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Whole genome sequencing refines
stratification and therapy of patients with
clear cell renal cell carcinoma

Richard Culliford 1,27, Samuel E. D. Lawrence1,27, Charlie Mills 1,27,

Zayd Tippu2,3,4,27, Daniel Chubb1, Alex J. Cornish 1, Lisa Browning5,

BenKinnersley 1,6, Robert Bentham6, Amit Sud 1, HusaynPallikonda 2,3,4, The

Renal Cancer Genomics England Consortium*, Anna Frangou 7,8,9,

Andreas J. Gruber 10, Kevin Litchfield 11, David Wedge 12,13, James Larkin2,3,

Samra Turajlic 2,3,4 & Richard S. Houlston 1

Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney

cancer, but a comprehensive description of its genomic landscape is lacking.

We report thewhole genome sequencing of 778 ccRCCpatients enrolled in the

100,000 Genomes Project, providing for a detailed description of the somatic

mutational landscape of ccRCC. We identify candidate driver genes, which as

well as emphasising themajor role of epigenetic regulation in ccRCC highlight

additional biological pathways extending opportunities for therapeutic inter-

ventions. Genomic characterisation identified patients with divergent clinical

outcome; higher number of structural copy number alterations associated

with poorer prognosis, whereas VHLmutationswere independently associated

with a better prognosis. The observations that higher T-cell infiltration is

associated with better overall survival and that genetically predicted immune

evasion is not common supports the rationale for immunotherapy. These

findings should inform personalised surveillance and treatment strategies for

ccRCC patients.

Renal cell carcinoma (RCC) is an increasing global health problemwith

431,000newdiagnoses each year, set to increase to 666,000by20401.

Around 75% of RCCs are clear cell RCC (ccRCC) tumours. These can-

cers have a variable clinical course and while 75–80% of patients pre-

sent with apparently localised disease and are offered curative intent

treatment 30%will subsequently relapse2. There is therefore a pressing

need for more accurate risk stratification, to guide clinical decisions

relative to therapy and surveillance.

While therapeutic advances in the treatment of metastatic ccRCC

have been made with the advent of antiangiogenic targeted therapies

and immune checkpoint inhibitors (ICIs) only a subset of patients

experience durable clinical benefit. Importantly, clinical biomarkers
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fail to reconcile the variable disease course following surgery3–5 in

patients receiving adjuvant PD1-therapy.

Theneed tounderstand ccRCCbiology, to informdevelopmentof

novel therapies and better predict patient outcomes, has been amajor

motivation in sequencing studies. While these projects have identified

recurrent genemutations and chromosomal rearrangements, analyses

have primarily been based on whole-exome sequencing or panel

testing of cancer-associated genes, hence the full complement of dri-

vers is incomplete. Correspondingly, studies of the relationship

between clinical parameters and genomic alterations have been

limited6–9.

To advance our understanding of ccRCC, we analyse whole gen-

ome sequencing (WGS) data from 778 ccRCC patients recruited to the

UK Genomics England (Gel) 100,000 Genomes Project (100kGP)10,11.

Results
The Gel cohort
The analysed cohort (100kGP, release v14) comprised tumour-normal

(T/N) sample pairs from 778 patients (mean age 63 years, range 25–88

years) with primary ccRCC recruited to 100kGP through 13 Genomic

Medicine Centres across England (Fig. 1). Comprehensive clinico-

pathology information on the patients is provided in Supplementary

Data 1. We restricted our WGS analysis to samples with high-quality

data from polymerase-chain-reaction (PCR) free (allowing for accurate

uniformcoveragewithout sequencingbias fromPCRduplicates),flash-

frozen fresh tumour samples (‘Methods’). For 29 of the patients, WGS

data onmulti-regional sampling of tumourswas available (2–4 samples

per tumour, 94 samples in total). In addition to using variant calls from

the 100kGP analysis pipeline we: (i) removed alignment bias intro-

duced by ISAAC soft clipping of semi-aligned reads12; (ii) called tumour

copy number using Battenberg13; (iii) called structural variants (SVs)

from a consensus of Manta14, LUMPY15, and DELLY16; (iv) removed

insertion-deletions (indels) within 10 base pairs (bp) of a common

germline indel. Complete details on sample curation, somatic variant

calling, and annotation of mutations are provided in the “Supple-

mentary Methods”.

Restricting our analysis to WGS data on one sample per patient

(‘Methods’), we identified 4,267,943 single nucleotide variants (SNVs),

699,100 indels, and 19,756 chromosomal rearrangements or structural

variants (SupplementaryData 2).While themedian tumourmutational

burden (TMB) was 2.07/Mb, three tumours displayed a hypermutated

phenotype: i.e., excessively high SNV/indel mutation burden (maximal

SNV/Mb = 33.65, maximal indel/Mb = 21.77). Twenty-two of the

patients (2.8%) were carriers of pathogenic germline variants in one of

the well-established RCC susceptibility genes (CHEK2, FH,MITF, SDHA,

VHL)17 and 10 (1.2%) in a pan-cancer susceptibility gene (ATM, BRCA2,

BRIP1, FANCM,MSH6, PALB2, PMS2; Supplementary Data 3). Four of the

32 patients had a prior history of non-RCC cancer (thyroid, prostate,

testicular and chronic lymphocytic leukaemia).

Driver mutations
Protein-coding driver gene identification at the base pair level was

performed using IntOGen18, which incorporates seven complementary

algorithms. A total of 38 genes were identified as driver genes,

including 25 well-recognized drivers and 13 which either had not been

reported previously or have frequencies <1% in landmark genomics

studies of ccRCC19–23 (Fig. 2). Of the mutations annotated by

AlphaMissense24, 72.4% of driver gene missense SNVs (436/602) were

predicted to be pathogenic as compared to 29.8% (11,112/37,297) of the

missense SNVs in non-driver genes (P = 4.2 × 10−112). The major known

ccRCC driver genes were mutated at close to reported

frequencies19–21,23,25–27: VHL (80.2%), PBRM1 (49.9%), SETD2 (17.7%) and

BAP1 (11.8%). Subclonal drivers, such as TSC1 were, however seen with

lower frequency, which is likely to be the consequence of our reliance

on a single biopsy rather than multi-regional sampling as per studies

such as TRACERx8 (SupplementaryData 4). All of the candidate coding

drivers were detected at low frequencies, as expected given the scale

of previous exome sequencing studies (0.3–2.4%; Supplementary

Fig. 1a–m, Supplementary Data 4). The increased power of our study

has enabled us to assign driver status to a number of genes recurrently

mutated at low frequency in other studies (Supplementary Fig. 2).

Mutations in the candidate drivers were frequently accompanied

by loss of heterozygosity (LOH) (see ‘Recurrent structural and copy

number alterations’), implying loss of function (Supplementary Fig. 3).

Furthermore, leveraging TCGA28 and GTEx29 expression data as well as

DepMap gene perturbation screening30,31 in addition to referencing

literature provide supporting evidence that 6/13 of the candidate

genes we identify have relevance to the biology of RCC

Fig. 1 | Overview of the Gel cohort of ccRCC patients. a The location of the 13

Genomic Medicine Centers (GMCs) across England from which patients were

recruited. b The breakdown of the cohort by tumour grade and stage. Figure 1

created with BioRender.com released under a Creative Commons Attribution-

NonCommercial-NoDerivs 4.0 International license.
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(Supplementary Fig. 4a, b, Supplementary Data 4). Candidate drivers

emphasise the central importance of epigenetic modification in the

development of ccRCC through SWI/SNF mediated chromatin remo-

delling (BRD3, ARID2), histone deubiquitination (CUL3, FBXW7) as well

as the role of methylcytosine dioxygenase activity (TET1). Biological

mechanisms highlighted by the candidate drivers are shown in

Fig. 3a–e. These included new vessel formation (PDGFR-β), ribosomal

activity (RPL22), cytoskeletal interactions (EZR, GPHN, NBEA), cell

division and cell polarisation (PARD6B). Mutations of ARID2, CUL3,

TET1, FBXW7, EZR and GPHN were frequently accompanied by copy

number loss consistent with their predicted/documented tumour

suppressor roles (Supplementary Data 4).

As previously reported32, mutations in VHL and ELOC, which both

play a key role in oxygen sensing anddegradation of hypoxia-inducible

factors, were mutually exclusive (Q =0.002). Co-occurrence analysis

also supported mutually exclusive relationships: BAP1 and PBRM1

(Q = 4:36× 10�12), SWI/SWFmediated chromatin modifiers PBRM1 and

ARID2 (Q =0.04), and SETD2 and BAP1 (Q =0.049). In contrast, muta-

tions of ARID2 and ELOC (Q = 0:001), and PBRM1 and SETD2 (Q

= 1:33 × 10�5), tended to co-occur (Supplementary Data 5). In five

tumours, BAP1 mutations were the sole driver.

To search for non-coding drivers in gene promoters, untranslated

and non-canonical splice regions, we used OncodriveFML33,

ActiveDriverWGS34, and negative binomial regression adjusting for

trinucleotidemutational context35. By collating and post processing of

these data we nominated nine significant non-coding elements as

potential candidate cancer drivers (Supplementary Methods).

The TERT promoter associations were primarily driven by the

canonical mutations 5:1295113G >A, and 5:1295135G>A which have

also been documented in TRACERx36 and are early drivers in bladder

cancer37–39. The 5′UTR of TERT was also recurrently mutated with

5:1295046T>G, which has previously been implicated in glioma and

bladder cancer accounting for 23% of mutations within the region39,40.

Our analysis also implicates the distal promoter of the BRD2 gene,

which together with other bromodomain proteins plays a role in his-

tone acetylation modification in RCC. Other potential non-coding

drivers included the distal promoter regions of RSU1, FANK1, and

BCAT241,42 (Supplementary Data 6).

Systematic analyses of cancer genomes provide anopportunity of

estimating the number of patients eligible for a targeted therapy and

identify opportunities for therapeutic interventions. We assessed the

clinical actionability of driver gene mutations by referencing OncoKB

Knowledge Base43 (version 3.11), and found 60 unique alterations were

targetable (OncoKBLevel 1–4), andwereall at least Level 4 (compelling

biological evidence supporting the biomarker being predictive of drug

response). We also examined the COSMIC Mutation Actionability in

Precision Oncology44 database highlighting an additional 708 unique

alterations which are potentially targetable (Supplementary Fig. 5a, b,

Supplementary Data 7).

Recurrent structural and copy number alterations
In addition to the previously reported common 3p loss, 5q gain and

14q loss7,36 we identified 25 other arm-level alterations that occurred

more frequently than expected (Fig. 4a, Supplementary Data 8). We

used GISTIC245 to identify genomic regions recurrently affected by

focal amplifications and deletions (Q <0.05; Fig. 4a, Supplementary

Data 9). Aside from the previously reportedCNAs7, including del9p21.3

(CDKN2A), del3p12.2 (GBE1), amp5q35.3 (SQSTM1) and amp 8q24.21

(MYC) we identified four candidate CNAs: amp2q31.1 (ACVR2A, CASP8,

NFE2L2, PMS1, SF3B1), amp13q34 (ERCC5), amp12p11.21 and

del22q11.23. Of the genes implicated by these candidate focal ampli-

fications, NFE2L2 and SF3B1 are documented to be oncogenic46–49.

16.6% of tumours showed whole genome duplication (WGD), a finding

almost identical to the 15% reported by TracerX50 (Supplementary

Data 2). Complex chromosomal rearrangements were a feature of 60%

of tumours with two-thirds of these displaying hallmarks of chromo-

thripsis. As previously documented7,36 themost frequent pattern on 3p

loss was from rearrangement between 3p and 5q, ascribable to

chromothripsis.

We identified 37 hotspots of recurrent simple SVs (FDR <0.05) by

piecewise constant fitting adjusting for local genomic features known

to influence rearrangement density (chromatin accessibility, repeated

elements, GC content, replication timing, gene density and expres-

sion). Fragile sites are prone to rearrangement (possibly due to repli-

cation error) and tend to co-occur with large, late-replicating genes.

SVs occurring at fragile sites are hence likely to be the consequence of

mechanistic rather than selective factors. After excluding 14 SV hot-

spots mapping to potential fragile sites, we identified 23 SV hotspots

(Fig. 4b, Supplementary Figs. 6a–t, 7a–l, 8a–e, SupplementaryData 10).

We identified a total of 66 breakpoints within 5p15.33, spanning TERT.

These included, a deletion breakpoint and an unclassified event 2 kb

downstream of the TERT promoter, and tandem duplications over-

lapping TERT (n = 5). In tumours from the 34 patients with a TERT 5′

UTR mutations, there were no overlapping unclassified/tandem-

duplication events or a SVdeletion/unclassifiedpromoter breakpoints;

an observation consistent with earlier findings36.

Mutational signatures
To gain insight into mutational processes in ccRCC, we extracted

single-base substitution (SBS), double-base-substitution (DBS) and

indel (ID) signatures de novo and related those to known COSMIC

signatures (v3.2) using SigProfilerExtractor51,52. In the majority of can-

cers, single base substitutions could be assigned to signatures SBS5/

SBS40 and SBS1 (nomenclature as per COSMIC) resulting from clock-

like mutagenic processes. Other signatures recovered with known

specific underlying aetiology include those associated with oxidative

damage (SBS18), defective base excision repair (SBS30), APOBEC

(SBS2, SBS13), tobacco smoking (SBS4, DBS2, ID3) and aristolochic

acid (SBS22) (Fig. 5, Supplementary Fig. 9a, b, Supplementary Data 11).

Three of the 7 tumours with SBS2 or SBS13 harboured a somatic

mutation in an APOBEC gene, however, none of them are pathogenic.

While the incidenceof renal cancer has been linked to aristolochic acid

exposure in residents of Danube river countries53, 88% of patients with

SBS22 tumour activity in the Gel cohort were self-reported to be white

British. SBS31 and SBS35 have been attributable to platinum che-

motherapy.We recoveredSBS35 in four cases, but none hada reported

past history of platinum chemotherapy. In contrast the tumours from

five patients, which had a past history of a non-RCC cancer and had

Fig. 2 | Frequency of patients with nonsynonymousmutations in driver genes.

The cohort frequencyof adriver gene reportedas being above (blue) orbelow (red)

1% in other ccRCC cohorts is indicated.

Article https://doi.org/10.1038/s41467-024-49692-1

Nature Communications |         (2024) 15:5935 3



0.0 6.0

RBBP7

0.5 10.8

SUZ12

0.3 23.0

EZH2

0.0 26.0

BRD9

0.4 12.0

EED

2.3 11.4

SMARCA4

1.4 23.0

SMARCA2

4.9 19.0

ARID1A

Me3Ac

49.9 97.0

PBRM1

SWI/SNF Complex

17.7 19.4

SETD2

2.2 13.2

ARID2

Cell membrane

RTKs

2.2 28.3

PIK3CA

0.9 30.2

PIK3CB

1.2 22.2

PIK3CG

0.5 34.3

AKT1

0.5 18.6

PIK3CD

0.5 15.2

PDK1

4.4 19.7

PTEN

2.4 24.3

TSC1

0.9 18.1

TSC2

0.3 23.0

RHEB

5.4 18.4

MTOR

1.3 36.0

HIF1A

0.6 55.4

PDGFRB

1.3 13.3

ERBB3

0.6 10.8

ERBB2

0.0 11.6

MAP2K2

1.3 36.0

HIF1A

5.4 18.4

MTOR

0.1 13.9

KRAS

0.1 15.1

NRAS

0.1 97.7

RAF1

0.3 23.0

BRAF

Cell membrane

0.4 12.6

MAPK1

0.4 18.0

MAPK3

0.3 11.4

MAP2K1

0.6 55.4

PDGFRB

0.4 13.2

MDM2

3.9 14.1

TP53

0.1 18.4

MDM4

0.1 23.5

CDKN2A

3.9 12.9

ATM

1.9 29.1

ATR

1.3 36.0

HIF1A

0.4 24.2

USP20

1.0 18.1

CREBBP

Cell-cycle 
arrest

DNA 
Repair

Apoptosis Senescence Anti-
angiogenesis

Autophagy Metabolic
antioxidant

M

S
G2

G1

G0

0.8 16.7

FBXW7

1.3 18.8

RPL22

1.0 18.1

CREBBP

1.0 12.3

EP300

0.3 37.1

GSK3B

1.3 36.0

HIF1A

80.2 97.8

VHL

0.4 13.2

MDM2

0.5 17.9

ARNT

0.1 50.5

RACK1

0.4 24.2

USP20

0.1 16.5

UCHL1

0.3 11.6

UHRF1

0.0 10.4

PTH

Transactivation

3.9 14.1

TP53

0.9 22.2

ELOC

a b

c

d e

Mutation 
frequency

CNA 
frequency

Gene
ccRCC driver

non-ccRCC 
driver

Other gene

Fig. 3 | Biological pathways in ccRCC. a The SWI/SNF pathway. b The PI3K/AKT/

MTOR signalling pathway. c The TP53 pathway. d The RAS/ERK pathway. e The VHL/

HIF1A and hypoxia pathway. Driver genes identified shown in blue, non-ccRCC

driver genes in green and other pathway genes in grey. Non-ccRCC driver genes are

defined as those identified in any other cancer. Thenumber in the bottom left is the

nonsynonymous mutational frequency and the number in the bottom right the

copy number alteration (CNA) frequency. Figure 3 created with BioRender.com
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received carboplatin or oxaliplatin did not display SBS31 or SBS35

(Fig. 5, Supplementary Data 11). To complement SigProfilerExtractor

we searched for mutational signatures associated with defective mis-

match repair (dMMR) anddefectivehomologous recombination (dHR)

usingmSINGs54 andHRdetect55. Two of the 3 tumours with evidence of

dMMR (2 with SBS20, SBS26 and hypermutated phenotype) har-

boured MLH1 somatic mutations which were accompanied by LOH,

while the other carried a POLEmutationof unknown significance. None

of these 3 cases carried germline pathogenicMMRvariants and during

the period of the study none developed metastatic RCC or were trea-

ted with ICIs. No case showed evidence of dHR. Considering muta-

tional signature activity between clonal and subclonal mutations we

found no significant enrichment or depletion of any SBS signatures

between clonal and subclonal mutations.

Ordering of mutational events
Using PhylogicNDT56 in conjunction with MutationTimeR57, we recon-

structed the chronological ordering of focal CNAs and driver muta-

tions. These methods estimate the time at which copy number gains

occur by considering the fraction of mutations before and after the

gain. In the regions of copy number gain individual mutations can

therefore be estimated to be early or late events; subclonal mutations

will, by definition, have occurred late in tumourigensis. Across all

tumours gain of 5q were consistently earlier alterations. As expected,

mutations in VHL, PBRM1, SETD2 and BAP1 were predicted to be early

events, with higher odds of harbouring clonal mutations, generally

occurring before corresponding CNAs. In contrast, mutations in

KDM5C, STAG2 and BRD3 were late events (Fig. 6a–c). Estimating the

chronological timing of CNAs under varying mutational rates and

tumour initiation time (Supplementary Methods) implies WGD

occurred on average 9.2 years before tumour sampling and gain of 5q,

35.5 years before sampling (Fig. 6d).Moreover, the estimated lead time

of 5q gain and WGD were both correlated with age at presentation

(adjusting for grade and stage P = 9.4 × 10−13 and 0.02, respectively).

Immune profile and evasion
Increased T-cell receptor alpha (TCRA) T-cell fraction58 (i.e. fraction of

T-cells present in theWGS sample), reflecting immune infiltration, was

associatedwith increased tumour grade (P = 4.0 × 10−4; Supplementary

Data 12). Considering TCRA T-cell fraction as a proxy for CD8+ infil-

tration, higher immune cell infiltration has previously been reported in

a subset of inflamed BAP1 or PBRM1 mutated ccRCC tumours59. Con-

sistent with this observation in our study BAP1mutated tumours were

associated with higher TCRA T-cell fraction (OR = 3.43, 95% CI:

1.91–6.15), but no similar relationshipwas shown for PBRM1 (OR =0.73,

95%CI: 0.53–1.01).We alsonoted that TCRAT-cell fractionwas lower in
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MTOR-mutated tumours (OR =0.44, 95% CI: 0.2–0.97; Supplementary

Data 13).

Using pVAC-Seq60, we predicted 24,893 class I neoantigens across

the 778 tumours (1–327 per tumour, median 26), resulting from: 66.5%

missense mutations, 32.0% frameshift variants, 1.3% inframe deletions

and 0.25% inframe insertions (Fig. 7a). Neoantigen burden was not

correlated with stage or tumour grade (including presence of sarco-

matoid features) but was positively associated with TMB (OR = 1.21,

95% CI: 1.18–1.23; Supplementary Data 12 and 14).

Examining evidence of immune evasion we LOH or mutation of

HLA class I genes (HLA-A, HLA-B, HLA-C) and immune escape genes

(SupplementaryMethods). Using LOHHLA, wedetected LOHofHLA in

only 5.9% of tumours. It has been reported that LOH on HLA class I

genes and 9p21.3 loss tend to co-occur61, suggesting a potential

mechanism for immune escape. After adjusting for stage and grade we

found no evidence to support such a relationship (OR = 1.32, 95% CI:

0.58–2.99; Supplementary Data 15). We also found no association

between indel burden and HLA allele status (OR =0.92, 95% CI:

0.82–1.03; Supplementary Data 16). Nonsynonymous mutations of

HLA genes were rare (0.5%). An inactivatingmutation in at least one of

the 22 antigen presenting genes62,63 (APG) was seen in only 3.1% (24/

778) of tumours (Fig. 7b). None of the APGs displayed a propensity for

mutation. Collectively, on the basis of alteration of these escape

pathways (HLA LOH, APG inactivation or HLA somatic mutation) only

9.0% (70/778) of tumours were predicted to exhibit some form of

genetically-driven immune evasion.

Clinico-pathological relationships
Increased tumour grade was associated with necrosis (P = 9.4 × 10−15),

increased TMB (P =0.001) and mutational sub-clonality (P =0.02).

High SV count (P = 1.5 × 10−11), WGD (P = 1.2 × 10−6) and weighted gen-

ome instability index (P = 1.7 × 10−11) were associated with higher

tumour grade. Consistent with previous literature64, tumours with

mutations in BAP1 and TP53 were more likely to present as high grade

(P = 1.8 × 10−5, P = 2.1 × 10−6, respectively; Supplementary Data 12). The

genomic landscapeof several cancershave been shown todiffer by age

at diagnosis65. To explore this possibility with respect to ccRCC we

compared cases diagnosed younger than age 46 and older. This stra-

tification provided no evidence for significant differences in genomic

features other than TMB (Supplementary Data 12).

Information was available on 605 patients for us to examine the

relationship between genomic features with overall survival (OS) and

cancer specific survival (CSS) (Supplementary Figs. 10a–d, 11, 12a–f, 13,

Supplementary Data 1, 17, 18). Tumour grade and stage and sarcoma-

toid features were strong predictors of OS and CSS (Supplementary

Data 17 and 18). After adjusting for co-variants using Cox regression

increased OS and CSS was associated with VHL (Hazard Ratio (HR) =

0.60, 95% CI: 0.36–0.98; HR =0.60, 95% CI: 0.3–1.19) and PBRM1

(HR =0.64, 95% CI: 0.42–0.97; HR =0.55, 95% CI: 0.32–0.95 respec-

tively) mutation status. Given the co-occurrence of VHL and PBRM1

mutations (84%, 325/388 of PBRM1-positive tumours were also VHL

mutated), after adjusting for VHL status, the association of PBRM1

mutational status was no longer statistically significant for either OS or

CSS (HR =0.68, 95% CI: 0.44–1.03; HR =0.58, 95% CI = 0.33–1.02).

Aside from VHL, mutation of no other driver gene showed an inde-

pendent association with patient survival; acknowledging we had

limited statistical power to demonstrate a relationship with less fre-

quently mutated genes (Fig. 8a–e, Supplementary Fig. 11). After

adjusting for VHL status, higher SV count was, however, associated

withworseOS (HR = 1.01, 95%CI: 1.00–1.10) andCSS (HR = 1.01, 95%CI:

1.01–1.02; Fig. 8c, Supplementary Figs. 11, 12e, 13, Supplementary

Data 18).

While we found no association between OS or CSS and either

neoantigen burden or immune escape, a higher TCRA T-cell fraction

was associatedwith a better OS (HR =0.65, 95%CI: 0.43–0.99; Fig. 8d).

Aside from an association between DBS4 and CSS, we found no other

significant associations between additional mutational signatures as

independent predictors of either OS or CSS. We also did not find evi-

dence to support a relationship between either OS or CSS with intra-

tumour heterogeneity or wGII, both features which have previously

been purported to influence prognosis25,66 (Supplementary

Figs. 11 and 13, Supplementary Data 18).

We were able to examine the relationship between molecular

features and progression-free survival (PFS) in 167 of the patients

ascertained on the basis of being at intermediate-high risk of tumour

recurrence on the basis of their Leibovich score67 (Supplementary

Data 1). While VHL status was not associated with better PFS we

observed that KDM5C mutation was independently associated with

worse outcome (HR = 1.98, 95% CI: 1.00–3.91; Supplementary

Figs. 14a–h and 15, Supplementary Data 19) and a higher incidence of

necrosis (OR = 4.81, 95%CI: 1.20–19.11; SupplementaryData 20). Thirty-

seven of the 167 patients had received ICI therapy as a first or second

line treatment and in 21 of these there was documented evidence of

clinical benefit. Restricting our analysis to these 37 patients, we found

no evidence of a difference in ICI response in patients with sarcoma-

toid tumours features and only deletion of 6q was associated with

clinical benefit (OR = 7.66, 95%CI: 1.11–52.55). Although not statistically

significant, but consistent with other reports68, sarcomatoid histology

was associated with better response to ICI (Supplementary Data 21).

Discussion
This study represents a comprehensive description of the genomic

landscape of ccRCC by utilising a large cohort of WGS samples. We

acknowledge that there are limitations to our analysis. Specifically, our

reliance on short-read sequencing and lack of transcriptomic infor-

mation. During the period of this study the classification of the renal

tumours was conducted in accordance with the WHO Classification of

Urinary and Male Genital Tumours (4th and 3rd Editions). Although

therewasno change to thediagnostic criteria for ccRCCbetweenWHO

3 and 4, the classification of RCC has evolved with new entities

recognised within the (current) WHO Classification (5th Ed, 2022) that

were not previously ‘recognised’/accepted entities. Some of these

mimic ccRCC and there is therefore a chance that a small number of

cases within our study cohort might be re-classified if these were

subject to contemporary review. Such considerations will also pertain

to previously published studies conducted by TCGA and PCAWG.

Accepting the caveats, as well as confirming established ccRCC driver

genes we identify candidate drivers further highlighting oncogenic

metabolism and epigenetic reprogramming as being central to ccRCC

biology. Additionally, we confirm pTERTmutations as drivers, thereby

further substantiating telomerase dysfunction in the development of

ccRCC. Mutational signature analysis provides a mechanistic basis for

known lifestyle and exposure risk factors as well as potentially indir-

ectly suggesting additional ones. While we did not identify any new

mutational signatures, our analysis provides further support for

tobacco smoking being a risk factor for ccRCC69.

The large size of our study, coupled with the standardised man-

agement protocols for ccRCC patients within the UK National Health

System, has enabled us to investigate the correlation between mole-

cular features and patient prognosis. The clinical course for many

ccRCC patients with apparent same stage disease can be highly vari-

able. Upfront identification of patients who are likely to relapse early

offers the prospect of intervening preemptively tomaintain remission.

Furthermore, since metastatic ccRCCs are chemotherapy and radio-

therapy resistant, identifying tumour sub-groups with targetable

molecular dependencies has the potential to inform on biologically

driven therapies.

The relationship between mutations in the major clonal driver

genes and patient survival has been the subject of a number of pre-

vious studies, but findings have been inconsistent6,7,70–76
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(Supplementary Data 22). While some studies7,9 have reported BAP1

mutations being associated with a worse clinical outcome, other

studies71,75 have failed to demonstrate any relationship. As previously

documented9,77, and herein, BAP1 mutations are strongly associated

with increased grade and after adjustment we failed to show support

for an independent relationship. In our study, we, however, show VHL

mutation status was independently associated with an improved OS,

consistent with a recent study74. VHL mutations are early events of

ccRCC development whereas other mutated genes are acquired later

therefore they might be assumed to play more of a role in disease
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progression. Hence it is unclear why VHL-positive ccRCC tumours

might have a more favourable outcome than VHL-wildtype ccRCC.

Distinct evolutionary subtypes of ccRCC have, however, been pro-

posed that appear biologically and clinically distinct, with subtypes

defined being by VHL-wildtype, VHL-monodrivers, and those with

multiple clonal drivers8. After adjusting for VHL status, we did not

detect a statistically significant independent association between

other driver mutations and survival. Amongst the strongest
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Fig. 8 | Kaplan–Meier survival curves of overall survival (OS). Relationship

between OS and a VHL mutation status (n = 605); b PBRM1 mutation status

(n = 605); c structural variant count (n = 605); (d) TCRA T-cell fraction (n = 605);

e sarcomatoid (n = 167). Log-Rank P and Cox P refers to the Log Rank test and Cox

Regression (two-sided z-test), respectively.
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relationships we identified was between increased copy number with

increased survival, which was independent of tumour grade, pre-

sumably reflecting tumour heterogeneity. We did not find support for

the purported relationship between intra-tumour heterogeneity and

prognosis25, however, our analysis did not benefit from multi-region

sampling.

Although current drug treatment paradigms for ccRCC exploit

targeted therapies they are primarily not directed against any specific

genomic feature. To investigate the prospect of targeting specific

driver mutations we queried OncoKB43, which is regularly curated by

an expert panel and therefore generally considered to reflect the

current state of knowledge. Since other investigators have reported a

higher targetable variant detection rate by applying multiple tools to

annotate variants we also made use of The COSMIC Mutation Action-

ability in PrecisionOncology resource44. Themajority of the alterations

we describe as being actionable are based on clinical evidence from

other cancers or biological plausibility. As per previous reports, the

majority of the targetable alterations we identified are within PI3K/

mTOR pathway genes. Randomised clinical trials showing clinical

benefit of the mTOR inhibitors temsirolimus and everolimus in RCC

have already led to their regulatory agency approval. Other targets

have not been specifically studied in the context of ccRCC, hence

results cannot be interpreted as definitive proof of response predic-

tion. Examples of drugs where the population of interest could be

expanded to treat ccRCC include: Temsirolimus, which is undergoing

ongoing trials as a treatment for FBXW7-positive solid tumours78,79,

nilotinib for ABL1 mutations80, niraparib for BAP1 mutations81, Taze-

metostat hydrobromide for SMARCA4 mutated cancers82,83, olaparib

with pembrolizumab for ARID2-positive melanoma84, and alpelisib for

PIK3CA in ER-positive metastatic breast cancer85,86. An important

caveat to our analysis is that the genetic profiles we derived are of a

single region, which has potentially limited our ability to detect clini-

cally important subclonal targetable alterations.

In many other cancers, a high mutational and neoantigen burden

have been linked to better overall survival and responsiveness to

checkpoint inhibitors presumably reflecting native immune

responsiveness87. In our study, there was no association between

neoantigen burden andOS. In contrast, therewas a strong relationship

between increased T-cell infiltration and better prognosis. While this

might seem counterintuitive, however, this finding may be explained

by the poor accuracy (6%) of current HLA-affinity-based neoantigen

prediction algorithms88. Accepting these limitations, the twin obser-

vations of higher T-cell infiltration being associated with better out-

come and genetically predicted immune evasion is uncommon and

supports the rationale for immunotherapy.

There is interest in the prospect of population screening for RCC,

given the rising incidence of the disease, the high proportion of

asymptomatic individuals at diagnosis and associated high mortality

rate. Our analysis supports previous work suggesting that ccRCC dri-

vermutations often precede diagnosis bymany years, if not decades36,

information relevant to the design of any screening programme.

Although some cancers have reaped demonstrable benefits from

the current genomic revolution, the same benefits have not been yet

observed in RCC, and further efforts should be directed to identify the

precise role of genomic tumour profiling in the clinical setting.

Methods
Ethics statement
This study was conducted as part of the 100,000 Genomes Projects

and approved by the East of England – Cambridge South Research

Ethics Committee (REC reference: 14/EE/1112). All patients provided

written informed consent and the study was conducted in accordance

with the Declaration of Helsinki (see https://www.genomicsengland.

co.uk/initiatives/100000-genomes-project/documentation for further

information on patient consent andwithdrawal). Sex-stratified analysis

was not considered for this investigation, and there are no results that

are only applicable to a single sex.

The 100kGP cohort
The analysed cohort comprised tumour-normal sample pairs from

patients with primary RCC recruited to 100kGP (v14 release) through

13 Genomic Medicine Centres across England10,11 (Fig. 1). The renal

tumour cases included in this study were all routine surgical cases

reported by diagnostic histopathologists at contributing centres. His-

tology of RCC was as per WHO Classification of Urinary and Male

Genital tumours 3rd/4th edition89, which havematching clear cell renal

cell carcinoma (ccRCC) diagnostic criteria. The collection of tissue and

the preparation, extraction and quantification of DNA was undertaken

locally, followed by transfer of DNA to a central biorepository. We

restricted our analysis to high-quality sequencing data derived from

PCR-free, flash-frozen primary tumour samples from 10,470 adults

(Supplementary Data 23). Illumina conducted whole genome sequen-

cing of paired tumour/normal DNA. Processed BAM files were sent to

Genomics England, who performed additional quality checks and

managed data storage. We corrected for reference bias in calling of

variants using FixVAF12. We selected one tumour/normal pairing per

patient.Weused Strelka to call somatic variants90, a four-stage pipeline

incorporating Battenberg13 for copy number calling (Supplementary

Data 25) and a consensus approach based on Delly16, Lumpy15 and

Manta14 for calling somatic structural variants (SVs). To assess the

clinical relevance of individual mutations, in addition to Ensembl

Variant Effect Prediction91, all unique missense SNVs were annotated

using AlphaMissense24 to compare pathogenicity between driver and

non-driver mutations. Comprehensive clinico-pathology information

on the patients is provided in Supplementary Data 1. Complete details

on sample curation, tumour purity estimation, WGS, somatic variant

calling, mutation annotation, copy number alteration calling/annota-

tion, somatic structural variant calling/annotation, whole genome

duplication annotation and tumour/germline telomere length esti-

mation provided in “Supplementary Methods”.

Identification of drivers and driver annotation
We used IntOGen to identify coding drivers18 (Supplementary

Methods). The relative evolutionary timings of candidate driver

mutations were obtained using MutationTimeR (Supplementary

Methods). We considered gene perturbation screening data from

DepMap to determine the functional basis of candidate driver

genes30,31. To complement this approach, we also considered gene

expression data from TCGA28 and GTEx29, accessed through GEPIA92.

We assessed the clinical actionability of driver gene mutations by

interrogating OncoKB Knowledge Base43 (version 3.11) and the COS-

MIC Mutation Actionability in Precision Oncology database44. We

searched for non-coding drivers within core promoters, distal pro-

moters, 5′ and 3′ UTRs of canonical protein-coding transcripts, non-

canonical splice regions, and LincRNAs using OncodriveFML33,

ActiveDriverWGS34 andNegative binomial regressionmodelling35. We

used Empirical Brown’s method to combine P-values from methods

and adjusted for multiple-testing using the Benjamini-Hochberg

procedure (Supplementary Methods).

Cellular pathways containing driver genes (Supplementary

Data 4), identified from both the IntoGen and non-coding pipelines

involved in tumourigenesis, were referenced to the literature using

PubMed. Pathways were also interrogated using ActivePathways93 and

MSigDB94,95 (v7.5.1).

Copy number and structural variant hotspots
Recurrent arm-level copy number events, focal amplifications and

deletions, were identified using Genomic Identification of Significant

Targets in Cancer45 (GISTIC, v2.0.2.3). SVs were classified into simple

and complex SVs using ClusterSV96 (Supplementary Methods) and
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structural variation hotspots for deletion, tandem duplication and

simple unclassified SVs were identified using a permutation-based

approach as per as Glodzik et al.97. Additional filtering was applied to

identify if the hotspot regions were predicted fragile regions in the

genome (Supplementary Methods).

Mutational signatures
De novo extraction of single-base-substitution (SBS), doublet-base-

substitution (DBS) and insertion and deletion (ID) signatures, includ-

ing decomposition to known COSMIC signatures44 (v3.2), was per-

formed using SigProfilerExtractor51. We complemented this using

mSINGS54 and HRDetect55,98 to specifically identify mismatch repair

deficient and homologous recombination deficient tumours respec-

tively (Supplementary Methods).

Immune escape
All genomes were HLA-typed using POLYmorphic loci reSOLVER99

(POLYSOLVER). Neoantigens were predicted using personalised Var-

iant Antigens byCancer Sequencing60 (pVAC-Seq).We classed tumours

as exhibiting immune escape on the basis of a non-synonymous

mutation, or loss-of-heterozygosity in any one of three HLA Class-I

genes, or an inactivating mutation in an antigen presenting gene

(Supplementary Methods).

Clinical correlations and survival analysis
Correlations between clinical and mutational properties were identi-

fied using logistic, linear and negative binomial regression. Both uni-

variate and multivariate regression adjusting for sex, age of sampling,

stage and grade was considered (Supplementary Methods). Overall

survival and cancer-specific survival was defined as the time from the

date of sampling to death from any cause. Kaplan–Meier survival

curves were generated and the homogeneity between groups was

evaluated with the log-rank test. Progression-free survival was defined

as the time from the date of sampling to radiological progression. Cox

regression analysis was used to estimate hazard ratios and respective

95% confidence intervals, and adjustment for clinical variables was

performed by multivariable analysis.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study have been deposited in

the National Genomic Research Library and can be accessed via the

Genomics England Research Environment, a secure cloud workspace.

The raw data, including patient profiles and corresponding genomic

sequencing data, are only available under restricted access for patient

privacy reasons. Access can be obtained by first applying to become a

member of either the Genomics England Research Network (https://

www.genomicsengland.co.uk/research/academic) or the Discovery

Forum (industry partners https://www.genomicsengland.co.uk/

research/research-environment). The process for joining the network

is described at https://www.genomicsengland.co.uk/research/

academic/join-gecip and consists of the following steps: (1) Your

institution will need to sign a participation agreement available at

https://files.genomicsengland.co.uk/documents/Genomics-England-

GeCIP-Participation-Agreement-v2.0.pdf and email the signed version

to gecip-help@genomicsengland.co.uk. (2) Once you have confirmed

your institution is registered and have found a domain of interest, you

can apply through the online form at https://www.genomicsengland.

co.uk/research/academic/join-gecip where you can specify the reason

for access and expected timeframe that you wish to have access. Once

your Research Portal account is created you will be able to login and

track your application. (3) Your application will be reviewed within 10
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will be granted access to the Research Environment within 2 days of

passing the online training. The processed clinical and genomic data

applied to the investigation are available in the Research Environment
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the research environment. All other public/private datasets used in the
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Code availability
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statement, code to allow for reproducibility of results and figures are
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