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ABSTRACT: Raman spectroscopy of muscle provides a molec-
ular fingerprint to identify the disease. Previous work has
demonstrated effectiveness in differentiating between two groups
of equal sizes (e.g., healthy vs disease) but imbalanced multiclass
scenarios are more common in medicine. We performed in vivo
Raman spectroscopy in a total of 151 mice across four different
histopathologies (healthy, acute myopathy, chronic myopathy, neurogenic), with variable numbers in each (class “imbalance”).
Using hierarchical modeling and synthetic data generation, we demonstrate high sensitivity (94%) for detection of healthy muscle
and high specificity (≥97%) for disease. Further, we demonstrate the potential for unique biomarker development by demonstrating
variations in the protein structure across different pathologies. The findings demonstrate the potential of Raman spectroscopy to
provide accurate disease identification and unique molecular insights.

■ INTRODUCTION

Raman spectroscopy is a new biomarker for the identification
of disease-related changes in muscle. Through collection of
inelastically scattered light, a highly detailed molecular
fingerprint is obtained. This contains biochemical information,
including, for example, information on protein folding, an
increasingly recognized driver of neurological disease.1

Previously, we have shown that spontaneous Raman can be
performed in vivo in preclinical models of neuromuscular
disease.2 Analyses have shown promise in identifying different
diseases in preclinical models of Duchenne muscular dystrophy
(DMD) and amyotrophic lateral sclerosis (ALS). These have
largely focused on the differentiation of two groups, typically
healthy vs disease, or one pathology vs another (e.g., myopathy
vs neurogenic), using well balanced data sets, i.e., roughly equal
numbers in both groups.2,3 Similar analyses have been
successfully undertaken using ex vivo human muscle samples.4

However, in clinical practice, physicians investigating
patients for suspected neuromuscular disease rarely face a
two-class problem. For example, a neurologist might form the
hypothesis that a patient's weakness is due to a primary muscle
disease, rather than a neurogenic cause, but there will then be
several different myopathic disorders to consider.5,6 Further-
more, different diseases do not occur with equal incidence, so
the frequency of classes in both the model training data and
the test data may be skewed. This results in a class imbalance,
which violates assumptions in many of the standard methods
used to analyze Raman data.7,8 If Raman spectroscopy were to
be deployed as a clinical tool in the context of neuromuscular
disease, it would, as a minimum, be faced with healthy/
neurogenic/myopathic class groups and class imbalance due to

differences in the incidence of conditions within the neuro-
muscular disease spectrum.9

Herein, we test if, within a single analytical workflow, Raman
spectroscopy can correctly identify four different types of
muscle histopathology in preclinical models of muscle disease
(DMD) and neurogenic disease (ALS): acute myopathy (early
stage mdx), chronic myopathy (established mdx), neurogenic
(SOD1G93A), and healthy. To explore the biochemical
differences within these groups, we examined alterations in
protein secondary structure. Our findings demonstrate that in
vivo Raman spectroscopy of muscle generates a highly sensitive
molecular fingerprint of healthy muscle and highly specific
molecular fingerprints of disease, with differences in protein
secondary structure.

■ EXPERIMENTAL SECTION

Preclinical Models. Experiments were conducted with
University of Sheffield Ethical Review Sub-Committee
approval and a UK Home Office (license number 70/8587),
in accordance with the Animal (Scientific Procedures) Act
1986. The ARRIVE guidelines were followed.10

In the mdx model of DMD used, disease onset begins
around 30 days with infiltration of inflammatory cells and
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myonecrosis, we have termed this stage “acute mdx”.11 This is
followed by a more stable phase with regenerated, centrally
nucleated myofibers; we studied mice aged 90 days and have
termed these “chronic mdx”. In the SOD1G93A model of ALS,
hindlimb denervation begins at ∼40 days12; by the 90-day time
point we studied, there is significant denervation and muscle
atrophy.13 A healthy muscle group consisted of mice from the
different genetic backgrounds of mdx and SOD1G93A. These
included age-matched wild-type healthy control mice (C57BL/
10ScSnOlaHsd; matched to mdx) and nontransgenic litter-
mates from the SOD1G93A colony (C57BL/6 J OlaHsd).

Raman Spectroscopy. Fiber optic Raman spectroscopy
was performed using a Raman probe housed within a 21-guage
hypodermic needle. The incident light was provided by an 830
nm laser (power output 60 mW) and the probe was optically
paired to the spectrometer for efficiency. The spectra were
collected during a 40 s exposure.

The in vivo methodology was undertaken as previously
described.2 Briefly, mice were anesthetized using 2% isoflurane.
The fiber optic Raman probe was inserted into the medial and
lateral heads of gastrocnemius bilaterally (collecting four
spectra per mouse). We studied a total of n = 69 healthy mice
and n = 89 disease mice (acute mdx: n = 24, chronic mdx: n =
39, 90-day SOD1G93A: n = 26), which provided an imbalance
across some of the classes.

Histology. Gastrocnemius muscles were dissected, snap-
frozen, and cryosectioned at 10 μm. Haematoxylin and eosin
staining was performed after warming to room temperature
using a standard protocol.14 Slides were imaged using a digital
slide scanner (Nanozoomer series, Hamamatsu).

Data Analysis. Quantitative histological analysis of
minimum Feret’s diameter and central nucleation was
undertaken using the MyoSOTHES (Myofbers Segmentation
wOrkfow Tuned for HE Staining) platform within QuPath/
Cellpose.15 The variance coefficient (VC) of the minimum
Feret’s diameter, a measure of the variation in muscle fiber
diameter, was calculated as VC = (1000 × standard deviation
of minimum Feret’s)/mean of minimum Feret’s. Quantifica-
tion of the inflammatory cell infiltrate was performed within
QuPath using the cell detection method.16 This was done by
training a Random Forest classifier on a collection of
inflammatory cells and then applying the model to whole
sections. For all histological parameters, sections were analyzed
from n = 3 mice for each of acute mdx, chronic mdx, and
SOD1G93A and n = 9 nontransgenic/wild type mice.

Raman analysis was performed using in-house code within
MATLAB (2023a; MathWorks, USA) and the PLS Toolbox
(Eigenvector Research Inc., USA). Spectra were interpolated
and windowed in the “fingerprint region” (900 cm−1 to 1800
cm−1), where biologically relevant information is present.
Outliers were removed using an algorithm to identify data
more than three standard deviations outside the mean across a
15-wavenumber window. From a total of 604 spectra (4
spectra from each of 151 mice), 514 passed quality control for
analysis (total of 151 mice). Background subtraction (an
iterative asymmetric least-squares algorithm) and normal-
ization (1-norm) on each spectrum were performed.

The data set was separated into training and test sets
(Kennard Stone algorithm) with a 70:30 (training: test) split.
The training data set thus comprised 143 spectra from n = 44
healthy mice, 54 spectra from n = 17 acute mdx mice, 106
spectra from n = 28 chronic mdx mice, and 55 spectra from n =
19 SOD1G93A mice. The test data set comprised 66 spectra

from n = 18 healthy mice, 26 spectra from n = 7 acute mdx
mice, 43 spectra from n = 11 chronic mdx mice, and 21 spectra
from n = 7 SOD1G93A mice.

Using only the train data set, data were prepared for analysis
using a hierarchical approach. The first step comprised
identification of healthy (143 spectra, n = 44 mice) from
disease (215 spectra, n = 64 mice) followed by separation of
neurogenic (SOD1G93A; 55 spectra, n = 19 mice) from
myopathic mdx (160 spectra, n = 45 mice) and then separation
of acute (54 spectra, n = 17 mice) and chronic (106 spectra, n
= 28 mice) mdx. Class imbalance, in which one class
outnumbers another results in the accuracy paradox, can
cause model overfitting and a failure to generalize to unseen
data.17 To combat this, we generated synthetic data using the
synthetic minority oversampling (SMOTE) algorithm.18 Thus,
at each step, the two classes were balanced in number.

The balanced data sets were then processed for multivariate
model generation. First, a generalized least-squares weighting
multivariate filter was used to down-weight spectral features
responsible for within-class variance. Mean centering was
applied, and two-class partial least-squares discriminant
analysis (PLS-DA) models were constructed with venetian
blind cross-validation. Model complexity (latent variables [LV]
number) was decided by viewing the cross-validation
classification error against LV number plots, choosing the
number of LVs at which the error plateaued. In addition,
differences between the means plots were obtained by
subtracting the mean of one group from the mean of another.

The hierarchical modeling function within the PLS Toolbox
(Eigenvector Research, Inc., USA) then combined the
individual models into a single workflow. The test data,
which had not been seen during the model generation steps,
was applied. Standard classification performance statistics were
then calculated (accuracy (acc.), sensitivity (sens.), specificity
(spec.), positive predictive value (PPV), negative predictive
value (NPV), and F score..

To gain insight into the most important spectral features
used in the classifications, selectivity ratios were calculated.19

These were then multiplied by the sign of the relevant PLS-DA
model regression vector so that values more important to the
different classes could be visualized.20 This was done for both
the training data and the test data. A simplified representation
of key spectral regions at each step in the workflow was
generated by identifying the spectral regions with high
discriminating value important wavenumbers by an F-test
(probability level α of 0.95). The important regions were
identified in each binary model and aggregated into a “block
plot” to provide a simple visualization.

Determination of protein secondary structure was under-
taken using Origin (2023).21 Correctly predicted spectra from
the test group were identified, and the amide I region (1590−

1720 cm−1) was separated from the rest of the spectrum.
Group means for the healthy, acute mdx, chronic mdx, and
SOD1G93A groups were generated and then scaled between 0
and 1. A mixed Lorentz−Gaussian (Voigt) function was used.
Six peaks centered on 1601 and 1615 cm−1 (aromatic amino
side chains), 1635 cm−1 (nonregular), 1652 cm−1 (α-helix),
1663 cm−1 (β-sheet), and 1677 cm−1 (nonregular) were used
for fitting, with the addition of two further peaks (1700 and
1710 cm−1, nonregular) in chronic mdx. The starting height for
each peak was the amide I spectral intensity at that
wavenumber. The full width at half-maximum was enabled to
an upper limit of 30 cm−1. The proportion of the aromatic
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amino acid and secondary structure components was then
reported as the percentage of the given peak relative to all
peaks utilized in the fitting. A more complex secondary
structure analysis was also performed utilizing matrix
factorization to obtain information at the level of individual
spectra (see supplemental methods for details).21

■ RESULTS AND DISCUSSION

Raman Spectra and Quantitative Histopathology. In
vivo Raman spectra were obtained, and muscle was studied
histologically (Figure 1). The spectra all contained similar core
features, such as phenylalanine (1000 cm−1), the CH2

deformation of proteins/lipids (1450 cm−1), and the amide I
protein peak (1650 cm−1; Figure 1). Histology of healthy
tissue demonstrated peripherally nucleated myofibers of similar
size. Histology from SOD1G93A mice demonstrated grouped
atrophy and normal-appearing fibers. Acute mdx muscle
showed inflammatory cells (typically reported to be macro-
phages, CD4+, and CD8+ T lymphocytes),22 while the chronic
mdx muscle was dominated by regenerated, centrally nucleated
fibers, variation in muscle fiber size, and some evidence of fat
deposition.

Thus, the chosen models manifested quantitatively different
histopathology. Furthermore, the artificial intelligence-driven
MyoSOTHES workflow aligns well with the prior literature

using more traditional methods. For example, Massopust et al.
found that in the mdx hindlimb, ∼20% of fibers had central
nuclei at 42 days,23 while results at 90 days onward ranged
from 65 to 90%.23,24 In SOD1G93A at 90 days, motor neurone
counts in the lumbar spinal cord are around half that of wild-
type mice,12,25 and muscle fiber size variation in gastrocnemius
is apparent.26

Hierarchical Classification Model. To classify the four
groups, a hierarchical decision tree was constructed (Figure 2).
At each step, a binary model node removed one class. The LVs
underpinning the model, together with model performance,
can be seen in Figures S1−S3. The first step separated healthy
muscle from a combined group of “disease” (acute and chronic
mdx and SOD1G93A). The second step removed SOD1G93A

from a combined myopathy group (acute/chronic mdx) and,
finally, acute and chronic mdx were separated. These models
were then combined into a single workflow.

At each step, selectivity ratio plots were constructed to aid
interpretation, and spectral regions particularly useful for
discrimination at each step were aggregated into a block plot.
This demonstrated that differences in protein and lipid
biochemistry were driving class distinctions, with particularly
prominent areas including the CH2 deformation of proteins
and lipids (∼1450 cm−1) and the amide I region (1590−1720
cm−1). Similar regions of importance were also identified in the

Figure 1. In vivo Raman spectra and histology from the four groups studied. (a) Healthy (average of 143 spectra from 44 mice). Healthy muscle is
characterized by muscle cells of similar size with their nuclei at the periphery of the cell. (b) SOD1G93A (average of 55 spectra from 19 mice).
SOD1G93A muscle shows grouped atrophy (collections of smaller cells, arrow) and some fat deposition (arrowhead), together with some normal
cells (chevrons). (c) Acute mdx (average of 54 spectra from 17 mice). The muscle manifests inflammatory cell infiltrates (arrows), together with
healthy muscle cells (chevrons). (d) Chronic mdx, (average of 106 spectra from 28 mice). Chronic mdx demonstrates fat deposition (arrowhead),
with centrally nucleated regenerated muscle cells (arrow). (e−h) Quantitative histopathology for the four conditions (healthy n = 9 mice; acute
mdx n = 3 mice; chronic mdx n = 3 mice; SOD1G93A n = 3 mice). VC − variation coefficient (a measure of muscle fiber size variation). For
simplicity, only significant comparisons are shown. Scale bars 100 μm. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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latent variable loadings plots (Figures S1−S3) and differences
between the means plots (Figure S4). Similar spectral features
have also been reported in human muscle disease4 and in fly
models of muscle disease.27

The hierarchical approach is analogous to the diagnostic
process of expert clinicians who rapidly generate hypotheses
that are then systematically evaluated.28 In neuromuscular
neurology, a simple example might be deciding through clinical
history and examination that a patient’s weakness is neuro-
logical in origin, versus, for example, musculoskeletal. Next, the
hypothesis that the problem is myopathic in origin may be
interrogated versus, for example, a motor neurone etiology.
This would first be evaluated through the clinical history and
examination and then through combinations of electro-
myography (EMG), MRI, blood tests, and muscle biopsy.29

Thus, our approach aligns with clinical decision-making by first
identifying disease and then separating different pathologies.
However, just as the diagnostic decision-making may proceed

in alternative ways, our Raman workflow is not the only way
that the data could be manipulated. For example, a clinician
may determine very quickly that a case is neurogenic in origin,
and thus, a mirroring Raman step would be the separation of
neurogenic pathology from a combination of healthy and
myogenic. Within the analysis algorithm, a prior probability
weighting could also be added taking into account epidemi-
ology and/or expert clinical opinion.30

A test data set, kept separate and not used in any of the
model steps, was then fed into the hierarchical model. The
results demonstrated a highly sensitive detection of healthy
tissue, with highly specific detection of the different
pathologies (Tables 1 and S1). This pattern can be appreciated
in histology, where some relatively normal histological areas
are encountered in acute mdx and SOD1G93A.

In the current analysis, we have focused on a standard
analysis algorithm in Raman spectroscopy, PLS-DA. However,
alternative techniques, particularly nonlinear or deep learning

Figure 2. The hierarchical model and important spectral features in each step. (a) The hierarchical model workflow. (b−d) Selectivity ratio plots.
These record the importance of each spectral feature at each of the steps in the hierarchical model. More important features result in higher scores.
(e) To visualize important spectral regions across the steps in the hierarchical model, a block plot is created using features with high selectivity ratio
scores.
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approaches, may provide superior performance, particularly
with a greater number of samples.31 In the current analysis, we
have utilized the whole spectrum, but some authors suggest
that selection of key features, either through domain-specific
knowledge or algorithmic feature selection techniques, can
improve classification.32 Furthermore, targeting the Raman
signal to specific areas within the muscle may also increase the
diagnostic yield. The best way to do this is unknown at
present, although our recently described combination of EMG
and Raman (“optical EMG”)13 could permit real-time targeting
via EMG signal interpretation and a unique “electro-photonic”
assessment of muscle health. Alternative bedside methods such
as neuromuscular ultrasound may also be worth exploring.33

Protein Secondary Structure Analysis. In the block plot
(Figure 2e), important features are consistently seen in the
amide I region. This part of the Raman spectrum is useful for
investigating protein secondary structure conformations34 and
so can provide a unique insight into the biochemistry of the
muscle. To explore this further, spectra in the test data set that
were correctly allocated to their group (healthy/acute mdx/
chronic mdx/SOD1G93A) were chosen for further amide I
analysis. Peak fitting for different structures (and aromatic
amino acids) demonstrated that healthy muscle had a large
abundance of α-helix structures (Figure 3). Acute mdx muscle
demonstrated an increase in β-sheet, while chronic mdx
manifested large increases in both β-sheet and nonregular
conformations. SOD1G93A was characterized by a modest
change in β-sheet. These changes were assessed at the group
level, and so information on the importance of different
conformations to individual spectra is not available. This can
be achieved using matrix factorization, which provides
information at the level of individual spectra that is amenable
to statistical testing (supplemental methods and Figure S5).

When considering the changes to secondary protein
structure, it is important to note that by taking Raman spectra
from intact muscle, we are studying protein structure at the
level of the whole muscle. We therefore caution against an
interpretation based on individual proteins. Notwithstanding
this, misfolded proteins are a known occurrence in many
neurological conditions, including muscle disorders,35,36 where
they may potentiate already abnormal physiology.37−39 The
most marked changes in protein structure were evident in mdx
mice, a model of Duchenne muscular dystrophy. In this
disease, impaired autophagy is proposed to limit the removal of
protein aggregates40 and this has been reported in mdx.41

Thus, one possibility is that abnormal protein conformations
relate to this defect. Alternatively, they might relate to a more
nonspecific response to muscle necrosis,39 atrophy,42 and/or
regeneration.43

■ CONCLUSIONS

We have demonstrated that Raman spectroscopy can
effectively identify healthy and diseased muscle in a complex,
imbalanced multiclass setting. Biochemical interpretation

demonstrated significant changes in the protein structure.
The analysis provides a platform for further development of
clinical Raman spectroscopy in neuromuscular disease.
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