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Eleven neurology‑related proteins 
measured in serum are positively 
correlated to the severity 
of diabetic neuropathy
Emmanuel Bäckryd 1*, Andreas Themistocleous 2, Anders Larsson 3, Torsten Gordh 4, 
Andrew S. C. Rice 5, Solomon Tesfaye 6, David L. Bennett 2,7 & Björn Gerdle 1,7

About 20% of patients with diabetes suffer from chronic pain with neuropathic characteristics. We 
investigated the multivariate associations between 92 neurology‑related proteins measured in serum 
from 190 patients with painful and painless diabetic neuropathy. Participants were recruited from the 
Pain in Neuropathy Study, an observational cross‑sectional multicentre study in which participants 
underwent deep phenotyping. In the exploration cohort, two groups were defined by hierarchical 
cluster analyses of protein data. The proportion of painless vs painful neuropathy did not differ 
between the two groups, but one group had a significantly higher grade of neuropathy as measured 
by the Toronto Clinical Scoring System (TCSS). This finding was replicated in the replication cohort. 
Analyzing both groups together, we found that a group of 11 inter‑correlated proteins (TNFRSF12A, 
SCARB2, N2DL‑2, SKR3, EFNA4, LAYN, CLM‑1, CD38, UNC5C, GFR‑alpha‑1, and JAM‑B) were 
positively associated with TCSS values. Notably, EFNA4 and UNC5C are known to be part of axon 
guidance pathways. To conclude, although cluster analysis of 92 neurology‑related proteins did not 
distinguish painful from painless diabetic neuropathy, we identified 11 proteins which positively 
correlated to neuropathy severity and warrant further investigation as potential biomarkers.

Neuropathic pain is defined as pain arising from a lesion or disease of the somatosensory nervous  system1. 
Diabetes is one of the diseases which can cause neuropathic pain. About 20% of diabetic patients suffer from 
chronic pain with neuropathic  characteristics2. Such neuropathic pain is associated with the development of 
distal symmetrical polyneuropathy (DSP)3–5. However, 50–75% of patients with diabetic DSP do not develop 
neuropathic  pain4,5. Although there are well-known risk factors for the development of painful DSP (obesity, 
glycemic burden, and female  sex6,7, and although there is an association between the severity of neuropathy and 
neuropathic  pain8, it is still unclear why some patients with diabetic DSP develop neuropathic pain while others 
do  not9. We have previously reported that, in patients with diabetic DSP, it was possible to identify a higher-
inflammation subgroup in which high levels of hepatocyte growth factor, colony-stimulating factor 1, CD40 and 
11 other inflammation-related proteins were associated with more severe neuropathy and higher pain  intensity10.

Even when evidence-based first-line medicines such as tricyclics/duloxetine or gabapentinoids are prescribed 
adequately, only a minority of patients with neuropathic pain get substantial pain relief, the numbers needed to 
treat for > 30–50% pain relief ranging between 4 and  811. For a majority of neuropathic pain patients, adequate 
pain relief will not be achieved. Importantly, there is a substantial “translational gap” between the achievements of 
preclinical (rodent) models of neuropathic pain and clinical  reality12–14. In this context of deeply unmet medical 
needs, it has been suggested that human biomarker studies could be a way to bridge the translation  gap15, e.g., 
by conducting proteomic  studies16. Another way to explore the pathophysiology of different neurological condi-
tions in humans is to use panels of pre-selected proteins such as, for instance, the Olink Neurology  panel17. The 
92 proteins of the Olink Neurology panel are a mix of established markers related to neurobiological processes 
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and neurological diseases (e.g., neural development, axon guidance, synaptic function, or specific conditions 
such as Alzheimer’s disease), as well as some more exploratory proteins with broader roles in processes such as 
cellular regulation, immunology, development, and  metabolism18.

The aim of this exploration and replication study was to investigate the multivariate associations between 92 
neurology-related proteins measured in serum from diabetic DSP patients and clinical characteristics including 
pain intensity and neuropathy severity. Study participants were recruited as part of the Pain in Neuropathy Study 
(PiNS)8 and dichotomized into painful and painless diabetic DSP.

Methods
Overview and study rationale
Before any statistical analysis, the 190 study participants were randomized into an exploration (n = 95) and a 
replication (n = 95) cohort by using the random function in Microsoft Excel. The randomization was “frozen” 
in a pdf file on 20 May 2020. An underlying assumption in the present work is that (partly) different patho-
physiological mechanisms might be at work in subgroups of patients suffering from painful diabetic  DSP10. It 
has been suggested that many clinical disease entities may be umbrella terms encompassing several molecular 
mechanisms that share prominent signs and  symptoms19. Therefore, our strategy in the present paper was to use 
cluster analysis to first define subgroups of patients based on the correlation structure of the analysed neurology-
related proteins, the hypothesis being that such subgroups would be clinically meaningful. Such a strategy partly 
resembles that of Baron et al.20 who clustered peripheral neuropathic pain patients using quantitative sensory 
testing (QST). However, our subgrouping strategy is based not on psychophysical but on biological data, i.e., on 
protein levels. This approach is consistent with a systems medicine perspective, in which groups of interest are 
defined using “mechanism-based stratification”19 instead of the more conventional focus on signs and symptoms.

Patients and clinical data
PiNS is an observational cross-sectional multicentre study in which participants underwent deep phenotyping 
that included neuropathy screening tools, extensive symptom and function questionnaires, neurological exami-
nation, nerve conduction studies, quantitative sensory testing, and skin biopsy for intraepidermal nerve fibre 
density assessment (IENFD) in a sub-set of  patients8. Patients with diabetes mellitus aged above 18 years with 
diagnosed DSP, or patients with symptoms and signs suggestive of DSP were included. Exclusion criteria were 
pregnancy, coincident major psychiatric disorders, poor or no English language skills, severe pain at recruit-
ment from a cause other than DSP (to prevent potential confounding influence on pain reporting as well as 
psychological and quality-of-life reported outcomes), patients with documented central nervous system lesions, 
or patients with insufficient mental capacity to provide informed consent or to complete questionnaires. Many 
of the study participants were recruited from primary care practices in London and Oxford. Study participants 
were also recruited from diabetes and other clinics at Chelsea and Westminster Hospital NHS Foundation Trust 
(London), Sheffield Teaching Hospitals and Oxford University Teaching Hospitals, neurology clinics at King’s 
College Hospital (London), and through advertisements.

Participants were included consecutively in PiNS until target number was reached. In PiNS, participants 
are dichotomized in painless and painful diabetic DSP. The methods and questionnaires have been previously 
described in  detail8. Participants included in the present biomarker study were those where serum, and neuro-
pathic pain grading according to IASP/NeuPSIG, were  available21. We applied the NeupSIG grading system for 
neuropathic pain to pain in the feet as being the plausible anatomical distribution when separating those with 
painful versus painless diabetic neuropathy. In the present study, the following clinical variables were available 
for both painless and painful neuropathy patients:

• Age and sex
• Data pertaining to diabetes and metabolic control (Body Mass Index (BMI; kg/m2), diabetes type 1 or type 

2, HbA1c)
• Data related to neuropathy—the Toronto Clinical Scoring System (TCSS) correlates with diabetic neuropathy 

 severity22. Based on TCSS, patients can be classified as having no DSP (TCSS 0–5), mild DSP (TCSS 6–8), 
moderate DSP (TCSS 9–11), or severe DSP (TCSS 12–19)23.

• Douleur Neuropathique en 4 Questions (DN4) which can be used as a screening tool for neuropathic  pain24.

Clinical variables available in patients with painful neuropathy were Brief Pain Inventory (BPI) severity 
 scores25, Neuropathic Pain Symptoms Inventory (NPSI)26, and  PainDetect27.

Protein data
A 10 ml blood sample (BD Vacutainer SST Tubes) was drawn from each participant. After 30 min, to allow blood 
to clot, the sample was centrifuged at 3000 rpm for 10 min at a temperature of 4 °C. Serum was then aliquoted 
into 1.8 ml Nunc CryoTubes and stored at – 80 °C.

The Olink Neurology panel (product number 95801, v. 8012) provides a high-throughput, multiplex immu-
noassay enabling the analysis of 92 neurology-related protein biomarkers at the same time using a Proximity 
Extension Assay (PEA)  technology28,29,30,31. PEA means that a pair of oligonucleotide-labelled antibodies bind 
to their respective target protein. When the two antibodies are close to each other, a polymerase chain reac-
tion (PCR) is initiated which is then quantified by real time PCR. Results are expressed as Normalized Protein 
eXpression (NPX), which is relative quantification between samples, on a Log2 scale. A high NPX value equals a 
high protein concentration. Because NPX is a Log2 scale, a difference of 1 in NPX means a doubling of protein 
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concentration. If needed, NPX values can be converted into a linear scale according to  2NPX = linear NPX. A 
complete list of the 92 neurology-related proteins, including their UniProt ID, is found in Supplemental Digital 
Content 1 (see Supplementary Information 1). The URL leading to validation data provided by Olink is avail-
able here: https:// www. olink. com/ conte nt/ uploa ds/ 2021/ 09/ olink- neuro logy- valid ation- data- v2.1. pdf  (Access 
date April 30, 2024).

Statistics
Data are expressed as median (IQR), unless stated otherwise. SIMCA (version 16, Sartorius Stedim Biotech, 
Umeå, Sweden) was used for multivariate data analysis (MVDA). SPSS (version 26, IBM Corporation, Route 
100 Somers, New York, USA) was used for all other analyses (Mann–Whitney U test, Chi-Square test, Spear-
man’s rho for bivariate correlations, and multiple linear regression (MLR), as appropriate). A significance level 
of 0.05 was chosen.

The same procedures were conducted in the exploration (n = 95) and in the replication (n = 95) cohorts. Details 
concerning MVDA  methodology32,33 have been described in previous  publications30,34–39. Briefly, we performed 
principal component analysis (PCA), hierarchical clustering analysis (HCA) and, based on the groups defined by 
HCA, orthogonal partial least squares (-discriminant analysis) (OPLS and OPLS-DA). PCA is a technique that 
models the correlation structure of a dataset, and thereby enables the identification of multivariate  outliers32,33. 
Principal components (PC) extract relevant information found in the data, reducing a high-dimensional space 
(high number of variables) to a few “summary variables”. After outlier detection with PCA (strong outliers defined 
as Hotelling’s T2>>T2Crit(99%) and moderate outliers as DModX>2*DCrit), we applied a bottom-up HCA to 
the principal component score vectors using the default Ward linkage criterion to identify relevant subgroups of 
patients. HCA complements PCA in the sense that while PCA identifies distinct clusters in multivariate space, 
HCA can find subtle clusters. In the resulting dendrogram, interesting patient subgroups were identified, and 
clinical data were compared between subgroups to ascertain the clinical relevance of the subgroups. Then, OPLS-
DA was performed using group belonging as Y-variables and protein data as predictors (X-variables). To identify 
the proteins most relevant for group discrimination, the OPLS-DA models analyzed and identified associations 
between the X-variables and group belonging. X-variables with |p(corr)|≥ 0.5 are usually considered important 
for group  discrimination32, the sign of p(corr) denoting the direction of the association (described in text in 
each case). However, in some cases, a tougher cut-off of |p(corr)|≥ 0.6 was used instead in this study. P(corr) 
is the loading of each X-variable scaled as a correlation coefficient that is comparable between models. MVDA 
analyzes all variables simultaneously, using the overall correlation pattern present in the data, hence separating 
information from “noise”. Hence, the protein data in the present study were not primarily analyzed by multiple 
univariate testing, thereby minimizing the multiple testing problem. In a third step, both cohorts were analyzed 
together in an OPLS model with TCSS as outcome (Y) variable—see text below for rationale. For this third step, 
a false discovery rate (FDR) at the 10% level was applied using the Benjamini–Hochberg  procedure40.

Ethics
The study was approved by the National Research Ethics Service of the United Kingdom (No.:10/H07056/35). 
All study participants signed written consent before participating. The research was conducted in accordance 
with the Declaration of Helsinki.

Results
Two proteins out of 92 had > 20% missing values and were therefore excluded from all analyses. All results are 
based on the remaining 90 proteins. An overview of clinical data in painless vs. painful patients is presented in 
Table 1.

First phase of protein analyses: exploration cohort
The exploration cohort consisted of 95 patients. Two patients (ID 30483 and ID 30519) were excluded because of 
quality warning from Olink Bioscience (Uppsala, Sweden). On the remaining 93 patients, a PCA was done using 
the 90 proteins as X-variables (4 PCs,  R2 = 0.52,  Q2 = 0.38); no outlier was found. By HCA, 2 groups were defined 
(Group 1, n = 37 and Group 2, n = 56). Then, the clinical variables were compared between the two groups, i.e., 
we wanted to see if they seemed clinically meaningful. In the exploration cohort (Table 2, left side), TCSS was 
significantly higher in Group 2 (11 (8–15) vs. 8.5 (6–12), p = 0.027). The other clinical variables did not differ 
between groups in the exploration cohort. Finally, an OPLS-DA was done with group belonging (Group 1 vs 2) as 
Y-variable; the model had 2 latent variables (one predictive and one orthogonal component),  R2 = 0.69,  Q2 = 0.57, 
and p < 0.001 by CV-ANOVA. The proteins most responsible for group discrimination, i.e., with |p(corr)|≥ 0.6 
for the first (predictive) latent variable, are listed in Table 3, left column.

Second phase of protein analyses: replication cohort
After an initial PCA on the 95 patients of the replication cohort using the 90 proteins as X-variables, one patient 
(ID 30087) was excluded for being a multivariate outlier by Hotelling’s T2. Hence, the new PCA model had 94 
patients, with 4 PCs,  R2 = 0.53,  Q2 = 0.40. By HCA, 2 groups were defined (Group 1, n = 31 and Group 2, n = 63). 
Then, we tested the hypothesis that TCSS scores would differ between Group 1 and 2. We found that, just as in 
the exploration cohort, Group 2 had significantly higher TCSS scores: (12.5 (9–14) vs. 10 (8.5–12), p = 0.016) 
(Table 2, right side). Age was also significant (p = 0.003) (Table 2). Hence, the findings concerning TCSS were 
replicated. Finally, an OPLS-DA was done with group belonging (Group 1 vs 2) as Y-variable; the model had 1 
latent variable (i.e., one predictive component),  R2 = 0.56,  Q2 = 0.53, and p < 0.001 by CV-ANOVA. The proteins 
most responsible for group discrimination, i.e., with |p(corr)|≥ 0.6, are listed in Table 3, right side. Notably, 70% 

https://www.olink.com/content/uploads/2021/09/olink-neurology-validation-data-v2.1.pdf
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of the top ten proteins of the exploration cohort were top 10 in the replication cohort (see text in red in Table 3) 
and 85% of the top 20 proteins of the exploration cohort were top 20 in the replication cohort (see text in blue 
in Table 3).

Third phase: in‑depth analysis of TCSS in all patients
In third phase of the study, we focused on TCSS, using both cohorts taken together (n = 186; TCSS was miss-
ing in one patient). Using TCSS as Y-variable and the 90 proteins as X-variables, we computed an OPLS model 
which had 2 latent variables (one predictive and one orthogonal),  R2 = 0.31,  Q2 = 0.10, p < 0.001 by CV-ANOVA. 
The proteins most associated with TCSS are tabulated in Table 4; the overlap with the two OPLS-DA models in 
Table 3 is also illustrated.

Because of a possible age issue (see Table 2), we next computed a new OPLS model, with age as Y variable 
to be able to exclude age-related proteins from the results of Table 4. This age model had 3 latent variables (one 
predictive and two orthogonal), n = 186,  R2 = 0.64,  Q2 = 0.45, p < 0.001 by CV-ANOVA. We found 4 proteins with 
|p(corr)|≥ 0.4 (see note in Table 4 for choice of p(corr) level), indicating a possible association with age, and 
EDA2R, the top protein in Table 4, had the highest p(corr) in the age-model (positive correlation with age and 
p(corr) = 0.5). Therefore, EDA2R was excluded from the main results of the study (see below).

Hence, the 11 proteins with p(corr) ≥ 0.5 in Table 4 (i.e., excluding EDA2R as per above) were the main 
findings of the present study, and all correlated positively with TCSS in multivariate space. Additionally, we 
also computed bivariate correlations between TCSS and the 11 proteins, finding that the 11 proteins had highly 
significant correlations with TCSS, with rho ranging from 0.19 to 0.32. These 11 correlations remained signifi-
cant when applying a false discovery rate (FDR) of 10% (calculated for 90 bivariate correlations between TCSS 
and each protein). The 11 proteins also all inter-correlated significantly with each other (all p-values < 0.001) 

Table 1.  Clinical data in painless vs. painful diabetic neuropathy in 190 patients. Data are expressed as 
median (25th–75th percentiles) except for sex. BMI, Body Mass Index; TCSS, Toronto Clinical Scoring System; 
DN4, Douleur Neuropathique en 4 Questions; BPI, Brief Pain Inventory 0–10; NPSI total, Neuropathic Pain 
Symptoms Inventory, total value. *Denotes statistical significance at the 0.05 level.

Painless neuropathy
n = 96

Painful neuropathy
n = 94 p-value

Age (years) 72 (67–78) 71 (61–76) 0.042*

Sex (% females) 30% 30% 0.950

BMI (kg/m2) 27.7 (25.1–31.4) 30.7 (27.2–35.2)  < 0.001*

HbA1c % 7.1 (6.5–7.8) 7.9 (7.0–8.8) 0.002*

Type 2 diabetes % 92% 91% 0.965

TCSS 8 (6–11) 13 (10–16)  < 0.001*

DN4 2 (1–3) 6 (4–7)  < 0.001*

BPI pain average N.A. 6 (4–7) N.A.

BPI worst N.A. 8 (6–8) N.A.

BPI least N.A. 3 (2–5) N.A.

BPI now N.A. 5 (3–7) N.A.

BPI severity subscore N.A. 5.3 (4–6.5) N.A.

NPSI total N.A. 7 (4.2–11.6) N.A.

PainDetect N.A. 18 (12.5–22) N.A.

Table 2.  Clinical data in the exploration and replication cohorts (left and right, respectively), in each case 
comparing Groups 1 and 2 as defined by hierarchical cluster analysis in each cohort. Data are expressed as 
median (25th–75th percentiles) unless specified otherwise. BMI, body mass index; TCSS, Toronto Clinical 
Scoring System; DN4, Douleur Neuropathique en 4 Questions. *Denotes statistical significance at the 0.05 
level.

Exploration cohort Replication cohort

Group 1 Group 2 P-value Group 1 Group 2 p-value

Age (years) 69 (61–76) 71 (64–78) 0.179 70(61–73) 74(68–78) 0.003*

Sex (% females) 33% 30% 0.764 29% 30% 0.911

BMI (kg/m2) 28.1 (24.3–33.3) 29.4 (26.6–35.3) 0.164 29.1 (27.0–32.4) 29.0 (26.5–32.3) 0.637

HbA1c% 7.4 (7.0–8.8) 7.5 (6.6–8.4) 0.343 7.9 (6.6–8.7) 7.3 (6.6–8.1) 0.550

Painful neuropathy (%) 44% 50% 0.603 45% 52% 0.510

TCSS 8.5 (6–12) 11 (8–15) 0.027* 10 (8.5–12) 12.5(9–14) 0.016*

DN4 3 (1–5.5) 4(2–5) 0.291 4(1–5.5) 4(2.5–6) P = 0.292
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with rho ranging from 0.51 to 0.88—hence confirming the validity of this cluster of proteins which together 
correlated positively with TCSS (as per the OPLS model above). The 11 proteins are described briefly together 
with their Uniprot ID in Table 5. To further descriptively get a sense the effect sizes involved, we calculated the 
percentage increases of median values of linearized NPX in those having severe DSP compared to those not 
having DSP (defined as TCSS < 6, n = 18), see Table 5. Rho-values (i.e., correlation with TCSS) are also listed in 
Table 5. Also, the relationship between the 11 proteins and TCSS is visualized in Supplemental Digital Content 
2 (see Supplementary Figures).

Using the 11 proteins as per above, we computed a PCA model, n = 186, 1 PC,  R2 = 0.77,  Q2 = 0.72. We used 
the scores of the PC of the PCA model as a “summary” variable of the 11 proteins, here called PC1_11prot. We 
did a multiple linear regression (MLR) with TCSS as outcome variable (dependent variable) and with the follow-
ing variables as predictors: PC1_11prot, sex, age, BMI, and HbA1c. The MLR model was significant (adjusted 
 R2 = 0.155 and p < 0.001) and PC1_11prot was significant (p = 0.001 with a positive coefficient, i.e., a positive 
correlation between PC1_11prot and TCSS) when adjusted for sex, age, BMI and HbA1c.

Table 3.  Proteins responsible for group discrimination (Group 1 vs 2) in the exploration cohort (left columns) 
and the replication cohort (right columns) in falling order of p(corr). To illustrate the overlap of results, the top 
10 proteins of the exploration cohort are in red in both columns, and the top 11–20 proteins of the exploration 
cohort are in blue in both columns. The p(corr) values in the table all have a positive sign, indicating higher 
levels in Group 2 compared to Group 1. All top 20 proteins in the exploration cohort had a p(corr) > 0.68 in the 
replication cohort.

Explora�on cohort Replica�on cohort

Protein p(corr) Protein p(corr)

JAM-B 0.94 EFNA4 0.90

LAYN 0.90 TNFRSF21 0.90

SKR3 0.90 JAM-B 0.89

EFNA4 0.88 EPHB6 0.89

EPHB6 0.87 SKR3 0.89

ADAM 22 0.86 RGMB 0.88

VWC2 0.85 LAYN 0.87

SCARB2 0.85 UNC5C 0.86

RGMB 0.84 SCARA5 0.84

TNFRSF21 0.82 RSPO1 0.83

UNC5C 0.82 N2DL-2 0.83

CD38 0.81 SCARB2 0.82

CDH3 0.81 SCARF2 0.82

CADM3 0.81 GFR-alpha-1 0.81

TNFRSF12A 0.81 CADM3 0.81

SCARF2 0.79 CDH3 0.80

EDA2R 0.78 CLM-6 0.80

THY 1 0.77 TNFRSF12A 0.80

SCARA5 0.77 ADAM 22 0.79

N2DL-2 0.77 THY 1 0.79

GFR-alpha-1 0.76 GDNFR-alpha-3 0.78

SMOC2 0.74 CD200 0.78

CLM-1 0.74 DDR1 0.78

MSR1 0.72 EDA2R 0.77

CLM-6 0.72 FLRT2 0.76

SIGLEC1 0.67 Dkk-4 0.75

DRAXIN 0.67 PDGF-R-alpha 0.75

FLRT2 0.65 VWC2 0.74

RSPO1 0.64 MSR1 0.72

GDNFR-alpha-3 0.62 Beta-NGF_Neuro 0.71

CD200 0.61 DRAXIN 0.70

ADAM 23 0.60 SMOC2 0.69

CD38 0.69

PLXNB1 0.68

CDH6 0.68

CLEC10A 0.67

RGMA 0.66

ADAM 23 0.66

SIGLEC1 0.63

NTRK2 0.61
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Fourth phase: in‑depth analysis of BPI scores in patients with painful neuropathy
Finally, we did an in-depth analysis of BPI scores in patients with painful neuropathy. In the exploratory cohort, 
only “BPI now” differed when comparing Groups 1 and 2, Group 2 (n = 28) having statistically significant higher 
levels than Group 1 (n = 15): 6,5 (4–8) vs. 3 (1, 5–6), p = 0.019; this remained significant at FDR 10%, the criti-
cal value being 0.02. In the replication cohort however, none of the BPI scores differed between Groups 1 and 
2. “BPI now” in the replication cohort was 6 (4–7) in Group 1 (n = 14) vs 4 (2–6) in Group 2 (n = 33), p = 0.205 
(i.e., a non-significant tendency for “BPI now” to be lower in Group 2). Hence, the findings of “BPI now” in the 
exploratory cohort could not be replicated.

Discussion
A panel of 92 neurology-related proteins was used to investigate potential biomarkers of painful and pain-
less diabetic DSP in a deeply phenotyped cohort. We found that 11 proteins were associated with the severity 
of neuropathy (but not with the presence of neuropathic pain). These 11 proteins have a variety of biological 
functions such as inflammatory processes, growth factors, adhesion molecules and axon guidance (Table 5). 
Neuropathic pain is known to positively correlate with the severity of peripheral  neuropathy8. However, given 
its complex aetiology involving multiple pathophysiological drivers in the central as well as peripheral nervous 
 system41, it is not surprising that we may find molecular correlates of neuropathy severity that are independent 
of neuropathic pain.

One biological process that was highlighted in our findings was axon guidance with the identification of 
EFNA4 and UNC5C. Ephrins, to which EFNA4 belongs, is one of five known families of axon guidance  proteins42. 
Axon guidance pathways seem to be involved in diabetic  DSP43. Interestingly, Evdokimov et al.44 studied EFNA4 
in skin biopsies from fibromyalgia patients vs. controls, finding that the expression of EFNA4 was higher in fibro-
myalgia patients. Axon guidance proteins are detected by a structure at the tip of growing axons—the growth 
 cone42. Different receptors are present on the growth cone, one of them being UNC5C, which is another of the 
main findings listed in Table 5. UNC5C in turn binds to the netrin family of axon guidance  proteins42. In diabetic 
DSP, both nerve degeneration and regeneration are  present45, and the question therefore arises if EFNA4 and 
UNC5C can perhaps be seen as potential biomarkers for nerve de- and/or re-generation in this setting? This is of 
course highly speculative and should be investigated in further studies. It should also be noted that ephrins and 

Table 4.  Top 22 proteins* associated with Toronto Clinical Scoring System (TCSS) in OPLS model. p(corr) 
values are all positive, corresponding to positive correlations with TCSS. Included in the table is also an 
illustration of the overlap with the top 22 proteins of the two previous OPLS-DA models according to Table 3 
(exploration and replication), see the two columns furthest to the right. *Note: To enable a comprehensive 
comparison with the exploration and replication cohorts, 0.4 was here chosen as cut-off value for |p(corr)|, 
rendering a list of 22 proteins listed in falling order of p(corr). However, consistently with the pre-defined cut-
off value of 0.5 (see “Methods”), the main findings of the study are the 11 proteins with |p(corr)|of at least 0.5, 
excluding EDA2R, see text.

Proteins associated with TCSS (n = 186) p(corr) with TCSS as Y-variable
Is this protein also part of the top 22 proteins 
of the exploration cohort?

Is this protein also part of the top 22 proteins 
of the replication cohort?

EDA2R 0.64 Yes ☑ No

TNFRSF12A 0.62 Yes ☑ Yes ☑

SCARB2 0.62 Yes ☑ Yes ☑

N2DL-2 0.59 Yes ☑ Yes ☑

SKR3 0.59 Yes ☑ Yes ☑

EFNA4 0.58 Yes ☑ Yes ☑

LAYN 0.56 Yes ☑ Yes ☑

CLM-1 0.55 No No

CD38 0.54 Yes ☑ No

UNC5C 0.52 Yes ☑ Yes ☑

GFR-alpha-1 0.51 Yes ☑ Yes ☑

JAM-B 0.50 Yes ☑ Yes ☑

CLM-6 0.48 No Yes ☑

Beta-NGF 0.46 No No

CDH3 0.46 Yes ☑ Yes ☑

SMOC2 0.44 Yes ☑ No

SCARA5 0.42 Yes ☑ Yes ☑

MSR1 0.42 No No

TNFRSF21 0.42 Yes ☑ Yes ☑

VWC2 0.42 Yes ☑ No

ADAM 22 0.42 Yes ☑ Yes ☑

THY 1 0.40 Yes ☑ Yes ☑
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netrins have been implicated in central processes related to (neuropathic)  pain46–49, and that UNC5C has been 
investigated in the context of endometriosis-related (and supposedly neuropathic)  pain50. Moreover, although 
it was not associated to TCSS as per Table 4, the ephrin EPHB6 was nonetheless a main finding in both the 
exploration and the replication cohorts as per Table 3.

Given previous finding about chronic inflammation in painful and painless diabetic  DSP10, our findings about 
GFR-alpha-1 and CD38 are also interesting (Table 5). CD38 is  immunomodulatory51 and has been deemed to 
be a possible pharmacological target. In mice, Gil and co-workers studied CD38 in the context of osteoarthri-
tis, concluding that inhibition of CD38 could potentially be a novel therapeutic approach for the treatment of 
osteoarthritis and associated  pain52. GFR-alpha-1 is the receptor for GDNF—which in turn is connected to 

Table 5.  Cluster of proteins correlating positively with Toronto Clinical Scoring System (TCSS). Notes: *The 
percentages in the “increase” column indicate descriptively how much larger the median levels (in linearized 
normalized protein expression, NPX) were in the severe DSP group (n = 76) compared to no DSP (n = 18). 
For details about NPX, see “Statistics” section. **This short description is based on information on the Olink 
website, www. olink. com, accessed 23 May 2020. ***Correlation coefficient with TCSS.

Protein name Uniprot ID
Rho ***
(p-value) Increase* (%) Function**

TNFRSF12A Tumor necrosis factor receptor superfamily member 12A Q9NP84
0.29
(p < 0.001)

31

Weak inducer of apoptosis in some cell types, promotes 
angiogenesis and the proliferation of endothelial cells. 
TNFRSF12A may also modulate cellular adhesion to 
matrix proteins, as well as play some role in the positive 
regulation of axon extension

SCARB2 Lysosome membrane protein 2 Q14108
0.26
(p < 0.001)

37

Animal studies suggest that this protein may participate 
in membrane transportation and the reorganization of the 
endosomal/lysosomal compartment. In humans, CD36 
appears to be involved in host-virus interactions and may 
have a role in hand, foot, and mouth disease linked to 
enterovirus-71 infections

N2DL-2 NKG2D ligand 2 Q9BZM5
0.25
(p < 0.001)

37

It functions as a stress-induced ligand for NKG2D recep-
tor and activates natural killer (NK) cells by inducing 
multiple signalling pathways. N2Dl-2 is expressed in fetal 
tissues and a number of cancer cell lines but is not typi-
cally expressed in normal adult tissues

SKR3 Serine/threonine-protein kinase receptor R3 P37023
0.29
(p < 0.001)

30

A type I cell-surface receptor for the TGF-beta superfam-
ily of ligands. It is an important regulator of normal blood 
vessel development, and mutations in the gene for this 
protein are associated with hemorrhagic telangiectasia 
type 2, also known as Rendu-Osler-Weber syndrome 2

EFNA4
Ephrin-A4, or EPH-related receptor tyrosine kinase 
ligand 4

P52798
0.25
(p < 0.001)

22

Ephrin proteins have been implicated in mediating devel-
opmental events, especially in the nervous system and in 
erythropoiesis and are thought to be crucial for cellular 
migration, repulsion and adhesion during these processes. 
Ephrin-A4 has a suggested role in axon guidance, the 
chemotactic process by which migration of an axon 
growth cone is directed to a specific target site

LAYN Layilin Q6UX15
0.25
(p < 0.001)

33

Layilin may have a role in cell adhesion and motility. 
There may also be indications of some connection to 
neurofibromatosis 2, an inherited condition characterised 
by multiple forms of benign intracranial tumors

CLM-1 CMRF35-like molecule 1 Q8TDQ1
0.32
(p < 0.001)

42

Mediates negative regulatory signals by recruiting SHP1 
and inhibits osteoclast formation. There may be some 
indications of associations between CLM-1 and post-
traumatic epilepsy

CD38 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 P28907
0.28
(p < 0.001)

34

The protein is expressed at high levels in some tumors, 
such as malignant lymphoma and neuroblastoma. Loss 
of CD38 function is associated with a number of issues, 
including impaired immune responses, metabolic dis-
turbances, and behavioral modifications including social 
amnesia

UNC5C Netrin receptor UNC5C, or Protein unc-5 homolog C O95185
0.19
(p = 0.008)

22

Netrins are secreted proteins that direct axon extension 
and cell migration during neural development. Follow-
ing netrin binding, UNC5C mediates axon repulsion of 
neuronal growth cones in the developing nervous system. 
It also has an independent function in corticospinal tract 
axon guidance

GFR-alpha-1
GDNF family receptor alpha-1, or RET ligand 1 and TGF-
beta-related neurotrophic factor receptor

P56159
0.29
(p < 0.001)

32

Is the functional receptor for glial cell-derived neurotropic 
factor (GDNF), and in this capacity plays a key role in 
the control of neuron survival and differentiation. GFR-
alpha-1 may be involved in development of the enteric 
nervous system of the gastrointestinal tract

JAM-B
Junctional adhesion molecule B, or Junctional adhesion 
molecule 2

P57087
0.22
(p = 0.003)

22

It acts as an adhesive ligand for interacting with a variety 
of immune cell types and may play a role in lymphocyte 
homing to secondary lymphoid organs. It is thought to 
promote lymphocyte transendothelial migration and may 
also be involved with endothelial cell polarity, by associat-
ing to cell polarity protein PAR-3, together with JAM3

http://www.olink.com


8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17068  | https://doi.org/10.1038/s41598-024-66471-6

www.nature.com/scientificreports/

 inflammation53. GDNF has also been shown to have neuroprotective actions on sensory neurons following 
traumatic  axotomy54 and in experimental models of diabetic  neuropathy55. Hence, although the pain literature 
contains scarce information about the potential biomarkers listed in Table 5, at least five of them can be related 
to neuropathy/pain in different ways. It should be noted that Neurofilament light chain, a potential biomarker 
ford diabetic  DSP56, was not part of the panel of proteins in the present study.

In our opinion, the present study has some obvious strengths. Before any statistical analysis of the data, the 
material was dichotomized into two cohorts, enabling us to implement an exploration-replication strategy which 
confirmed that the subgroup characterized by high levels of the proteins listed in Table 3 had higher levels of 
neuropathy as expressed by TCSS (Table 2). Hence, although this paper is hypothesis-generating in the sense 
that it used a panel of neurology-related proteins (and thus no specific candidate proteins), there is also an ele-
ment of confirmatory methodology inherent in the exploration-replication design. Moreover, as in previous 
 work10, we used an unbiased clustering approach to subgroup the patient on biological grounds. Hence, instead 
of merely comparing painful and painless participants, we stratified the material according to a systems biology 
perspective—and this stratification was then shown to be clinically relevant, albeit not directly pain-wise. The 
idea behind this approach is that there might be different mechanisms at play in different patients who have the 
same symptoms and signs, and that a simple comparison based on phenotype might thus blur the picture more 
than a comparison of clusters based on biology. Whether this “mechanism-based stratification”19 approach is 
really advantageous will of course have to be confirmed or falsified in future studies. Concerning the fact that 
we did not find a pain signal, it is of course important to remember the subjective and biopsychosocial nature 
of the pain experience. Elucidating the biology underlying the subjective experience is a task as difficult as it 
is  important15,57,58. Pain biomarker studies are undertaken with methods from different fields, e.g., imaging 
 methods59,  electrophysiology60, or ‘omics16. Recent advances concerning the role of calcitonin gene-related pep-
tide (CGRP) in  migraine61 should give pain researchers some confidence that the search for biomarkers reflecting 
the pathophysiology of different chronic pain conditions is hopefully not a futile task.

Obvious study limitations include the cross-sectional design and the possibility of confounders such as for 
instance concomitant medication (although our findings seem robust when it comes to the influence of sex, age, 
BMI and HbA1c). The possibility of there being a systematic error in the material cannot be ruled out. Also, even 
if our results would turn out to be valid in the sense that they really reflect neuropathy-related pathophysiol-
ogy, it is still important to consider whether the described “fingerprint” relates directly to the pathophysiology 
of neuropathy, or if perhaps it is a risk factor that was present prior to the development of neuropathy. A third 
possibility could be that the fingerprint is an epiphenomenon, perhaps more related to co-morbidities such as 
insomnia or depression. Disentangling the contribution of potentially mutually interacting factors is a challenge 
and will require longitudinal studies. Fourth, when measuring multiple analytes in a single experiment, antibody 
specificity is an important issue to be aware of. The PEA  technology28,29,30,31 builds on dual recognition, i.e., a 
pair of oligonucleotide-labelled antibodies have to bind to their respective target protein to generate a signal, 
leading to higher specificity compared to methods based on a single antibody. This fact notwithstanding, the 
question marks raised by the specificity issue remain a major limitation in the present work. The findings should 
therefore be interpreted cautiously, warranting further replication studies using alternative methods of detection.

To conclude, in Table 5 we present a list of 11 inter-correlated proteins who were positively correlated to the 
severity of neuropathy in DSP patients but not to the presence of neuropathic pain. These may have potential 
as novel biomarkers for diabetic neuropathy which are increasingly important as new understanding of axon 
degeneration has led to novel drug targets to prevent axon degeneration. The validity and clinical relevance of 
these putative neuropathy biomarkers will need to be confirmed in future longitudinal studies.

Data availability
Data cannot be made publicly available because of the lack of ethical permission. If the corresponding author is 
contacted, reasonable data requests can be considered.
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