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Abstract: Pneumatic artificial muscles (PAMs) possess compliant properties desirable for certain
applications such as prosthetics and robotic structures. However, this compliance along with their
inherent nonlinear dynamics make them difficult to accurately model and as such accurately con-
trol under certain control architectures. Common approaches to this problem include measuring
the actuator’s physical properties and approximating a model based on these parameters or using
deep learning methods to train a model with the actuator’s behaviours. This paper introduces an
optimisation-based modelling approach based on a particle swarm optimisation (PSO) algorithm
using a mass–spring–damper approximation for the PAM, as well as a piecewise modelling method
that accounts for nonlinear dynamics. The use of optimisation to estimate model parameters re-
moves the need to measure physical properties, and the three-element approximation allows for
fast model generation with low computational complexity and training data requirements. Through
multiple tests comparing model behaviour with real PAM motion, the accuracy of these models
is confirmed to be promising for future work. Dynamic nonlinearities are properly accounted for
using the piecewise modelling method, including both hysteresis and disproportionate input/output
relationship across the stroke length of the actuator. Compared with other PAM modelling techniques,
this method has improved generation time, lower computational load requirements, and complexity
and can be applied to actuators for which the phenomenological mass–spring–damper model is a
good approximation.

Keywords: pneumatic artificial muscles; dynamic modelling; particle swarm optimisation; con-
trol systems

1. Introduction

Pneumatic artificial muscles (PAMs) differ from more conventional actuators due to
the inherently compliant behaviour and nonlinear dynamics arising from their construction
of flexible materials and actuation method. These properties make them desirable for
applications such as medical robotics in rehabilitation scenarios and prosthetics as they
more closely mimic biological muscle than conventional actuators. This allows for a more
comfortable human–robot interaction, as the compliance allows the user some give in their
voluntary movement when under the external influence of a robot, as well as making the
systems safer as it is less likely that unexpected forces or motion will injure the user or cause
damage to the robot. They are also applicable to robotic platforms where a human-like
motion is desired.

Various types of PAMs exist, suitable for different purposes based on differing charac-
teristics, but all operate under the same principle. An elastic bladder is sealed and fixed
at two ends, and upon pressurisation by compressed air will expand, applying force to
the fixed ends of the actuator. A less elastic material surrounding the bladder, such as a
harder rubber shell or braided fibre mesh, directs the force to cause the PAM to contract,
expand, or bend about an axis depending on the construction [1]. The original fluidic
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artificial muscles used in robotics were developed by Joseph McKibben in the 1950s for
orthotics [2,3]. A more detailed review of the development of PAMs is presented in [1].

While the compliant behaviour of PAMs is desirable in many branches of industry
and research, this and their nonlinear dynamics makes accurate motion control a challenge.
Standard linear control systems such as proportional integral derivative (PID) are less
effective than in more conventional applications as the friction present in the contrac-
tion/expansion of PAMs causes a hysteresis and changing behaviour with time, as well
as the uncertainties caused by the fluid dynamics of pressurised air. Model-based control
schemes can alleviate this problem by mapping the behaviour of the actuator to allow for
more accurate control, but a similar problem arises with the complexity of these models.
Many different approaches have been developed and studied in order to model PAMs
that attempt to balance complexity with functionality, to find a solution that is accurate
but does not take an exceedingly long time or large amount of computation to produce.
The review presented in [4] describes some of the different approaches to the modelling
problem of PAMs. The review suggests that geometric modelling is less suitable for these
actuators as their parameters are difficult to accurately measure during use; however, their
simplicity still makes the approach suitable for certain applications. The phenomenological
modelling approach, which approximates the muscle as a mass–spring–damper system,
is more suitable as this is a close approximation to the dynamics of PAMs based on their
construction and flexible materials, and the simplicity makes them fairly easy to calculate.
However, the hysteresis and nonlinearity over time is often not taken into consideration
in these models. A simplified empirical model is also mentioned in which the PAM is
simplified to that of a mechanical spring. Polynomial approximations of the parameters are
used that allow for easy adjustment of the complexity/accuracy by increasing the degree of
the model; however, again, these models suffer from not properly modelling the nonlinear
behaviour of the PAMs.

Applications of these physical/mathematical models of PAMs are present throughout
the literature. An early study on the phenomenological model for a McKibben muscle is
presented in [5]. Experiments were performed to determine the changing parameters of
the PAM with pressure, resulting in a model with 15% root mean squared error (RMSE),
with the largest error and the peak and trough of the actuator’s motion. An empirical
model based on geometric constants of a McKibben muscle is presented in [6] including
experimental parameter estimation. This model is used in model-based PID control of
the actuator, with performance deemed satisfactory and within tolerance levels. A non-
linear numerical model for a McKibben muscle is shown in [7], showing a maximum
error in experimental comparisons of 3% of the total displacement. Various models for
contractile length, pulling force, and a specific application of four McKibben muscles in
an arm configuration are shown in [8]. A mathematical model for an extensor PAM is
presented in [9], differing from more commonplace contraction PAMs as these increase in
length with increased pressure rather than decreasing.

PAMs developed by FESTO are popular in industrial applications as their construction
makes them more reliable. These PAMs have longer operating lives than typical nylon-
braided McKibben muscles and a greater force output capability; thus, they are also studied
in many research applications including modelling. A piecewise three-element model
of a FESTO PAM is presented in [10] for improved model predictive control (MPC). The
piecewise model uses multiple three-element systems for different pressure levels in the
PAM in order to overcome the nonlinearity of the actuator. The MPC developed with
this piecewise model, in comparison with PID control, has much better performance.
Mathematical models of FESTO PAMs are presented in [11,12], and phenomenological
models are shown in [13,14].

In recent years, more research has gone into applying machine intelligence in the form
of learning and optimisation to the problem of PAM modelling. This gives the advantage of
potentially more accurate models with more sophisticated parameters as well as alleviating
some of the need to measure the actuator’s complex parameters and dynamics. Neural
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networks are a popular algorithm used in this application; neural networks can be tailored
to the specific needs of the model, and their complexity can be varied easily. A modelling
method using an artificial neural network as well as hybrid backpropagation algorithm
and genetic algorithm for the learning stage is presented in [15] for modelling a novel
pleated PAM with promisingly accurate results obtained in experiments. Various other
neural network-based modelling approaches have been applied to FESTO PAMs, including
a recurrent fuzzy-neuro approach in [16] and neural network approaches for antagonistic
pairs of PAMs in [17,18]. The architecture of each neural network used in these studies
is widely similar, with multiple input nodes, a similar number of hidden nodes, and a
single output.

Another common approach in applying intelligence in modelling is optimisation, with
particle swarm optimisation (PSO) algorithms being a popular choice. PSO uses a swarm
of particles that interact with each other as they move around a search space attempting to
minimise some cost function. By using a large number of particles in the swarm, solutions
can be found much faster. In the case of actuator modelling, each particle has a number
of parameters that describe both its position in the search space as well as the parameters
used in the equation describing the dynamics of the actuator. The objective function is
typically some combination of errors between the actual behaviour of the actuator and the
approximated behaviour based on each particle’s parameters. Using this method, the actual
parameters can be approximated rapidly and accurately, with the calculation time being
largely invariant to the complexity of the model. An empirical model of a McKibben muscle
with parameters generated using PSO is presented in [19] with the aim of characterising
the hysteresis behaviour of the muscle. The model was verified to be accurate; however,
the nonlinearities of the PAM are mentioned for causing some inaccuracies, and more
intelligent control strategies are suggested as a solution. An inverse model for a PAM is
presented in [20], also based on an PSO algorithm for system identification.

Limitations exist for all modelling practices. As mentioned in [4], geometric modelling
is difficult to apply to PAMs accurately as online measuring of their nonlinear dynamic
properties is difficult to achieve accurately. The standard phenomenological model using
mass–spring–damper approximation also suffers lower accuracy due nonlinearity, as the
linear model approximation does not account for hysteresis and disproportionate motion–
input relationships. Intelligent learning algorithms, such as neural networks and genetic
algorithm as presented in [15–18] and to an extent optimisation algorithms like PSO, can
achieve highly accurate models of even complex nonlinear systems, but better approxi-
mations rely on sufficiently complex model parameterisation and learning datasets that
can greatly increase the computational load and model generation time. This trade-off in
model accuracy, complexity, and computation time must be accounted for.

This paper will present a piecewise PSO modelling method for a FESTO DMSP-20-
400N PAM based on the phenomenological modelling approach. A three-parameter model
based on the dynamics of the mass–spring–damper approximation for the PAM will be
used as a template for the model, used for its good approximation of PAMs as well as its
simplicity and low parameter count, reducing model complexity and improving generation
time. In order to compensate for the nonlinearity of the PAM, a piecewise modelling
method will be used with multiple different models for different sections of the actuator’s
stroke length. Models generated in this manner will be compared experimentally with the
PAM under different loads and inputs to validate their accuracy.

2. Materials and Methods
2.1. Phenomenological Model

The phenomenological model is commonly used in modelling PAMs due to their
approximately similar behaviour to mass–spring–damper systems. A three-element model
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based on this will be used as a template for optimisation in this study. The equation of
motion for this model is given as follows:

M
..
x(t) + D

.
x(t) + Cx(t) = Fc − Fl (1)

where M is the mass of the PAM, D is the damping element, C is the spring constant, Fc is
the contractile force element applied by the internal pressure of the PAM, Fl is the force
applied by external load to the system, and x(t) is the displacement of the actuator from its
nominal position at a given time step. This model is shown in Figure 1.
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The contractile force applied by the PAM is proportional to the input pressure, making
Fc proportional to the control input of the system, which will be henceforth denoted with U.

Using the displacement and velocity of the system as state variables, the following
equations are obtained:

x1(t) = x(t) (2)

x2(t) =
.
x(t) (3)

.
x1(t) = x2(t) (4)

The equation of motion can be re-written in terms of these states:

U(t) = M
.
x2(t) + Cx2(t) + Kx1(t) (5)

.
x2(t) = − K

M
x1(t)−

C
M

x2(t) +
U(t)

M
(6)

The output of the system is the displacement of the actuator, so the output of the model y(t)
is expressed as follows:

y(t) = x1(t) (7)

The state-space representation of this model in matrix form is given by the following:

.
X(t) =

[ .
x1(t).
x2(t)

]
=

[
0 1

− K
M − C

M

][
x1(t)
x2(t)

]
+

[
0
1
M

]
U(t) (8)

y(t) =
[
1 0

][x1(t)
x2(t)

]
+ [0]U(t) (9)

The unknown parameters of the system based on Equation (8) are − K
M , − C

M , and 1
M . These

three elements will be approximated through optimisation using the PSO algorithm and
will be referred to henceforth as P1, P2, and P3 respectively. The model equations for each
state-space solution are given by Equations (9) and (10).
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.
X(t) =

[ .
x1(t).
x2(t)

]
=

[
0 1
P1 P2

][
x1(t)
x2(t)

]
+

[
0
P3

]
U(t) (10)

2.2. Particle Swarm Optimisation Algorithm

The classical PSO algorithm is referenced extensively in the literature [19–22]. It uses a
group of potential solutions (particles) to an optimisation function that iteratively updates
their parameters in response to some fitness function, with these parameters acting as
coordinates in a search space. The particles base their movement around the search space
on both their own best fitness performance and the overall best fitness found in the swarm.
This sharing of data between solutions allows for fast optimisation convergence. The
following equations describe the velocity and position updates for the particles at each
iteration of the algorithm:

Vi(k + 1) = WVi(k) + C1Rand(Xibest(k)− Xi(k)) + C2Rand(Gbest(k)− Xi(k)) (11)

Xi(k + 1) = Xi(k) + Vi(k + 1) (12)

where i is the current particle; k is the current iteration of the algorithm; V is the particle’s
velocity in the search space; X is a particle’s position in the search space quantified by
its parameters; Rand is a random value between 0 and 1; Xibest is the position of the
current particle which achieved the best (lowest) fitness; Gbest is the global best position
of all particles in the swarm; and W, C1, and C2 are algorithm parameters that are tuned
manually.

The parameters to be optimised using PSO algorithm in this study are P1, P2, and P3 as
described in Equation (10). As such the search space is three-dimensional. The optimisation
function used to determine the fitness of each particle is the root mean squared error
(RMSE) between the expected displacement of the PAM based on the model generated by a
particle’s parameters and the actual displacement of the PAM, measured over a period of
one repeated sin wave motion, as described in Equation (13).

Fi =

√
∑N

t=0(x − yi(t))
N

(13)

where Fi is the fitness value for the current particle; t is the time step; N is the number
of time steps in the measured motion sequence; x is the measured displacement of the
PAM; and yi(t) is the output of the model based on Equations (9) and (10) using the three
parameters of particle i as P1, P2, and P3 at time step t.

Using this method, generated model solutions are iteratively improved based on how
accurately they match the motion of the PAM. The update parameters of the algorithm are
W = 0.9 to prevent divergent swarm motion and C1 = C2 = 2 to increase the efficacy of the
algorithm and reach solutions in fewer iterations, while maintaining low enough velocities
to keep the swarm coherent. The number of particles in the swarm is set to 50 as a balance
between the time taken for each iteration and convergence time to a solution.

2.3. Piecewise Model

The nonlinear nature of PAMs makes them difficult to accurately approximate with
linear models such as the three-element model described in Section 2.1. Nonlinear models
of this nature are much more computationally complex and not feasible to generate using
optimisation methods such as PSO. As such, a compromise is made in the form of piecewise
models. Multiple models will be generated using different reference target motions of the
PAM, as well as different input ranges within those motions. These models are then put
together, each operating during the specific range of inputs to the system as specified by
how they were generated. The resulting piecewise model comprised of multiple linear
models should better approximate the nonlinearity of the PAM than a single linear model.
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The nature of the PAM’s nonlinearity is twofold. Internal friction caused by the
braided fibres in the outer mesh cause a hysteresis to occur, and the method of actuation
in inflation by pressurised air makes the displacement not linearly proportional to input
pressure, with displacement velocity gradually decreasing along the stroke length of the
actuator. To account for the hysteresis, different models can be generated for the actuator’s
inflation and deflation. The disproportionate motion across the stroke length can again be
accounted for by generating multiple models for different input ranges.

Each piecewise model is therefore comprised of multiple individual three-parameter
solutions as described in Equation (10). In order to generate the whole piecewise model
solution, the PSO algorithm is run once for each model section, generating three parameters
per section.

The model output for each part of a piecewise model solution would therefore be
described using Equations (14) and (15).

.
X j(t) =

[ .
xj1(t).
xj2(t)

]
=

[
0 1

Pj1 Pj2

][
xj1(t)
xj2(t)

]
+

[
0

Pj3

]
U(t) (14)

With the specific model used based on the input U(t) according to the following:

y(t) =


x11(t) f or 0 ≤ U(t) < K1

x21(t) f or K1 ≤ U(t) < K2
x31(t) f or K2 ≤ U(t) < K3

. . .
xn1(t) f or Kn−1 ≤ U(t)

(15)

As well as differentiation of the inflating and deflating states according to the following:

y(t) =

{
xin f 1(t) f or

.
U(t) > 0

xde f 1(t) f or
.

U(t) ≤ 0
(16)

where j is the model section, n is the total number of linear model sections of the piecewise
model, and Ki is the input bound determining the upper bound of the model section Xj(t)
and the lower bound of the model section Xj+1(t). Each model section j will have a set of
Pj1, Pj2, and Pj3 that are independently generated for each j using the PSO algorithm for a
total parameter count of 3j per piecewise model.

In cases where both the input ranges and inflating/deflating state differentiations are
used, each model section Xj(t) will constitute both an inflating and deflating state, resulting
in both Xj in f (t) and Xjde f (t), such that y(t) would be given by the following equation:

y(t) =



{
x1in f 1

f or
.

U(t) > 0

x1de f 1
f or

.
U(t) ≤ 0

f or 0 ≤ U(t) < K1{
x2in f 1 f or

.
U(t) > 0

x2de f 1 f or
.

U(t) ≤ 0
f or K1 ≤ U(t) < K2{

x3in f 1
f or

.
U(t) > 0

x3de f 1
f or

.
U(t) ≤ 0

f or K2 ≤ U(t) < K3

. . .{
xnin f 1 f or

.
U(t) > 0

xnde f 1 f or
.

U(t) ≤ 0
f or Kn−1 ≤ U(t)

(17)

However, there then exists a trade-off between accuracy and computational efficiency
in using piecewise modelling. A greater number of models across the stroke length will
ultimately cause the model to be more accurate as the nonlinearity is better approximated;
however, this also results in the model being far more complicated, taking much longer
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to generate, and having far more parameters. There is also the issue of reference motions
becoming too small to properly approximate the overall motion of the PAM, potentially
causing each individual model to be less accurate within its own input range. As such
the piecewise models generated in this study will comprise of six input ranges, spaced
across the stroke length of the actuator to best model the nonlinearity of motion, as well as
different models generated for the inflating and deflating state.

2.4. Experimental Setup

The actuator to be used in this work is a FESTO DMSP-20-400N PAM. As previously
discussed, PAMs provide compliant motion, which is desirable in a rehabilitation robot.
They are also controlled with a single pressurised air input, meaning the only necessary
control value is the air pressure flowing into the PAM. The main output measure of the setup
is the actuator’s displacement to be used to generate target references for the optimisation
function as well as measure the error and calculate accuracy of the models. The load force
applied to the PAM will also be measured to test the effects of external loads on the accuracy
of the models. To measure each of these, a linear encoder and a load cell will be connected
to the actuator.

The load cell used is a FUTEK LCM300 model and has a 300 Lb load limit and
sufficient precision for any force changes required by the system. The displacement encoder
connected to the bottom of the linear actuator is a FESTO MLO-POT-300-TLF with a
resolution of 0.01 mm and stroke length of 300 mm, both of which are sufficient for the
system. The proportional pressure regulator used is a FESTO VPPM-6L-L-1-G18-0L6H. The
system is held in place with a frame consisting of slotted aluminium extrusion, and the
PAM is positioned vertically to ensure motion and forces are not adversely affected by the
actuator’s intrinsic compliance regarding gravity.

To control the system, a RoboRIO is connected to a desktop PC and coded using
National Instruments LabVIEW. The outputs of the load cell and the displacement encoder
are input to the RoboRIO to be measured on the display. The load cell is connected to a
FUTEK IAA100 strain gauge voltage amplifier before the output is taken by the RoboRIO
to allow for easier signal processing.

Figure 2 shows a diagram of the experimental setup alongside the circuitry and
computer communication systems used for data acquisition and actuator control. Figure 3
shows the PAM in the experimental setup.
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Figure 3. The experimental setup, showing the FESTO DMSP-20-400N PAM (1), FUTEK LCM300
load cell (2), FESTO MLO-POT-300-TLF displacement encoder (3), and external load attachment (4).

3. Results
3.1. Model Generation

To properly compare successes of the piecewise PSO modelling method, several differ-
ent models were generated. As a benchmark comparison point, a linear phenomenological
model was used. To properly justify the benefits of the piecewise modelling method, sepa-
rate models were also generated using separate parameters for the inflating and deflating
states, as well as six distinct ranges within the PAM’s stroke length differentiated by input
pressure. Four total models were generated for experiments and comparison. Each indi-
vidual state-space solution, comprised of the three optimised parameters, was generated
using 20 iterations of the PSO algorithm, taking approximately five min per solution. The
total number of iterations required for each model is shown in Table 1.

The linear model was generated using a single reference trajectory as comparison
for the PSO’s fitness function. This effectively gives Equation (15) a value of n = 1, and
no K values are needed as model bounds. This reference was the displacement of the
PAM measured using the displacement encoder as shown in Figure 3, over a single sin
wavelength with an amplitude of the full stroke length of the actuator—approximately
10 cm total displacement from the resting point—and frequency of 0.25 Hz. The same
reference trajectory was used to generate a model differentiating the inflating and deflating
states of the PAM, hereafter referred to as the inflate/deflate model, using Equation (16) to
describe the model section separation. In order to generate this model, the fitness function
of the PSO algorithm was only calculated during periods where the reference trajectory
was increasing or decreasing, thus two state-space solutions were generated.
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The piecewise models used six separate reference trajectories, giving a value of n = 6
for Equation (15), chosen at intervals that would improve the model’s approximation of the
PAM’s nonlinear motion across its stroke length. As the motion of the actuator becomes
less proportional to input as input pressure increases, the density of these intervals was
chosen to increase across the stroke length. The full stroke length of the PAM is achieved
using a range of input pressures from 0 to 6.3 Bar. In order to best split the piecewise model
sections across the stroke length, a range of pressures were decided for this experiment of
[0–1.5], [1.5–3], [3,4], [4,5], [5,6], and [6–6.3] Bar. At steady state, these pressure ranges are
achieved by the following input voltages to the pressure regulator, K1 = 1.05, K2 = 2.35,
K3 = 3.15, K4 = 3.95, and K5 = 4.75. These values were therefore used as the piecewise
model range boundaries in the model generation software.

Two piecewise models were generated using these input pressures as the operating
ranges for each separate state-space solution. Each range was generated using a reference
trajectory similar to that of the linear model, using a sin wave motion of the PAM, with
the motion bounded by the lower and upper limits of each interval. Of the two models,
one also used the inflation/deflation differentiation method described previously, resulting
in what will hereafter be referred to as a piecewise model and a piecewise inflate/deflate
model. The piecewise model has a total of six state-space solutions, one for each input
interval, and the piecewise inflate/deflate model has a total of twelve state-space solutions.
As previously discussed, this greater number of solutions is expected to result in better
accuracy in comparison with the other models.

Table 1 shows the three parameters generated for each separate part of all four models.
These parameters are then applied to Equation (10) to create a state-space solution for the
input range and inflating/deflating state as specified by the reference used for comparison
in the PSO algorithm fitness function. Total iterations used for each model are included to
show computational costs.

Table 1. Model parameters as described in Equation (10) and Section 2.2, generated using the PSO
optimisation algorithm for each different model. Included are the total PSO algorithm iterations
required to generate each of the four models.

Model Total PSO Iterations Model Section P1 P2 P3

Linear 20 Linear 0.451259 0.305468 0.519089

Inflate/Deflate 40
Inflate 0.204797 0.401668 0.821284
Deflate 0.591312 0.224405 0.421155

Piecewise 120

1 0.0419824 0.717121 0.385334
2 0.230325 0.428379 0.970208
3 −0.194232 0.441082 2.05713
4 0.129964 0.416894 1.11129
5 0.343061 0.207203 1.00254
6 −0.0147093 0.151612 1.74169

Piecewise Inflate/Deflate 240

Inflate 1 0.233221 0.522204 0.417219
Deflate 1 0.04244 0.588327 0.628349
Inflate 2 0.112168 −0.0255462 2.36332
Deflate 2 0.0872913 0.681367 0.651491
Inflate 3 0.0986908 0.638282 0.771687
Deflate 3 0.632625 −0.0197651 1.0512
Inflate 4 0.370783 0.399432 0.596057
Deflate 4 0.616219 0.0665999 0.762527
Inflate 5 0.480481 0.112959 0.900554
Deflate 5 0.168957 0.648523 0.38119
Inflate 6 −0.123881 0.612445 1.03806
Deflate 6 0.651356 −0.126021 0.961433
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3.2. Model Accuracy Experiments

As PAMs are used in several small-scale and industrial applications, multiple exper-
iments were performed to determine each of the four models’ accuracy under different
use cases. These experiments involved distinct repeated waveforms used as inputs to the
pressure regulator controlling the PAM as well as to each of the four models in turn in
order to measure the accuracy of the model to the PAM’s actual motion. The parameters
of each waveform were chosen to best demonstrate different use cases of the PAM. These
included a sin wave spanning the full length of the PAM’s stroke length, both unloaded
and with a 5 kg external load attached as shown in Figure 3. The same full stroke sin wave
at a higher frequency was used to show the model’s response to rapidly changing motion.
Square and triangle waveforms, also spanning the full stroke length of the PAM, were used
to test other possible operating procedures. Finally, two sin waveforms spanning the lower
and upper ends of the PAM’s stroke were used to validate the models’ accuracy in smaller
motions. The details of waveforms used for each experiment are outlined in Table 2. Each
waveform is repeated for four wavelengths to ensure consistency and to mitigate potential
unwanted disturbances, except for the rapid sin wave experiment which was repeated for
eight wavelengths.

Table 2. Details of waveforms used in the model accuracy experiments. As these waveforms constitute
input sequences to the proportional pressure regulator, amplitude, and offset are measured in voltage.

Experiment Waveform Type Amplitude (V) Offset (V) Frequency
(Hz) Additional Notes

Full Stroke Sin
Wave Sinusoidal 5 0 0.25

The maximum input giving a
measurable output for the
pressure regulator was 5 V

Lower Stroke Sin
Wave Sinusoidal 3 0 0.25 To determine accuracy at the

lower stroke of the PAM

Upper Stroke Sin
Wave Sinusoidal 3 2 0.25 To determine accuracy at the

upper stroke of the PAM

Triangle Wave Sinusoidal 5 0 0.25
To determine model response to
constant velocity and rapid
changes in velocity

Square Wave Sinusoidal 5 0 0.25 To determine model response to
rapid changes in displacement

Rapid Sin Wave Square 5 0 1
Waveform repeated 8 times due
to shorter wavelength to ensure
consistency between experiments

Weighted Sin Wave Triangle 5 0 0.25
A 5 kg external load is applied to
the unaffixed end of the PAM, as
shown in Figure 3

The motion tracking results for the full stroke sin wave motion is shown in Figure 4.
The displacement error is shown for each of the models in each experiment in Figures 5–11.
Specific error measures from each experiment are shown in Table 3.
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Figure 4. Graph showing the PAM displacement during the full stroke sin wave experiment and
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Figure 6. Graph showing the displacement error for each model in the Lower Stroke Sin Wave
accuracy experiment.
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Figure 7. Graph showing the displacement error for each model in the Upper Stroke Sin Wave
accuracy experiment.
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Figure 8. Graph showing the displacement error for each model in the Triangle Wave accuracy
experiment.
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Figure 9. Graph showing the displacement error for each model in the Square Wave accuracy
experiment.
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Figure 10. Graph showing the displacement error for each model in the Rapid Sin Wave accuracy
experiment.
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Figure 11. Graph showing the displacement error for each model in the Weighted Sin Wave accuracy
experiment.
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Table 3. Root mean squared error (RMSE) values for displacement and velocity calculated over a
single wavelength for each experiment. Maximum displacement error values exclude the initial
transient motion.

Experiment Error Measure Linear Model Inflate/Deflate
Model

Piecewise
Model

Piecewise
Inflate/Deflate
Model

Full Stroke Sin
Wave Motion

Displacement RMSE 6.13633 4.56575 5.83597 5.65194
Velocity RMSE 0.923337 0.864623 1.03032 1.01383
Maximum Displacement Error 2.22815 1.31099 1.96861 2.28073
Maximum Velocity Error 0.668612 0.981179 1.2318 1.30308

Lower Stroke Sin
Wave

Displacement RMSE 7.92829 7.22548 3.99538 4.34249
Velocity RMSE 0.530426 0.673029 0.497157 0.644981
Maximum Displacement Error 2.20256 1.8153 1.08325 1.47484
Maximum Velocity Error 0.401167 0.626442 0.751128 0.703432

Upper Stroke Sin
Wave Motion

Displacement RMSE 10.9469 9.13923 4.26431 4.12044
Velocity RMSE 0.641451 0.71235 0.74694 0.592489
Maximum Displacement Error 2.6029 2.53934 1.6502 1.81496
Maximum Velocity Error 0.907793 1.21929 1.55914 1.05378

Triangle Wave
Motion

Displacement RMSE 9.16222 5.40654 5.33678 4.92422
Velocity RMSE 0.906614 0.784657 0.840442 0.854697
Maximum Displacement Error 2.37337 1.76919 1.62597 1.8976
Maximum Velocity Error 0.220352 0.231343 0.381985 0.753218

Square Wave
Motion

Displacement RMSE 8.83882 8.25559 13.2914 13.5085
Velocity RMSE 2.0656 2.25246 3.37061 3.24101
Maximum Displacement Error 4.40405 5.5969 9.74115 8.26315
Maximum Velocity Error 1.67346 2.81359 4.95761 4.13536

Rapid Sin Wave
Motion

Displacement RMSE 7.00625 4.20318 9.08059 7.81292
Velocity RMSE 1.09764 1.25888 2.54982 2.60158
Maximum Displacement Error 3.19252 2.58384 3.95251 4.98838
Maximum Velocity Error 0.994197 1.51908 2.13284 1.89554

Weighted Sin Wave
Motion

Displacement RMSE 4.89103 5.96969 6.03493 5.67446
Velocity RMSE 0.824754 0.804333 1.00429 0.954394
Maximum Displacement Error 1.54481 1.47573 2.80113 2.50223
Maximum Velocity Error 0.668612 1.04407 1.62628 1.30308

4. Discussion

Performance criteria for real-time operating models of actuators such as the ones
presented here are numerous; thus, a consensus on the best performing model is difficult to
reach. These criteria include accuracy to the physical system, robustness to external forces
including both load and environmental noise and to different operating modes and input
sequences, and computational complexity in generation and during runtime.

Displacement error of the linear PSO and piecewise PSO models are shown in
Figures 5–11, while maximum error values for displacement and velocity and RMSE
values are shown in Table 3. In general, the absolute error values in each experiment reach
a maximum of around 2 cm for all models, except during the square wave experiment in
which the maximum error was much higher due to the very rapid change in displacement
of the PAM that exacerbates the model’s slight lag/lead of the real motion. The rapid
motion experiment also showed larger error values, see Figure 10, again due to rapid
motion of the PAM but also due to the hysteresis effect in the actuator altering the dynamics
during faster motion. The linear and inflate/deflate models have similar error functions
with time in most experiments, with the inflate/deflate model having generally lower error
values. However, as particularly evident in the upper stroke sin wave, see Figure 7, and
rapid sin wave experiments, see Figure 10, the changing between inflating and deflating
states can cause the inflate/deflate model to have a sharp spike in error as it switches
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between parameters. Both of these models do not properly follow the nonlinearity of the
PAM towards the peak of its displacement. They also suffer much larger error values
during the lower- and upper stroke tests than in the full stroke test, as the use of a single
reference trajectory in the model generation causes the PSO algorithm to overfit to the
specific motion used to calculate fitness. The use of piecewise models reduces this effect as
both the piecewise and piecewise inflate/deflate models have generally lower error values
during the upper- and lower stroke tests. In terms of displacement RMSE, the piecewise
model has the lowest error in each experiment as shown in Table 3 except during the rapid
motion and square wave tests, where both the RMSE and maximum displacement error
is greater than that of the linear and inflate/deflate models. This is slightly mitigated by
the piecewise inflate/deflate model. Figure 4 shows the jumps between input ranges in
the piecewise model’s output; while this model does exhibit lower error values than the
piecewise inflate/deflate model, these sharp jumps are undesirable in online operation.
Thus, the piecewise inflate/deflate model may be more suited to real time applications.

In comparison with other PAM models in literature, especially those pertaining to
the FESTO PAMs, the piecewise PSO modelling method shows similar motion prediction
behaviour to other mathematical models. Results from [11] show similar model accuracy in
online comparative displacement tests, with models overshooting at higher displacement
values of the PAM, similar to that of the linear and inflate/deflate models presented here.
Hysteresis is also not properly accounted for. The phenomenological model presented
in [14] shows lower RMSE values and closer fitting motion prediction than the piecewise
PSO models here; however, the experiments were conducted over much smaller contraction
ranges, making accurate comparisons difficult. Models presented in [12,13] are also difficult
to compare as experiments focus on force output estimation over pressure input range
rather than displacement over time. Neural network-based models, such as those presented
in [15–18], have very low error values in motion estimation experiments; however, the
results in [17,18] utilise an antagonistic pair of PAMs and measure angle rather than dis-
placement. The algorithm used in [15] for model generation uses a hybrid genetic algorithm
and backpropagation neural network. There are several mentions of both algorithms hav-
ing slow convergence times, and the model used in experiments required 3000 iterations of
the backpropagation learning function. In [16], the error values converged to a satisfactory
value after 250 iterations of the fuzzy neural network training. Exact generation time is
not mentioned; however, the large number of iterations required for neural network-based
modelling alongside the computational complexity and required training data make the
piecewise PSO modelling method presented here a favourable option in terms of the model
generation stage. The PSO-based empirical model presented in [19] shows similar motion
tracking results to those presented here, although accuracy is generally better. However,
this empirical model is based on a McKibben muscle, and, as mentioned in the paper,
the model would not apply to other compliant or soft actuators. Therefore, the simple
three-element estimation used here may be more generally useful in modelling various
PAMs and other similar soft actuators. Table 4 shows a brief comparison of important
points between the proposed piecewise PSO modelling method and those more commonly
used modelling techniques.

The error values in the weighted test are generally similar to those in the unweighted
full stroke test. This is mainly due to the FESTO PAM’s high load tolerance causing the
weight to have little effect on the motion. In order to properly determine the effects of
larger loads on the model’s accuracy, a more sophisticated experimental setup is required.
As the piecewise PSO modelling method does not include any real-time measurement in
the parameters, the models do not change dynamics based on external factors and do not
respond to loads and noise that would impact their robustness in an industrial setting.
The inclusion of measures from the attached load cell to the parameter calculation could
improve this and have the models respond to loads and environmental factors affecting the
PAM’s motion.
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Table 4. Comparison between the piecewise PSO modelling method and commonly used modelling
methods for PAMs. Quantitative data are not provided due to different accuracy measures and
experiment types between studies, making qualitative comparison difficult or potentially mislead-
ing. Comparisons are kept to those methods applied to FESTO PAMs to ensure similar results
where possible.

Modelling Method Comparison
References Accuracy Comparison Computational Cost Model Complexity

Mathematical Model [10,11]
Similar accuracy, the piecewise
model shows smaller overshoots
at higher stroke lengths

Similar or slightly
higher than the PSO
method

Similar or slightly
higher than the PSO
method

Phenomenological
Model [14]

Better accuracy than the PSO
method, different experiment
procedures make comparison
difficult

More measurements
required than the PSO
method

Similar model
complexity

Neural Network-Based
Model [15–18] Much higher than the PSO method Much higher than the

PSO method
Much higher than the
PSO method

PSO-Base Empirical
Model [19]

Similar motion tracking results,
generally better accuracy than the
PSO method

More measurements
required than the PSO
method

More model
parameters and
templates required
than the PSO method

The three-element phenomenological model used as the template of the piecewise PSO
modelling method makes it computationally simple, and the use of state-space solutions for
each individual model mode makes for fast runtime operation and simple implementation
when compared to more involved methods such as deep learning modelling. The use
of an optimisation function for parameter estimation also removes the need to measure
these parameters manually, and as such this modelling method could be applied to other
linear actuators for which the mass–spring–damper approximation is a good estimation
of their dynamic properties. Under a different dynamic model template, the proposed
PSO modelling method could apply to other types of actuators, but this would require
further testing to properly validate. The PSO algorithm has fast optimisation time and
requires very little training data when compared to deep learning methods, as only a single
trajectory is required to calculate model fitness for each set of parameters. The piecewise
inflate/deflate model, being the most complicated with 12 separate state-space solutions,
takes approximately one hour to generate using the algorithm parameters mentioned
previously. With further tuning of the C1 and C2 parameters, as well as swarm size and
number of iterations used, this time can be reduced at little cost to the model’s accuracy.

5. Conclusions

A piecewise PSO modelling method for pneumatic artificial muscles is presented in
this paper. A phenomenological model was adopted as a model template, based on the
approximation of the PAM as a mass–spring–damper system, with three parameters based
on the spring constant, damping constant, and mass of the muscle. Models were generated
using reference trajectories from a displacement encoder connected to a FESTO PAM with
sin waveform inputs to a pressure regulator forming a constant sin motion, and the RMSE
calculated between each particle solution was used as the fitness function for the PSO
algorithm. Four different models were generated for testing using this method: a linear
model using a single three-element solution, an inflate/deflate model with two solutions
differentiating between the PAM’s inflating and deflating states, a piecewise model using
six pressure ranges for six different solutions, and a piecewise inflate/deflate model using
both the inflation/deflation modes as well as input pressure ranges. Experiments show that
these models have good accuracy, with the piecewise PSO modelling method effectively
accounting for the nonlinearity present in the PAM. Compared to other PAM models in
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literature, results show similar motion behaviour and similar or slightly worse prediction
accuracy to mathematical and physical models. When comparing to neural network and
genetic algorithm-based models, the error values from the piecewise PSO modelling method
are noticeably higher; however, the use of deep learning algorithms greatly increases the
time to generate models as well as the computational requirements and complexity. The
use of the phenomenological model approximation of the PAM could also allow for more
generalised use cases than other model examples, including other PAM types and some
other actuators with similar operating principles for which the phenomenological model
used here is applicable.

Improvements can be made to the robustness of these models. Measurements of
external forces applied to the PAM during operation can be incorporated into the model
parameters to allow for dynamic adjustment of the model in response to load and envi-
ronmental factors. Improvements to the accuracy, as well as generation time, can be made
in fine-tuning the PSO algorithm parameters. Accuracy can also be improved using a
greater number of pressure ranges for piecewise model generation, as well as more efficient
spacing of these ranges within the PAM stroke length. This does come with a trade-off of
modelling time and complexity as each additional model requires further optimisation, but
the simple phenomenological model template makes the increase in complexity minimal.
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