highest.1 According to the selected grading criteria, a 
higher score denotes road characteristics that are more suitable for the safe operation of AVs. 

However, the current AV industry focuses on developing automated driving technology for different service models with different 
capabilities (Shladover, 2022). For example, an automated bus and an urban robo-taxi will likely have different automated driving 
hardware, software, and sensors and thus have different operational domains. Even in the same use case model of AVs, some vehicles 
may be capable of self-driving on roads where other AVs may not operate, depending on their technology levels and computing 
budgets. For this reason, the study considered two different automated driving capability levels of L4 AVs for the same use-case model 
when scoring the measurement variables of subcomponents. These are:  

• Low Capability of L4 Automated Vehicle (LC): refers to a vehicle equipped with basic software and hardware that has limited 
perception range, needs more time for computation and response and is more dependent on the surrounding road environment to 
perform driving tasks. In other words, low-capability L4 vehicles have basic sensors and decision-making algorithms that can 
handle numerous simple tasks, but they may struggle to navigate through more complex environments due to constrained 
computing budgets. These vehicles may require human intervention in certain situations, such as adverse weather conditions or 
unexpected road closures.  

• High Capability of L4 Automated Vehicle (HC): refers to a vehicle equipped with advanced software and hardware that has a long 
perception range with multiple sensors, has advanced decision-making algorithms and processing power, needs less time for 
computation and response, and is relatively less dependent on the surrounding road environment in order to perform driving tasks. 

Table 2 
Weightings of the components of the Road Readiness Index (RRI) based on experts’ views (N = 160), adapted from (Tengilimoglu et al., 2023c).  

Item 
(Ci) 

Framework Components Mean* S.D. Weight 
(Wci) 

C1 Road Geometry Challenge  4.280  0.838  0.0733 
C2 Road Surface Condition  3.813  0.979  0.0653 
C3 Road Markings Condition  4.269  0.979  0.0731 
C4 Road Boundaries  3.974  0.917  0.0681 
C5 Traffic Signs Visibility  4.194  1.088  0.0718 
C6 Special Road Sections  4.194  0.940  0.0718 
C7 Road Lighting  3.800  1.003  0.0651 
C8 Speed Limit  4.129  0.978  0.0707 
C9 Number and Diversity of Road Users  4.381  0.914  0.0750 
C10 Roadside Complexity  3.773  0.987  0.0646 
C11 Facilities for Vulnerable Road Users  4.446  0.804  0.0761 
C12 Precautions for Roadworks and Incidents  4.494  0.746  0.0770 
C13 Localisation Challenging  4.547  0.733  0.0779 
C14 Communication Facilities**  4.101  0.903  0.0702      

1.0000 

* Where: 1 = Not At All Important, 2 = Low Importance, 3 = Importance, 4 = Very Important and 5 = Extremely Important. 
** For this component, the highest average of communication related parameters is taken into account in the study. 

1 The measurement variables in the subcomponents of the components are scored according to the level of difficulty for automated driving: 
1=Least challenging, 0.75=Slightly challenging, 0.50=Moderately challenging, 0.25=Highly challenging, and 0=Extremely challenging. 
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They require less human intervention compared to low-capability AVs due to the heavy use of AI neural networks, high computing 
budget, and power draw. 

After that, the weight of the subcomponents (Wci,j) and the score of the measurement variables in each subcomponent (Sci,j) were 
finalised in the light of the literature and the collective insights of the authors. Table A1 presents a summary of performance grading for 
each subcomponent and measurement variable within the component, based on UK road configurations (see Appendix A). Detailed 
information on each component in the assessment framework, along with their corresponding subcomponents and measurement 
variables, is provided in the Supplementary materials (see SM-1). It is worth mentioning that most of the measurement variables are 
not only UK-specific, so they can be applied in other countries. However, the subcomponents chosen to evaluate each component and 
the corresponding assessment system may change and need to be regularly reviewed in response to more precise and specific criteria 
that are identified. 

3.4. Modelling of the road readiness index for the road network 

The preceding subsections provided an overview of the assessment framework, including the weights assigned to its components, 
the chosen subcomponents, and the scoring scheme for each subcomponent. After these steps, the Road Readiness Index (RRI) can be 
modelled separately for road links and intersections/roundabouts. For road links, the RRI calculation is as follows: 

RRIlm =
∑14

i=1

∑n

j=1

[
Wci × (Wci,j × Sci,j,m)

]
(1)  

where l is road link in the network and m is the type of L4 automated driving based on the capability level, i is component number in the 
index, j is the subcomponent number in the corresponding component, n is the total number of subcomponents in the corresponding 
component, Wci and Wci,j are the corresponding weight of components and subcomponents, and Sci,j,m is a score of measurement 
variables in a certain subcomponent. The weights attributed to the components and subcomponents are subject to the following 
constraints: 

∑14

i=1
Wci = 1,

∑n

j=1
Wci,j = 1 (2)  

For intersections/roundabouts, which are commonly illustrated as nodes in between road links, the RRI calculation is as follows: 

RRInm =
∑n=4

j=1
(Wc15,j × Sc15,j,m) (3)  

where n is node in the network and m is the type of L4 automated driving based on the capability level, j is the subcomponent number in 
the component (i = 15), n is the total number of subcomponents in the corresponding component, Wci,j is the corresponding weight of 
subcomponent, and Sci,j,m is a score of measurement variables in a certain subcomponent. 

Note that the value range of the road readiness index is set to be RRI ∈ [0, 1]. That is RRI values range from 0 to 1, where a low score 
indicates that road infrastructure quality and the surrounding environment are unlikely to be suitable for automated vehicles to safely 
operate. This suggests that road links or intersections require substantial investment to facilitate automated driving. A high score can 
be considered as indicating that the infrastructure quality and condition of a road section is very likely to be suitable for automated 
driving. 

On the other hand, if the result of any component score in the analysis of a road link is zero (i.e.
∑n

j=1Wcj × Scj,m = 0), it is assumed 
that the RRIlm for that link is also zero. This assumption is made because the zero result suggests that the road situation is extremely 
challenging for AVs. The literature indicates that many components in the framework are essential for the proper operation of AVs. 
Consequently, if the calculated result is zero, it implies that the road link poses such difficulties and risks that the other framework 
components alone are not sufficient to ensure safe and reliable operations for AV. Therefore, a zero RRI is assigned to signify the 
severity of the road conditions and the need for additional measures or improvements before AVs can navigate that particular road link 
effectively. 

4. Application of the road readiness index to a road network 

4.1. Study area and road network 

This section presents a case study that provides an evaluation of a real-world road network through the conceptual framework 
introduced in Section 3. The presented analyses of roads regarding the integration of AVs utilise a region in the city of Leeds, United 
Kingdom. Multiple factors prompted the choice of Leeds for this study. The city embodies a mosaic of urban forms, echoing the 
historical evolution of urban development patterns found in many UK cities, as outlined in the government document on urban form 
and infrastructure (Williams, 2014). Its blend of radial and grid patterns, combined with its peripheral developments, mirrors the 
infrastructure challenges and opportunities present in many urban areas in the UK. Furthermore, Leeds, with its sizable population and 
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multifaceted urban morphology, showcases both the potential and challenges for AV operations. Given the representative nature of 
Leeds’s road network and urban structure, findings from this case study could hold broader implications for several cities across the UK 
and Europe. 

The road network data for Leeds Metropolitan District were obtained from the Ordnance Survey MasterMap Highway for the year 
2021. This dataset includes all road categories based on eight different levels of hierarchy (N = 53,609 road links).2 However, con
ducting a comprehensive evaluation of the entire road network in Leeds poses certain difficulties. The sheer size of the road network 
presents challenges in terms of data collection, analysis, and evaluation. Moreover, assessing each link individually is resource 
intensive. Due to these limitations, the study focuses on the Chapel Allerton region, an inner suburb in the northeast of Leeds. This is 
because focusing on a specific region like Chapel Allerton allows for a more targeted and manageable assessment while still capturing 
the essential characteristics and challenges of the broader road network in Leeds (see Fig. 3). 

The selected area is one of the dense wards in the Leeds Metropolitan District. According to the UK Office for National Statistics, 
based on the 2021 census, the population of Ward is 24,963 and 5.144 km2 area with having 4,853/km2 population density. The 
Chapel Allerton area was chosen as the case study area for several reasons. Firstly, its proximity to the city centre, being just 2 miles 
away, and population density make it an ideal location to assess the feasibility and suitability of AVs in an urban setting. It is 
considered that users can either own or lease AVs or are served by a shared model of AVs that are circulating in the system. So, this 
closeness to the city centre suggests that the area could potentially benefit from the implementation of different AV use cases. Sec
ondly, what makes Chapel Allerton an interesting case study area is the presence of different types of urban forms within the area (see 
Fig. 3). The area encompasses various types of urban structures, ranging from residential zones comprising terrace houses and a mix of 
detached houses, to local commercial hubs, parks, industrial sectors, multiple educational institutions, a hospital, shopping centres, 
and more. By evaluating the road infrastructure in an area with diverse urban characteristics, it becomes possible to understand how 
the heterogeneity of the environment affects the suitability of roads for automated driving. Additionally, the study area includes 
various road types, the distribution of which is detailed in footnote 4. This diversity is crucial for assessing the broader implications of 
AV integration and providing indications for infrastructure planning decisions. Thus selected area can be a good example for evalu
ating the road infrastructure and plans for the introduction of L4 AVs. 

4.2. Data collection and score assignment 

The framework is data-driven; however, the availability and accessibility of data related to the components of the RRI are often 
limited. This constrains research on evaluating the suitability of road sections for automated driving. This is because many of the 
subcomponents heavily depend on extensive field survey data, encompassing both physical and digital infrastructure data, which 
entails substantial time, labour, and financial resources (Konstantinopoulou and Ljubotina, 2020). This also makes the rapid update of 
data difficult for authorities. Therefore, a limited number of studies so far have collected detailed data with special equipment only 
from certain road sections, such as highways in a road network, to assess the level of readiness of roads (FTIA, 2021; Somers, 2019). In 
response to these limitations, some research has alternatively proposed a framework that relies on publicly available data to assess the 
complexity of road conditions and the surrounding environment for automated driving (Soteropoulos et al., 2020). 

On the other hand, street view images have been widely employed in quantitative and qualitative research on built environments 
and urban landscapes (Arellana et al., 2020). In a similar strategy, for this study, most of the data for road infrastructure conditions 
were gathered from visual inspection using either aerial photography/satellite imagery or street view services such as Google Street 
View.3 The approach also involved on-site observations and the utilisation of secondary data to accurately identify the specific re
quirements of the study area. Then, the proposed methodology involves implementing the index on a road network using a Geographic 
Information System (GIS) platform. Therefore, the values computed for the measurement variables should be compiled on such a 
platform. The road network is structured as a set of links and nodes representing the city’s streets. While open-source platforms like 
Open Street Maps can be utilised for this purpose, in this study, road network data were sourced from the Ordnance Survey MasterMap 
Highway due to having more detailed information in spatial dimensions. So, each link in the road network can be characterised by the 
evaluated factors and components. That is, using the measurement variables collected from different sources and weights obtained 
from the experts’ opinions, the estimated RRI can be mapped across the city or case study area. Briefly, various sources were utilised to 
gather data that could represent each measurement variable, and each road link and intersection was evaluated by the authors, and 
such a task required two months. Table A2 provides an overview of the data sources used and evaluates the quality and representa
tiveness of the collected data for each component (see Appendix A). 

2 According to Ordnance Survey, the road hierarchy in the UK can be categorised based on road function. These are: 1) Motorway, which is a 
multi-carriageway public road connecting important cities. 2) A Road, which is a major road intended to provide large-scale transport links within or 
between areas. 3) B Road, which is a road intended to connect different areas, and to feed traffic between A roads and smaller roads on the network. 
4) Minor Road, which is a public road that provides interconnectivity to higher classified roads or leads to a point of interest. 5) Local Road, which is 
a public road that provides access to land and/or houses, usually named with addresses. Generally, not intended for through traffic. 6) Local Access 
Road, which is a road intended for the start or end of a journey, not intended for through traffic but will be openly accessible. 7) Restricted Local 
Access Road, which is a road intended for the start or end of a journey, not intended for through traffic and will have a restriction on who can use it. 
8) Secondary Access Road, which is a road that provides alternate/secondary access to property or land not intended forthrough traffic.  

3 The visual inspection is generally based on satellite images dated March 24, 2022. However, the assessment of many road sections, primarily 
major roads, is based on the latest Google Street View images from the second half of 2022. 
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Regarding the study area, road network data for Chapel Allerton Ward encompass all road categories except motorways, 
comprising a total of 1,553 road links. After data cleaning for road segments that are restricted to traffic or do not have street view data, 
1,495 road links were obtained for analysis. The average length of road links is calculated at approximately 65 m, resulting in a total 
road network length of 96.8 km.4 It should be noted that the physical attributes and amenities may vary within a road link or 
intersection. However, considering that any issues or conditions present on a road link may affect the performance of automated 
vehicles, it is essential to maintain the integrity of the link conditions in the data representation. As such, any challenging issues on 
road attributes or environment along the road link were assigned to represent the whole link. For example, if there is a pothole on one 
small segment of the road surface or damaged traffic signs on the side of the road, this can pose a risk for AVs to operate through this 
road link. This hypothesis is grounded in the rationale that authorities and societies are likely to adopt a cautious approach and exhibit 
increased vigilance towards AVs and the road links designed to accommodate them during the initial phases of deployment. On the 
other hand, small segment sizes for road links would produce a large amount of noise in the analysis. For these reasons, road links were 
not split into small sizes for the scope of this study. 

4.3. Scenarios of road network evaluation 

The case study focuses on three scenarios, taking into account two distinct automated vehicle capabilities. Considering the po
tential technological development in the information and communication and vehicle industry foreseeable future, these scenarios can 
be explained as:  

• Network Scenario 1 concerns the current conditions of the road network in the study area as the base case scenario. It is assumed 
that the study area does not have High Definition (HD) map and Roadside Units (RSUs) providing connectivity to exchange in
formation between AVs and infrastructure. In this scenario, AVs have to rely solely on onboard sensors to understand the road 
environment and respond appropriately to surrounding road users. If a connection is required to obtain information, only the 
current cellular network quality can be used for connection to the outside world. Also, it is assumed that there is no presence of 
roadwork or incident in the study area.  

• Network Scenario 2 considers the incorporation of cutting-edge surveying technology and techniques that allow for the creation of 
a highly detailed map of cities. Consequently, it is assumed that HD maps are accessible for all roads within the study area. 
However, the absence of RSUs in the road network can be attributed to the challenges associated with implementation and 
management costs. Furthermore, the establishment of protocols and standards for vehicle-to-infrastructure (V2I) communications 
between the vehicle industry and road authorities has not yet been mutually agreed upon. If there is a need for a connection to 
obtain information, the current cellular network is the only available option, relying on its existing quality and coverage. 

Fig. 3. Location description of the case study area: Leeds Metropolitan District (left), Chapel Allerton Ward (right).  

4 The length of A Road network is 6.7 km (6.95%), the length of the B Road network is 4.3 km (4.44%), the length of the Minor Road network is 
14.2km (14.63%), the length of the Local Road network is 59.2km (61.16%) and the length of the Access Road network is 12.4 km (12.84%). 
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• Network Scenario 3 depicts a highly desirable scenario for the AV industry. It envisions the availability of HD maps for the entire 
road network and widespread coverage of 5G service with at least average quality, ensuring consistent and reliable connectivity 
across the entire area. Moreover, like the previous scenarios RSUs and roadworks are not present in the road network. 

4.4. Results and discussion 

4.4.1. Key findings and their implications 
The evaluation results of road links and nodes for each subcomponent in the index components, derived from the existing con

ditions of the road network, are illustrated in the Figures provided in Supplementary materials (see SM-2). Subsequently, the final 
Road Readiness Index values were computed by integrating these subcomponents, which reflect the measurement values of the road 
links and nodes, as per Equation (1). Fig. 4 illustrates the mapping of the outcomes obtained from integrating the assessment com
ponents for the Chapel Allerton region in Leeds, considering low-capability (LC) and high-capability (HC) automated vehicles. The 
index scores in the figure were divided into five groups to represent different difficulty levels for automated driving, ranging from 
extremely challenging to least challenging. Essentially, this categorisation demonstrates the suitability of road sections in facilitating 
AVs in terms of both road infrastructure and the surrounding environment. 

The figure clearly indicates that the majority of road sections in the case study area are categorised as extremely challenging 
(represented by the colour red) for the safe operation of both AV capabilities. This is mainly due to factors such as poor-quality road 
infrastructure and the complexity of the surrounding driving environment, resulting in the index score being penalised. In general, the 
lowest value of RRI can be observed in residential areas, where often the absence of road markings, clear and detectable road edges or 
pedestrian sidewalks, narrow streets with on-street vehicle parking, poor road surface conditions, the presence of obstructions such as 
trees or bushes. Similarly, the low RRI values can be also observed in mixed-use with commercial facility areas, where the road 
environment is complex, no clear segregation between VRUs and public transit. 

On the other hand, certain road sections (approximately 23.5 % and 26.2 % of total road links for LC and HC, respectively) in the 
network demonstrate relatively high RRI values, which are classified as either slightly or least challenging for AVs. However, there are 
significant gaps (i.e. lower RRI value sections) among these road links, primarily arising from variations in the quality and consistency 
of infrastructure and the road environment. As a result, the road network in the case study area demonstrates a marked heterogeneity 
in terms of its infrastructure and road conditions. Therefore, without modifications or upgrades in the infrastructure regarding the 
automated driving requirements, it is unlikely that AVs can operate seamlessly throughout the existing road network. 

Regarding the evaluation results of nodes, which include intersections and roundabouts, a distinct pattern emerges. Unlike road 
links, a substantial proportion of these nodes (approximately 66.1 % and 85.7 % of total nodes for LC and HC, respectively) in the 
network were classified as either slightly or least challenging for AVs. One key factor behind this is that many junctions in the case 
study area are priority-controlled, three-armed, and feature a regular layout. These attributes generally offer a less challenging driving 
environment for AVs compared to other complex types of junctions. However, this trend can also be attributed to the smaller number of 
criteria used in the assessment framework for nodes, which reduces the likelihood of the index being penalised. Additionally, when 
assessing road links, larger areas are considered compared to nodes, thus making them more susceptible to penalties. Furthermore, the 
observed variations in the performance between different AV capabilities within the network can be linked to the distinct advantages 
of high-capability AVs, which enable them to mitigate drawbacks or navigate through complexities within the road network. These 
advantages are typically associated with advanced automated driving systems, encompassing sophisticated sensors and computational 
capacity. However, some junctions along the links with high RRI values are categorised as having low scores, indicating a high level of 
challenge for the operation of AVs. This implies that even if the road links themselves are suitable without any upgrades, AVs are likely 
to encounter difficulties in crossing junctions and may become stuck within the link. Additional consideration will likely be necessary 
for extending the operational areas of AVs, taking into account the challenges posed by intersections. 

In Scenario 2, which assumes an HD map is available for the entire road network, it is observed that the operation areas of both AV 
capabilities extend significantly compared to the base case scenario (Fig. 5). For instance, for low-capability AVs, around 68.8 % of all 
road links in the network exhibit RRI values greater than the moderately challenging category, an increase of 45 % compared to 
Scenario 1. This change highlights the critical role HD maps play in facilitating automated driving, as these maps are linked to many 
components within the index. Especially for local roads and certain major roads suffering from poor road markings and traffic signs, 
challenging geometry and complex roadside environments, HD maps can potentially provide AVs with important additional details 
about the driving environment. Additionally, this scenario yielded higher index values for junctions, predicated on the assumption that 
HD maps can mitigate risks associated with poor delineation of markings at these locations. Briefly, this scenario utilises static map 
layers to provide redundancy for onboard sensors, aiding in precise localisation, enhancing perception beyond the sight range, and 
facilitating more accurate path planning. 

Nonetheless, the provision of HD maps alone does not resolve all the challenges inherent in the road network. A substantial 
proportion of road links pose considerable obstacles for AVs, primarily due to factors such as limited cellular coverage. This is 
especially pronounced in densely populated areas where road links consistently exhibit low values due to the poor quality of 
communication services provided by telecom operators. This phenomenon could be rationalised by the direct correlation between 
population density and the requisite number of base stations; higher population density necessitates a larger number of base stations. 
Therefore, variances in cellular service quality across the case study area inevitably impact the suitability of roads for AV operation. 

Scenario 3 undertakes an assessment of how advancements in cellular technology can influence the operational areas of AVs within 
the road network. As illustrated in Fig. 6, the findings demonstrate that, given the availability of 5G cellular network coverage coupled 
with HD maps, most road sections in the network present less of a challenge for automated driving. Furthermore, it is observed that the 

O. Tengilimoglu et al.                                                                                                                                                                                                 



Transportation Research Part A 186 (2024) 104148

12

gaps previously present between main roads in earlier scenarios were largely bridged in this scenario. This highlights the vital role of 
digital infrastructure in partially compensating for the challenges caused by the physical road environment that AVs are likely to face. 

However, certain road sections, including dead-end streets and numerous local and access roads, continue to pose significant 
challenges for both types of AVs. This challenge can be attributed to the infrequent oversight of these road sections due to their limited 
traffic. Such roads typically fall at the lower echelons of the road hierarchy. As a result, the quality of their infrastructure and control 
over their surrounding environments often lags behind that of other road types. These findings underline the point that road links in 
the network will not be AV-compatible by the implementation of digital infrastructure alone. To fully support AV operation, significant 
changes are needed in the physical design and conditions of the infrastructure. 

Fig. 4. Overview of the assessment of the readiness of roads and intersections in Scenario 1, comparing low capability AV (a) and high capability 
AV (b). 
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4.4.2. Correlations of road hierarchy and deprivation with RRI 
Overall, the outcomes from the assessment, in conjunction with the scenarios, highlight the variability in road readiness for 

automated driving. A significant factor behind this variability is the diversity in the road infrastructure conditions across the network. 
However, a clear correlation emerges between the road hierarchy and the RRI value. Main roads, including A, B, and Minor Roads (for 
further details, refer to footnote 2), typically exhibit relatively high RRI values, even with higher speed limits and a greater variety and 
number of road users. Table 3 presents the distribution of road links in the case study area by road hierarchy and RRI category for 
Scenarios 1–3. The data shows that most sections classified as Local and Access roads pose significant challenges for automated driving 
across both AV capability levels. This is primarily because main roads employ comprehensive safety measures for road users and 
undergo frequent maintenance, making them comparatively well-prepared to accommodate the integration and operation of auto
mated vehicles effectively. 

Fig. 5. Overview of the assessment of the readiness of roads and intersections in Scenario 2, comparing low capability AV (a) and high capability 
AV (b). 
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In addition, this study further explored whether road links in economically disadvantaged areas might exhibit lower RRI values. To 
this end, the Index of Multiple Deprivation (IMD)5 was employed to assess the deprivation levels of sub-areas within the case study area 
(Chapel Allerton Ward). Pearson correlation tests were subsequently performed to determine if there was any correlation between IMD 
scores (where a higher score signifies more deprivation) and RRI values. The results showed no significant correlation in Scenarios 1 

Fig. 6. Overview of the assessment of the readiness of roads and intersections in Scenario 3, comparing low capability AV (a) and high capability 
AV (b). 

5 The Indices of Multiple Deprivation (IMD) are measures used in the UK to identify areas facing multiple types of deprivation. The IMD combines 
data from various domains to create an overall relative measure of deprivation experienced by individuals in a given area. This measure is 
determined for each Lower Layer Super Output Area (LSOA) in England. Further information can be found in Consumer Data Research Centre 
(CDRC). Source: https://data.cdrc.ac.uk/dataset/index-multiple-deprivation-imd. 
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Table 3 
Distribution of road links by road hierarchy and RRI category for Scenarios 1–3.  

Scenario 
(S) 

Road 
hierarchy* 

Road Readiness Index category (HC)  Road Readiness Index category (HC) Total 

Extremely 
Challenging 

Highly 
Challenging 

Moderately 
Challenging 

Slightly 
Challenging 

Least 
Challenging  

Extremely 
Challenging 

Highly 
Challenging 

Moderately 
Challenging 

Slightly 
Challenging 

Least 
Challenging 

S1 A Road 17 0 1 65 0  17 0 0 30 36 83 
B Road 23 0 3 51 0  23 0 0 54 0 77 
Minor Road 87 0 13 120 0  86 0 0 113 21 220 
Local Road 829 0 8 114 0  823 0 0 123 5 951 
Access 
Roads 

161 0 1 2 0  155 0 0 9 0 164 

Total # of 
links 

1117 0 26 352 0  1104 0 0 329 61 1495 

Percentage 
(%) 

74.7 0.0 1.7 23.5 0.0  73.8 0.0 0.0 22.0 4.1 100.0 

S2 A Road 3 0 0 28 52  3 0 0 1 79 83 
B Road 13 0 0 46 18  13 0 0 3 61 77 
Minor Road 50 0 0 121 49  50 0 0 7 163 220 
Local Road 377 0 1 533 40  351 0 0 182 418 951 
Access 
Roads 

122 0 2 40 1  86 0 0 62 16 164 

Total # of 
links 

565 0 1 768 160  503 0 0 255 737 1495  

Percentage 
(%) 

37.8 0.0 0.1 51.4 10.7  33.6 0.0 0.0 17.1 49.3 100.0 

S3 A Road 0 0 0 21 62  0 0 0 0 83 83 
B Road 0 0 0 30 47  0 0 0 1 76 77 
Minor Road 0 0 0 105 115  0 0 0 1 219 220 
Local Road 240 0 0 600 111  212 0 0 72 667 951 
Access 
Roads 

102 0 0 60 2  60 0 0 59 45 164 

Total # of 
links 

342 0 0 816 337  272 0 0 133 1090 1495  

Percentage 
(%) 

22.9 0.0 0.0 54.6 22.5  18.2 0.0 0.0 8.9 72.9 100.0 

*For further details about the road hierarchy please refer to footnote 2. 
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and 2. Yet, a distinct correlation emerged in Scenario 3. In this context, the IMD score and RRI demonstrated a positive correlation, 
with r(1493) = 0.108 and p ≤ 0.001 for LC AVs, and with r(1493) = 0.083 and p = 0.001 for HC AVs. 

A possible explanation for this finding in Scenario 3 lies in the unique street typologies of Chapel Allerton Ward’s less deprived 
areas. Predominantly, these are low-density zones marked by a significant number of dead-end streets. Such streets usually act as 
access routes and are not used as primary thoroughfares. Due to this specific urban structure, many streets lead to residential vehicle 
parks and often lack comprehensive traffic control measures like pedestrian sidewalks or road markings. As a consequence, these areas 
frequently receive low RRI values, primarily because of their corresponding lower scores of subcomponents. On the other hand, this 
indicates that with the necessary investments in digital infrastructure within the study areas, more deprived neighbourhoods could 
stand to benefit significantly from AV service in the case study area, owing to their urban forms being more conducive to AV operation. 
However, it should be noted that this correlation might not be reflected in other areas of Leeds, due to the variety in street topology. 

4.4.3. Sensitivity analysis 
The accuracy and robustness of an index are paramount when it serves as a decision-making tool or evaluative metric. In the context 

of the Road Readiness Index (RRI), the outcomes may vary based on the components it includes and their respective weights. Thus, an 
extensive sensitivity analysis was performed to understand how variations in the RRI outcomes arise due to different weighting 
strategies, penalty strategies, and the removal of certain components. This investigation provided insights regarding which compo
nents greatly impact the RRI and how the distribution of its values across the road network shifts when specific components are 
omitted. 

Firstly, the impact of uniform weights in comparison to expert-determined weights for each component on the overall index was 
evaluated. Table A3 displays the distribution of road links according to categorised RRI values, reflecting the challenging levels for AVs 

Fig. 7. An overview of road sections with different RRI values in the case study area.  
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(see Appendix A). Despite the varying weighting strategies, there is no remarkable difference in the share of different categories of 
road links across the network. This can largely be attributed to the consensus among experts that almost all components are of equal 
importance for automated driving. Additionally, when comparing the perspectives of industry participants to those of all stakeholders 
combined, a very slight shift was noticed from the least challenging to slightly challenging road categories. This observation suggests a 
nuanced difference in perception regarding the readiness of road links for AV operation between these groups. However, in general, 
there is no statistically significant difference in attitudes towards parameters between stakeholder groups—for detailed information 
please refer to (Tengilimoglu et al., 2023c). 

When penalties in the RRI are removed, a noticeable redistribution occurs across the challenge levels. Many road links, which were 
previously designated as extremely challenging under both the expert-weighted and equal-weighted approaches, transition to slightly 
challenging or moderately challenging categories. This indicates that, within the standard RRI, penalties are pivotal for a conservative 
assessment of road link suitability for automated driving. This further implies that the majority of road links in the case study area 
either fail to meet current road safety standards or have technological limitations, creating a complex environment for AVs. Another 
observation is that the presence of HD maps (see results of scenario 2) mitigates numerous penalties within the network, a result 
stemming from the structural nuance of the assessment framework. Conversely, road links categorised as least challenging largely 
retain a consistent presence across the network, regardless of penalty adjustments. 

Lastly, the omission of certain components from the RRI was examined to understand their individual impact on the overall index. 
In all scenarios, the proportion of road links classified as extremely challenging remained unchanged. This suggests that the index 
incurred penalties because multiple components exhibited poor performance in scoring the measurement variables. However, it is 
evident that some components, when omitted, influence the distribution more than others. For instance, removing the condition of 
road markings, road boundaries, and facilities for vulnerable road users resulted in noticeable fluctuations in both the slightly chal
lenging and least challenging categories, especially in Scenario 3. Similarly, in Scenario 2, communication facilities and the number 
and diversity of road users components were observed as critical factors in determining the suitability of road links for automated 
driving. 

In summary, the sensitivity analysis of the RRI brings attention to the influence of certain components, the role of penalties, and the 
effects of weight adjustments. While the fundamental structure of the RRI is consistent, it is important to be aware of these sensitivities 
to ensure its effectiveness across various contexts. When utilising the RRI as a tool, these findings can provide valuable insights for 
those in decision-making roles. 

4.4.4. Recommendations for improving the road infrastructure for AVs 
The implementation of the Road Readiness Index (RRI) in the case study area, complemented by the visualisation of its outputs, 

offers crucial insights for policymakers and road authorities. These insights highlight prevalent issues within the road network, 
indicating potential measures that could be proactively taken during the shift towards automated driving. Such measures can be 
considered to address anticipated equity and accessibility challenges due to the variation in road infrastructure. These issues can be 
briefly explained as follows:  

• There is a common view that higher penetration of AVs may lower parking demand in residential areas and in business districts by 
reducing car ownership and increasing ridesharing. However, during the initial stages of AV deployment, there is a need to sub
stantially modify parking layouts and rights-of-way to mitigate conflicts between AVs and their surrounding environment, as well 
as interactions with human-operated vehicles. To ensure the safe operation of AVs, particularly on local and minor roads (e.g. 
snapshot 2 in Fig. 7), reconsideration of on-street parking regulations might be essential. For narrow roads, measures such as 
implementing a one-way system or permitting parking only on one side may be worth considering. These approaches also 
necessitate clear markings of prohibited road sections and parking spaces.  

• Another prevalent issue within the road network is the high number of dead-end streets. As it is not yet clear how AVs will navigate 
such roads, in this index, these road sections were considered as extremely challenging for both AV capabilities. However, not all 
dead-end streets will likely present high challenges. Some, due to the presence of well-designed turning points at their ends, may 
allow AVs to manoeuvre easily. Yet, it was observed that inconsistencies in turning points, both in terms of their layout and size, as 
well as vehicle parking at these locations, pose challenges for AVs to manoeuvre smoothly. Therefore, to facilitate door-to-door AV 
services, considerable effort needs to be made towards standardising turning points and enforcing restrictions on on-street parking 
at these points.  

• While urban trees are crucial for reducing the impacts of climate change (Tan et al., 2016) and contributing to walkable, societally 
desirable streets within the urban road network (Su et al., 2019), they can potentially present challenges for automated driving 
from several perspectives. Beyond the challenges for localisation (Cucor et al., 2022), trees and bushes have been observed as one of 
the main challenging roadside objects that cause obstructions on vertical traffic signs, street lighting and line-of-sight at in
tersections. Moreover, the accumulation of leaves on road surfaces can pose difficulties in detecting road edges or line markings, 
particularly during the autumn season. Although, digital mapping can help for addressing this issue, more frequent maintenance of 
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physical road elements in areas with high greenspace coverage will likely be required, and removal or pruning of trees may be 
necessary to mitigate potential obstructions.  

• Maintaining consistency in physical infrastructure features, aligned with AV requirements, will be critical for automated driving. 
Significant heterogeneity has been observed in the road network in terms of the quality of road surfaces, and traffic signs, as well as 
the condition and configuration of markings. Certain sections of roads, for instance, present visual challenges for vision-based 
systems due to the diversity of surface materials, the patching of potholes, and the presence of numerous manholes. To mitigate 
the potential risks for AVs, authorities need to consider regular maintenance schedules to enhance road infrastructure. This would 
also include adhering to a standardised and consistent methodology in the placement and maintenance of road markings and traffic 
signs. Furthermore, minimizing potential sources of confusion, such as numerous manholes and patches, can be achieved through 
comprehensive and organized planning during the stages of infrastructure development and repair. Therefore, there will likely be a 
need for advanced road assessment systems that can provide more accurate and precise data from the road network.  

• While urban roads are often well-lit at night, object detection and recognition at night-time is a challenging task for AVs (Milford 
et al., 2020). As such, sufficient street lighting can significantly contribute to the perception systems of AVs by aiding in the 
detection of road markings, signs, and surrounding objects. Notably, it has been observed that some sections of the road network 
have limited lighting operation times due to energy saving strategies. However, with the introduction of AVs, there is a need to 
reevaluate these operational time restrictions, particularly around bus stops, pedestrian crossings, speed bumps, and intersections. 
There are other challenges like motion blur and glare that can cause failures under night-time conditions (Milford et al., 2020). 
Thus, AV developers must demonstrate that their systems can robustly handle challenges posed by inadequate lighting conditions.  

• Wheelie bins exemplify objects that are neither static nor dynamic, yet frequently appear alongside roads in certain areas. They 
pose a unique challenge as they are not traditionally considered roadside furniture, yet their varying positions and outlines make 
their incorporation into a static world model difficult (AVSC, 2020). It was observed that wheelie bins often change position within 
many local roads (e.g. snapshot 3 in Fig. 7), occasionally even located on the roadway. To mitigate this issue and reduce roadside 
severity, one recommendation would be for local authorities to consider reducing the number of individual household bins by 
implementing larger, communal ones, or designating specific areas for bin placement. This could potentially result in a more 
predictable roadside environment conducive to the safe operation of automated vehicles.  

• The outputs of scenarios indicate that HD maps can effectively expand the operational areas of AVs by providing either prior or real- 
time information about the road environment. However, some studies have argued that digital maps will likely not be available or 
not be at the desired level for many cities in the early stage of AV implementation due to the cost of the mapping and commu
nication technologies (International Transport Forum, 2023a; Tengilimoglu et al., 2023c). Hence, to ensure a feasible and 
affordable investment in the early stages of implementation, initial efforts should be focused on major roads and crucial regions 
within the network that are expected to experience high travel demand. Policymakers and authorities need to develop incremental 
investment strategies for the digitisation of the road environment. However, most of the current initiatives come from the AV 
industry or service providers.  

• Additionally, the digitalisation of infrastructure has the potential to support AVs by providing critical information (e.g. work zone, 
road closure, signal phase, speed limit) that can be used for their safe operations and allow potential improvements in real-time 
road monitoring and maintenance period scheduling (Mihalj et al., 2022). Communication technologies will also play a pivotal 
role in supporting the digitalisation of roads and the surrounding environment, where connectivity is deemed a key component. 
However, there are notable variations in the quality of cellular network services across the road network. Notably, lower quality of 
service was identified in densely populated areas of the road network, this can present a challenge for AV services aiming to 
maximise societal benefits. Similar to the strategy for HD maps, initial investments in high-quality cellular networks or short-range 
communication devices should be focused on major roads and crucial regions within the network.  

• Intersections pose significant challenges for automated driving due to their dimensions, visibility issues and the complexity of 
traffic situations. Current AV trials in mixed traffic conditions reveal that intersections are the most challenging road sections for 
automated driving as most of the reported AV-involved accidents happened around the intersections. However, most of these 
accidents are rear-end crashes involving human-driven vehicles (Favarò et al., 2017). A recent report indicated that nearly all 
collision events involved one or more road rule violations or other errors by a human driver or road user (Schwall et al., 2020). At 
these locations, AVs need to detect, identify, and predict the actions of other road users, ensuring appropriate responses and 
trajectory planning. Although most signal-controlled intersections in the study area seem to pose relatively fewer challenges for 
automated driving, the diversity and configuration of lane markings might create difficulties, especially regarding lane detection 
and motion planning. As such, the role of advanced mapping technology becomes crucial. Road topological data for trajectory 
planning, or semantically enriched maps, can address these challenges. Otherwise changes to lane markings at such locations may 
be required.  

• Last but not least, the performance of L4 AVs is expected to vary across different road environments (Chen et al., 2023). One of the 
likely key requirements to make automated driving technology work optimally in the UK will be the availability of large custom 
datasets gathered from urban streets that have been labelled in machine-learning-friendly ways with respect to markings, signage, 
streetlights and so forth. Such datasets will enable AV developers can improve their systems, while also assisting various AV service 
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providers in familiarising themselves with the specific road conditions. This is crucial, as most current AV trials rely on their own 
collected data, and often restrict their operational zones to legally permitted areas. 

5. Conclusions and recommendations for future research 

Automated Vehicles (AVs) are expected to profoundly influence various dimensions of mobility, ranging from passengers’ 
behaviour to urban spaces’ structure (Soteropoulos et al., 2019). However, the adoption and operation of AVs hinge on the readiness of 
today‘s existing or near-future road infrastructure and this challenge is yet to be fully addressed. This study sought to bridge this gap by 
proposing a comprehensive assessment framework to evaluate the readiness of road networks for highly automated vehicles (L4 AVs) 
operation. The framework was then put into practice in a specific area in Leeds, United Kingdom, as a case study to demonstrate its 
practicality. Following this application, the study provided key insights that can aid decision-makers and transport planners in shaping 
future policies, regulations, and guidelines for AV implementation on road networks. While the framework is primarily tailored to the 
UK context, the index can be applied to different geographical regions with subtle variations. 

A key conclusion from this study is the significant heterogeneity in readiness levels throughout the road infrastructure network. The 
network exhibits substantial diversity, from highly structured environments with robust infrastructure support to less structured ones 
with limited or no support. As such, the potential benefits of AV services in urban areas - such as enhancing mobility for disabled or 
elderly individuals, and providing affordable and accessible transportation (Litman, 2023; Milakis et al., 2017) - may not be imme
diately achievable under current conditions. Similarly, door to door shared options of AVs, for example, robo-taxis, which are widely 
perceived to reduce reliance on personal vehicle ownership, may not be possible in the near term without significant infrastructural 
modifications or considerable advancements in AV technologies. This is largely due to the majority of road sections presenting a 
challenging environment for automated driving technologies, in terms of both digital and physical infrastructure. A common 
assumption among stakeholders is that AVs operate safely on high-quality roads, and cities or areas with poor road infrastructure are 
predicted to be slow to adopt AVs. Such a situation could precipitate equity issues within communities, as access to AV-based services 
may be limited to certain AV-compatible zones. This disparity could also influence property values, thereby exacerbating existing 
social inequalities. 

Given the diverse nature of urban roads and their conditions, the advantages and disadvantages of the deployment of L4 AVs will 
vary from one urban area to another, leading to a selective deployment of AVs in certain areas. As highlighted by stakeholders in a 
recent report (International Transport Forum, 2023b), the introduction and management of AV-based services should be aligned with 
policy objectives such as enhancing safety, improving accessibility, increasing equity, mitigating environmental impact, and stimu
lating economic development. Despite the evident heterogeneity in road environments, the findings highlight that the main roads, 
those at the upper echelons of the network hierarchy, demonstrate a relatively high readiness value for AV operation. This observation 
is consistent with the insights obtained from a study conducted in Vienna, Austria (Soteropoulos et al., 2020). Therefore, a strategic 
approach that prioritises these segments for the initial investment for enhancement of road infrastructure and integration efforts for 
AVs seems sensible. Particularly, the digitisation of the road environment should commence from main roads to optimise societal 
benefits and financial viability. This initiative could further aid in the adoption of shared mobility services of AVs, such as shuttles or 
buses, that operate within specific subnets of the network. Nonetheless, actualising this vision necessitates proactive government 
backing facilitated through a well-designed regulatory framework for AV-based services (Tengilimoglu et al., 2023c). 

Another critical issue is that the transition stage should be carefully managed, as technological advancements in the AV industry 
and modifications in physical and digital road infrastructure are likely to occur at different speeds. In this regard, authorities should be 
aware of the potential operational areas in their networks for these new technologies to effectively manage the transition phase. The 
framework presented in this study can serve as a valuable tool for such an undertaking. Implementing the readiness index can offer 
authorities preliminary insights into their road network without running actual AV trials. This approach is especially beneficial for 
cities yet to experience AV deployments, as waiting for real trials might result in substantial delays due to the barriers related to costs, 
technological limitations, supply chain issues, and local regulatory environments. Furthermore, city authorities have an opportunity to 
position their road networks attractively for AV developers. By identifying and promoting suitable operational areas, they not only 
ease the path for AV integration but also become an attractive spot for the emerging AV sector. Moreover, the insights derived from the 
assessment can be instrumental in refining AV control strategies. Utilising these outcomes to identify and anticipate highly challenging 
road sections enables AVs to proactively adjust their driving behaviours—for example, by decelerating earlier upon approach. 

However, as AV technology continues to evolve, there would be a need to continuously adapt and revise the assessment framework 
to reflect the state-of-the-art technology and the emerging requirements for road infrastructure. Additionally, subsequent phases of this 
research should focus on examining the demand side of automated driving, specifically investigating how variations in the readiness 
level of road infrastructure could influence the accessibility of AV-based services, and in turn, alter traffic patterns within the network. 
The study conducted by Madadi et al. (2019) may serve as a valuable reference for this exploration. Furthermore, the integration of 
travel models into the readiness index can yield more comprehensive and nuanced insights. For example, this inclusion could enhance 
the understanding of the capacity of current road networks to accommodate AV-based services, and identify which areas or de
mographics may reap the most benefits. This enriched understanding could provide road authorities with valuable inputs for 

O. Tengilimoglu et al.                                                                                                                                                                                                 



Transportation Research Part A 186 (2024) 104148

20

investment agendas, providing a basis for better optimisation of infrastructure. 
Finally, as the current study is more of an exploratory and conceptual model than a descriptive index, it is clear that further research 

is needed in certain areas:  

• Firstly, the proposed assessment framework was developed based on relevant literature and insights of experts, rather than 
empirical findings, due to the limitations associated with the availability of real-world AV data. As such, the importance level of the 
proposed index components was determined by experts based on a simple ranking technique. Moving forward, in-depth interviews 
or focus group discussions with stakeholders could potentially refine the index structure, particularly the scoring of measurement 
variables for specific use cases of L4 AVs. Such an approach may reduce the subjectivity inherent in the opinions of experts, leading 
to a more robust and universally applicable index.  

• Secondly, the study has primarily focussed on relatively static factors and road environment attributes, due to the challenging 
nature of integrating rapidly changing dynamic factors into the road segment evaluation. With the ongoing advancements in 
intelligent transportation systems along with information and communication technologies, however, road and city authorities are 
gaining access to a myriad of dynamic data through sensors within the road network. Therefore, future iterations of this study 
should aim to develop a dynamic road readiness index incorporating the use of real-time data. For example, incorporating envi
ronmental conditions and traffic flow-related factors into the index by evaluating them in real-time could offer a more compre
hensive and responsive assessment of road suitability for AVs. Furthermore, leveraging real-time AV sensor data allows for dynamic 
modelling of parameters, such as the number and diversity of road users. This also enables the integration of research (Cheng et al., 
2022; Wang et al., 2018) focused on modelling environmental complexity into to framework.  

• Thirdly, given that physical attributes and amenities can significantly vary within a single road link or at intersections, future 
research might aim to evaluate road segments of equal or smaller lengths to increase the granularity of data. Specifically, 
implementing the index at a lane-level detail could offer a more precise understanding of the road environment. This would provide 
authorities with more specific information, optimising decision-making, and investment strategies for the development of “AV- 
compliant” road links.  

• Fourthly, most data used in this study was assessed via visual inspection, employing aerial photography, satellite imagery, and 
street view services. However, these images, being snapshots from the past, present a limited perspective and are updated irreg
ularly. Additionally, the evaluation process is potentially susceptible to human errors and can be time-consuming. Future research 
could consider the use of digital image processing techniques for the evaluation of subcomponents. While this method may require 
more resources and effort, the resulting insights could significantly enhance the accuracy and relevance of the readiness index for 
AVs. This becomes particularly important when real AV data are available that could provide more up-to-date information about 
the road environment.  

• Lastly, a critical future direction for this study involves focusing on the validation and feasibility of the proposed framework using 
real-world AV test data, especially within UK cities. An analysis of network locations where AVs encounter collision risks or 
necessitate disengagement of their automated driving systems could serve as a basis for verifying the factors adopted in the (sub) 
components. Additionally, exploring the correlations between the Road Readiness Index (RRI) scores at these locations will be 
instrumental. Further, the weights or impact coefficients of these factors could be refined using a Bayesian network approach. This 
method would help mitigate the subjectivity associated with expert insights, providing a more objective basis for evaluating the 
framework’s components. The recent study by Tu et al. (2023), which focuses on evaluating the safety risks for AV road testing in 
China using iRAP attributes, could offer a valuable methodological reference for this verification process. 
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Appendix A  

Table A1 
Overview of scoring scheme for subcomponents of the road readiness index for automated driving.*  

# Framework 
Components 

# Subcomponents Weight Measurement variables Score(Sci,j, 

m) 

(Ci)  (Ci,j)  (Wci,j)  LC HC 

C1 Road Geometry 
Challenges 

C1,1 Horizontal curvature  0.25 Straight or gently curving (Radius of curvature: R ≥ 400 m) 1 1      

Moderate curvature (150 ≤ R < 400 m) 0.5 0.75      
Sharp curvature or corners (R < 150 m) 0 0.25   

C1,2 Longitudinal gradient  0.25 Flat or gentle rise (0 % to < 4 %) 1 1      
Moderate rise (4 % to < 8 %) 0.75 1      
Steep rise (≥8%) 0.25 0.5   

C1,3 Road width consistency  0.25 Constant or slight change in road or lane width (road width 
change rate less than 15 %) 

1 1      

Presence of moderate change (narrowing or widening) in 
road or lane width (road width change rate is 15 to 30 %) 

0.5 0.75      

Presence of high change in road or lane width (road width 
change rate higher than 30 %) 

0 0.25   

C1,4 Digital mapping of road 
geometry  

0.25 Presence of digital map of road geometry 1 1      

No presence of digital map of road geometry 0 0 
C2 Road Surface Condition C2,1 Road surface type  0.5 Asphalt or concrete and has a homogeneous appearance 1 1      

Pavers, bricks, or presence of different colours or materials 
on the road surface (e.g. patching, ghost markings, presence 
of lots of manholes etc.) 

0.5 0.75      

Unpaved road surface (e.g. gravel) 0 0.25   
C2,2 Road surface condition  0.5 No presence or low level of deterioration (e.g. potholes, 

cracks, rutting etc.) or RCI is Green 
1 1      

Presence of moderate level of deterioration or RCI is Amber 0.5 0.75      
Presence of severe level of deterioration or RCI is Red 0 0 

C3 Road Marking 
Condition 

C3,1 Digital mapping of road 
markings  

0.25 Presence of digital map of road markings 1 1      

No presence of digital map of road markings 0 0   
C3,2 Road marking 

configuration  
0.25 Presence of both the centre lines and two edge markings 1 1      

Presence of centre lines and one-side edge markings 0.75 1      
Presence of only centre lines or two-sides edge markings 0.5 0.75      
Presence of only one-side edge markings 0.25 0.5      
No presence of road markings 0 0   

C3,3 Road marking wear 
condition  

0.5 Wear score is 50 (no obvious wear) to 40 (very little wear) 
according to CS126 standard 

1 1      

Wear score is 30 (some visible wear, larger bare sports) to 
20 (visible but has randomly spaced small bare spots) 

0.5 0.75      

Wear score is 10 (barely visible) to 0 (non-existent, residue 
only) 

0 0 

C4 Road Boundaries C4,1 Median type  0.5 One-way road, or two-way road with concrete/metal safety 
barrier, kerb stone or grass median 

1 1      

Wide or double centre line or central hatching (two-way 
road) 

0.75 1      

Centre line (two-way road) 0.5 0.75      
Cable barrier or flexible posts (two-way road) 0.25 0.5      
No presence of median (two-way road) 0 0.25   

C4,2 Road edge condition  0.25 Continuous road edge (e.g. kerb stone, barriers, grass etc.) 
on both sides of roadway 

1 1      

Discontinuous or damaged road edge (e.g. access points) on 
one-side of roadway 

0.5 0.75      

Discontinuous or damaged road edge (e.g. access points) on 
both sides of roadway 

0 0.25   

C4,3 On-street vehicle 
parking  

0.25 Parking or limited time waiting is not permitted 1 1      

Presence of parking or limited time waiting zone on one 
side of roadway 

0.50 0.75      

Presence of parking or limited time waiting zone on two 
sides of roadway 

0 0.25 

C5 Traffic Signs Visibility C5,1 Digital mapping of 
traffic signs  

0.5 Presence of digital map of traffic signs 1 1 

(continued on next page) 
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Table A1 (continued ) 

# Framework 
Components 

# Subcomponents Weight Measurement variables Score(Sci,j, 

m) 

(Ci)  (Ci,j)  (Wci,j)  LC HC      

No presence of digital map of traffic signs 0 0   
C5,2   0.5 Presence of visible and readable physical traffic signs (e.g. 

not obstructed, damaged, vandalised etc.) or absence of 
traffic signs on the roadway 

1 1      

Presence of multiple signs in single unit 0.5 0.75      
Presence of electronic signs such as variable message signs 0.25 0.5      
Unreadable, damaged, or obstructed traffic signs (critical 
defects according to CS125) 

0 0 

C6 Special Road Section C6,1 Special road sections  1.0 Not presence of any special road sections stated below 1 1      
Presence of grade-separated interchanges or slip roads/ 
ramps (e.g. merging or diverging sections) 

0.75 1      

Presence of weaving areas (merging and diverging sections) 0.5 0.75      
Presence of toll plazas or gates on the roadway (e.g. chicane 
or road narrowing) 

0.25 0.50      

Presence of dead-end roadway (with/out turning point) 0 0 
C7 Road Lighting C7,1 Lighting condition  1.0 Presence of road lighting systems and no obstacles around 

(e.g. trees in the surrounding) 
1 1      

Presence of road lighting systems with obstruction around 
or short underpasses (L < 20 m) on the roadway 

0.5 0.75      

Presence of long underpasses (L > 20 m) or tunnels 0.25 0.50      
No presence of road lighting systems or damaged lighting 
system 

0 0.25 

C8 Speed Limit C8,1 Speed limit of road 
section  

1.0 Speed limit < 37 mph 1       

37 mph ≤ Speed limit < 42 mph 0.50       
42 mph ≤ Speed limit < 61 mph 0.25       
61 mph ≤ Speed limit 0       
Speed limit < 47 mph  1      
47 mph ≤ Speed limit < 53 mph  0.50      
53 mph ≤ Speed limit < 76 mph  0.25      
76 mph ≤ Speed limit  0 

C9 Number and Diversity 
of Road Users 

C9,1 Road access  0.5 Access control roads: VRUs (e.g. pedestrians and cyclists) 
are not permitted 

1 1      

Mixed traffic roads without any public transit facilities (bus, 
tram etc.) 

0.5 0.75      

Mixed traffic roads with public transit facilities 0.25 0.5      
Shared space roads: access to all road users 0 0.25   

C9,2 Counterflow  0.25 No presence of counter flow traffic 1 1      
Presence of counter flow traffic 0 0.25   

C9,3 No. of lanes  0.25 Total number of lanes on the road section (N ≤ 2) 1 1      
Total number of lanes on the road section (2 < N ≤ 4) 0.5 0.75      
Total number of lanes on the road section (N > 4) 0.25 0.5 

C10 Roadside Complexity C10,1 Presence of trees  0.25 No presence of trees on two sides of roadway (or presence 
far from the road edges such as d > 8–10 m) 

1 1      

Presence of trees on one side of roadway 0.5 0.75      
Presence of trees on both sides of roadway 0 0.25   

C10,2 Street furniture density  0.25 Low density of street furniture (e.g. advertising display, 
benches, bicycle stands, billboards, bins, bus shelter, lamps, 
post boxes, etc.) on two sides of roadway 

1 1      

High density of street furniture on one side of roadway 0.50 0.75      
High density of street furniture on two sides of roadway 0 0.25   

C10,3 Proximity of buildings  0.25 No presence of close buildings (e.g. commercial, industrial, 
educational etc.) on two sides of roadway (not far from the 
road edge d < 2–3 m) 

1 1      

Presence of close buildings on one side of roadway 0.50 0.75      
Presence of close buildings on both sides of roadway 0 0.25   

C10,4 Digital mapping of 
roadside environment  

0.25 Presence of digital map of the roadside environment 1 1      

No presence of digital map of roadside environment 0 0 
C11 Facilities for Vulnerable 

Road Users 
C11,1 Pedestrians crossing 

type  
0.25 Presence of pedestrian bridges or underpasses on the 

roadway 
1 1      

Puffin, Toucan, Pegasus crossing on the roadway 0.75 1      
Pelican crossing on the roadway 0.5 0.75      
Zebra crossing or surface marked crossing on the roadway 0.25 0.50      
Unmarked or No provision for pedestrians crossing on the 
roadway 

0 0.25 

(continued on next page) 
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Table A1 (continued ) 

# Framework 
Components 

# Subcomponents Weight Measurement variables Score(Sci,j, 

m) 

(Ci)  (Ci,j)  (Wci,j)  LC HC   

C11,2 Pedestrian sidewalk  0.25 Physically segregated pedestrian sidewalk with barriers, 
buffer, or landscaping zones on the roadway 

1 1      

Presence of sidewalk on both sides of the roadway 0.75 1      
Presence of sidewalk on one side of the roadway 0.50 0.75      
No presence of sidewalk for pedestrians on the roadway 0 0.25   

C11,3 Cycling infrastructure  0.25 Physically segregated cycle lane on the roadway 1 1      
Segregation with lane markings or painting on surface on 
the roadway 

0.50 0.75      

No presence of segregation on the roadway 0 0.25   
C11,4 Public transit access 

point design  
0.25 Not presence of bus route, stops, or Presence of dedicated 

bus lane on the roadway 
1 1      

Presence of bus lay-by on the roadway 0.75 1      
Presence of bus shelter on the roadway 0.50 0.75      
Presence of bus stop with road marking and post on the 
roadway 

0.25 0.5      

Presence of temporary bus stop or bus stop with a simple 
sign or post on the roadway 

0 0.25 

C12 Precautions for 
Roadworks and 
Incidents 

C12,1 Precautions for 
roadworks and 
incidents  

1.0 No presence of roadwork or incident on the roadway 1 1      

Presence of roadwork or incident with real-time layout 
level information, and standardised digital and physical 
warning signs and markings on the roadway 

0.75 1      

Presence of roadwork or incident with standardised digital 
and physical warning signs and markings on the roadway 

0.50 0.75      

Presence of roadwork or incident with only standardised 
physical warning signs and markings 

0.25 0.50      

Presence of roadwork or incident without any precautions 
for AVs 

0 0.25 

C13 Localisation Challenges C13,1 Localisation challenges  0.5 Presence of landmarks or magnetic road markings on the 
roadway 

1 1      

Presence of low-rise development on both sides of the 
roadway 

0.75 1      

Presence of high-rise development or high-vegetation cover 
on one side of the roadway 

0.5 0.75      

Presence of high-rise developments (e.g. urban canyons) or 
valleys surrounding the roadway or high vegetation cover 
on both sides of the roadway or short underpasses (L < 20 
m) on the roadway 

0.25 0.5      

Presence of long underpasses (L > 20 m) or tunnels on the 
roadway 

0 0   

C13,2 Digital mapping of road 
environment  

0.5 Presence of digital map of road and surrounding 
environment 

1 1      

No presence of digital map of road and surrounding 
environment 

0 0 

C14 Communication 
Facilities 

C14,1 Roadside Units  1.0 Presence of Roadside Units (RSUs) along with the roadway 
(e.g. DSRC or ITS-G5) 

1 1   

or   No presence of Roadside Units (e.g. DSRC or ITS-G5) 0 0   
C14,1 Cellular network 

coverage  
1.0 Excellent or good 5G NR coverage in operation area for C- 

V2X 
1 1      

Average 5G NR coverage in operation area for C-V2X 0.75 1      
Excellent or good 4G/LTE coverage in operation area for C- 
V2X 

0.5 0.75      

Average 4G/LTE coverage in operation area for C-V2X 0.25 0.5      
Below average, poor, limited cellular coverage or Network 
blackspots 

0 0 

C15 Intersections and 
Roundabouts 

C15,1 Intersection and 
roundabout type  

0.25 Signal controlled intersections with protected turn lane 1 1      

Signal controlled intersections, or Priority-controlled 
intersections with protected turn lane 

0.75 1 

(continued on next page) 
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Table A1 (continued ) 

# Framework 
Components 

# Subcomponents Weight Measurement variables Score(Sci,j, 

m) 

(Ci)  (Ci,j)  (Wci,j)  LC HC      

Priority-controlled intersections, or Mini or single-lane 
roundabouts 

0.50 0.75      

Uncontrolled intersections, or Median crossing points 0.25 0.5      
Multi-lane roundabouts 0 0.25   

C15,2 Number of arms  0.25 N = 3 (e.g. T or Y intersections) 1 1      
N = 4 (e.g. Cross / staggered) 0.5 0.75      
N > 4 (e.g. multi-armed) 0 0.25   

C15,3 Regularity of layout  0.25 Regular form of intersection 1 1      
Irregular form of intersection 0 0.25   

C15,4 Delineation (marking) 
conditions  

0.25 Clear visible marking or Availability of HD mapping 1 1      

Some visible wear on the markings 0.5 0.75      
Barely visible or non-existent markings 0 0.25 

* Detailed information on each component in the assessment framework, along with their corresponding subcomponents and measurement variables, 
can be found in the Supplementary materials (SM-1).  

Table A2 
Overview of the data collection method for representing the subcomponents of framework components and general assessment of the quality of 
collected data.  

Ci Framework 
components 

Ci,j Subcomponents Source of data/ method of data collection General assessment of 
collected data quality/ 
representation 

C1 Road Geometric 
Challenges 

C1,1 Horizontal curvature It was initially calculated by using ROCA (ROad 
Curvature Analysis) toolbox in ArcGIS Pro developed 
by (Bíl et al., 2018). It was then revised by visual 
inspection using aerial photography/satellite imagery 
or street view services. 

Fair   

C1,2 Longitudinal gradient It was roughly estimated by using the data provided by 
the Ordnance Survey MasterMap. Elevation differences 
of road link ends were divided into the length of the 
road link. However, this method has limitations for 
long or non-straight road links and no precise gradient 
level is obtained. Also revised by visual inspection 
using street view services. 

Fair   

C1,3 Road width consistency It was initially calculated the change rate of width in 
road links using the data provided by the Ordnance 
Survey MasterMap. The difference between average 
road width and minimum road width was divided by 
average road width. A score of 1 was given if the ratio 
was less than 0.15, 0.5 if it was between 0.15 and 0.3, 
and 0 otherwise. Also, it was revised by visual 
inspection using aerial photography/satellite imagery 
or street view services. 

Fair   

C1,4 Digital map of road 
geometry 

An assumption was made according to scenarios (S1: 
no HD maps, S2-3: available for all network) 

Poor 

C2 Road Surface C2,1 Road surface type It was evaluated by visual inspection using street view 
services. 

Fair   

C2,2 Road surface condition The condition of the road surface was categorised 
based on the available RCI data provided by the 
Department for Transport. The data is available at: 
https://maps.dft.gov.uk/road-condition-explorer/ 
index.html. Also, it was evaluated by visual inspections 
using street view services for places where automated 
inspection data collected by specialised vehicles is not 
available. 

Fair 

C3 Road Markings C3,1 Digital map of road 
markings 

An assumption was made according to scenarios (S1: 
no HD maps, S2-3: available for all network) 

Poor   

C3,2 Marking configuration It was evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 

Fair   

C3,3 Marking condition It was roughly evaluated by visual inspection using 
street view services according to examples in 
Appendix C of the DMRB CS 126 standard. 

Fair 

C4 Road Boundaries C4,1 Median type It was evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 

Good 

(continued on next page) 
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Table A2 (continued ) 

Ci Framework 
components 

Ci,j Subcomponents Source of data/ method of data collection General assessment of 
collected data quality/ 
representation   

C4,2 Road edge condition It was evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 
Also, the continuity of road edge conditions was 
controlled from: https://www.leedstraffweb.co.uk/ 
main.html and Ordnance Survey MasterMap 
Topography Layer. 

Fair   

C4,3 On-street vehicle parking It was evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 
Also, parking locations on the network were controlled 
from: https://www.leedstraffweb.co.uk/main.html 

Fair 

C5 Traffic Signs C5,1 Digital map of traffic 
signs 

An assumption was made according to scenarios (S1: 
no HD maps, S2-3: available for all network) 

Poor   

C5,2 Traffic signs conditions It was roughly evaluated by visual inspection using 
street view services according to examples in 
Appendix E of the DMRB CS 125 standard. 

Fair 

C6 Special road section C6,1 Special road sections It was evaluated by using the data provided by the 
Ordnance Survey MasterMap. In addition, it was 
checked by visual inspection using aerial photography/ 
satellite imagery or street view services. 

Good 

C7 Road Lighting C7,1 Lighting condition It was evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 
Detailed information on the location and unit type of 
streetlights is available at: https://datamillnorth.org/ 
dataset/street-lights-unmetered. However, the 
limitation of this method cannot consider whether the 
lighting systems work properly at night. 

Poor 

C8 Speed Limit C8,1 Speed limit of road 
section 

It was evaluated based on the interactive map 
providing traffic orders of roads that are under the 
control of Leeds City Council. (https://www. 
leedstraffweb.co.uk/main.html). Also, it was roughly 
controlled by visual inspection of speed limit signs on 
the roadway using street view services. Alternatively, 
Open Street Map can be used for this subcomponent. 

Fair 

C9 Number and Diversity 
of Road Users 

C9,1 Road access It was initially evaluated by considering road hierarch. 
Also public transit (bus) route was controlled from: 
Open Streep Map, https://www.geopunk.co.uk/ 
timetables/town/leeds. Then it was controlled by 
visual inspection using aerial photography/satellite 
imagery or street view services 

Fair   

C9,2 Counterflow It was evaluated by using the data provided by the 
Ordnance Survey MasterMap. Also, it was controlled 
by traffic orders data of the city from https://www. 
leedstraffweb.co.uk/main.html 

Fair   

C9,3 No. of lanes It was initially estimated by dividing the average road 
width by the approximate lane widths by type of road 
hierarchy. It was then revised by visual inspection 
using aerial photography/satellite imagery or street 
view services. 

Fair 

C10 Roadside Complexity C10,1 Presence of trees It was evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 
Detailed analysis for this subcomponent can be done by 
using Tree Detection toolbox (deep learning model to 
detect trees in high resolution imagery) in ArcGIS Pro 
by aerial photography/satellite imagery. 

Fair   

C10,2 Street furniture density It was roughly evaluated by visual inspection using 
street view services. 

Poor   

C10,3 Proximity of buildings It was roughly estimated using data provided by 
Ordnance Survey MasterMap in QGIS. Also, 
commercial facilities control with visual inspection by 
using street view services. 

Poor 
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Table A2 (continued ) 

Ci Framework 
components 

Ci,j Subcomponents Source of data/ method of data collection General assessment of 
collected data quality/ 
representation   

C10,4 Digital mapping of 
surrounding road 
environment 

An assumption was made according to scenarios (S1: 
no HD maps, S2-3: available for all network) 

Poor 

C11 Facilities for 
Vulnerable Road Users 

C11,1 Pedestrians crossing type It was initially evaluated by using data provided by 
Data Mill North and Ordnance Survey MasterMap. It 
was then revised by visual inspection using aerial 
photography/satellite imagery or street view services. 

Good   

C11,2 Pedestrian sidewalk It was evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 
Also, it was controlled from: https://www. 
leedstraffweb.co.uk/main.html 

Good   

C11,3 Cycling infrastructure It was evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 
Also, it was controlled from: Google Maps Cycling and 
Open Street Map. 

Good   

C11,4 Public transit access point 
design 

It was evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 
Also public transit (bus) route was controlled from: 
Open Streep Map, https://www.geopunk.co.uk/ 
timetables/town/leeds 

Good 

C12 Precautions for 
Roadworks and 
Incidents 

C12,1 Precautions for 
roadworks and incidents 

As this subcomponent requires a dynamic evaluation, it 
was assumed that no roadwork or incident on the 
network. Detailed information on live roadworks and 
incidents are available at https://one.network/uk/ 
leeds. 

Poor 

C13 Localisation 
Challenges 

C13,1 Localisation challenges It was evaluated by visual inspection using street view 
services. Also estimated roughly by using the data 
provided by the Ordnance Survey MasterMap, such as 
building heights and average road width. 

Poor   

C13,2 Digital mapping of road 
environment 

An assumption was made according to scenarios (S1: 
no HD maps, S2-3: available for all network) 

Poor 

C14 Communication 
Facilities 

C14,1 Roadside Unit 
or 

There is no publicly available data for this 
subcomponent. Therefore, it was assumed that there 
were no roadside units on the network. 

Poor   

C14,1 Cellular network 
coverage 

It was simply evaluated by using service provider 
coverage maps or third-party webpages (e.g. https:// 
mastdata.com/index.aspx). Only one service provider 
(EE Mobile) with widely available network coverage 
data in the study area was selected for the assignment. 
Then for the validation of the coverage map, the 
experimental data source was analysed. For places 
where automated inspection data collected by 
specialised vehicles is available, parameters related to 
the signal quality of the LTE service provided by Ofcom 
were categorized according to thresholds suggested by 
(Cucor et al., 2022). The data is available at: (https:// 
www.ofcom.org.uk/phones-telecoms-and-internet/ 
coverage/mobile-signal-strength-measurement-data). 

Fair 

C15 Intersections and 
Roundabouts 

C15,1 Intersection and 
roundabout type 

It was evaluated by using the data provided by the 
Ordnance Survey MasterMap. In addition, it was 
evaluated by visual inspection using aerial 
photography/satellite imagery or street view services. 

Good   

C15,2 Number of arms It was evaluated by visual inspection using aerial 
photography/satellite imagery. 

Good   

C15,3 Regularity of layout It was evaluated by visual inspection using aerial 
photography/satellite imagery. 

Good   

C15,4 Delineation (marking) 
conditions 

It was roughly evaluated by visual inspection using 
street view services according to examples in 
Appendix C of the DMRB CS 126 standard. 

Fair   
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Table A3 
Distribution of road links based on categorised RRI values in different index structures.  

Scenario Assessment 
of 
road links 
(N = 1,495) 

Actual 
applied: 
Expert- 
weighted 
components 
(Wci) 

Industry 
participants 
only 
weighted 
components 
(Wci) 

Equal- 
weighted 
components 
(Wci) 

Excluding 
penalties 
in RRI 

Omitting a component from the Road Readiness Index 

C1: Road 
Geometry 
Challenge 

C2: Road 
Surface 
Condition 

C3: Road 
Markings 
Condition 

C4: Road 
Boundaries 

C5: 
Traffic 
Signs 
Visibility 

C6: 
Special 
Road 
Sections 

C7: 
Road 
Lighting 

C8: 
Speed 
Limit 

C9: 
Number 
and 
Diversity 
of Road 
Users 

C10: 
Roadside 
Complexity 

C11: 
Facilities 
for 
Vulnerable 
Road Users 

C12: 
Precautions 
for 
Roadworks 
and 
Incidents 

C13: 
Localisation 
Challenging 

C14: 
Communication 
Facilities 

Scenario 
1 
(LC) 

Extremely 
Challenging 

74.7 % 74.7 % 74.7 % 0.0 % 74.7 % 74.7 % 74.7 % 74.7 % 74.7 % 74.7 % 74.7 % 74.7 
% 

74.7 % 74.7 % 74.7 % 74.7 % 74.7 % 74.7 % 

Highly 
Challenging 

0.0 % 0.0 % 0.0 % 1.3 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 

Moderately 
Challenging 

1.7 % 1.7 % 1.5 % 48.0 % 1.5 % 2.3 % 0.6 % 1.1 % 1.1 % 4.7 % 3.8 % 4.3 % 1.0 % 1.3 % 0.8 % 5.1 % 0.5 % 1.1 % 

Slightly 
Challenging 

23.5 % 23.6 % 23.7 % 50.6 % 23.7 % 23.0 % 24.7 % 24.1 % 24.0 % 20.6 % 21.5 % 20.9 
% 

24.2 % 23.9 % 24.4 % 20.2 % 24.7 % 24.2 % 

Least 
Challenging 

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.1 % 0.0 % 0.0 % 0.0 % 0.1 % 0.1 % 0.1 % 0.0 % 0.1 % 0.0 % 

Scenario 
2 
(LC) 

Extremely 
Challenging 

37.8 % 37.8 % 37.8 % 0.0 % 37.8 % 37.8 % 37.8 % 37.8 % 37.8 % 37.8 % 37.8 % 37.8 
% 

37.8 % 37.8 % 37.8 % 37.8 % 37.8 % 37.8 % 

Highly 
Challenging 

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 

Moderately 
Challenging 

0.1 % 0.1 % 0.1 % 7.1 % 0.1 % 0.0 % 0.0 % 0.0 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 

Slightly 
Challenging 

51.4 % 51.3 % 51.2 % 82.0 % 52.6 % 52.8 % 45.1 % 46.3 % 54.8 % 55.0 % 54.5 % 54.0 
% 

43.7 % 51.7 % 42.4 % 55.5 % 51.6 % 43.5 % 

Least 
Challenging 

10.7 % 10.8 % 10.8 % 10.9 % 9.4 % 9.4 % 17.1 % 15.9 % 7.3 % 7.1 % 7.6 % 8.0 % 18.4 % 10.4 % 19.7 % 6.6 % 10.4 % 18.7 % 

Scenario 
3 
(LC) 

Extremely 
Challenging 

22.9 % 22.9 % 22.9 % 0.0 % 22.9 % 22.9 % 22.9 % 22.9 % 22.9 % 22.9 % 22.9 % 22.9 
% 

22.9 % 22.9 % 22.9 % 22.9 % 22.9 % 22.9 % 

Highly 
Challenging 

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 

Moderately 
Challenging 

0.0 % 0.0 % 0.0 % 3.5 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.1 % 0.1 % 0.1 % 0.0 % 0.1 % 0.0 % 0.1 % 0.0 % 0.1 % 

Slightly 
Challenging 

54.6 % 54.7 % 54.3 % 73.9 % 58.0 % 56.9 % 34.2 % 37.3 % 61.1 % 61.3 % 61.4 % 60.5 
% 

41.5 % 55.7 % 38.4 % 61.9 % 56.2 % 53.4 % 

Least 
Challenging 

22.5 % 22.4 % 22.8 % 22.5 % 19.1 % 20.2 % 42.9 % 39.8 % 16.0 % 15.7 % 15.7 % 16.5 
% 

35.6 % 21.3 % 38.7 % 15.1 % 20.9 % 23.6 % 

Scenario 
1 
(HC) 

Extremely 
Challenging 

73.8 % 73.8 % 73.8 % 0.0 % 73.8 % 73.8 % 73.8 % 73.8 % 73.8 % 73.8 % 73.8 % 73.8 
% 

73.8 % 73.8 % 73.8 % 73.8 % 73.8 % 73.8 % 

Highly 
Challenging 

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 

Moderately 
Challenging 

0.0 % 0.0 % 0.0 % 10.8 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 

Slightly 
Challenging 

22.0 % 22.1 % 21.1 % 85.0 % 20.3 % 24.1 % 18.5 % 24.0 % 16.9 % 24.6 % 24.5 % 24.6 
% 

20.6 % 23.1 % 19.9 % 24.8 % 15.7 % 21.7 % 

Least 
Challenging 

4.1 % 4.1 % 5.0 % 4.1 % 5.8 % 2.0 % 7.6 % 2.1 % 9.2 % 1.5 % 1.6 % 1.5 % 5.6 % 3.0 % 6.3 % 1.3 % 10.5 % 4.4 % 

Scenario 
2 
(HC) 

Extremely 
Challenging 

33.6 % 33.6 % 33.6 % 0.0 % 33.6 % 33.6 % 33.6 % 33.6 % 33.6 % 33.6 % 33.6 % 33.6 
% 

33.6 % 33.6 % 33.6 % 33.6 % 33.6 % 33.6 % 

Highly 
Challenging 

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 

Moderately 
Challenging 

0.0 % 0.0 % 0.0 % 0.7 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 
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Table A3 (continued ) 

Scenario Assessment 
of 
road links 
(N = 1,495) 

Actual 
applied: 
Expert- 
weighted 
components 
(Wci) 

Industry 
participants 
only 
weighted 
components 
(Wci) 

Equal- 
weighted 
components 
(Wci) 

Excluding 
penalties 
in RRI 

Omitting a component from the Road Readiness Index 

C1: Road 
Geometry 
Challenge 

C2: Road 
Surface 
Condition 

C3: Road 
Markings 
Condition 

C4: Road 
Boundaries 

C5: 
Traffic 
Signs 
Visibility 

C6: 
Special 
Road 
Sections 

C7: 
Road 
Lighting 

C8: 
Speed 
Limit 

C9: 
Number 
and 
Diversity 
of Road 
Users 

C10: 
Roadside 
Complexity 

C11: 
Facilities 
for 
Vulnerable 
Road Users 

C12: 
Precautions 
for 
Roadworks 
and 
Incidents 

C13: 
Localisation 
Challenging 

C14: 
Communication 
Facilities 

Slightly 
Challenging 

17.1 % 17.7 % 17.1 % 44.0 % 21.3 % 17.0 % 4.8 % 7.6 % 23.5 % 23.7 % 23.1 % 23.7 
% 

12.2 % 20.5 % 9.8 % 24.4 % 22.9 % 12.2 % 

Least 
Challenging 

49.3 % 48.7 % 49.2 % 55.3 % 45.0 % 49.4 % 61.5 % 58.7 % 42.9 % 42.7 % 43.2 % 42.6 
% 

54.1 % 45.8 % 56.5 % 41.9 % 43.4 % 54.2 % 

Scenario 
3 
(HC) 

Extremely 
Challenging 

18.2 % 18.2 % 18.2 % 0.0 % 18.2 % 18.2 % 18.2 % 18.2 % 18.2 % 18.2 % 18.2 % 18.2 
% 

18.2 % 18.2 % 18.2 % 18.2 % 18.2 % 18.2 % 

Highly 
Challenging 

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 

Moderately 
Challenging 

0.0 % 0.0 % 0.0 % 0.1 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 

Slightly 
Challenging 

8.9 % 9.1 % 9.7 % 26.6 % 13.6 % 6.6 % 2.5 % 3.7 % 15.1 % 15.1 % 13.0 % 15.1 
% 

7.0 % 10.0 % 4.8 % 15.9 % 13.5 % 13.8 % 

Least 
Challenging 

72.9 % 72.7 % 72.1 % 73.4 % 68.2 % 75.3 % 79.3 % 78.1 % 66.8 % 66.8 % 68.8 % 66.7 
% 

74.8 % 71.8 % 77.0 % 65.9 % 68.3 % 68.0 %   

100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %   

O
. Tengilim

oglu et al.                                                                                                                                                                                                 
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Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tra.2024.104148. 
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